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Batteries are a key resource in the quest for sustainable energy. Here the theoretical basis is presented for a
new type of electrochemical concentration cell that might contribute to this enterprise. The cell, which has
been successfully demonstrated in the laboratory (Sheehan, et al.)1, incorporates a chemically asymmetric

membrane to drive anisotropic diffusion between two solution chambers; the resulting concentration difference
powers the cell. In this study, the membrane’s operation is validated via three theoretical approaches: (i)
traditional equilibrium thermodynamics; (ii) balancing drift and diffusion current densities; and (iii) the time-
independent diffusion equation. The physical criteria for its operation are developed and its dimensionless
variables identified. The cell’s maximum instantaneous power density might exceed 107 W/m3. Its self-
charging capability should confer multiple advantages over traditional concentration cells (as well as over
some voltaics), including improved thermodynamic efficiency, economy, and compactness. Commonalities
with other electrochemical systems (e.g., liquid chromatography, metal corrosion, and solid state diodes) are
discussed and a physical instantiation of the cell is reviewed. Recent numerical simulations corroborate its
essential processes2.
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I. INTRODUCTION

Electrochemical cells are hallmarks of modern civiliza-
tion and are also among its oldest technologies, dating
back at least to 1790 with the research of Galvani and
Volta3–6. They serve in all technological strata and have
become crucial to the rise of sustainable energy; their
worldwide power storage capacity is currently 1-2 GW –
and rising exponentially6. It is estimated that spending
on galvanic (voltaic) storage systems exeeds 100 billion
USD per year, while additional billions are devoted to
their research and development, making them among the
most intensely studied physical systems in the world.
Electrochemical cells come in several varieties. The

most common, voltaic cells, transduce chemical energy
into electrical energy; in fact, almost any chemical reac-
tion involving the transfer of electrons can be parlayed
into a battery7. Voltaics transfer electrons between dis-

parate chemical species as, for example, in the hydrogen-
oxygen fuel cell: 2H2 + O2 −→ 2H2O. In contrast, a
concentration cell generates electricity from the concen-
tration difference between two samples of a single chem-
ical species, exploiting their entropy of mixing.
Concentration cells usually provide smaller emfs than

voltaics (e.g., ∼ 0.1V vs. ∼ 1V) and lower energy
densities as well (e.g., ρe ∼ 105 − 106J/m3 vs. ρe ∼

108 − 109J/m3). Nevertheless, large scale concentration
cells have found niche applications8–10. To illustrate, the
chemical potential attainable in playing the salinity of
seawater against that of fresh water (e.g., where a river
flows into the sea) is comparable to the gravitational po-
tential of a 200 m high dam. However, because tradi-
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tional free energy sources are richer, more ubiquitous,
exhibit larger emfs and energy densities, plus are usually
easier and less expensive to tap, concentration cells are
often overlooked. This is an undeserved oversight.
In Nature, concentration cells and gradients are ubiq-

uitous and crucial sources of energy. For instance, salin-
ity gradients are partially responsible for thermohaline
circulation in the world’s ocean, which is integral to
global heat and matter transport as well as to climate
stability11. Proton gradients across biological mem-
branes store electrostatic potential energy and are con-
verted into chemical energy, the most famous example
of which is oxidative phosphorylation in mitochondrial
membranes of eukaryotes, converting ADP into ATP12.
Action potentials (nerve impulses) stem from the relax-
ation of sodium and potassium ion gradients across mem-
branes of various so-called excitable cells (e.g., neurons,
muscle cells, endocrine cells)13.
This study develops the theory of a new type of con-

centration cell. This asymmetric membrane concentra-

tion cell (AMCC) generates electricity identically to tra-
ditional concentration cells, but it is distinguished by the
nonstandard means by which its concentration difference
is established and maintained (∆[A] ≡ [A]high − [A]low).
Here, [A] is given in mole/liter (i.e., molarity) or in
particles/m3. Whereas in traditional cells ∆[A] is ar-
ranged externally via prepared solutions, thereby incur-
ring costs in thermodynamic work, in an AMCC it is
generated internally, tapping thermal energy within the
cell itself to promote anisotropic molecular diffusion of
ions (or neutrals) through a chemically asymmetric mem-
brane. This process entails no external thermodynamic
work and it confers several potential advantages over
its competitors, including improved economy, thermody-
namic efficiency, and compactness. The AMCC concept
can be applied to many types concentration cells8–10 and
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perhaps even to some types of voltaics3–5. It has been
successfully demonstrated in the laboratory1 and numer-
ical simulations strongly corroborate its basic physical
processes2. Either neutral or ionic species can be active
solutes; here, for explanatory simplicity, we consider neu-
tral species only.
The heart of the AMCC is a chemically asymmetric

membrane that establishes an equilibrium concentration
gradient. The physical and chemical assumptions leading
to it are unremarkable, but the resulting effect – self-
chargeability – is surprising and novel.
In this study, the membrane’s operation is validated by

three complementary theoretical approaches: (i) tradi-
tional equilibrium thermodynamics (§II); (ii) competition
between drift and diffusion current densities (Appendix
A); and (iii) solutions to the time-independent diffusion
equation (Appendix B). The physical criteria and dimen-
sionless parameters governing its operation are derived.
Dimensional analysis suggests that its maximum power
density could be substantial, perhaps in excess of 107

W/m3. Similarities to other electrochemical and physi-
cal systems (i.e., liquid chromatography, metal corrosion,
and solid state diodes) provide additional insight into its
character.
This article is organized as follows: §II develops the

thermodynamics of the AMCC concentration gradient;
§III discusses analogies to semiconductor systems as well
as connections to metal corrosion and chromatography;
and §IV summarizes the main results and proposes direc-
tions for future research. Appendices A and B describe
other theoretical approaches for deriving the concentra-
tion gradient, and Appendix C reviews a physical instan-
tiation of the AMCC1.

II. METHODS

The AMCC generates electricity from a concentration
difference produced by a chemically asymmetric mem-
brane. It consists of two subsystems: (i) the asymmetric

membrane separator (AMS), which generates the concen-
tration difference ∆[A] between two liquid reservoirs; and
(ii) the concentration cell that converts this ∆[A] into
electricity. The former is the focus of this study; the lat-
ter is extensively described elsewhere3–6,8–10 and so will
be considered only incidentally.
The AMS can be analysed from several viewpoints. In

this section it is developed from a thermodynamic per-
spective as an array of chemically reactive microscopic
tubes that generates an equilibrium gradient in solute
concentration.

A. AMS Model: Tube Array

The AMS consists of two thin liquid reservoirs sepa-
rated by a chemically asymmetric membrane. Here the
membrane is modeled as an array of hollow, large aspect

FIG. 1. Depictions of AMS membrane and species concen-
tration profiles. (a) Cross section of full membrane modeled
as an array of microscopic tubes (top) and magnification of a
single tube extracted from the membrane and rotated for clar-
ity (bottom). (b) Plot of initial distribution of binding sites
([B(z)]o in red) and resultant equilibrium concentration of so-
lute ([A(z)] in blue) along length of tube (0 ≤ z ≤ L). Here
the distributions are portrayed as sigmoid functions. Recip-
rocal spatial relation between [A] and [B]o follow from equi-
librium considerations, Eqs. (2-5). The concentration differ-
ential (∆[A(z)] = [A(L)]− [A(0)]), powers the AMCC.

ratio tubes bundled together lengthwise like a sheaf of
wheat and filled with species A dissolved in a solvent,
e.g., water, methanol, or acetone (Fig. 1a). Typical tube
dimensions are in the range: 10−6m ≤ L ≤ 10−4m and
10−8m ≤ w ≤ 10−6m. Billions or trillions of tubes can
comprise a single AMS membrane. They are assumed to
be straight and uniform, thereby sidestepping issues of
tube tortuosity and constriction, both of which compli-
cate, but do not illuminate, the essential physics. The
liquid reservoirs are sufficiently thin that their A concen-
trations are dominated by those that suffuse the mem-
brane. The tubes are identical, therefore, to understand
the physical chemistry of a single tube is to understand
that of the entire membrane.
Firmly secured to the inner walls of each tube are

chemical binding sites B that undergo the following re-
versible chemical reaction with the solute A:

A(l) +B(s) ⇄ AB(s). (1)

Species A is dissolved in a liquid solvent (l), while species
AB and B are bound surface states (s) on the tube’s wall.
The initial number of chemically active species embedded
on the tube’s inner surface (NB) is comparable to the
total number of A molecules (NA) in the tube. This
total initial number of A molecules can be expressed as
NA =

∫

tube
[A]odV , with dV being a differential volume in

the AMS tube, and where [A]o represents the initial and
uniform concentration of A in the tube before binding
begins. The total number of initial binding sites NB is,
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likewise, NB =
∮

tube
[B]oda, with da being a differential

area on the AMS tube’s inner wall.
For this discussion it is assumed that species A, B and

the solvent molecules interact via standard intermolec-
ular forces (e.g., polar electrostatic, hydrogen bonding,
van der Waals).
A unique equilibrium will arise inside the AMS mem-

brane and, by extension, in the two reservoirs. The equi-
librium constant Keq for the reaction in Eq. (1) is14,15:

Keq ≡
[AB]

[A][B]
= exp

[

−∆G

kT

]

= e−β∆G, (2)

where ∆G is the Gibbs energy change for the reaction
(J); k = 1.38 × 10−23J/K is Boltzmann’s constant; T is
the absolute temperature (K); thus, kT is the thermal
energy and β = 1/kT . Here, [A] is the volume concen-
tration of species A (molecules/m3), while [B] and [AB]
are surface concentrations of species B and complex AB
(molecules/m2). These concentrations are normalized
appropriately (e.g., against one molar concentrations),
thus rendering Keq dimensionless.
The initial distribution of open binding sites before re-

acting is [B(z)]o and, after binding to some A molecules,
it is reduced to [B(z)]. (Note: At equilibrium, [B(z)]o >
[B(z)].) A useful expression for [A(z)] can be derived
from Eq. (2) by noting that [AB] and [B] are linked:
for every AB complex formed, one B site is lost, that
is, d[AB] = −d[B]. One has, therefore, [AB(z)] =
[B(z)]o − [B(z)] With this, Eq. (2) can be recast as:

[A(z)] = exp

[

∆G(z)

kT

](

[B(z)]o
[B(z)]

− 1

)

=

1

Keq(z)

(

[B(z)]o
[B(z)]

− 1

)

. (3)

In principle, the following quantities in Eq. (3) can
vary axially (along coordinate z), thereby making [A] a
function of z: (i) the initial surface number density of
B, [B]o; (ii) the surface number density of B evolving
toward equilibrium [B]; and (iii) the local liquid-surface
equilibrium constant,Keq (or equivalently the free energy
of binding, ∆G). Assuming all vary axially, the variation
of [A] along the length of the tube can be written:

d[A(z)]

dz
= − [A(z)]

d

dz
[ln(Keq(z))]

+ [A(z)]
d

dz

[

ln

(

[B(z)]o
[B(z)]

− 1

)]

, (4)

or equivalently in terms of Gibbs energy:

d[A(z)]

dz
= [A(z)]

[

β
d(∆G(z))

dz

]

+ [A(z)]
d

dz

[

ln(
[B(z)]o
[B(z)]

− 1)

]

. (5)

Here d[A]
dz is the equilibrium concentration gradient for

the AMS. When properly engaged, it powers the AMCC.

Usually, equilibrium is the state in which concentration
gradients are absent, but this is not the case for the AMS;
rather, here a concentration gradient is the condition of
thermodynamic equilibrium.

Equations (4,5) indicate that (d[A]
dz ) can be induced

either by varying the areal number density of binding

sites (d[B(z)]o
dz ) or by varying the equilibrium constant

(
dKeq(z)

dz ) (or equivalently, the Gibbs energy, ∆G(z)).
The former can be accomplished by locally seeding the
walls with B appropriately at the start, while the latter
can be achieved by grading the physical-chemical char-
acteristics of species B itself. For example, if A is the hy-
drogen ion H+ and B is a carboxylate ion (COO−), then
the binding strength of H+ to COO− can be adjusted
by various means. For instance, if COO− is attached to
a carbon skeleton, functional groups can be attached at
specific locations along the carbon framework to alter its
acidity. As an illustration, consider the increase in pKa
for the first three carboxylic acids: formic (one carbon;
pKa = 3.75); acetic (two carbons; pKa = 4.74); propi-
onic (three carbons; pKa = 4.87). This corresponds to a
variation in [H+] by factor of 13 between formic and pro-
pionic acids. By adding other functional groups nearby
(e.g., alcohol, ketone, amine), the carboxylate’s pKa can
be further tailored along the length of the tube.
A hallmark of thermodynamic equilibrium is balance

between competing processes, reactions, and forces. The

equilibrium concentration gradient d[A(z)]
dz is no different.

If the Keq for the surface reaction (Eq. (1)) increases
monotonically along the tube from left to right (Fig. 1b),
then the first term on the rhs of Eq. (4) is negative defi-
nite, signaling larger [A] on the left than on the right (Fig.
1b). Likewise, if [B(z)]o/[B(z)] increases monotonically
from left to right, then the second term on the rhs of
Eq. (4) is positive. (This can also be inferred from Le
Chatelier’s principle applied to the reaction.) Together,
these countervailing tendencies limit the concentration
gradient.
Once a concentration gradient has been established by

the AMS, electrodes and an electrical load can be en-
gaged to form a concentration cell, thus completing the
AMCC. (See example in Appendix C.) The emf for a con-
centration cell (E(V)) is given by the Nernst equation:

E =
kT

pq
ln

(

ah[A]h
al[A]l

)

. (6)

Here E is the emf (V); p is the transfer number (the num-
ber of electrons transfered in the reaction, here taken as
p = 1); q is an electronic charge (1.6×10−19C); [A]h,(l) is
the high (low) concentration of A, and ah,(l) is the chem-
ical activity coefficient for the high (low) concentration
(unitless). For dilute species, a ≃ 1. At T = 300 K, E
increases roughly 59 mV per decade difference between
[A]h,l, and the thermal voltage is kT/q = 26mV.
A few items of note:

1) The concentration [A(z)] pertains to volume, while
[B(z)], [B(z)]o, [AB(z)], and G(z) pertain to the
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surrounding surfaces. As such, this is a boundary value

problem, in which the specifics of [A(z)] and d[A(z)]
dz can

depend heavily on the size and shape of the reaction
vessel (membrane channels). Numerical simulations bear
this out2.
2) Analysis leading to Eqs. (3-5) does not explicitly
include the effects of Brownian and Fick’s diffusion of
species A along the tube, both of which should attenuate

[A(z)] and d[A(z)]
dz . This attenuation has been observed in

numerical simulations of the AMS2 and is corroborated
by experiments1.

3) While Eqs. (4,5) indicate that the magnitude of d[A]
dz

is proportional to [A], numerically large gradients do not
necessarily translate to larger emfs16 because the Nernst

relation (Eq. (6)) dictates that it is the ratio [A]h
[A]l

that

determines emf, not their individual magnitudes.

B. Maximizing AMS Density Gradients

The density gradient d[A]
dz is the sine qua non of the

AMS and AMCC. Strategies for maximizing it can be
inferred by considering various operating limits of the
AMS indicated by Eqs. (2-5).

• Limit 1: Trivially, if the AMS tube has initially

uniform axial concentration of B (i.e., d[B(z)]
dz = 0)

and also uniform binding strength (i.e.,
dKeq(z)

dz =
0), then the concentration of A in solution will also

be uniform (i.e., d[A(z)]
dz = 0), thus the AMS fails.

Conclusion: At least one of the parameters, [B]o
or Keq must vary axially.

• Limit 2: If the A-B binding is too strong, such

that effectively Keq → ∞, then, assuming
dKeq(z)

dz
remains finite, the first term on the rhs of Eq. (4)
goes to zero, while the second term becomes irrele-
vant because A-B binding is effectively permanent,
in which case there is no ongoing interplay between
the walls and solute, thus A diffuses to uniform con-

centration (d[A(z)]
dz = 0), and again, the AMS fails.

Conclusion: Very strong surface binding should
be avoided.

• Limit 3: In the opposite limit (very weak, ef-
fectively no surface binding), the walls are oper-
ationally inert, and therefore lack any chemical
asymmetry, so [AB(z)] = 0 and Keq(z) = 0 along
the tube. As a result, A molecules diffuse freely,

uniformly filling the tube, rendering d[A(z)]
dz = 0

Conclusion: Weak binding should likewise be
avoided.

• Limit 4: If NB ≫ NA, then regardless of the reac-
tivity of A for B, the concentration of B will not
change appreciably ([B(z)] ≃ [B(z)]o), in which

case Eq. (3) gives lim([B]→[B]o)[A] = 0. In this
scenario, species A has been stripped from the so-
lution, precipitated out as AB, thus, the AMS fails.
Conclusion: NB ≫ NA should be avoided.

• Limit 5: In the opposite limit, if NB ≪ NA,
then the initial concentration of A is effectively un-
changed (i.e., [A(z)] ≃ [A]o). Without sculpting by
[B(z)], the concentration of A will become uniform
along the length of the tube via diffusion, in which

case d[A]
dz = 0, and again the AMS fails.

Conclusion: NB ≪ NA should be avoided.

Clearly, the success of the AMS calls for moderation,
as implied by the limiting conditions not conducive to it.
Specifically, the limits to be avoided are:

i) d[B]
dz = 0

ii)
dKeq

dz = 0
iii) Keq → ∞

iv) Keq → 0
v) NB ≫ NA

vi) NB ≪ NA

These criteria follow naturally from Le Chatelier’s prin-
ciple and also comport with Sabatier’s principle for
catalysts17,18.
Further criteria for the AMS can be inferred, these

involving temporal and spatial conditions. A necessary
condition for non-zero ∇[A] and ∆[A] is that species A
come into local chemical equilibrium with the tube walls
either: (a) on an equilibration time scale τeq short com-
pared with A’s diffusion time down an appreciable length

of the AMS tube (τD,L ∼ L2

D
for Brownian diffusion, with

D being the diffusion coefficient for A in solution (m2/s));
or equivalently, (b) on a distance scale short compared
to an appreciable length of the tube (L)19. The chem-
ical equilibration time (τeq) is the time required for A
molecules to diffuse to the walls and to come into equilib-
rium with them and their binding sites B. The diffusion
time τD,w is the time necessary for A in the bulk solu-

tion to diffuse the diameter of the tube (τD,w ∼ w2

D
). Al-

though just a few wall collisions may suffice to complete
an AB reaction, chemical equilibrium cannot be consum-
mated until a steady-state is reached between adsorption
and desorption, which suggests that τeq must be at least
as long as A’s residence time20 on the binding site B, τres.
Furthermore, species A should reside on the surface long
enough for diffusion along the tube to differentiate be-
tween regions of differing residence times; separation by
perhaps a few w might suffice. In this case, a condition
for non-zero ∇[A] or ∆[A] becomes (τD,w ≤ τres). The
original condition (a) meanwhile, requires (τD,L ≫ τres).
Putting them together, one has τD,w ≤ τres ≪ τD,L and
w ≪ L, the latter indicating that tubes should have large
aspect ratios.
The limiting conditions (iii-vi) suggest that neither A

nor B should chemically dominate the other and that,
to some degree, they should be comparable in number
(NA ∼ NB), perhaps not equal but maybe within a few
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orders of magnitude of each other21–24. Furthermore, if
large ∆A is sought, a large initial [A]o is indicated and
this, in turn, points to relatively large surface-to-volume
ratios for the tubes such that NB =

∮

[B]da ∼
∫

[A]dV =
NA. For this criterion, bundles of long, microscopic- or
nanoscopic-diameter tubes are optimal.

C. Dimensionless Constants and the Buckingham Pi

Theorem

The behavior of the AMS tube is governed largely by
the following six independent variables:
1) NA : total number of A molecules in the AMS tube.
(Dimensions: None.)
2) [B(z)]o : initial density distribution of binding sites B
as a function of axial location (z) along the tube walls.
(Dimensions: m−2.)
3) τres(z) : residence time of A on binding site B as a
function of axial location (z) along the tube. Here τres
appears as a proxy for ∆G(z) or Keq(z). (Dimensions:
s.)
4) w : diameter of AMS tube. (Dimensions: m.)
5) L : axial length of AMS tube. (Dimension: m.)
6) D : Diffusion coefficient for species A in solution. (Di-
mensions: m2/s) Typical value: D ≃ 10−9 m2/s for small
molecules and ions in water.
The AMS possesses three characteristic time scales

(τD,w, τD,L, and τres), two characteristic length scales (w
and L), and three characteristic particle numbers (NA,
NB, and NAB), only two of which are independent (i.e.,
dNAB = −dNA = −dNB). Two of the characteristic

time scales are linked to the length scales: i.e., τD,w ≃ w2

D

and τD,L ≃ L2

D
.

The number of dimensionless variables that define this
system are set by the Buckingham Pi theorem (BPt)25.
Because there are six independent variables (NA, [B(z)]o,
τres(z), w, L, and D) expressed in terms of two dimen-
sional units (m, s), the BPt predicts 4 dimensionless vari-
ables. The tube aspect ratio, has already been identified:
α ≡ L

w ≫ 1, based on considerations of diffusion times.
Residence time (τres) is the only independent variable
solely involving time, so another time-dependent term
must be invoked to create a dimensionless variable; here,
D is the natural choice, given the central role of diffu-
sion in this system. As discussed earlier, τres cannot be
inordinately long, but must be long enough to have ther-
modynamic effect. Also, the progression of characteristic
times should be roughly: τD,w ≤ τres ≪ τD,L. This sug-
gests two dimensionless variables satisfying inequalities:
βw ≡ τres/τD,w ≥ 1 and βL ≡ τres/τD,L ≪ 1.
Finally, as discussed above, species A and B should

compete with, but not dominate, each another, thus they
should be somewhat comparable. This suggests a third
dimensionless variable γ:

γ ≡
NB

NA
=

∮

[B]oda
∫

[A]odV
, (7)

where the integrations over the interior area and volume
of the AMS tube. With these, the AMS’s operational
regime can be circumscribed with the following four di-
mensionless parameters:
1) α ≫ 1;
2) βw ≥ 1;
3) βL ≪ 1; and
4) 0 < γ < ∞.
In addition to framing the operational limits of the AMS,
these inform the numerical model of the membrane2.

III. DISCUSSION

The AMS is closely related to several well known chem-
ical, electrochemical, and solid state systems. Starting at
the molecular level, the AMS membrane can be under-
stood as an extended, macroscopic version of a diprotic
acid that has functional groups with disparate acidities.
Just as a diprotic acid can display different acidities at
opposite ends of the same molecule (e.g., linear perfluo-
ropentadecane with a carboxylic acid group at one end
and a sulfonic acid group at the other), likewise an AMS
membrane, by virtue of its construction and composition,
can also be made more acidic on one side than on the
other; that is, it can present disparate chemical activities
on opposite sides of the same structure27 and, thereby,
create a concentration gradient1.

A. Liquid Chromatography and Concentration Gradient

Corrosion

The chemical principles undergirding the AMS have
well established precedents. The wide variety of liquid-
based chromatographies28,29, for example, attest to the
variability and controllability of surface binding site den-
sities, binding energies, and residence times. In fact, an
AMS tube operates similarly to a standard chromato-
graphic column, with the following caveats: (a) binding
sites B are inside the membrane rather than on the sur-
faces of beads in a column; (b) [B] and ∆G are graded ax-
ially rather than being constant; (c) the desired product
(∇[A]) is a static, equilibrium fluid, rather a nonequilib-
rium fluid flow; and (d) the AMS equilibrium is achieved
passively via diffusion.
The AMCC can also be understood in terms of one

of the most ubiquitous and costly30 types of corrosion:
concentration gradient corrosion (CGC)31–33, which com-
monly arises in aqueous environments with faying metal
surfaces. For example, beneath an angle joint bolted to
a metal base, dissolved metal ions are often concentrated
compared with adjacent areas. This metal ion concen-
tration gradient over a single piece of metal constitues a
concentration cell, one that corrodes the metal in con-
tact with the high ion concentration and deposits metal
in the low concentration region. (CGC can also arise
from gradients in dissolved atmospheric oxygen rather
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than from metal ions.) In our metal-centric civilization
we are surrounded by electrochemical corrosion, most of
it unwanted, unregulated, and unprofitable – and a fair
bit of it CGC.

The AMCC is a controlled and useful version of CGC.
The AMS purposefully establishes a concentration gradi-
ent, while the AMCC electrodes undergo electrochem-
ical reactions that relax the gradient, specifically, the
anode protects and the cathode corrodes. Their differ-
ences, however, are noteworthy. First, whereas the CGC
is uncontrolled, the AMS has well defined current-voltage
characteristics and mass transfer; it can be engineered
and tuned. Second, and more importantly, whereas CGC
is undesirable, ecologically destructive and economically
costly, the AMCC is ecologically benign and potentially
valuable.

The AMCC should demonstrate several advantages
over other types of concentration cells – and perhaps
even over some voltaics. First, the AMCC’s ∆[A] is self-
generated and internal, rather than imposed by external
means that require work input and chemical replenish-
ment. This should simplify its operation, reduce support
apparatus, and improve its overall efficiency. Second, if
the AMS solutions are removed to power a concentra-
tion cell then returned to the AMS, their ∆[A]s should
return to their original values because this is the equilib-
rium state of the system. This ∆[A] recurrence is sponta-
neous, mediated by thermal diffusion through the AMS
membrane. In effect, with respect to its working solu-
tions, the AMCC is self-charging.

To be clear, although the AMS solution is rechargeable,
the full AMCC is not. As noted earlier, the AMCC is a
case of controlled corrosion (CGC). As in the rudimen-
tary example of Appendix C, its electrodes do not recon-
stitute themselves; rather the anode continually precipi-
tates Cl− as AgCl, accruing mass, while the cathode con-
tinually loses mass. As a result, the AMCC’s operation
does not constitute a closed thermodynamic cycle and
does not undercut the second law of thermodynamics34.

The net mass transfer between electrodes ultimately
exhausts the free energy of the AMCC, unless its elec-
trodes are occasionally swapped. However, even without
this maneuver the AMCC might offer increased service
life and economy over traditional concentration cells. If
it is fitted with an oversized cathode, then unlike con-
ventional cells, which must be refilled after discharge,
the AMCC should run multiple discharge-recharge cy-
cles without refueling solutions, until the cathode is con-
sumed. Its economy and compactness would thereby
be improved because it requires less support apparatus
for recharging, e.g., external circuits, plumbing, storage
tanks.

A fundamental aspect of the AMS and its charging ca-
pability is that concentration cells operate at very low –
at literally thermal – emfs. (Recall that at T = 300K,
kT
q ≃ 26mV.) Along the entire length of an AMS ∆G

might reach only 4-5 kT of energy. Additionally, thermal
energy drives diffusion in fluids and membranes, and it

is also sufficient to support solvation reactions like acid
association-dissociation. Because it is ultimately pow-
ered by ambient thermal energy, the AMCC might be
called a thermal battery as well as a concentration cell.

B. Analogy to Solid State Diodes

AMS operation is analogous to that of solid state p-
p+ diodes. The correspondences between bipolar mem-

branes (BPMs)35–41, ion exchange membranes and tradi-
tional solid state n- and p-doped semiconductors, diodes
and transistors have been noted by others42. In fact,
membranes and solutions have been fabricated into ionic

diodes and ionic transistors and even ionic circuits43–48.
The AMS and AMCC are natural extensions of these. A
full account is beyond the scope of this paper, however,
a few introductory remarks are instructive.
The built-in potential across a standard heterogeneous

p-n semiconductor diode (Vbi) is given approximately by
the semiconductor version of the Nernst relation49–51:

Vbi,heter =
kT

q
ln

(

nand

n2
i

)

, (8)

where na/d(m
−3) are the heterogeneous acceptor/donor

concentrations and ni is the intrinsic carrier concentra-
tion of the semiconductor (in silicon at 300 K, ni ≃ 1016

m−3). For a representative case (na = 1021 m−3 and
nd = 1024 m−3 in silicon), one has Vbi,heter = 0.8 V.
Though often not appreciated, semiconductor diodes

can also be fabricated homogeneously, that is, made com-
pletely from p-pure or n-pure materials – analogously to
how an AMS employs a single chemical species. In this
case, the built-in potential is given by:

Vbi,homog =
kT

q
ln

(

nhigh

nlow

)

, (9)

where nhigh/low(m
−3) are the high/low concentrations of

the single species. (Note the similarity between Eqs. (6)
and (9).) A purely p-doped silicon diode with identi-
cal concentrations as the above silicon p-n diode gives
Vbi,homog = 0.2 V for the p-p+ diode. Notice, too, the
similar reduction of potential when switching from het-
erogeneous to homogeneous diodes (0.8 V versus 0.2 V),
which mirrors the difference in E between typical voltaic
and concentration cells.
This analogy runs deeper. The depletion region of

the p-p+ diode is an electrophysical analog of an AMS
membrane. Whereas the diode’s depletion region and its
Vbi are the results of a difference in chemical potential
and concentration between the p and p+ regions (carrier
reservoirs) relaxing to chemical equilibrium, in the AMS
the chemical potential difference is built into the mem-
brane itself, which then relaxes to equilibrium by gen-
erating concentration imbalances between the two thin
solution reservoirs at their ends. The Nernst equation
describes both systems49. Effectively, the AMS and p-p+
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diode are inside-out versions (inversions) of each other.
In the p-p+ diode, the species concentration differences
of the bulk (i.e., np(high) > np(low)) determines the
character of the interface (depletion region), whereas in
the AMS, it is the inverse: the character of the interface
(membrane) determines the species concentration differ-
ences in the bulk (nA(high) > nA(low)).
The spontaneous recharging of the AMS is also anal-

ogous to the spontaneous recharging in semiconductor
systems involving pn junctions. Both are driven by gra-
dients in chemical potentials and are mediated by diffu-
sion. It is well known that an equilibrium-state electric
field resides at the junction between p-doped and n-doped
regions of static semiconductors (the so-called depletion
region) and is due to the thermal cross-diffusion of p- and
n-type charge carriers. These fields can be modified by
perturbing the diode’s electronic or mechanical boundary
conditions52,53. However, when these perturbations are
removed, the electric fields revert to their original values
because, after all, they represent the equilibrium state
for the original configuration of semiconductors. (This
reversion is rapid, often taking just 10-100 ns.) Likewise,
when the ∆[A]s are expended in the AMCC’s concen-
tration cell, they are re-established when returned to the
AMS. The implications of this are intriguing, particularly
as they pertain to the second law52,53.

C. Energy and Power Density

Energy and power densities are standard metrics for
battery performance. Energy density ρe(J/m

3) indicates
how much work can be done by a battery of a given
volume, whereas power density P(W/m3) indicates how
fast that amout of work can be done. In terms of ρe,
the AMCC, like other types of concentration cell, should
be inferior to standard voltaics by roughly 2-3 orders of
magnitude; however, its power densities might be com-
parable to that of commercial voltaics (e.g., P(lithium-
ion)≃ 106W/m3). An estimate of AMCC power den-
sity (P) can be made as follows. Assume P ∼ EI

Vtube

,
where E is cell emf given by the Nernst relation, Eq.
(6); I is the particle diffusion current in an AMS tube
(I = qJdiff · Atube) ≃ q(D∇[A]) · w2; Atube ≃ w2 is the
cross-sectional area of the tube; and Vtube = L · w2 is
the tube volume (Fig. 1). Here Jdiff = −D∇[A] is the
particle diffusion current density (particles/m2 s), as per
Fick’s law54,55.
Invoking the Einstein relation (D/µ = kT/q), where µ

(C·s/kg) is the charge mobility, the AMCC power density
P(W/m3) can be shown to scale as:

P ∼ kT ln

(

[A]h
[A]l

)

D[A]

L2
= µ[A]

(

kT

L

)2

ln

(

[A]h
[A]l

)

.

(10)
The last form is revealing: thermal energy (kT ) and size
(L) appear quadratically. Both the Nernst emf and the
diffusion current contribute a kT term; clearly, this sys-

tem is thermally driven. Small device length L, high
species mobility µ, elevated temperatures, and high con-
centration ([A]) also favor large P . Of these, L is prob-
ably the parameter most amenable to engineering im-
provements: thin membranes and reservoirs are recom-
mended.
As a concrete example of P , assume the hydrochloric

acid AMCC above1, with pH = 1, a ∆pH = 1 (concentra-
tion factor of 10), the diffusion coefficient of aqueous chlo-
ride ions (D ≃ 10−9 m2/s), and cell size (L = 5×10−6m).
With these, Eq. (10) predicts a maximum power den-
sity in excess of 107 W/m3. Standard inefficiencies in
fluid and heat transfer, however, as well as electrochemi-
cal nonidealities, should reduce this number significantly.
Engineering issues surrounding this will be considered in
future investigations.
Energy densities (J/m3) for a single-discharge AMCC

should be inferior to those of standard voltaics by 2-3
orders of magnitude (ρe(Lithium-ion) ∼ 2 × 109J/m3).
However, because the AMCC is self-charging, its inte-

grated energy density (energy summed over all discharge-
recharge cycles) should be superior to other types of con-
centration cells and, if it can complete 102− 103 thermo-
chemical cycles before its electrodes are exhausted, it
might be comparable to commercial voltaics.
It will be interesting to see whether the AMS self-

charging capability can be transplanted to voltaic cells
with their larger emfs and energy densities. While this
cannot yet be ruled out, there are good theoretical rea-
sons to doubt it. The thermal energy density of a ma-
terial (excluding phase changes) scales as ρe(thermal) ∼
nkT , where n is the particle number density (m−3). For
T = 300 K, the thermal energy of a molecule is roughly a
few kT ≃ 4×10−21J ≃ 1/40eV. (Here, vibrational modes
are ignored because most are inactive at room temper-
ature.) The chemical energy density of a material (say
TNT) scales as ρe(chemical) ∼ n∆E, where ∆E the re-
action energy. For the explosive decomposition of TNT,
∆E ≃ 1.6 × 10−18J ≃ 10 eV per molecule. The ratio
of thermal to chemical energy density, therefore, scales

as: ρe(thermal)
ρe(chemical) = kT

∆E ≃ 10−2 − 10−3 for typical physical

systems. Because the AMCC is powered by the AMS,
which itself is driven by thermal diffusion, the upgrade
of thermal energy to that of chemical reactions requires
an energy concentration process. No such process is cur-
rently known; moreover, it would be prohibited by the
second law. Thus, for the moment, AMCC energy den-
sity seems limited to its thermal energy density, which is
inherently 102 − 103 times less than that of traditional
voltaic sources. However, given that AMS rechargeabil-
ity allows for multiple thermal energy helpings – subject,
of course, to other constraints like electrode consumption
– this limit seems a soft one.
The AMS effect is quite general and should extend

beyond electrochemical applications. Given a suitable
membrane, in principle, the AMS should be able to sep-
arate or concentrate many species of interest, perhaps
aiding such processes as the desalination of seawater56,57
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or the recovery of metals from waste water streams58.
Again, note that AMS-mediated separation is energy-
neutral, passively relying on molecular diffusion, thus on
the thermal energy of its environment rather than on an
external free energy source as is required, say, by reverse
osmosis in desalination56,57.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

A new type of electrochemical cell is proposed, the
asymmetric membrane concentration cell (AMCC). Like
other concentration cells, the AMCC exhibits relatively
low energy density compared to most voltaics, but it has
advantages, namely, its simplicity, rechargeability and
economy of design.
The novel feature of the AMCC is the asymmetric

membrane separator (AMS), which generates the con-
centration gradient for the AMCC. In this study it is
modeled as a bundle of identical, long, thin microscopic
tubes with chemical potential gradients built into their
walls. Its equilibrium concentration gradient can be
understood in various ways:

• Traditional thermodynamics predicts the AMS ef-
fect. Analysing Keq for the surface reaction (A
+ B ⇄ AB) identifies the primary factors upon
which [A(z)] depends, specifically, the initial bind-
ing site density ([B]o) and the Gibbs free energy
(∆G), in Eqs. (3-5). Because [B] and ∆G can be
engineered to vary with z, [A] must likewise vary
([A] = [A(z)]).

• The AMS effect can be seen to arise as a balance be-
tween oppositely directed particle current densities
in the membrane (Jdiff vs. J∇G). These generate
a one-dimensional profile for [A(z)] akin to that of
an isothermal atmosphere (Eq. (11)) in Appendix
A.

• Equilibrium solute concentrations in the AMS tube
can be modeled in 1-3 dimensions using the time-
independent (equilibrium) diffusion equation (Ap-
pendix B). The solution of the 2-D AMS, has a well-
known analog, the Laplace equation solution for the
electrostatic parallel plate capacitor. From it one
can deduce that a concentration gradient must form
in the AMS.

A number of physical embodiments of the AMS and
AMCC are possible, two of which are discussed in the
companion article to this one1 and one in Appendix C.
High aspect-ratio AMSs with microscopic tubes holding
high concentrations of mobile ions are expected to pro-
vide high device power density, which might exceed 107

Wm−3. Key virtues of the AMS are that it: (a) is self-
contained and does not require external solution reser-
voirs; and (b) spontaneously recharges its concentration

difference ∆[A]. Like other ionic solution systems, the
AMS has analogs in solid state physics, notably, the n-p
and p+-p diodes. The AMS concept might have utility
in other arenas, such as desalination and metal recovery
from waste streams.

Toy model numerical simulations of the membrane
tube, currently in progress, corroborate the principal
findings of this study2. The model simulates Brownian
diffusion of individual solute molecules (A) in an AMS
tube (§II), subject to the binding reaction: A + B ⇄

AB. The density of surface binding sites [B]o and the av-
erage residence time of A on B (τres) can be varied, along
with other core variables (e.g., L, w, D). Simulated con-
centration gradients are in good qualitative agreement
with theory. The long-term goal is to provide realistic
quantitative data in order to optimize experimental and
commercial membrane design59.

The present theoretical inquiry is far from com-
plete. The AMS model considers only electrically neu-
tral species A and B, while in real-world scenarios A and
B are likely to be ionic, in which case solute A will be
accompanied by counter-ions, as is the case with labora-
tory AMCCs1. Ions complicate the model by introducing
electrostatic and electrochemical phenomena such as the
Debye layer, zeta potential, electrical double layer (EDL)
and the diffuse layer.

While electrostatic effects will complicate the AMS
model, they should not affect its primary outcomes.
First, the thermodynamic analysis of §II.A is still ger-
mane and clearly predicts an equilibrium concentration
gradient. Second, electrokinetic effects should be minor
or nil because the AMS/AMCC does not involve physical
fluid flow; it is diffusion driven. Third, for the concen-
trations envisioned for this model – and explored in lab-
oratory experiments1 – the EDL and Debye layer should
be narrow compared with the radii of the AMS channels
over most of their range. Here the channel diameters are
taken to be (10−8m≤ w ≤ 10−6m), whereas for 1 molar
hydrochloric acid the Debye length is expected to be less
than or on the order of 10−8m. The details of electro-
static and electrochemical effects are beyond the scope of
this paper but will be taken up in future studies.

Additional investigation of the physical chemistry of
asymmetric membrane-solution interactions seem war-
ranted. For historical comparison, the ubiquitous mem-
brane material Nafion remains a focus of theory and ex-
periment even now, more than 50 years since its discov-
ery, and it is probably a simpler chemical system than the
AMS membrane. With the optimal design parameters for
the AMCC unknown, numerical simulations might be de-
cisive. Further inquiry into the connections between the
AMS and semiconductors, chromatography, and corro-
sion might also be fruitful.

Lastly, an intriguing question remains as to whether
the AMCC electrodes can be reconstituted in a thermo-
dynamically spontaneous fashion; if so, this could have
far-reaching implications for the foundations of thermo-
dynamics and for energy sustainability. The chemically
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active solutions in the AMCC should be recyclable in-
definitely because solutes are not destroyed, merely re-
located. If the electrodes can be similarly recycled,
then the AMCC would constitute a chemically-closed
but thermally-open system, one powered solely by lo-
cal ambient thermal energy. This would be a boon
for sustainable energy and it would open new vistas for
thermodynamics60.

In summary, the AMCC is a new type of concentration
cell and its self-charging capability is a new concept in
battery design whose applications could extend beyond
electrochemical arena into such arenas as desalination
and waste stream recovery. It appears many theoretical
and experimental surprises lie ahead. Transcending
these academic concerns, however, is the hope that the
AMCC will contribute to the urgent worldwide effort for
sustainable energy.
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Appendix A: Equilibrium Current Densities

The asymmetric membrane concentration cell (AMCC)
– or any concentration cell, for that matter – requires two
reservoirs at distinct concentrations in contact with its
anodic and cathodic electrodes. Creating a spatial gra-
dient in the solute concentration is the fundamental re-
quirement; it is the arete of the AMS (asymmetric mem-

brane separator). It was shown in §II using traditional
thermodynamics that this gradient can arise naturally as
the equilibrium state in an AMS tube.
In this appendix, it is shown that this equilibrium state

can also be viewed as the balance between oppositely
directed one-dimensional current densities of species A
within the AMS tube, one due to particle diffusion, the
other due to the gradient in the chemical potential im-
posed by the asymmetric wall composition61,62.
Diffusion current density, written from Fick’s law, is:

Jdiff = −D∇[A(z)] = −D
d[A(z)]

dz , where D is the diffu-
sion constant for A. The drift current density, driven by
a chemical potential gradient, can be written: J∇G ≃

−[A(z)]µ∇(G(z)), where G(z) is the axially varying
Gibbs free energy per reaction (J), and µ is the mobility
of A. (For neutral A the units of mobility are (s/kg).)
The diffusion and ∇G currents are oppositely directed

and at equilibrium they balance each other. Setting them
equal (Jdiff = J∇G) and appealing to the Einstein rela-
tion (D/µ = kT ), one obtains:

[A(z)] = [A(0)] exp

[

∆G

kT

]

. (11)

Here ∆G = G(z) − G(0) and [A(0)] ≡ [A(z = 0)]. Fol-
lowing the left-right convention in Fig. 1, and because
∆G < 0 for the binding reaction (A + B ⇋ AB), one
has [A(z)] < [A(0)], indicating an equilibrium concentra-
tion difference between the ends of the tube, the defining
feature of the AMS (Fig. 1b). (If one unpacks ∆G dif-
ferently, one can obtain Eqs. (2,3).)
This result is not surprising. Equation (11) is a chem-

ical analog of an exemplar: the vertical distribution of
molecules in an isothermal atmosphere in a uniform grav-
itational field, which is written: [A(z)] = [A]sl exp[

−mgz
kT ].

Here, m is the mass of an individual A gas molecule
(kg); g is the gravitational acceleration (m/s2); z is the
vertical altitude; and [A]sl is A’s concentration at sea
level. Clearly, the gravitational potential energy of A
varies with altitude (∆U = −mgz). In an AMS the
chemical force on A (i.e., ∇G) can be billions of times
stronger than the gravitational force (i.e., mg), hence
[A(z)] can change appreciably over sub-micron distances
as apposed to over hundreds or thousands of meters in
a planetary atmosphere. Additionally, the functional de-
pendence of G(z) is more flexible than that of the grav-
itational potential. For instance, if G is constant, then
∂G
∂z = 0, there is no gradient, therefore no chemical force,
in which case diffusion erases all concentration gradients
in the solution; thus, the AMS and AMCC fail. (In
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the gravitational case, this corresponds to no gravita-
tional field, in which case gas number density will be
uniform.) If the Gibbs energy varies linearly with z
(i.e., G(z) = −κz, with κ a constant (kg·m/s2), then
[A] varies exponentially like an isothermal atmosphere
([A(z)] = [A(0)] exp(−κz

kT ) = [A(0)] exp(−z/λ), with an

e-folding distance λ = kT
κ .

For a robust AMCC, λ should be sufficiently short
that multiple e-foldings accrue along the length of the
AMS tube so as to attain a large concentration difference
in A, while still maintaining reasonably short diffusion
times. (Recall that diffusion times tD typically scale as
the variance of the displacement: < x2 >≃ 2nDt, where
n is the system’s dimensionality, n = 1, 2, or 3.) To
illustrate, an increase in concentration by a factor of
100 along the tube requires that the binding energy of
species A must decrease by roughly ∆G ≃ (4.6)kT over
that distance. This is can be arranged via [B(z)]o or
τres(z), as discussed earlier (§II.A). Overall, in contrast
to gravitational potential, G(z) can exhibit a good deal
of functional flexibility consistent with an effective AMS.

Appendix B: Time-Independent Diffusion
Equation and AMS

In this appendix, the AMS concentration gradient is
approached from the standpoint of diffusion of species A
inside the membrane tube, with chemically active walls.
The A-B surface reaction (Eq. (1)) is enforced as math-
ematical boundary conditions.
Up to this point, analysis of AMS equilibrium has been

limited to one dimension (z); here it is extended to 2-D
using the time-independent diffusion equation:

−D∇2[A(x, y, z)] = 0, (12)

where ∇2 is the Laplacian operator. Equation (12)
describes the time-independent thermodynamic equilib-
rium state for the concentration [A(x, y, z)] inside the
AMS tube.
Referring to Fig. 2, let the AMS tube possess the same

axial chemical asymmetry assumed previously (§II). The
value of [A] at the boundaries can be calculated from Eq.
(3) using G(x, z) and [B(x, z)], which are defined at the
outset. The following physical symmetries simplify the
analysis:
(1) Mirror (bilateral) symmetry across the z axis, i.e.,
f(x) = f(−x).

(2) No y-dependence for [A], thus (∂
2[A]
∂2y = 0), in which

case the Laplacian operator is reduced from 3-D to 2-D
and the AMS assumes slot geometry. If y-dependence
is desired for a full 3-D description, the 2-D tube might
at least be made a square channel, thereby symmetrizing
the x and y solutions. (Going forward, 2-D slot geometry
is assumed.)
(3) The ends of the AMS (z = 0 and z = L) are chemically
identical to their immediate lateral walls63.
Formally, the boundary conditions for the AMS in Fig.

2 are written:

FIG. 2. Specifications of AMS tube for the application of
the diffusion equation (Eq. (12)). Blue represents the tube
walls. In narrow channel geometries like this, solute concen-
tration [A(x, z)] should closely follow the wall concentration
distribution of binding sites, [B(z)].

(i) Bottom Boundary (x = −w/2; 0 ≤ z ≤

L): [A(−w/2, z)] = f(z) (variable);
(ii) Top Boundary (x = +w/2; 0 ≤ z ≤ L):
[A(+w/2, z)] = f(z) (variable);
(iii) Endcap 1 (z = 0; −w/2 ≤ x ≤ +w/2):
[A(x, 0)] = f(z = 0) = C1 (constant); and
(iv) Endcap 2 (z = L; −w/2 ≤ x ≤ +w/2):
[A(x, L)] = f(z = L) = C2 (constant)

With well-defined initial values for G(x, z), [B(x, z)]o,
NA,o, and T (temperature) the system must come to
an equilibrium state characterized by unique values of
[B(x, z)] and [AB(x, z)] on the walls, as well as a unique
profile of [A(x, z)] in solution. The boundary conditions
(i - iv) alone, however, are not sufficient to solve the dif-
fusion equation. Additional local and global constraints
must be imposed, namely, particle conservation relations.
For these,

∮

S,V indicates a closed integral over system

boundary surfaces (S) or volume (V); subscript (o) in-
dicates initial value. These are informed by the limit
conditions and dimensionless variables in §II B,C.
Local constraints:

(a) [B(x, z)] ≤ [Bo(x, z)]; and
(b) [AB(x, z)] = [Bo(x, z)]− [B(x, z)].

Global constraints:

(c)
∮

S
[AB] ≡ NAB ≤ NB,o =

∮

S
[B(x, z)]o;

and
(d)

∮

S
[AB] ≡ NAB ≤ NA,o =

∮

V
[A(x, z)]o.

The time-independent diffusion equation for the AMS
(Eq. (12)) might yield to separation of variable tech-
niques, subject to the above physical boundary condi-
tions and constraints. A full, analytic solution is beyond
the scope of this paper and might be intractable except
for simple boundary conditions (e.g., constant [B]o and
∆G). This problem, however, seems well-suited to nu-
merical solution, perhaps using relaxation methods, par-
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tial differential equation solvers, or finite element meth-
ods like Comsol Multiphysics or ANSYS. We are cur-
rently modeling this system via individual-particle Brow-
nian diffusion inside an AMS tube subject to chemically
active walls2. Initial results corroborate the principal
findings of this paper.
That Laplace’s equation is involved (∇2[A] = 0) is

fortuitous because its solutions are guaranteed to satisfy
the following three properties:
(1) The interior solution is uniquely determined by [A] on
the boundary, in this case, the solution-surface interface.
(2) For the 2-D case, the value of [A] at a spatial point
(x,z) is the average of values on its surrounding circle:
[A(x, z)] = 1

2πR

∮

circle[A(x, z)]dl.
(3) Solutions have no local maxima or minima in the
interior; all extrema are on the boundaries.
A complete solution to D∇2[A(x, z)] = 0 is not pro-

vided here, but a familiar analog is known: the elec-
trostatic parallel plate capacitor. The mathematical
form of the time-independent diffusion equation for the
high-aspect-ratio AMS slot (∇2[A] = 0) is identical to
that of the well-known, high-aspect-ratio plate capac-
itor (with electrically conducting endcaps) written as
Laplace’s equation: ∇2V (x, z) = 0. A twist arises be-
cause the value of [A] in the AMS slot (tube) changes
along the z direction, but for the capacitor this can be
easily handled with Laplace’s equation by varying the
boundary values of V along z.
Physical intuition about the AMS tube can be gleaned

from this analog case. For a parallel plate capacitor,
so long as L ≫ w and so long as V (z) varies slowly,
the interior values of voltage closely match those on
the boundary. By analogy, and because of the three
properties of Laplace solutions stated above64, we
have a good approximation for the interior values of
[A(x, z)], namely, its equilibrium values at the near-
est solution-surface boundary, which are calculable
from Eq. (3). Thus, if G(z) and [B(z)]o are engineered
with gradients, then gradients in [A(z)] must also obtain.

Appendix C: Physical Example of AMCC

In this appendix, a physical instantiation of the AMCC
is briefly described, one distinct from the laboratory ver-
sion reported on elsewhere1.
Consider an AMS plumbed to a concentration cell in-

spired by the standard AgCl/Ag pH probe26,65 (Fig. 2).
The AMS is filled with hydrochloric acid (HCl), hence A
is the hydrogen ion H+ and Cl− the counter ion. The
binding sites B might be carboxylate ions (COO−) at-
tached to carbon skeletons anchored along the walls of
the AMS in such areal number densities and with such
functional groups attached that the hydrogen ion concen-
tration [H+(z)] decreases vertically, as depicted in Fig.
1b.
To maintain quasi-neutrality, the local Cl− concentra-

tion closely follows that of the hydrogen ion. Notice how
the electrochemical roles of H+ and Cl− reverse between

FIG. 3. Schematic of AMCC. (a) Full system. AMS (right
side) connected by valves and plumbing to concentration cell
(left side). (b) Concentration cell magnified, with load resis-
tor RL(Ω) (not engaged). For the AMCC power cycle, the
load RL is engaged, the V-1 valves are open, and the V-2
valve is closed, thus admitting active solutions into concen-
tration cell for electricity generation. When the solution is
chemically exhausted, the V-1 valves are closed and the V-2
valve is opened so solutions can return to the AMS for re-
separation. This cycle can be repeated until the electrodes in
the concentration cell are exhausted or, if they are regularly
switched such that the electrodes do not degrade, then, in
principle, this cycle can be repeated indefinitely.

the AMS and the concentration cell. The AMS mem-
brane explicitly concentrates H+, with Cl− coming along
for the ride, while in the concentration cell, Cl− is the
electrochemically active species, with H+ coming along
for the ride.
Once the equilibrium hydrogen ion concentration is es-

tablished in the AMS, valves V-1 are opened and H+ is
admitted to the concentration cell. The cell (Fig. 3b),
consists of two Ag/AgCl electrodes separated by a semi-
permeable membrane, e.g., here Nafion, which is per-
meable to H+ but not to Cl−. The anode’s oxidation
half-reaction (high [H+]) is:

Cl−(high) + Ag(s) −→ AgCl(s) + e−;
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while the cathode’s reduction half-reaction (low [H+]) is:

AgCl(s) + e− −→ Ag(s) + Cl−(low).

Summing the two half-reactions, the full electrochem-
ical reaction is:

Cl−(high) −→ Cl−(low),

which is emblematic of a concentration cell.
Clearly, the net electron transfer between species is

nil; nonetheless, the concentration difference between the
two solutions relaxes via electron current through the
external load (RL(Ω)) and proton current through the
central (nafion) membrane, which acts as the salt bridge.
Once the ∆pH wanes, the valves (V-1) are closed, V-2

is opened, and the expended solutions are returned to
the AMS, where ∆[H+] is re-established in the AMS. As
for traditional voltaic cells, AMCCs can be combined in
series and parallel to boost emf and current66.
The first laboratory AMCCs relied on multi-layer,

nafion-based custom membranes and achieved only a few

percent concentration difference between the anode and
cathode chambers, thus, generated only modest emfs
(E ∼ 1mV). More recent experimental AMCCs utilize
commercial anionic exchange membranes to separate low-
molarity NaCl solutions. These generate larger emfs
(e.g., ∼ 5 mV), indicating that the concentration dif-
ferences between chambers might be as large as 15-20%.

The most recent laboratory membranes physically re-
semble the AMS membrane from §II.A (Fig. 1). Specif-
ically, solid membrane material (thickness ∼ 10−3m) is
drilled through with small holes (diameter ∼ 10−4m) in
high areal number density (∼ 103 holes/cm2); thus, high-
aspect-ratio tubes (L/w ≥ 10) connect the anode and
cathode fluid reservoirs.

By no means have these AMS membranes or AMCCs
been optimized. It is expected that large series-parallel
arrays of them will soon drive simple electronic appli-
ances. These developments will be reported upon in fu-
ture communications.


