
Ouroboros
Handbook

Using Grasshopper, Ouroboros and Xylinus to
develop 3D-prints without travel movements

V1.0

A diploma thesis by Daniel Westhof

Kunsthochschule Kassel 2021

{0;0}(0) {0;0}(1)

Introduction{0;0}

This is not only the initial release of the Ouroboros Handbook but
also my diploma thesis.
I will extend it as Ouroboros develops.

Although basic knowledge about Rhino and Grasshopper is
expected from the reader, I hope that this document is also
interesting to other technologically savvy people using different
CAD packages.

This first revision will only cover Fused Deposition Manufacturing
(FDM) printing. Ouroboros has a lot of potential for ceramic
3D-Printing with syringes but for now I’ll stick with things I’m
familiar with.

Thanks to the IKEA Stiftung for funding my work on this project
by granting me a scholarship.

To Markus Schein and Oliver Vogt for mentoring me.

To Ryan Hoover for laying the foundation on which I build
Ouroboros by developing Xylinus.

To my parents for believing in me throughout my long time at
university.

The goal of Ouroboros is aiding the development of 3D-printed
products, using a big nozzle, by allowing to print in one go
without travel movements. This results in short print times
while achieving a nice surface finish even with 1 mm nozzles and
0.8 mm layer height. This makes the 3D-printer a viable tool for
small scale fabrication of products. Even furniture parts can be
printed in a reasonable time.

foreword

aknowledge-
ments

abstract

tools used

declaration
of academic
integrity

Software:

Rhinoceros 3D version “7 SR8”
https://www.rhino3d.com

Grasshopper version “Thursday, 15 July 2021 05:00”
https://www.grasshopper3d.com

Xylinus version 0.33.00
https://www.food4rhino.com/en/app/xylinus-novel-control-3d-printing

Ultimaker Cura version 4.10.0
https://ultimaker.com/software/ultimaker-cura

3D-Printer:

Heavily modified Anet A8 from 2017 With fake Volcano Hot end
from china and 1mm nozzle.

https://anet3d.com/pages/a8

Filament:

PLA (Polylactic acid) refills from Das Filament
https://www.dasfilament.de

PLA is a bioplastic made from cornstarch.

I, Daniel Westhof, declare that this thesis is my own work and that
I didn’t use any texts or graphics I didn’t create myself except
when it is acknowledged as such and properly attributed.
I also declare that all code and components made by others that
I used in my grasshopper definitions are either part of the
software listed above or are marked as such and credit is given.

________ ____________________________________
date	 signature

{0;1}(0) {0;1}(1)

What if you could tell the slicer to print one curve to a specific
point, switch to another touching curve, print that first and then
to continue with the first one? If you could stitch all the curves
into one big curve? If you now could also align the end points,
preferably to somewhere out of sight, the only travel movements
that are left are the layer changes.

You can do all of that! I call it stitching and this handbook will
teach you how to do it.

This, of course, has some major limitations. All closed curves
have to be touching each other on at least one spot.
But inside these limitations is a lot of room for creative solutions
and functional aesthetics.

Objective{0;1}

the issue to solve The major issue with printing with big nozzles is that at some
point the stringing can not be handled by tuning the retraction
and temperature settings anymore. This results in messy
surfaces with spikes and holes.

Combing can only mitigate the problems and results in even
longer travel times. But, didn’t we buy our printers to print and
not to travel? And didn’t we choose the 1 mm Nozzle to print big
parts crazily fast?

That is why I became obsessed with creating 3D-prints that can
be printed in one go without traveling at all.

When your slicer slices an object it generates a set of curves at
the intersection of an XY-plane and the object for each layer.
These are offset to compensate for the extrusion width. Usually
you have no control over the start and the end of the curves,
and the slicer wants to print each curve completely before going
to the next. This means that even touching curves have travels
between them.

I was not willing to accept that.

the theory
behind my
solution

red dots: start/end points
red lines: print paths
blue lines: travel paths

{0;2}(0) {0;2}(1)

Before I had started Ouroboros, I achieved satisfying results with
Curas Surface Mode. It does not fill out the sliced curves but
uses them directly as paths.

To show Cura where I want the stitches to connect the
compartments, I had to cut holes into the double walls and to
connect the surfaces in a staggered pattern as shown below.

basic setup

My pre Ouroboros work flow{0;2}

Unfortunately, this only works most of the time, but finding the
reason can be a nightmare, because Cura is basically a black box.
Another frustrating issue was that crafting these stitches can be a
tedious task and when I wanted to change the layer height I had
to start all over again.

Although it basically worked fine, there had to be a better
solution. When I realised that I could transfer this work flow
directly into Rhino and Grasshopper, Ouroboros was born.

Print paths generated by Cura with this technique.

{0;2}(2) {0;2}(3)

If you want to replicate this technique, you have to edit the
following settings:

Set Surface Mode to Surface and Z Seam Alignment to User
Specified. Then you can either select a preset from Z Seam
Position or define the seam more precisely with Z Seam X and
Z Seam Y. The latter has the advantage that you can hide the
seam somewhere inside where it doesn’t affect the outer surface.
In some cases Shortest works fine as well but the seam will then
be on the outside though.

Cura settings To check if everything worked, uncheck Color Scheme > Shell to
reveal the travel paths. They should be neatly stacked. Sub mm
variations are allright.

Keep in mind that the seam can only be on a corner and not in the
middle of a line.

Also a hint to Cura beginners:
Most settings are hidden by default. To get to the Setting
Visibility preferences, click on the gear that appears when you
hover over a setting category.

The other settings heavily depend on your printer and your
geometry. But I had good results with my Anet A8 printer, with
Volcano hot end and a 1 mm nozzle, with layer heights between
0.5 mm and 0.75 mm and an outer wall speed between 20 mm/s
and 30 mm/s.

{1;0}(0) {1;0}(1)

Grasshopper Basics{1;0}

what is
Grasshopper

data trees

Grasshopper is a visual scripting interface for Rhino, a Computer
Aided Design (CAD) application developed by McNeel & Associates.

It has a work flow similar to modular audio synthesizers which
allows the creation of parametric geometry by connecting
components with “cables”.

A network of Grasshopper components as shown above is called
a definition. They have inputs on the left and outputs on the
right. The data is organized in so-called data trees which can be
thought of as nested lists.

The contained data is like leaves - attached to a branch that is
part of a bigger branch and so on. The addresses of the branches
are called data paths whose path elements are separated by a
semicolon and surrounded by curly brackets.

You can view the contents of a data tree in a Panel or just the
tree structure itself in a Param Viewer.

The tree structure of the inputs and outputs can be manipulated
by setting a series of flags. In the example above you can see the
Graft () flag which puts every item into its own branch.
So instead of all being in {0}, they are in {0;0}, {0;1} etc.
There are also Flatten () to put all items of all branches into a
single branch, Reverse () to reverse the order of the items in
each branch and Simplify () to remove all path elements that
are the same on all paths.

red: given points and curve
green: calculated points and lines

Like variables in programming languages, parameters contain
data. They can reference Rhino geometry or contain data that is
generated by Grasshopper components. In addition to the Point
and Curve parameters you can see in the example, there are a
lot of other data types. For example, Boundary Representations
(Breps) which can contain surfaces and solids.

There are components for all kinds of operations, for example
geometry, manipulating the data tree and mathematics.

Grasshopper has a very active community that provides a
multitude of mostly free plug-ins that contain additional
components. They can be pre-compiled from C# or contain user
editable Grasshopper definitions called User Objects.

parameters

components

{1;1}(0) {1;1}(1)

Xylinus Basics{1;1}

what is Xylinus? Xylinus is a set of Grasshopper User Objects developed by Ryan
Hoover. It can generate G-code, the control instructions for the
printer, directly from Rhino and Grasshopper geometry.

It works with FDM printers, syringe printers and resin printers.

the config
system

Ryan Hoover created Xylinus to control bioprinters and other
experimental 3D printers he has developed at the Baltimore
Under Ground Science Space and the Maryland Institute College
of Art.

Within the scope of my diploma project I made quite a few
contributions to Xylinus that will be part of the next release.
More on that later.

All settings are held in a data tree.

They can be inserted and extracted
with the config components either
in bulk or individually.

While the Config Setting
component is universal a
specialised bulk component is
needed for each printer type.

The table of contents in the
{0} branch is only for human
readability. To access the settings
only the id is needed.

Most Xylinus components can
accept the specific setting or the
whole config bundle.

These configs can be clustered and
saved as a user object for future
use.

{1;1}(2) {2;0}(0)

slicing

manipulating
paths

generating
G-Code

Ouroboros Basics {2;0}

what is
Ouroboros?

the origin of the
name

Ouroboros is a set of user objects intended to be used in
conjunction with Xylinus. The heart of it are two components that
stitch curves together in the way I described in {0;1}.

Ouroboros is the Greek name of the serpent devouring its own
tail. Originally The symbol is from Egypt and is found in the
mythology of many other ancient peoples. It is interpreted as
the eternal cycle of life, death and rebirth and the oneness of
everything.

By unifying curves and always returning to the starting point
Ouroboros reflects in its name the essence of its function.

To be able to print something we first need curves.
You can generate them anyway you want but Xylinus offers some
tools for that.

Slice, for example, takes a surface or a solid and generates the
contour curves for each layer.

Before you print those curves you can do with them whatever you
want, with all the might of Grasshopper at your fingertips.

Xylinus also brings some handy components that make handling
the curves easier. Offset Out for example.

Or, if you have curves that are inside
other curves and you want the inner
ones to offset to the outside, Offset Complex is your friend.

There are also rudimentary tools to generate infill.

Print Curve Filament converts the curves to G-code. If not
supplied, it generates some basic start and end G-code but you
can and should customize it to suit your printer.

source: Wikimedia, public domain
(https://commons.wikimedia.org/wiki/File:Serpiente_alquimica.jpg)

{2;1}(0) {2;1}(1)

In this chapter I will describe the Ouroboros components
followed by the containing definitions displayed in fold-outs.

Stitch With Points combines a list of closed curves into one
closed curve using points to position the stitch.

The Stitch Points have to be between or near the curves that
have to be stitched. Of course you can stitch more than two curves
at once. Just make sure that you have one point for each stitch.

Their order is irrelevant - they find their curves by ignoring
everything that is more than twice the Extrusion Width away.

It works by constructing a rectangle to cut into the curves,
deleting the intersection and connecting the curves by their
exposed end points.

The cutting rectangle is constructed by first finding the closest
points to the Stitch Point on the curves. These points are
connected by a line. Its midpoint is the center of the rectangle
which is aligned to that line. The rectangle has a width of the
Extrusion Width and the height of twice that, multiplied by the
Cut Depth Multiplier.

The Cut Depth Multiplier determines how far the rectangle will
cut into the curves. If its value is too high, it might cut into other
parts of the curve (shown in the left sketch). If it is too low, the
rectangle might not cut with its sides and the end points would
end up to be too close to each other (shown in the right sketch).

The stitches are possibly a weak point. I would advise not to put
them on the same spot in each layer.

Stitch With Breps merges a list of closed curves into one closed
curve using solids to generate an alternating stitch pattern.

Ouroboros Components{2;1}

Stitch With
Points Various values for the cut depth multiplier

Black:	 curves
Purple:	 stitch point
Blue:	 closest points on curve to stitch points
Red: 	 cutting rectangle and its center point.
Green:	 resulting stitch lines	

Stitch With Breps

{2;1}(2)

Hole Punch

grey:	 geometry to slice
red:	 stitch geometry
green:	 print paths

2
1

3
21

circle:	 former seam point
lines:	 print path
arrows:	 print direction
	 and order
dashes:	 travel movements

The intersection between the curves and the Stitch Geometry
marks the position of the stitches. The stitch aligns to opposite
sides on alternating layers.

Hole Punch is, for now, the only utility
component included in Ouroboros.

Sometimes it is unavoidable to break the circle and cut a hole
into a curve. Having open curves can result in travel movements
but if you need them, they should be right where the hole is.

But just cutting a hole into the closed curve is not going to cut it.
We want the layer to be started at the former seam point. If you
cut a closed curve in Grasshopper, the seam point will be in the
last segment. That segment has to be cut at the seam point and
the off cut belongs to the beginning of the layer.

That is what Hole Punch is taking care of for you.

{2;1}(3)

Stitch With
Points -
Grasshopper
definition

{2;1}(5)

Stitch With
Breps -
Grasshopper
definition

{2;1}(7)

Hole Punch
Grasshopper
definition

{3;0}(0)

Examples{3;0}

Voodoo Face
Shield

During the beginning of the Covid-19 pandemic in 2020 when
protective gear like face shields were in high demand and in short
supply, I used my pre-Ouroboros workflow to help out.

Prusa Research published 3D-models of a face shield that
became the de facto standard, with many compatible variants
from the community. It initially took about 3 hours to print but
there were several “slim versions” with reduced print times.
With a 1 mm nozzle and 0.5 mm layer height I could print in 18
minutes what others printed in 1½ hours.

I printed about 500 pcs. of my Voodoo Face Shields and donated
them all to Maker vs Virus who took care of distribution.

{3;0}(1) {3;0}(2)

Garberobe The Garberobe was the first project I implemented using this
technique.

The name is a mix of Garderobe, the German word for coat rack,
and Garbe meaning bundle of hay.

One set of parts is printed in about four hours which is quite fast
for 300 grams of material.

Photos by Andreas L. Berg

IVARobeI wanted to sell the Garberobe as a kit. However, including the
poles would be too bulky for shipping and letting people source
the sticks themselves was tricky as well. Therefore I’ve build a
parametric version of it to be able to print a Garberobe that fits to
any old sticks that my customers find in their barn.

As an example and as a homage to IKEA I made one out of old
IVAR shelf parts. The pegs can be used as extra hooks.

{3;0}(3) {3;0}(4)

Tree Branch
Coatrack

Electronic CandleI also made a variant for tree branches.

The geometry is quite different and while making it I realized that
Stitch With Brep would not work so well in this case. That is why
I created Stitch With Points.

The stitches are made in alternating
sequence between the inner circle and
the clamps.

This is a minimalistic electronic candle I made for Christmas in a
small series of about 30 pieces. In addition to the printed parts it
only consists of a warm-white flickering LED, a Switch and a wire.

And the batteries, of course. They are snugly held by the side
walls but pop out when pushed.

One leg of the LED is stuck through a hole and bent over a kink
on the inside to ensure good battery contact. The other one is
attached to a wire going down to the switch on the inside.

{3;0}(5) {3;0}(6)

Lampshade SlipcaseTo give the reader a proper impression of the look and feel of the
unique texture, I made slipcases for the printed version of the
Ouroboros Handbook.

This was basically a test to see what happens when you combine
a stitched, planar section with a spiralized top.

The light is surprisingly diffuse and it does that trippy thing where
it slips into the column closest to you while leaving the rest dark.

{4;0}(0) {4;0}(1)

Xylinus Changelog{4;0}

Config Setting

While working with Xylinus I stumbled upon some missing
features. But because it consists of user objects, the inner
workings are always just a double click away.

After hacking a few workarounds for very specific tasks I worked
on generalizing my modifications up to a point where I could
submit them to the Xylinus project where they will be part of the
next release.

Like before, I will tell you about the components first and show
you the Grasshopper descriptions later in the fold-outs.
For the sake of transparency I will include also the originals by
Ryan Hoover.

The old Config System was designed to only have one value
for each setting but was able to contain lists as well. However,
I wanted to control, for example, the Extrusion Width for each
point on each layer. That is why I wanted the settings to be able
to work with whole data trees.

My solution is to “wrap” the tree inside the setting ID by prefixing
the path with it like shown below.

Simplify () at the Settings output gives you the original data
tree without the ID and is there by default.

Recalculate
Layer Height

Having that much control over the settings makes possible what,
before, required modding of the Print Curve component with
special inputs and custom logic, thus loosing a lot of modularity.
The only thing that had to be changed in Print Curve is the Config
Settings component, and everything can happen outside it.

A new class of Xylinus components has become possible.

Recalculate Layer Height (RLH) is the first in a planned series of
components that shift the paradigm of what the config system
does. It’s no longer just a bunch of settings you define in the
beginning and that get distributed to all the components that
need it, but it’s itself subject to change and development.

RLH measures the Z distance between the mid-point of each
segment to the next curve one layer down and outputs an
Updated Config.

To achieve this RLH first has to anticipate what the Print Curve
component will do, by converting the curves to poly lines with
the same tolerance. The resulting tree structure matches the
one expected by the Print Curve component. That is why, in the
example above, the paths are grafted.

The Path or Toggle input can be used to process specific layers
only, while the rest is padded out with the standard value. Or to
turn the recalculation off while testing things, because it is really
computing intensive and in most cases only needed for G-code
generation.

{4;0}(2) {4;0}(3)

The Spirofix input is a workaround for working with spirals.
Depending on the tolerance setting and other factors, the end
of the lower curve might be closer to the first point on the upper
one than to the start. To mitigate that issue it replaces the first n
values with the value of n+1.

RLH is essential for working more creative with the Z axis,
for vertical wave patterns, the ramps of a starting spiral etc.

The previous Xylinus release
introduced a Spiral Slice
component that was very slow.
Because execution time and
memory usage grew exponentially,
it was basically unusable for even
slightly bigger parts.

The culprit was, that it used a continuous spiral to cut the whole
object in one go while my version uses a small spiral for each
layer.

Spiral Slice Offset Out

This allows parallel computation and is much lighter on memory
usage. I had performance boosts of multiple orders of magnitude,
depending on the size of the part.

This also made the implementation of multiple values for Layer
Height possible, a feature Ryan Hoover also integrated into the
normal Slice component.

You can select if a Planar Top and Planar Base are generated with
the corresponding inputs. The base replaces the first layer while
the top is just merged in and grafted. This makes it a separate
layer that will be recognized as such by the RLH component.
The Planar Base is important for the first layer because the
nozzle might crash into the print bed when starting the spiral and
might not adhere to the bed at all at the end. The Planar Top is
just nicer when it is flat, and is also easier to interface with other
curves that might be on top of it.

By deactivating Split you can join all the curves into one big
spiral, but be aware, that you will loose compatibility with RLH.

Offset out is one of the core components of
Xylinus. It was always a bit unreliable and
offsets some curves into the wrong direction
and sometimes even gave no output at all.

It worked by comparing the area of the offset of x and x*-1 and
chose the bigger one. That means that for each curve two offsets
have to be calculated. Offset Curve is a slow component to begin
with, so just getting around needing two would double the speed.

Looking online I found this solution and had no problems with
curves offsetting in the wrong direction since.

Solution found at:
https://www.grasshopper3d.com/forum/topics/offset-inwards
Recommended by user ng5 Alex

blue: point from where the distance is measured
red: point that RLH determined as the closest
green: actually desired point

{4;0}(4)

Offset Complex

The Probably Problematic Curves (Prb) output holds the original
input curves, whose offset resulted in a curve that was less
than 50% of the original length, except when it is a small curve
to begin with. This helps with workarounds to automate the
handling of failing offsets. This is the part I kept unchanged from
the previous version.

Offset Complex offsets outer curves
to the inside and curves that are
contained in another curve to the
outside.

It contains three instances of Offset Out which means that my
version of it should have made a huge impact on its speed.

But there was another thing holding it down. In case the offsets
lead to overlapping curve, the outer curves go through a Region
Union component and get the inner curves cut out with a Region
Difference.

This takes a lot of time and is not needed in many cases. When
used with Ouroboros having overlapping curves is a clear sign
that something went very wrong and to fix the overlap in that way
doesn’t help.

Therefore, making it optional with a Fix Overlap input resulted in
a tenfold increase in speed.

{4;0}(5)

Config Setting
[original] -
Grasshopper
definition

Config Setting
[modified] -
Grasshopper
definition

{4;0}(7)

Recalculate

Grasshopper
definition

{4;0}(9)

Layer Height

Spiral Slice
[original] -
Grasshopper
definition

{4;0}(11)

[modified] -
Grasshopper
definition

{4;0}(13)

Spiral Slice

[original] -
Grasshopper
definition

{4;0}(15)

Offset Out

[modified] -
Grasshopper
definition

{4;0}(17)

Offset Out

[original] -

definition

{4;0}(19)

Offset

Grasshopper

Complex

definition

{4;0}(21)

Offset

Grasshopper

Complex
[modified] -

{5;0}(0)

Work in progress {5;0}

Continuous Infill

There are two components that didn’t quite make it into this
release, and I have also some ideas for the future.

The most important feature Ouroboros is still missing is the
printing of areas. Again, the goal is to end up with only one closed
curve per layer.

This problem is surprisingly tricky to solve but I’m on my way to
a promising approach. The curves below are no mock-ups but
generated by a prototype.

The width of the turquoise stripes depends on
the desired Infill Density. They are connected
to the outline (black) by one of its green

neighbors. The red region was sorted out
because it touches the outline in more than
one place. Thus, the orange Stripe is orphaned
which gets fixed with the help of Stitch with
Breps automatically.

There are many special cases that need to be considered, and
I haven’t figured it out completely yet. However, I am confident
that Continuous Infill will soon be a versatile and robust tool.

{5;0}(1) {5;0}(2)

Z-Seam
Alignment

Aligning the seam point of closed curves is easy. You can either
use the seam point of the first curve to find the new seam points
of the others, or supply your own.

If you have some open curves in the mix, it becomes more
complicated. That is why I built the Punch Hole component in
the first place. However this results in travel movements in the
place where it was punched. That is okay for small holes for
screws but not for big openings where the quality of the edge has
to look nice and smooth.

The Z-seam has to be in a more or less vertical arrangement and,
it’s not pretty, so aligning it with the opening is not desirable. You
want to be able to hide it somewhere discrete.

I have a solution for that, at least for layers with only one open
curve.

The curve is cut at the seam point (red circle in our example
above), and one side is pushed one branch up and becomes so
part of the next layer. Then everything is sorted and flipped so
that it zigzags diagonally.

If there is an odd amount of consecutive open layers, the second
to last layer (orange) has to retrace its path (blue). This is similar
to the combing option in other slicing software and at least better
than chaotic travelling.

{0;0}(0)

{1;0}(0)

{1;0}(1)

{2;0}(0)

{2;2}(0) {2;0}(1)
{2;1}(0)

{2;1}(1)

It is important that the back trace gets its own branch because
for that print paths the layer height has to be recalculated.
For that purpose it would be handy to have an output that
collects all these data paths to send it on to a RLH component.

The first data path segment of the last curve segment (green)
has to match its original. It could otherwise collide with eventual
layers above it. If our example only had two layers, the first
segment of the orange curve would be the last one. It would then
be called {1;1}(0).

I will continue the development of Ouroboros and will make more
contributions to the Xylinus project.

One major goal for the future is transferring my techniques to
clay printers or syringe printers in general.

Ouroboros is a great tool for realizing my dream of designing and
manufacturing my own products.

Outlook

{6;0}(0) {6;0}(1)

{0;0}	 Introduction
foreword	 {0;0}(0)
aknowledgements	 {0;0}(0)
abstract	 {0;0}(0)
tools used	 {0;0}(1)
declaration of academic integrity	 {0;0}(1)

{0;1}	 Objective
the issue to solve	 {0;1}(0)
the theory behind my solution 	 {0;1}(1)

{0;2}	 My pre Ouroboros work flow
basic setup	 {0;2}(0)
Cura settings	 {0;2}(2)

{1;0}	 Grasshopper Basics
what is Grasshopper	 {1;0}(0)
data trees	 {1;0}(0)
parameters	 {1;0}(1)
components	 {1;0}(1)

{1;1}	 Xylinus Basics
what is Xylinus?	 {1;1}(0)
the config system	 {1;1}(1)
slicing	 {1;1}(2)
manipulating paths	 {1;1}(2)
generating G-Code	 {1;1}(2)

{2;0}	 Ouroboros Basics
what is Ouroboros?	 {2;0}(0)
the origin of the name	 {2;0}(0)

{2;1}	 Ouroboros Components
Stitch With Points	 {2;1}(0)
Stitch With Breps	 {2;1}(1)
Hole Punch	 {2;1}(2)
Stitch With Points - Grasshopper definition	 {2;1}(3)
Stitch With Breps - Grasshopper definition	 {2;1}(5)
Hole Punch - Grasshopper definition	 {2;1}(7)

{3;0}	 Examples
Voodoo Face Shield	 {3;0}(0)
Garberobe	 {3;0}(1)
IVARobe	 {3;0}(2)
Tree Branch Coatrack	 {3;0}(3)
Electronic Candle	 {3;0}(4)
Lampshade	 {3;0}(5)
Slipcase	 {3;0}(6)

{4;0}	 Xylinus Changelog
Config Setting 	 {4;0}(0)
Recalculate 	 {4;0}(1)
Layer Height	 {4;0}(1)
Spiral Slice	 {4;0}(2)
Offset Out	 {4;0}(3)
Offset Complex	 {4;0}(4)
Config Setting [original] - Grasshopper definition	 {4;0}(5)
Config Setting [modified] - Grasshopper definition	 {4;0}(7)
Recalculate Layer Height - Grasshopper definition	 {4;0}(9)
Spiral Slice [original] - Grasshopper definition	 {4;0}(11)
Spiral Slice [modified] - Grasshopper definition	 {4;0}(13)
Offset Out [original] - Grasshopper definition	 {4;0}(15)
Offset Out [modified] - Grasshopper definition	 {4;0}(17)
Offset Complex [original] - Grasshopper definition	 {4;0}(19)
Offset Complex [modified] - Grasshopper definition	 {4;0}(21)

{5;0}	 Work in progress
Continuous Infill	 {5;0}(0)
Z-Seam Alignment	 {5;0}(1)
Outlook	 {5;0}(2)

{6;0}	 Table of contents

Table of contents{6;0}

