
Installing K2FDOS in ROM on SBC-85

K2FDOS consists of five parts: Boot, Sysgen, Format, PIP, and FDOS. When running FDOS in

ROM, Boot and Sysgen are not really needed, but they are included in the package for possible

future use. A special utility program, mbmutil is also included, which can be used to read and

display data from the MBM by track and sector, among other things. Since PIP is used frequent-

ly it can be run directly in ROM from FDOS. Format is used much less often, and can be run

from mbmutil. Alternatively, both PIP and Format can be run from FDOS like any other pro-

gram, if you’ve sav ed copies on the MBM.

The version of K2FDOS in this package is configured and assembled for an SBC-85 system with

8KB ROM at address 2000H, 8KB RAM at address 8000H, and 256 bytes at A000. You also

need the Dunfield monitor, version 1.4, in ROM at address 0000H. The Dunfield monitor is re-

quired because FDOS makes use of interrupts, specifically RST 2, using the monitor’s mecha-

nism for relocating the vectors. For this reason, it is not possible to run programs that use FDOS

functions directly from the monitor. They need to be run from FDOS. And FDOS probably

won’t work with a different monitor without modification.

When you unpack the fdos tar file you will have a variety of files with extensions like .asm, .hex,

.asc, .lst, and .bin. Depending on your PROM programmer, you will probably want the .hex or

.bin files. In ROM, FDOS starts at 2000, PIP at 2D00, and MBMUTIL at 3500. Program an

8KB EPROM (2764) as follows:

k2fdos at offset 0 (2000 -> 0000)
pip at offset 0D00H (2D00 -> 0D00)
mbmutil at offset 1500H (3500 -> 1500)

Those offsets are determined by subtracting 2000H (the EPROM address) from the ORG address

of each program. To help verify that the programmer has the right data in the right places, here

are the first 64 bytes of each program as they should appear in the programmer.

FDOS:
00000000 C3 11 20 05 9D EF 9E 77 9F 10 9D AF 9E 13 9D 2F |..w......./|
00000010 9E C3 A4 20 C3 D3 27 C3 D3 27 C3 12 28 C3 12 28 |... ..’..’..(..(|
00000020 C3 CA 28 C3 AB 29 C3 AB 20 C3 E0 28 C3 FE 22 C3 |..(..).. ..(..".|
00000030 07 23 C3 5B 24 C3 39 24 C3 36 25 C3 92 24 C3 CB |.#.[$.9$.6%..$..|

PIP:
00000D00 21 8C 2E D7 15 D7 08 01 26 04 21 BF 98 AF 77 23 |!.......&.!...w#|
00000D10 0B 78 B1 C2 0E 2D 21 A2 2E D7 15 D7 17 D7 16 CA |.x...-!.........|
00000D20 1D 2D FA 05 2D FE 3F CA 5D 2D 47 D7 16 4F D7 16 |.-..-.?.]-G..O..|
00000D30 57 21 65 2D 1E 0B 7E 23 B8 C2 4D 2D 7E 23 B9 C2 |W!e-..˜#..M-˜#..|

MBMUTIL:
00001500 21 F4 37 D7 15 D7 17 D7 1D DA 00 35 7D FE FF CA |!.7........5}...|
00001510 2A 35 FE 01 DA 1C 35 FE 0D D2 00 35 3D 5F 16 00 |*5....5....5=_..|
00001520 21 E5 36 19 19 5E 23 56 EB E9 D7 07 D7 81 4C D7 |!.6..ˆ#V......L.|
00001530 1E 4D D7 1F CD 4A 37 D7 81 0E 88 C3 1B 37 D7 82 |.M...J7......7..|

- 1 -

After installing the EPROM in the ZIF socket of the CPU board and powering up, you should be

able to run FDOS at address 2000H. Following is a sample session, showing available FDOS

and mbmutil commands, and finally returning to the monitor (inputs in bold):

MON85 v1.4

(c)1979-2007 D.Dunfield
2020-Used with permission for SBC-85

C> G 2000

K2 FDOS VERSION 1.6
DATE? 09-MAR-23

-?

S <filename>: Save a file R <filename>: Run a program
E: Exit to monitor J <address>: Jump to address
U: Toggle uppercase flag M: Run the MBM Utility from ROM
P: Run PIP from ROM ?: Display this help

-M
FDOS/MODCAL TEST
CHOOSE ONE (HEX #S):
1: DISPLAY WRTFILE DATA 2: DISPLAY REDFILE DATA
3: TEST TS2BT 4: DISPLAY FDOS BITMAP DATA
5: LOAD FDOS FROM MBM 6: TEST RNDIN
7: FORMAT MBM FOR FDOS 8: XFER FDOS TO MBM

FF: RETURN TO FDOS
TEST#: FF

-E

MON85 v1.4

(c)1979-2007 D.Dunfield
2020-Used with permission for SBC-85

C>

- 2 -

Installing And Using TEA

Both TEA and ASM1 in this package have been assembled to run at address 8000H. After un-

packing the tar file, you’ll see files with extensions like .asm, .asc, .hex, .lst, and .bin. In order to

use these without modification you’ll need an SBC-85 system with 8KB of RAM at 8000H, and

a monitor of some kind, preferably the Dunfield monitor, at 0000H. There also needs to be some

RAM between A080H and A0FFH.

The Dunfield monitor can read Intel Hex files, but other monitors may require some other meth-

od of getting the programs into RAM at the correct address. The following example shows the

steps used to get TEA into RAM, starting from the Dunfield monitor prompt:

C> l

(at this point do whatever you need to do to get your terminal program
to send the tea-mbm.hex file)
:C>

TEA is now in RAM addresses 8000H through 8F92H (you can find the last address used by

looking for the "END" statement in the tea-mbm.lst file). Here are the first 64 bytes as they

should appear in RAM:

00008000 21 90 A0 22 80 A0 21 E0 A0 22 82 A0 AF 32 84 A0 |!.."..!.."...2..|
00008010 32 85 A0 32 E6 8E 32 E7 8E 31 92 8F 2A 86 A0 EB |2..2..2..1..*...|
00008020 1B 21 3D 8B CD DC 80 EB 36 0D 23 22 86 A0 2A 8A |.!=.....6.#"..*.|
00008030 A0 EB 21 51 8B CD DC 80 2A 86 A0 7D 93 7C 9A D2 |..!Q....*..}.|..|

Saving files with FDOS is done this way:

C> G 2000

-S TEAMBM

*L 8000,8F92

*G 8000

-

Some things to be aware of are that the spaces after the FDOS "S", "L", and "G" sub-commands

are required. If you leave them out it won’t cause an error, but the results will be disappointing.

FDOS does not allow overwriting files, and if you try you will get a cryptic "ERROR 10". In

that case either use a different name or use PIP to delete or rename the file. Finally, avoid saving

an executable file after you’ve already run it. There may be areas of RAM that the program has

initialized or changed and the saved file could include those changes. Instead, only save exe-

cutable files after loading or assembling them in RAM, and before running them. To sav e a data

file, finish with "Q" instead of "G ####". The K2FDOS book, available on archive.org, has more

detail about using FDOS, PIP, and more.

- 3 -

When saving TEA and ASM1 to MBM, you can use any names you wish, as long as they fit the

FDOS 6.3 format. However, both TEA and ASM1 are currently written to smoothly interact,

which means you will need to use the names they expect: TEAMBM and ASM1, with no exten-

sions.

Once a copy of TEA is saved on the MBM, you can run it from FDOS:

-R TEAMBM

INITIAL ADDRESS? H9000

FINAL ADDRESS? H98BF

SOURCE CURRENTLY IN MEMORY? N

C=?
TEA COMMANDS:
A: APPEND (ˆC ENDS) B: BOOT ASSEMBLED PROG.
C: CHANGE (ˆC ENDS) D: DELETE LINES
E: EXCHANGE (ˆE ENDS) H: HEX NUMBERS
I: INSERT (ˆC ENDS) L: LIST LINES
M: MEMORY LIMITS N: NEXT SEARCH ITEM
O: OCTAL NUMBERS P: PUNCH OUTPUT
Q: QUERY MEMORY USED R: READER INPUT
S: SEARCH (ˆS ENDS) U: UC/LC TOGGLE
X: ASSEMBLE (TEA) V: ASSEMBLE (ASM1)
Z: RETURN TO MONITOR ?: THIS HELP

C=

The initial and final addresses are chosen according to whatever RAM is installed in your sys-

tem. In this case, there is RAM from 8000H to 9FFFH, with approximately the first half of that

taken up by TEA itself, and a chunk at the end used by FDOS. TEA always asks for those ad-

dresses, but if you’ve already set them you can just hit "enter" and it will use the previous values.

This is a line editor, so you normally work on one line at a time. It was also written for Teletypes

that print on paper, so some behavior that may seem strange for a video display makes more

sense if you think about a Teletype printing on paper.

Most of the operations, like Append, Insert, and Change, are fairly intuitive, but Search and Ex-

change may require some explanation. You use ˆS to terminate search strings, so you’ll have to

configure your terminal program to ignore XON/XOFF. Once TEA has found a matching pattern

that you wish to edit, use "E=" followed by the replacement pattern, terminated with ˆE. Now

you can continue searching with "N" if you wish, and when you find another match that you

want to modify, use "E" without the equal sign, unless you want to use a different replacement

string. It sounds complicated, but once you’ve done it a few times it’s not too bad.

Editing while typing is limited to backspace to delete the previous character. The deleted charac-

ter will be echoed along with "\" (a Teletype printer cannot do an actual backspace). You can use

ˆU to cancel the entire line and start over. And ˆR can be used to retype the line so far. A lot of

backspaces can get confusing, so retyping the line is helpful. These line editing functions are

common for most of the programs, but there are probably still a few places where they hav en’t

yet been implemented.

- 4 -

You will see in the list of commands two that are named Reader and Punch. In this version of

TEA those are actually MBM read and write. In order to read a file you will need to know it’s

name because TEA doesn’t hav e a directory list function - use PIP for that. After entering the

name of an existing file, TEA will wait for you to select either Insert or Append. After reading in

the file it will respond with the new memory usage and last line number.

To sav e a file, use the Punch command. It will prompt for a filename. Since FDOS doesn’t al-

low overwriting files, if you supply an existing filename you will be prompted with a choice of

renaming the existing file or deleting it.

- 5 -

Installing And Using ASM1

Load ASM1 into RAM using the same method as with TEA. Here are the first 64 bytes of

ASM1 as they should appear in RAM:

00008000 CD 85 81 11 32 8D 21 95 8C CD 67 81 21 B2 8C CD |....2.!...g.!...|
00008010 67 81 21 32 8D 7E FE 4D C2 21 80 32 1A 8D C3 54 |g.!2.˜.M.!.2...T|
00008020 80 FE 44 C2 4C 80 32 1E 8D E5 21 83 8C 11 22 8D |..D.L.2...!...".|
00008030 CD 67 81 21 22 8D CD 57 87 2A 0B 8D 24 22 07 8D |.g.!"..W.*..$"..|

Saving an executable copy of ASM1 on the MBM is similar to what has already been done for

TEA (once loaded into RAM):
C> G 2000

-S ASM1

*L 8000,8E51

*G 8000

-

This is a fairly basic assembler. Pseudo ops are ORG, EQU, DS, DW, DB, INCLUDE, and END

(END is optional). Labels cannot be longer than six characters and always end with ":<tab>".

Comments begin with ";". Currently the only functional math operator is "+". Others are al-

lowed but do nothing. ASM1 is designed to be run from TEA, and uses data from TEA to locate

source in RAM. When started, it prompts for source location, either memory or disk. If disk, it

will prompt for a filename, and like TEA, it expects you to already know the name. The next

step is to specify outputs: memory, disk, printer, or console. Console output will assemble and

produce a listing on the console. Assembling to memory will produce a binary image at the

source’s ORG address with no listing. Output to disk writes the binary result to the filename you

supply, with no listing. Choosing printer output currently does nothing since no code to drive a

printer has been included. To summarize, for a binary output choose memory or disk. For a list-

ing choose console or, if enabled, printer.

- 6 -

Example ASM1 session, starting from TEA:

C=L
0001 COU: EQU 03D7H
0002 RESTRT: EQU 07D7H
0003
0004 ORG 5000H
0005
0006 S: MVI C,"%"
0007 DW COU
0008 DW RESTRT
0009 END
0010
C=VSOURCE FROM M)EMORY, D)ISK? M

OUTPUT TO M)EMORY, D)ISK, P)RINTER, C)ONSOLE? C

03D7 0001 COU: EQU 03D7H
07D7 0002 RESTRT: EQU 07D7H

0003
5000 0004 ORG 5000H

0005
5000 0E 25 0006 S: MVI C,"%"
5002 D7 03 0007 DW COU
5004 D7 07 0008 DW RESTRT

INITIAL ADDRESS?

With an error:
C=VSOURCE FROM M)EMORY, D)ISK? M

OUTPUT TO M)EMORY, D)ISK, P)RINTER, C)ONSOLE? C

03D7 0001 COU: EQU 03D7H
07D7 0002 RESTRT: EQU 07D7H

0003
5000 0004 ORG 5000H

0005
SYNTAX ERROR AT LINE # 0006-> "%"
5000 0E 00 0006 S: MVI C, "%"
5002 D7 03 0007 DW COU
5004 D7 07 0008 DW RESTRT

INITIAL ADDRESS?

Notice that it’s the space after the comma that’s the problem, as indicated by the -> arrow. And

there’s no symbol table output yet.

- 7 -

Glossary

Boot: The boot program for FDOS. It reads the first two tracks from the MBM, which is where

FDOS is normally stored.

FDOS: The main component of the K2FDOS system. It provides a collection of disk and other

I/O related functions that can be easily utilized by other programs.

Format: The program that’s used to initialize a storage device, in this case the MBM. It simply

fills each FDOS block with zero, except for two bytes that always contain the track and sector

numbers. Since there are two sectors, or MBM pages, per block, the sector numbers will always

be even.

K2FDOS: The collection of five programs including Boot, Format, Sysgen, PIP, and FDOS.

MBM: Magnetic Bubble Memory. Each module organizes data into 2048 pages of 68 bytes each

(64 bytes when using error correction). FDOS treats each page as a disk sector.

MBMUTIL: Utility program that provides some additional functions, like reading any FDOS

block by specifying its track and sector numbers, formatting the MBM, etc.

PIP: PIP provides a convenient interface for performing common file related tasks, such as

delete, rename, copy, list, etc.

Sysgen: This program copies the executable binary image of FDOS from RAM to the first two

tracks of the MBM.

- 8 -

Summary of System Requirements

Hardware configuration:

1. 8K ROM at 0000 with Dunfield monitor version 1.4

2. 8K ROM at 2000

3. 8K RAM at 8000

4. 256 bytes RAM at A000

Memory, both ROM and RAM used by each program:

PROGRAM ROM RAM

FDOS 2000-2C7B 98BF-9FFF

PIP 2D00-34D1 98BF-9CE5

MBMUTIL 3500-3A48 98BF-9947

TEA 8000-8F92

ASM1 8000-8E52

In addition, TEA and ASM1 share some RAM from A080-A0FF. FDOS initializes A000 which

is used by the monitor to redirect interrupt vectors. The apparent RAM overlap between FDOS,

PIP, and MBMUTIL is intentional.

You could probably use a 128K EPROM at 0000 holding the monitor, FDOS, PIP, and MBMU-

TIL, saving the ZIF socket for something else. But this is the way I have my system configured.

Location of ORG Statements in Source Files

FDOS code k2fdos.asm line 126 org 02000H
FDOS data k2fdos.asm line 1863 org ramtop-(031ah+0426h)
PIP code pip.asm line 54 ORG 02D00H
PIP data pip.asm line 870 ORG RAMUSR
MBMUTIL code mbmutil.asm line 31 ORG 03500H
MBMUTIL data mbmutil.asm line 611 ORG RAMUSR
TEA code tea-mbm.asm line 92 ORG 08000H
TEA data tea-mbm.asm lines 21-31 EQUates
ASM1 code asm1.asm line 41 ORG 08000H
ASM1 data asm1.asm lines 15-17 EQUates

RAMTOP and RAMUSR are defined in fdosincl.asm:
RAMTOP EQU 9FFFH
RAMUSR EQU RAMTOP-(031AH+0426H)

FDOS uses 031A bytes, and PIP/MBMUTIL use 0426 bytes.

- 9 -

