
TEC-1G MON3
User guide

By Brian Chiha v1.1

Mon3 (Talking Electronics Computer Monitor version 3) is custom-built for
the TEC-1G Single Board Z80 Computer. Mon3 is the heart of the TEC-1G. It
brings the hardware to life. Consider it an Operating System that provides
the ability to program the TEC. The monitor is jam-packed with features,
designed for beginners who are just learning to code Z80 and rich enough
for the advanced software developer.

Table of Contents
Useful Links.. 2
Basic Operation...3

Hard Reset..3
Cold Reset...3

Main Menu.. 4
Intel HEX Load... 5
Smart Block Copy..5
Block Backup... 6
Export Z80 Assembly..6
Export Raw Data.. 7
Export Hex Dump... 7
Import Binary File... 8
Tiny Basic.. 8
Music Routine..9
Settings.. 10
Credits... 10

Memory Map..11
Data Entry Mode..12

Basic Operation...12
LCD Screen...13
Function Keys...14

Matrix Keyboard.. 15
Debugging Programs.. 16
TEC Magazine Code on the TEC-1G... 17
Advanced Programming.. 18

RST (Restart) commands... 18
Interrupts...19
NMI (Non-Maskable Interrupts)..20
API (Application Programming Interface) commands..................................21

General conventions...21
API Calls list..22
API Utility Calls...23
API LCD Calls...25
API Input Calls..26
API Serial Data Transfer Calls...27
API Menu & Parameter Calls.. 29
API Sound Calls.. 31
API System Latch Calls...32

1

Graphical LCD Add-On Interface... 34
General Conventions... 35
GLCD API Calls list...36
GLCD API Configure Calls.. 36
GLCD API Graphics Calls...38
GLCD API Text Calls... 40
GLCD API Utility Calls...41
GLCD Examples..43

Quick Start Programs...44
Appendix...47

Ports...47
Constants...48
LCD Cheatsheet.. 49
I/O Connectors.. 52

Useful Links
TEC-1G GitHub Repository
https://github.com/tec1group/TEC-1G/

TEC Facebook Page
https://www.facebook.com/groups/tec1z80

Z80 Instruction Set Reference
https://clrhome.org/table/

Online Z80 Compiler and Debugger
https://www.asm80.com/

Rodney Zaks Programming the Z80
https://archive.org/details/ptz80

TEC Seven Segment Calculator
https://slartibartfastbb.itch.io/seven-segment-calculator

Ready? Z80 YouTube Channel
https://www.youtube.com/@ReadyZ80

2

https://github.com/tec1group/TEC-1G/
https://www.facebook.com/groups/tec1z80
https://clrhome.org/table/
https://www.asm80.com/
https://archive.org/details/ptz80
https://slartibartfastbb.itch.io/seven-segment-calculator
https://www.youtube.com/@ReadyZ80

Basic Operation
With the monitor loaded into the ROM socket and all the jumpers set
correctly for the ROM used. Turn the TEC on. If all is working well, a
welcome banner will be displayed on the LCD and a short tune will be
heard.

Hard Reset
When the TEC turns on after being powered down, a Hard Reset occurs. A
Hard Reset signified with the display of the welcome banner and the short
tune. A Hard Reset will configure the monitor for first-time use after
powering it on. It will default monitor variables and configure the LCD for
first use.

If the TEC isn’t responding normally or something “weird” is occurring, a
manual Hard Reset can be performed. Programs loaded in RAM will be
retained when a manual Hard Reset is done. To do a manual Hard Reset,
while pressing and releasing the RESET key, hold the Fn key down. The
distinctive LCD Banner and music tone will indicate that the Hard Reset
was successful.

Cold Reset
A Cold Reset occurs when pressing and releasing the RESET key. A cold
reset returns the TEC to its initial editing location on a Hard Reset. It's a
quick way to get back to the start of a code block.

3

Main Menu
Amenu is provided on the LCD screen to help with navigating the inbuilt
routines that the monitor comes with. A menu will appear on Hard Reset.

Navigating the menu should be intuitive. Press the Plus or Minus keys to
scroll down and up. Press GO to run the selected routine. A right-facing
Arrow indicates which menu item is currently selected. One thing that
might not be obvious is how to exit the menu and move into Data Entry
mode. Pressing the AD key will do this. Once this is known, it's hard to
forget it.

The current items on the menu are

Menu Text Description

Intel HEX Load Receive data in Intel Hex File format via the
FTDI connector

Smart Block Copy Move a block of code AND update all 2-byte
addresses that are within the block

Block Backup Move a block of code

Export Z80 Assembly Display Z80 Assembly to a Serial terminal via
the FTDI connector

Export Raw Data Send binary data via the FTDI connector

Export Hex Dump Display a 16-byte per line HEX dump to a Serial
terminal via the FTDI connector

Import Binary File Receive data in binary format via the FTDI
connector

4

Tiny Basic Run Tiny Basic on a Serial terminal

Music Routine Play musical notes at a given address

Settings Update monitor settings

Credit Display the people who made the TEC-1G

Intel HEX Load
Intel created a text file format that contains information on loading bytes
into memory. When this routine is run, the TEC seven segments will go
blank and wait for a file to be received. This is done via the FTDI connector
and serial terminal. When data is transmitted, the rightmost segment will
illuminate in a pattern. This indicates data is being read. Once the file has
fully loaded, the letters “PASS” will display on the seven segments. This
means that the load was successful. Press any key to exit. If the segments
display the word “FAIL”, then there is something wrong with the file or your
serial connection.

Smart Block Copy
This very clever routine shifts a program from one spot in memory to
another and changes all absolute jumps and calls. Memory pointers are
also altered if the memory pointers are within the start and end address of
the program being relocated. Any reference to a location outside the start
and end range is not altered.

The block copy treats Data bytes as instructions and might change data
bytes as well. IE: .db C3, 23, 01 could be seen as a JP 0123 instruction.

When this routine is run, it will ask for a START, END and DESTINATION
address. Type in the 16-bit address via the HEX PAD and use the Plus or
Minus keys to change the selected parameter. Press GO to run the routine.

5

Here is an example of copying 4000H-4009H to location 2000H

Original After Copy

4000 11 09 40 LD DE,4009
4003 E7 RST 20
4004 FE 13 CP 13
4006 C2 00 40 JP NZ,4000
4009 C9 RET

2000 11 09 20 LD DE,2009
2003 E7 RST 20
2004 FE 13 CP 13
2006 C2 00 20 JP NZ,2000
2009 C9 RET

Block Backup
This routine simply copies a data block from one address location to
another. No bytes are altered when the copy is performed. This routine is
also useful to copy data reference tables like music data for the music
routine.

When this routine is run, it will ask for a START, END and DESTINATION
address. Type in the 16-bit address via the HEX PAD and use the Plus or
Minus keys to change the selected parameter. Press GO to run the routine.

Here is an example of copying 4000H-4009H to location 2000H

Original After Copy

4000 11 09 40 LD DE,4009
4003 E7 RST 20
4004 FE 13 CP 13
4006 C2 00 40 JP NZ,4000
4009 C9 RET

2000 11 09 40 LD DE,4009
2003 E7 RST 20
2004 FE 13 CP 13
2006 C2 00 40 JP NZ,4000
2009 C9 RET

Export Z80 Assembly
If the TEC is connected to a serial terminal via an FTDI to USB adaptor,
code that is stored or written on the TEC can be disassembled and sent to
the terminal. This is a great way to view the code that is on the TEC in a
readable format and could be passed into a Z80 compiler on a PC.

6

When this routine is run, it will ask for a START and END address. Type in
the 16-bit address via the HEX PAD and use the Plus or Minus keys to
change the selected parameter. Press GO to run the routine.

Here is an example of its output.

4000 3E 3F LD A,3F
4002 D3 01 OUT (02),A
4004 3E 04 LD A,04
4006 D3 02 OUT (02),A
4008 CF RST 08
4009 C9 RET

Export Raw Data
This routine will send binary data from the TEC to a serial connection. It’s a
way of saving the code written on the TEC to a PC. As binary data is being
sent, the data can only be properly viewed through a HEX file viewer or
HEX dump routine.

When this routine is run, it will ask for a START and END address. Type in
the 16-bit address via the HEX PAD and use the Plus or Minus keys to
change the selected parameter. Press GO to run the routine.

Export Hex Dump
This routine will display binary data in a readable format to a serial terminal
connected via an FTDI to USB adaptor. It will display up to 16 bytes per line.

When this routine is run, it will ask for a START and END address. Type in
the 16-bit address via the HEX PAD and use the Plus or Minus keys to
change the selected parameter. Press GO to run the routine.

Here is an example of its output.

C100: 31 80 08 21 00 40 CD FC C5 AF D3 05 D3 06 DB 03
C110: 47 E6 10 C2 00 80 3A 9F 08 E6 04 0E 01 B1 D3 FF
C120: 32 9D 08 78 E6 02 32 9E 08 3A 9D 08 E6 01 28 0B
C130: 21 00 C0 11 00 00 01 00 01 ED B0 21 00 40 22 86
C140: 08 22 A0 08 DB 03 0F 38 06 DB 00 E6 20 18 08 CD

7

Import Binary File
This routine will upload a binary file from a PC onto the TEC via an FTDI to
USB adaptor. This is the opposite of the Export Raw Data routine and will
load binary data to a given address on the TEC.

When this routine is executed, it will ask for a START and END address. This
address range must match the size of the binary file being sent. Type in
the 16-bit address via the HEX PAD and use the Plus or Minus keys to
change the selected parameter. Press GO to run the routine. The TEC will
wait for data to be received and will end when END-START+1 bytes are
received.

Tiny Basic
Mon3 comes with Tiny Basic installed. Tiny Basic is an easy-to-use BASIC
programming language. At this stage, all interactions with BASIC are done
on a serial terminal via an FTDI to USB adaptor.

Z80 TINY BASIC 2.2b
TEC-1G VERSION BY B CHIHA, 2023

OK
>LIST
5 REM ** FIBONACCI SEQUENCE **
10 PRINT "FIBONACCI SEQUENCE"
20 FOR I=1 TO 22
30 GOSUB 70
40 PRINT "F",I,F
50 NEXT I
60 STOP
70 LET A=0; LET B=1
80 FOR J=1 TO I
90 LET T=A+B; LET A=B; LET B=T
100 NEXT J
110 LET F=A
120 RETURN

For information on how to use Tiny Basic, go to this link:
https://github.com/bchiha/BMon/wiki/tiny_basic.

8

https://github.com/bchiha/BMon/wiki/tiny_basic

Music Routine
Use this routine to play some notes to the TEC speaker. It is based on John
Hardy’s Mon1 routine adjusted for a 4Mhz clock speed. The routine uses
similar input codes making it suitable for existing tunes to be used.

When this routine is executed, it will ask for a START address of the music
data—type in the 16-bit address via the HEX PAD. Press GO to run the
routine.

Two octaves are playable. Here is a reference to the note code and its
musical note. A Pause is represented by 00 and any other note code that
isn’t listed will exit the routine.

Note Code Note Code Note Code Note Code

G 01 C# 07 G 0D C# 13

G# 02 D 08 G# 0E D 14

A 03 D# 09 A 0F D# 15

A# 04 E 0A A# 10 E 16

B 05 F 0B B 11 F 17

C 06 F# 0C C 12 F# 18

Here are some examples tunes that can be typed in a played

Bealach
06, 06, 0A, 0D, 06, 0D, 0A, 0D, 12, 16, 14, 12, 0F, 11, 12, 0F
0D, 0D, 0D, 0A, 12, 0F, 0D, 0A, 08, 06, 08, 0A, 0F, 0A, 0D, 0F
06, 06, 0A, 0D, 06, 0D, 0A, 0D, 12, 16, 14, 12, 0F, 11, 12, 0F
0D, 0D, 0D, 0A, 12, 0F, 0D, 0A, 08, 06, 08, 0A, 06, 12, 00, 1F

Stripper
01, 01, 03, 03, 03, 06, 06, 06, 06, 06, 06, 0A, 08, 08, 06, 06
06, 02, 02, 02, 02, 02, 02, 01, 01, 03, 03, 03, 06, 06, 06, 06
06, 06, 0A, 0D, 0C, 0C, 0C, 0B, 0B, 0B, 0B, 0B, 0B, 0B, 0B, 0A
0A, 01, 01, 01, 01, 0A, 0A, 01, 01, 01, 01, 0A, 0A, 09, 0A, 0A
0A, 0B, 0B, 0A, 0B, 0B, 0C, 0D, 0D, 0C, 0D, 0D, 0D, 0E, 0E, 0D
0E, 0E, 0E, 0F, 0F, 0E, 0F, 0F, 11, 11, 11, 0F, 11, 11, 12, 12
12, 12, 12, 12, 12, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 1F

9

Settings
The settings allow the user to configure the monitor. Setting modifications
will only remain when the TEC is powered. Turning the power off the TEC
will return these settings to their default state

● Toggle Key Beep - Turn the keypress ‘beep’ indication on or off
● Toggle Address Inc - Turn the automatic address increase after a byte

has been keyed on or off
● Toggle EXPAND - software controlled the expansion socket to toggle

between lower and upper 16Kb memory for a 32Kb ROM/RAM chip.

Credits
Display the people who developed and tested the TEC-1G

● Mark Jelic - Designer of the TEC-1G
● Brian Chiha - Mon3 Programmer
● Craig Hart - TECnical Expert
● Ian McLean - Tester and QA
● James Elphick - Tester and QA
● John Hardy & Ken Stone - The original designers

10

Memory Map
The table below outlines how the 64Kb that the Z80 can reference is
partitioned on the TEC-1G.

Address Contents Type

0000H-00FFH Reserved for Z80 instructions RAM

0100H-07FFH Free RAM RAM

0800H-087FH Reserved for Hardware Stack RAM

0880H-0FFFH Reserved for Monitor RAM RAM

1000H-3FFFH Free RAM RAM

4000H-7FFFH Free RAM (Protected) RAM

8000H-BFFFH Expansion Socket RAM/ROM

C000H-FFFFH Monitor ROM ROM

Some things to be considered are:
● Any RAM location can be updated, but it is highly recommended not

to update Monitor Reserved RAM locations. This can/will cause
undesirable effects on the running of the TEC. A Hard Reset will
restore the TEC to its default running state (hopefully).

● The address range between 4000H-7FFFH is a special area that can
be made READ ONLY. This is called a Protected area. Protect mode
can be switched on using the configuration 3-DIP switch. If protect
is enabled and code is being executed. No RAM update can be done
in this range. This feature is designed to protect keyed-in code from
being inadvertently erased by a rouge routine.

● The Expansion Socket on the TEC can have a 32Kb ROM or RAM
inserted. Only 16kb can be accessed at one time. To switch between
high and lowmemory use the Expand switch on the configuration
3-DIP switch. The switch can also be overridden in software by
toggling the Expand flag in the Settings menu or via the API.

● If the monitor ROM is a legacy monitor, IE: Mon1, Mon2, JMon or
BMon, The address range 0000H-07FFHwill be READ ONLY and will
emulate the same addressing that is used for that particular ROM.
Shadowmode will be active by default and will be indicated by an
illuminated LED segment on the system latch BAR component.

11

Data Entry Mode
Data Entry Mode allows the user to enter Z80 Op Codes directly into the
TEC. To access Data Entry Mode from the Main Menu simply press the AD
key. In this mode, the 4 left seven-segment displays will show the current
editing address and the 2 right segments will display the byte at that
address.

Address Data

The decimal place LED on the segments indicates which part, Address or
Data is currently enabled for direct updates. In the picture above, the dots
are on the Data segments.

The initial starting address is 4000H. This address was chosen as it's within
the Protect RAM area.

Basic Operation
To update a byte at an address, simply use the 0-F keys on the keypad.
After the byte has been entered, by default when the next byte is keyed,
the current editing address will automatically move to the next address
location. This saves the user from pressing the Plus key after each byte is
added. This option can be switched off in the Settings menu.

To navigate to another address, press the Plus or Minus key. Or press the
AD key. The decimal place dots will move to the address segments
indicating that the address field is updateable. Key in a new 2-byte address
by using the 0-F keys. Press the AD key to move back to data updating
mode.

And finally, to execute code, navigate to the address where the code starts
and press the GO key. Protect mode will be honoured if switched on. If the
code ends with a RET instruction (C9), execution will cleanly exit back to the
monitor.

12

One thing to note is that while data is being entered, the decimal place
LED on the data segments will change from displaying two lights to one.
The one light will indicate which Nibble has been entered. This will assist
in knowing if the whole byte has been entered or not.

If a mistake is made during data entry and the byte is to be re-entered. To
stop the address from automatically incrementing, press the AD key twice.
This will reset the Nibble counter and allow a new byte to be entered.

If any key is held down, after a short period, the key will automatically
repeat. This is mostly useful while holding down the Plus or Minus key to
quickly move to a new address. But can also be used to populate memory
with 00 or FF or anything else.

LCD Screen
In Data Entry Mode the LCD Screen will display 15 bytes of data. 5 bytes
before the current editing location and 10 bytes after the current editing
location. These bytes are displayed in groups of 5 (3 lines). A right arrow
indicates the byte at the current editing location.

On the 4th line of the LCD, the Z80 Assembly of the current OP Code is
shown. This can be useful to see what instruction is currently being keyed.

By displaying a range of bytes on the LCD, the user can check if the correct
bytes have been entered without individually moving to each address.

13

Function Keys
Various extra options can be selected via the Function Key. To use these
functions, hold the Fn key down and press one of the 0-F keys.

The routines attached to the Function Key are:
● Fn-0 - Display the Main Menu

● Fn-1 - Intel Hex Load. This is a shortcut to the Main Menu routine.

● Fn-B - Block Backup. This is a shortcut to the Main Menu routine.

● Fn-C - Smart Block Copy. This is a shortcut to the Main Menu routine.

● Fn-D - Switch between Data Entry View and Disassembly View.
Disassembly View displays the next 4 Assembly instructions. To
move through the instructions press the Plus or Minus keys. Data
entry can still be done in this mode if desired.

● Fn-E - Toggle the Expansion Socket Expand flag. This will switch
between the upper and lower memory of the 32Kb ROM/RAM in the
expansion socket.

● Fn-Plus - Insert an NOP instruction at the current editing location
ANDmove all bytes up to max RAM by one address upwards. It will
also do a Smart Block Copy to all moved bytes. This routine can add
a Breakpoint (F7) or missing opcodes to an existing program.

● Fn-Minus - Delete a byte from the current editing location AND
move all bytes down by one address. It will also do a Smart Block
Copy to all moved bytes.

14

Matrix Keyboard
Mon3 will work with the TEC Matrix Keyboard Add-on. The Keyboard is
connected to the Keyboard Socket on the lower left of the PCB. How your
Keyboard PCB is designed might affect which pins can be connected.
Please view the TEC-1G Schematic for information on pin configuration.

To activate the Keyboard, The Matrix switch on the 3-DIP switch is to be
turned on. This activates the Matrix Keyboard and disables the onboard
Hex Keypad (except Reset). Mon3 only maps keys present on the TEC-1G to
the Matrix Keyboard.

The Keyboard map to Hex Keypad is as follows:

● AD - Esc or Up Arrow
● Plus - Right Arrow
● 0-F, Fn - 0-F, Fn keys

● GO - Enter or Down Arrow
● Minus - Left Arrow
● Reset - Reset key if connected

The full range of keys can be accessed when developing programs via the
matrixScan API routine.

15

Debugging Programs
Breakpoints can be inserted within a program which can help with viewing
the state of the CPU registers. To break the execution of your code, insert a
RST 30H or F7 at the current address where the break should occur.

An easy way to insert a byte into an existing program is to press Fn-Plus.
This will insert a NOP instruction at the current address. Then change this
byte to F7.

When the execution of code is interrupted with a breakpoint, the TEC will
pause and display register information on the LCD screen.

The contents of the Z80 CPU registers AF, HL, BC, DE, IX, IY, the Program
Counter and Stack Pointer are displayed. CPU Flags are also displayed.
Flags that are set are in Capitals. To continue code execution press the GO
key and to quit execution and return to the Monitor press the AD key.
Finally, to remove an inserted Breakpoint press Fn-Minus at the address
where the Breakpoint is. This will remove the breakpoint and adjust the
code to its original state.

16

TEC Magazine Code on the TEC-1G
A great way to learn how to use the TEC-1G is to key in programs presented
in the TE Magazines Issues 10 to 15. If the programs are keyed in directly,
they probably won’t work! This is because they usually start at address
0800H or 0900H. These addresses are reserved for Mon3. To get the code
working, simply update all 2-byte address references to match the address
location of the code on the 1G.

Keypad interactions are a bit more complicated. The old monitors use the
register I and the NMI (Non-Maskable Interrupt) to trigger and save a
keypad press. Mon3 uses ‘Polling’ instead and RST/API calls to do keypad
reading. See the next chapter for more information on RST and API calls.

Below is a conversion table to help convert older code to work on Mon3
when a keypad press is required.

Old
Command

Mon3
Replacement

Reason

HALT RST 08H RST 08H simulates a HALT command and sets
register Awith the key value pressed.

LD A,I LD C,10H
RST 10H

A LD A,I by itself is ‘polling’ for a key press. Call the
scanKey API routine which sets register Awith the
key value pressed.
If LD A,I is immediately after a HALT instruction,
then just use RST 08H as described above.

Here is an example of magazine code at 0800Hwith key input converted to
use Mon3 at RAM address 4000H. The code in RED has been modified.

LD A,80H 4000 3E 80
OUT (2),A 4002 D3 02
LD B,03H 4004 06 03
LD A,B 4006 78
OUT (1),A 4007 D3 01
RST 08H 4009 CF
CP 10H 400A FE 10
JP NZ,4014H 400C C2 14 40
RLC B 400F CB 00
JP 4006H 4011 C3 06 40
CP 0CH 4014 FE 0C
JP NZ,4009H 4016 C2 09 40
RRC B 4019 CB 08
JP 4006H 401B C3 06 40

17

Advanced Programming
To assist when developing Z80 programs, Mon3 contains inbuilt
functionality that makes it easy to interface with the TEC-1G hardware.

RST (Restart) commands
RST commands on the Z80 are one-byte call commands that execute code
at certain address locations defined by the Z80. The following table
outlines the routines.

Command Op Code Description

RST 00H C7 Software monitor reset.

RST 08H CF Key wait and press routine. This simulates a
HALT command where the TEC will wait for a
key to be pressed and continue execution. If a
key is currently being held down, the routine
will wait first until the key is released and then
detect the next key. The key that has been
pressed will be stored in register A.

RST 08H ; Wait for keypress
LD B,A ; Load key to register B

RST 10H D7 API entry call. Executes a monitor routine. See
the API calls section below for more details.

RST 18H DF API 2 entry call. Graphical LCD routine entry.
See the GLCD section below for more details.

RST 20H E7 Scan Seven Segments and Key. Multiplex the
seven-segment displays and check for a key
press. It can be used to display information on
the seven segments and check for a key to be
pressed. It must be called in a loop until a key is
pressed. Returns Zero flag set when a key is
pressed and Register A with the key value.
Register DE points to the seven-segment data.
See the first program in the Quick Start
Programs chapter for an example.

18

RST 28H EF LCD Busy Check. To be called prior to sending a
command to the LCD if directly communicating
with the LCD. The routine will only exit when
the LCD Busy flag is not set.

RST 28H ; Check LCD busy flag
LD A,01H ; Load A with clear screen
OUT (04),A ; Send instruction to LCD

RST 30H F7 Breakpoint entry. Break execution of the code
at the current address location. See the
Debugging Programs chapter for more details.

RST 38H FF Maskable interrupt handler. Jumps here with
Interrupts Enabled (EI), Interrupt Mode 1 (IM 1)
and when the INT pin on the CPU goes low.
Mon3 will do nothing when this happens.
However, a user-defined routine can be used.
See the Interrupt section below on how to do
this.

Interrupts
The Z80 CPU has the ability to interrupt the execution of code, handle the
interrupt and then resume code execution. This is done in software with
Interrupts Enabled (EI) and Interrupt Mode 1 (IM 1) and by hardware when
the INT line on the CPU goes low. Mon3 ignores interrupts, but a
user-defined routine can be provided to handle the interrupt. To do this,
the address of the interrupt routine is to be placed at RAM address 0892H.

ei ; Enable interrupts
im 1 ; Interrupt mode 1
ld hl,myINT ; Interrupt routine
ld (0892H),hl ; Save address in 0892H
… continue

myINT:
ld c,03H ; Bell routine
rst 10H ; Call API
reti ; Exit Int routine

This code will sound a bell tone in the speaker when an interrupt occurs.

19

NMI (Non-Maskable Interrupts)
Non-Maskable Interrupts occur when the NMI line on the CPU goes low.
These interrupts will always trigger. Mon3 ignores the NMI line, but a
user-defined routine can be provided to handle the interrupt. To do this,
the address of the interrupt routine is to be placed at RAM address 0894H.

ld hl,myNMI ; NMI routine
ld (0894H),hl ; Save address in 0894H
… continue

myNMI:
ld c,03H ; Bell routine
rst 10H ; Call API
retn ; Exit NMI routine

This code will sound a bell tone in the speaker when an NMI occurs. The
TEC-1G has an NMI jumper that can set NMI to trigger on a Keypad press, a
HALT instruction or externally (no jumper).

Credit: Ken Stone

20

API (Application Programming Interface) commands.
The API on Mon3 exposes routines used by Mon3 which can be used in
your own programs. No need to rewrite the world! But more importantly,
it makes writing code quicker and easier with most of the complicated
stuff removed.

General conventions
The register C holds the API Call number. All other registers except the IX
register can be used as parameters if needed. Executing a RST 10H or D7
calls the API.

General Interface

ld c,[API Call Number]
rst 10H

Some Examples

;Produce a short Beep from the speaker
0E 03 ld c,3 ;beep call number
D7 rst 10H

;Display the letter 'G' on the LCD Screen
0E 0E ld c,14 ;charToLCD call number
3E 47 ld a,"G" ;parameter
D7 rst 10H

;Wait for a period of time
0E 21 ld c,33 ;timeDelay call number
21 00 30 ld hl,3000H ;parameter
D7 rst 10H

21

API Calls list

Routine # 0x Routine # 0x

softwareID 0 0 sendToSerial 25 19

versionID 1 01 receiveFromSerial 25 1A

preInit 2 02 sendAssembly 26 1B

beep 3 03 sendHex 27 1C

convAToSeg 4 04 genDataDump 28 1D

regAToASCII 5 05 checkStartEnd 30 1E

ASCIIToSegment 6 06 menuDriver 31 1F

stringCompare 7 07 paramDriver 32 20

HLToString 8 08 timeDelay 33 21

AToString 9 09 playNote 34 22

scanSegments 10 0A playTune 35 23

displayError 11 0B playTuneMenu 36 24

LCDBusy 12 0C getCaps 37 25

stringToLCD 13 0D getShadow 38 26

charToLCD 14 0E getProtect 39 27

commandToLCD 15 0F getExpand 40 28

scanKeys 16 10 setCaps 41 29

scanKeysWait 17 11 setShadow 42 2A

matrixScan 18 12 setProtect 43 2B

joystickScan 19 13 setExpand 44 2C

serialEnable 20 14 toggleCaps 45 2D

serialDisable 21 15 toggleShadow 46 2E

txByte 22 16 toggleProtect 47 2F

rxByte 23 17 toggleExpand 48 30

intelHexLoad 24 18 random 49 31

22

API Utility Calls
softwareID
Get Software ID String

● Input: nothing
● Return: HL = Pointer to SOFTWARE ASCII String
● Destroy: none

versionID
Get Version Number and Version String

● Input: nothing
● Return: HL = Pointer to Release ASCII String

BC = Release major version number
DE = Release minor version number

● Destroys: none

preInit
Performs a hard boot as if the TEC-1G had just been powered on. Returns
to MON3 to its default state.

beep
Makes a short beep tone to the TEC Speaker

● Input: nothing
● Destroys: A

convAToSeg
Convert register A to Seven Segment display format

● Inputs: A = byte to convert
DE = address to store segment values (2 bytes)

● Destroys: BC

regAToASCII
Convert register A to ASCII. IE: 2CH -> "2C"

● Input: A = byte to convert
● Output: HL = two-byte ASCII string
● Destroys: A

23

ASCIItoSegment
ASCII to Segment. Converts an ASCII character to Seven Segment display
format

● Input: A = ASCII character
● Return: A = Segment character or 0 if out of range
● Destroys: none

stringCompare
Compare two string

● Input: HL = source pointer
DE = target pointer
B = #bytes to compare (up to 256)

● Output: Zero Flag Set = compare match
● Destroys: HL, DE, A, BC

HLToString
Convert HL to ASCII string. IE: 2CH -> "2C"

● Input: HL = value to convert
DE = address of string destination

● Output: DE = address one after last ASCII entry
● Destroys: A

AToString
Convert register A to ASCII string

● Input: A = byte to convert
DE = address of string destination

● Output: DE = address one after last ASCII entry
● Destroys: A

scanSegements
Multiplex the Seven Segment displays with the contents of DE. Must be
called repetitively for segments to stay persistent.

● Inputs: DE = pointer to 6-byte location of segment data
● Destroys: A, B

displayError
Display ERROR on the Seven Segments and wait for keypress

● Input: none
● Destroys: all

24

API LCD Calls
LCDBusy
LCD busy check. Checks the LCD busy flag and loops until LCD isn't busy

● Input: nothing
● Destorys: none

stringToLCD
ASCII string to LCD. Writes a string (text) to the current cursor location on
the LCD

● Input: HL = ASCII string terminated with a zero byte
● Destroy: A, HL (moves to end of the list)

TEXT: .db “HELLO TEC!”,0

ld hl,TEXT
ld c,13
rst 10h

charToLCD
ASCII character to LCD. Writes one character to the LCD at the current
cursor location

● Input: A = ASCII character
● Destroy: none

ld a,”G”
ld c,14
rst 10h

commandToLCD
Command to LCD. Sends an LCD instruction to the LCD

● Input: B = Instruction byte
● Destroy: none

ld b,01 ;clear LCD
ld c,15
rst 10h

25

API Input Calls
scanKeys
Universal Key input detection routine. Supports HexPad and Matrix. The
routine does not wait for a key press the returns immediately. Only
Hexpad keys are detected if using the Matrix Keyboard.

● Return: A = key value (if the following is met)
zero flag set if a key is pressed
carry flag set if press detected of a new key
carry flag not set for a key pressed and held

● Destroys: DE if using Matrix Keyboard

scanKeysWait
Generic Key input detection routine. Supports HexPad and Matrix. Waits
until a key is pressed. The routine will only detect a key if all keys are
released first. Only Hexpad keys are detected if using the Matrix Keyboard.

● Return: A = key value (if following are met)
● zero flag set if a key is pressed
● Destroys: DE if using Matrix Keyboard

matrixScan
Key scan routine for the Matrix Keyboard. This routine detects up to two
key presses at the same time. Key values stored in DE. The routine must
be called repetitively.

● Input: None
● Output: E = Key pressed between 00H-3FH (0-64)

D = Second key, FF=no key,00=shift,01=Ctrl,02=Fn
zero flag set if a key is pressed or combination valid

Key mapping returned in register E (note: some gaps are present)

Shift = 00
Ctrl = 01
Fn = 02
Up = 03
Down = 04
Left = 05
Right = 06
Caps = 07
Del = 08
Tab = 09
Enter = 0A

Esc = 0C
Space = 0D
Single Qt = 0E
Comma = 0F
Minus = 10
F.Stop = 11
/ = 12
0 = 13
1 = 14
2 = 15
3 = 16

4 = 17
5 = 18
6 = 19
7 = 1A
8 = 1B
9 = 1C
; = 1E
= = 20
A = 24
B = 25
C = 26

D = 27
E = 28
F = 29
G = 2A
H = 2B
I = 2C
J = 2D
K = 2E
L = 2F
M = 30
N = 31

O = 32
P = 33
Q = 34
R = 35
S = 36
T = 37
U = 38
V = 39
W = 3A
X = 3B
Y = 3C

Z = 3D
\ = 3F

26

joystickScan
Joystick port scan routines. This routine will return a value based on the
movement/button of the joystick or any combination: IE: UP+DOWN = 03H,
Routine must be called repetitively.

● Input: None
● Output: A = Joystick return value between 00H-5FH (0-95)

01H = Up 10H = Fire 2
02H = Down 20H = Comm2 (Pin 9)
04H = Left 40H = Fire 1
08H = Right 80H = Fire 3

zero flag set if no joystick value returned
● Destroy: none

API Serial Data Transfer Calls
serialEnable
Activates the BitBang serial port for serial transmit. Disco LED's glow blue
to indicate ready status.

● Input: none
● Destroy: A

serialDisable
Deactivates the BitBang serial port for serial transmit. Disco LEDs turn off.

● Input: none
● Destroy: A

txByte
Bit Bang FTDI USB transmit routine. Send one byte via the FTDI USB serial
connection. It assumes a UART connection of 4800-8-N-2.

● Input: A = byte to transmit
● Output: nothing
● Destroy: none

27

rxByte
Bit Bang FTDI USB receive routine. Receive one byte via the FTDI USB
serial connection. It assumes a UART connection of 4800-8-N-2. Note
routine will wait until a bit is detected.

● Input: nothing
● Return: A = byte received
● Destroy: none

intelHexLoad
Load an Intel Hex file via the FTDI USB serial connection. Displays file
progress on the segments and PASS or FAIL at the end of the load. Intel
Hex file format is a string of ASCII with the following parts:

MARK | LENGTH | ADDRESS | RECORD TYPE | DATA | CHECKSUM
:10200000210621CD7D20CD98203A00213C320021AF <- EXAMPLE LINE

MARK is a colon character, LENGTH is the number of bytes per line,
ADDRESS is the 2-byte address of where the data is to be stored. RECORD
TYPE is 00 for Data and 01 for EOF. DATA is the bytes to be stored.
CHECKSUM is the addition of all bytes in one line.

● Input: nothing
● Output: nothing
● Destroy: HL,DE,BC,A

sendToSerial
SIO Binary Dump. Transfer data on the TEC to a serial terminal. From and
To address data is needed and input.

● Input: 2 byte from address = Stored in RAM at address
08C0H

● 2 byte to address = Stored in RAM at address 08C2H
● Destroys: A,HL,DE,BC

receiveFromSerial
SIO receive binary data. Receive binary data from FTDI. From and To
address data is needed and input.

● Input: 2 byte from address = Stored in RAM at address
08C0H

● 2 byte to address = Stored in RAM at address 08C2H
● Destroys: A,HL,DE,BC

28

sendAssembly
Send Assembly instructions to the serial port. Print out the disassembled
code that is on the TEC in readable assembly language on the serial
terminal. From and To address data is needed and input.

● Input: 2 byte from address = Stored in RAM at address
08C0H

2 byte to address = Stored in RAM at address 08C2H
● Destroys: A,HL,DE,BC

sendHex
Send a traditional HEX dump as text to the serial terminal. Upto 16 bytes
are displayed per line. From and To address data is needed and input.

● Input: 2 byte from address = Stored in RAM at address
08C0H

2 byte to address = Stored in RAM at address 08C2H
● Destroys: A,HL,DE,BC

genDataDump
Generate data dump in ASCII. Print the Address and then B number of
bytes. This routine is a subroutine in the _sendHex routine.

● Input: B = number of bytes to display
● HL = start address of data dump
● DE = address of string destination
● Output: DE = zero terminated address one after last ASCII

entry
IE: "4000: 23 34 45 56 78 9A BC DE",0

● Destroys: A, HL (moves to next address after last byte)

API Menu & Parameter Calls
checkStartEnd
Check start and end address difference.

● Input: HL = address location of START value
HL+2 = address location of END value

● Output: HL = start address
BC = length of end-start
Carry = set if end is less than start

● Destroys: DE

29

menuDriver
Menu driver for user programs. Creates a selectable custommenu. Keys:
Go = Select menu item, AD = Exit Menu, Plus/Minus = Navigate menu

● Input: HL = Pointer to Menu configuration.
● Destroys: A, HL

Menu configuration is as follows. All strings are ZERO terminated!
<Menu Entries>, <Menu Text Title>, [<Menu Text Label>,
<Menu Routine Address>]+

EG: .db 2 ; Two menu items
.db "Games",0 ; Menu title
.db "TEC Invaders",0 ; Text and Routine
.dw invaders
.db "TEC Maze",0 ; Text and routine
.dw maze

paramDriver
Parameter data entry driver. Creates a list of editable two-byte parameters.
Keys: Go = Continue, AD = Exit, Plus/Minus = Navigate, 0-F = enter values

● Input: HL = Pointer to Parameter configuration.

Parameter text can be no longer than 14 characters. All strings are ZERO
terminated! Parameters entered will be stored in the Param RAM Address
locations. Parameter configuration is as follows.

<No. of Entries>, <Parameter Title Text>, [<Param Text
Label>, <Param RAM Address>]+

EG: .db 3 ; Three parameters
.db "= Enter Parameters =",0 ; Parameter title
.db "Start Address:",0 ; Text and Address
.dw COPY_START
.db "End Address:",0 ; Text and Address
.dw COPY_END
.db "Dest. Address:",0 ; Text and Address
.dw COPY_DEST

30

timeDelay
A 16-bit delay routine. An input delay of 2000H is approximately 50ms.

● Input: HL = delay amount
● Destroys: none

API Sound Calls
playNote
Play a note. Play a note with a given frequency and wavelength

● Input: HL = frequency (01-7F)
B = wavelength (00-FF)

● Destroys: HL, BC, A

playTune
Play a series of notes. To play a note use a reference between 01H and 18H.
Where 01H is the lowest and 18H is the highest. Use 00H for a pause and
any value greater than 18H to exit.

Note reference table is as follows:

G 01H C# 07H G 0DH C# 13H

G# 02H D 08H G# 0EH D 14H

A 03H D# 09H A 0FH D# 15H

A# 04H E 0AH A# 10H E 16H

B 05H F 0BH B 11H F 17H

C 06H F# 0CH C 12H F# 18H

● Input: DE = Address of first note
● Destroy: A,B,DE,HL

playTuneMenu
Play a series of notes with the _playTune routine, but address of first note is
selected via a parameter menu.

● Input: none
● Destroy: A,B,DE,HL

31

API System Latch Calls
getCaps
Get Caps lock state

● Input: none
● Output: A = caps lock state; 0 = off, CAPSLOCK = on

getShadow
Get SHADOW state

● Input: none
● Output: A = shadow state; 0 = off, SHADOW = on

getProtect
Get PROTECT state

● Input: none
● Output: A = protect state; 0 = off

getExpand
Get EXPAND state

● Input: none
● Output: A = expand state; 0 = off

setCaps
Set Caps lock state

● Input: A = Desired caps lock state; 0 = off, 1 = on
● Destroy: A

setShadow
Set Shadow state

● Input: A = Desired shadow state; 0 = off, 1 = on
● Destroy: A

setProtect
Set Protect state

● Input: A = Desired protect state; 0 = off, 1 = on
● Destroy: A

setExpand
Set Expand state

● Input: A = Desired expand state; 0 = off, 1 = on
● Destroy: A

32

toggleCaps
Toggle Caps Lock state

● Input: none
● Destroy: A

toggleShadow
Toggle Shadow state

● Input: none
● Destroy: A

toggleProtect
Toggle Protect state

● Input: none
● Destroy: A

toggleExpand
Toggle Expand state

● Input: none
● Destroy: A

random
Random number generator. Return a random number between 00H-FFH

● Input: none
● Outupt: A = pseudo random number
● Destroy: B

33

Graphical LCD Add-On Interface
Mon3 includes a Graphical LCD (GLCD) library that will work with the
TEC-DECK Graphical LCD PCB Add-On. If the Graphical LCD is installed on
the TEC-1G via the TEC-DECK headers, special GLCD API calls can be used
to interface with the GLCD. The library is for GLCDs with the ST7920 chip.

The GLCD library contains a variety of routines that can produce simple
shapes and lines, these include text, lines, rectangles, circles and pixels.

34

General Conventions
The register A holds the API Call number. All other registers except the IX
register can be used as parameters if needed. Executing a RST 18H or DF
calls the GLCD API.

General Interface

ld a,[API Call Number]
rst 18H

The following code will draw a box and write text to the GLCD

; Initialise and set to Graphics Mode
3E 00 ld a,0 ; Initialise GLCD
DF rst 18H
3E 04 ld a,4 ; Graphics Mode
DF rst 18H

; Draw Box - Box Outline Example
01 20 00 ld bc,0020H ; X0, Y0
11 3F 7F ld de,7F3FH ; X1, Y1
3E 06 ld a,6 ; Draw a outline box from X0,Y0 to X1,Y1
DF rst 18H

; Plot Graphics to LCD Screen (must do)
3E 0C ld a,12 ; Plot To LCD
DF rst 18H

;Write Text to the Screen
3E 05 ld a,5 ; Text Mode
DF rst 18H
0E 01 ld c,01H ; Row 1
3E 0D ld a,13 ; Print String
DF rst 18H
54 45 43 2D 31 47 00 .db "TEC-1G",0

initLCDmust be called at the start of every program. The GLCD has two
modes, Text and Graphics. Both Text and Graphics can be displayed at the
same time. These modes must be selected prior to the drawing or text
routine. Also, plotToLCDmust be called to display any graphics drawn to
the screen. The above example displays these to principals.

35

GLCD API Calls list

Routine # 0x Routine # 0x

initLCD 0 0 fillCircle 11 0B

clearGBUF 1 01 plotToLCD 12 0C

clearGrLCD 2 02 printString 13 0D

clearTxtLCD 3 03 printChars 14 0E

setGrMode 4 04 delayUS 15 0F

setTxtMode 5 05 delayMS 16 10

drawBox 6 06 setBufClear 17 11

drawLine 7 07 setBufNoClear 18 12

drawCircle 8 08 clearPixel 19 13

drawPixel 9 09 flipPixel 20 14

fillBox 10 0A

GLCD API Configure Calls
initLCD
Initalise the LCD Screen. This routine is to be called before any other
routine.

● Input: nothing
● Destroy: All

clearGBUF
Clear the Graphics Buffer. The Graphics Buffer or GBUF is the internal
memory area that contains pixel data for the LCD. The drawing routines
write data to the GBUF. Once all pixels are set, this buffer is then plotted to
the LCD with the plotToLCD Routine. Clearing the GBUF is a good way to
ensure the pixel area is empty.

● Input: nothing
● Destroy: All

36

clearGrLCD
Clear the Graphics LCD Screen. This routine clears the GDRAM or Graphics
screen on the LCD.

● Input: nothing
● Destroy: All

clearTxtLCD
Clear the Text LCD Screen. This routine clears the DDRAM or Text screen
on the LCD.

● Input: nothing
● Destroy: All

setGrMode
Set the LCD to Graphics Mode. This routine puts the LCD in Graphics mode
(Extended Instructions) and any further instructions to the LCD will be for
the graphics screen. It only needs to be called once if multiple graphics
routines are used.

● Input: nothing
● Destroy: AF,DE

setTxtMode
Set the LCD to Text Mode. This routine puts the LCD in Text mode (Basic
Instructions) and any further instructions to the LCD will be for the text
screen. It only needs to be called once if multiple text routines are used.

● Input: nothing
● Destroy: AF,DE

37

GLCD API Graphics Calls
drawBox
Draws a single-line rectangle between two points X1, Y1 and X2, Y2.

● Input: B = X1-coordinate (0-127)
C = Y1-coordinate (0-63)
D = X2-coordinate (0-127)
E = Y2-coordinate (0-63)

● Destroy: AF,HL

ld bc,0020H ;X0, Y0
ld de,7F3FH ;X1, Y1
ld a,6 ;drawBox
rst 18H

drawLine
Draws a straight line between X1, Y1 and X2, Y2. Uses the Bresenham Line
drawing algorithm. http://members.chello.at/~easyfilter/bresenham.html

● Input: B = X1-coordinate (0-127)
C = Y1-coordinate (0-63)
D = X2-coordinate (0-127)
E = Y2-coordinate (0-63)

● Destroy: All

ld bc,0010H ;X0, Y0
ld de,7F30H ;X1, Y1
ld a,7 ;drawLine
rst 18H

drawCircle
Draws a circle from amidpoint to a radius.

● Input: B = Mid-X-coordinate (0-127)
C = Mid-Y-coordinate (0-63)
E = Radius (1-63)

● Destroy: All

ld bc,0818H ;Mid X, Mid Y
ld e,08H ;Radius
ld a,8 ;drawCircle
rst 18H

38

http://members.chello.at/~easyfilter/bresenham.html

drawPixel
Draws a single Pixel.

● Input: B = X-coordinate (0-127)
C = Y-coordinate (0-63)

● Destroy: AF,HL

ld bc,4020H ;X,Y
ld a,9 ;drawPixel
rst 18H

fillBox
Draws a filled rectangle between X1, Y1 and X2, Y2.

● Input: B = X1-coordinate (0-127)
C = Y1-coordinate (0-63)
D = X2-coordinate (0-127)
E = Y2-coordinate (0-63)

● Destroy: AF,HL

ld bc,0020H ;X0, Y0
ld de,7F3FH ;X1, Y1
ld a,10 ;fillBox
rst 18H

fillCircle
Draws a filled circle from amidpoint to a radius. This routine iteratively
calls the drawCircle routine increasing the radius until it equals the
register E. There might be gaps in the filled circle, but hey it looks just like
what you get on a BASIC program.

● Input: B = Mid-X-coordinate (0-127)
C = Mid-Y-coordinate (0-63)
E = Radius (1-63)

● Destroy: All

ld bc,1018H ;Mid X, Mid Y
ld e,08H ;Radius
ld a,11 ;fillCircle
rst 18H

39

plotToLCD
This routine draws the Graphics Buffer or GBUF to the Graphics LDC
screen. It is usually called after one of the drawing routines is called. This
routine must be called for any graphics to appear on the GLCD

● Input: nothing
● Destroy: All

GLCD API Text Calls
printString
Prints ASCII text on a given row. There are 4 text rows on the LCD screen.
The text is to be defined directly after the RST 18H routine and is to be
terminated with a zero.

● Input: C = row number (0-3)
Text = "String" on the next line, terminate with 0

● Destory: All

ld c,02H ;Row 2
ld a,13 ;printString
rst 18H
.db 02H, " This Text ", 1BH ,00H

There are 128 characters that are available from 00H-7FH. Conveniently,
Alphanumeric characters align with the ASCII table.

40

printChars
Print Characters on the screen in a given row and column. This routine is
similar to the one above but character row and column placement can be
made. Characters to be printed are to be terminated with a zero.

Even though there are 16 columns, only every second column can be
written to and two characters are to be printed. IE: if one character is to be
printed in column 2, then set B=0 and print " x", putting a space before
the character.

● Input: B = column (0-7)
C = row (0-3)
HL = start address of text data

● Destroy: All. (HL will be at the end of the text data)

ld hl,TEXT_DATA
ld bc,0102H ;Column 1, Row 2
ld a,14 ;printChars
rst 18H
...
TEXT_DATA:
.db "Hello!",0

GLCD API Utility Calls
delayUS
Delay loop for LCD to complete its instruction. Every time a command is
sent to the LDC, it requires a small amount of time to complete that
operation. IE: setting extended instruction mode. The time needed for
most operations is defined in the LDC specification. It is usually around
72us. This routine is used internally, but can also be used directly. The
delay time depends on how fast the CPU is running.

● Input: nothing
● Destroy: AF,DE

ld a,02H ;Home instruction
out (07),a ;send instruction to GLCD
ld a,15 ;delayUS
rst 18H

41

delayMS
This is the same as the above routine, but the delay can be software
controlled.

● Input: DE = delay value
● Destroy: AF,DE

ld a,01H ;Clear instruction
out (07),a ;send instruction to GLCD
ld de,0050H ;longer delay
ld a,16 ;delayMS
rst 18H

setBufClear
On every _plotToLCD call, clear the graphics buffer GBUF. Calling this
routine will clear the graphics buffer on every draw to LCD. This is useful if
doing animation that requires a new drawing to be displayed on every plot
or frame.

● Input: none
● Destroy: AF

setBufNoClear
Do not clear the graphics buffer on every plotToLCD. Calling this routine
will not clear the graphics buffer on every draw to LCD. This is useful for
adding graphics data to an existing drawing.

● Input: none
● Destroy: AF

clearPixel
Removes or clears a single Pixel from the LCD.

● Input: B = X-coordinate (0-127)
C = Y-coordinate (0-63)

● Destroy: AF,HL

ld bc,4020H ;X,Y
ld a,19 ;clearPixel
rst 18H

42

flipPixel
Inverts a single Pixel. If the Pixel is on, it will turn off and if the Pixel is off, it
will turn on.

● Input: B = X-coordinate (0-127)
C = Y-coordinate (0-63)

● Destroy: AF,HL

ld bc,4020H ;X,Y
ld a,20 ;flipPixel
rst 18H

GLCD Examples
Provided in the TEC-1G GitHub repository are three GLCD programs. The
programs have already been converted to Intel Hex files and are ready to
load onto the TEC. All programs start at address 2000H. Source code for all
programs are provided and can be changed and studied.

The TEC-1G GitHub account is here: https://github.com/tec1group/TEC-1G
and the GLCD examples are in the TEC-Deck/Graphical_LCD directory.

lcd_3d_demo
Draw 3D wireframe graphics and rotate them. This program requires
keypad input to rotate the objects. Buttons 4,8 and C rotate the object in
the 3-axis. Plus and Minus will zoom the object in and out. 0 will return to
the main menu. Pressing GO will exit the program

lcd_mad_program
Draw the face of Alfred E. Neuman. This program draws lines between two
points and creates the face of the Mad Magazine mascot. It generates
similar to how it would using the BASIC language. But if the program is
run at 2022H it will generate instantly. https://meatfighter.com/mad/

lcd_maze_gen
Create a maze. This program generates a maze using a recursive
backtracking algorithm. Watch the maze slowly generate before your eyes.

Some easy-to-type examples have also been provided in the Quick Start
Programs chapter below.

43

https://github.com/tec1group/TEC-1G
https://meatfighter.com/mad/

Quick Start Programs
Who wants the TEC-1G to say Hello? Here are three different ways the TEC
can do this. Only a summary of the programs has been provided, making
the examples a good exercise for learning how they work. The programs
utilise Mon3 API routines as discussed in the Advanced Programming
chapter.

This routine is the shortest. It will
display the data at 4009 using RST
20 to multiplex and key scan. If the
AD key is pressed the routine will
exit. Data at 4009 is hardcoded to
display HELLO on the seven
segments

This routine will convert the ASCII
“HELLO!” to seven segment code
using the ASCIItoSegment routine.
Then it will use RST 20 to multiplex
and key scan. Change the ASCII at
401A to display something
different.

4000 11 09 40 LD DE,4009
4003 E7 RST 20
4004 FE 13 CP 13
4006 20 F8 JR NZ,4000
4008 C9 RET
4009 6E C7 C2 .db 6E C7 C2
400B C2 EB 18 .db C2 EB 18

4000 21 1A 40 LD HL,401A
4003 11 20 20 LD DE,2020
4006 06 06 LD B,06
4008 0E 06 LD C,06
400A 7E LD A,(HL)
400B D7 RST 10
400C 12 LD (DE),A
400D 23 INC HL

This routine will display HELLO on
the LCD Screen. It firstly clears the
LCD by calling commandToLCD and
then calling stringToLCD to display
a zero-terminated ASCII string.
Press the AD key to exit.

400E 13 INC DE
400F 10 F9 DJNZ 400A
4011 11 20 20 LD DE,2020
4014 E7 RST 20
4015 FE 13 CP 13
4017 20 F8 JR NZ,4011

4000 06 01 LD B,01
4002 0E 0F LD C,0F
4004 D7 RST 10
4005 21 11 40 LD HL,4011
4008 0E 0D LD C,0D
400A D7 RST 10
400B CF RST 08
400C FE 13 CP 13
400E 20 FB JR NZ,400B
4010 C9 RET
4011 48 45 4C .db “HEL”
4014 4C 4F 21 00 .db “LO!”,0

4019 C9 RET
401A 48 45 4C .db “HEL”
401D 4C 4F 21 .db “LO!”

44

Two GLCD demos are provided to demonstrate how to use the GLCD API
calls. The first example is a circle animation that uses graphics mode and
the second displays all known fonts on the GLCD which uses text mode.

Making Bubbles
This program first sets up the LCD to use Graphics and ensures that on
every plotToLCD the internal graphics buffer is cleared. This makes the
circle animate. Then a circle is expanded until it reaches the end of the
screen. A beep is played and the code is repeated.

INITLCD .EQU 0
SETGRMODE .EQU 4
DRAWCIRCLE .EQU 8
PLOTTOLCD .EQU 12
SETBUFCLEAR .EQU 17
BEEP .EQU 3
TIMEDELAY .EQU 33

4000 3E 00 LD A,INITLCD ;Initialise the GLCD
4002 DF RST 18H
4003 3E 04 LD A,SETGRMODE ;Set Grahpics Mode
4005 DF RST 18H
4006 3E 11 LD A,SETBUFCLEAR ;Set Gr Buffer to Clear
4008 DF RST 18H
4009 0E 03 LD C,BEEP ;Play a Beep
400B D7 RST 10H
400C 1E 01 LD E,1 ;Set initial radius to 1
400E 01 20 40 LD BC,4020H ;Set X,Y to mid screen
4011 C5 PUSH BC ;Save BC/DE
4012 D5 PUSH DE
4013 3E 08 LD A,DRAWCIRCLE ;Draw Circle
4015 DF RST 18H
4016 3E 0C LD A,PLOTTOLCD ;Output to LCD
4018 DF RST 18H
4019 0E 21 LD C,TIMEDELAY ;Wait a bit
401B 21 00 40 LD HL,4000H
401E D7 RST 10H
401F D1 POP DE ;Restore BC/DE
4020 C1 POP BC
4021 1C INC E ;Increase radius by 1
4022 CB 6B BIT 5,E ;Check if bubble hits edge
4024 20 E3 JR NZ,4009 ;Yes, reset radius
4026 18 E9 JR 4011 ;No, redraw circle

45

GLCD Font Display
This program cycles through all stored fonts on the GLCD. Characters on the GLCD are
stored in the Character Generator ROM (CGROM). The program sets up the LCD for text
mode and displays characters on the screen. Press any key to continue. The code also
uses the GLCD ports directly, skipping the API. This is perfectly fine to do. See the ST7920
manual on how to send instructions directly to the GLCD.

INITLCD .EQU 0
SETTXTMODE .EQU 5
PRINTSTRING .EQU 13
DELAYUS .EQU 15

4000 3E 00 LD A,INITLCD ;Initialise the GLCD
4002 DF RST 18H
4003 3E 05 LD A,SETTXTMODE ;Set Text Mode
4005 DF RST 18H
4006 3E 0D LD A,SETTXTMODE ;Set Text Mode
4008 DF RST 18H
4009 20 50 72 65 .DB " Press Any Key",0
400D 73 73 20 41
4011 6E 79 20 4B
4015 65 79 00
4018 0E 00 LD C,0 ;Character Counter
401A CF RST 08H ;Wait for key press
401B 06 40 LD B,40H ;64 Characters per screen
401D 3E 80 LD A,80H ;row 1 on LCD
401F CD 47 40 CALL 4047 ;Set Row on LCD
4022 79 LD A,C ;Get Character
4023 CD 4B 40 CALL 404B ;Display Character on LCD
4026 0C INC C ;Next Character
4027 CB 79 BIT 7,C ;Is C=80H
4029 20 04 JR NZ,402F ;Yes, display chinese chars
402B 10 F5 DJNZ 4022 ;No, display next character
402D 18 EB JR 401A ;Page done, next page
402F 21 40 A1 LD HL,A140H ;Point to Chinese ROM
4032 CF RST 08H ;Wait for key press
4033 06 20 LD B,20H ;32 Characters per screen
4035 3E 80 LD A,80H ;row 1 on LCD
4037 CD 47 40 CALL 4047 ;Set Row on LCD
403A 7C LD A,H ;Get Character High Byte
403B CD 4B 40 CALL 404B ;Display Character on LCD
403E 7D LD A,L ;Get Character Low Byte
403F CD 4B 40 CALL 404B ;Display Character on LCD
4042 23 INC HL ;Next Character
4043 10 F5 DJNZ 403A ;Display next character
4045 18 EB JR 4032 ;New Page
4047 D3 07 OUT (07H),A ;Send instruction to LCD
4049 18 02 JR 404D ;Do Delay
404B D3 87 OUT (87H),A ;Send data to LCD
404D 3E 0F LD A,DELAYUS ;Set Delay
404F DF RST 18H
4050 C9 RET

46

Appendix

Ports

Port Direction Description

00H In Keypad press encoder
➔ Bit 0-4 HexPad
➔ Bit 5 Function Key (Active Low)
➔ Bit 6-7 N/A

01H Out Seven segment digits switch
➔ Bit 0-1 Data Segments
➔ Bit 2-5 Address Segments
➔ Bit 6 FTDI Rx (Out), Disco LED’s
➔ Bit 7 Speake

02H Out Seven segment LED switch
➔ Bit 0 G segment
➔ Bit 1 F segment
➔ Bit 2 C segment
➔ Bit 3 D segment
➔ Bit 4 E segment
➔ Bit 5 DP segment
➔ Bit 6 B segment
➔ Bit 7 A segment

03H In System Input
➔ Bit 0 Matrix Keyboard (DIP-3)
➔ Bit 1 Protect Mode (DIP-3)
➔ Bit 2 Expand Mode (DIP-3)
➔ Bit 3 Expand Status
➔ Bit 4 Cartridge Flag
➔ Bit 5 General Input
➔ Bit 6 Keypress Flag
➔ Bit 7 FTDI Tx (In)

04H In/Out LCD Instruction

05H Out LED 8x8 Matrix Horizontal (TEC Expander)

06H Out LED 8x8 Matrix Vertical (TEC Expander)

07H Out Graphical LCD Instruction

84H In/Out LCD Data

47

Port Direction Description

87H Out Graphical LCD Data

F8H In/Out Spare (TEC Expander & I/O Bus)

F9H In/Out Spare (TEC Expander & I/O Bus)

FAH In/Out Spare (I/O Bus)

FBH In/Out Spare (General I/O & I/O Bus)

FCH In/Out Spare (General I/O & I/O Bus)

FDH In/Out SD (Secure Digital) Flash Card (General I/O)

FEH In Matrix Keyboard

FFH Out System Latch
➔ Bit 0 Shadow (Active Low)
➔ Bit 1 Protect
➔ Bit 2 Expand
➔ Bit 3 FF-D3 (Mem Bus)
➔ Bit 4 FF-D4 (Mem Bus)
➔ Bit 5 FF-D5 (Mem Bus)
➔ Bit 6 FF-D6 (Mem Bus)
➔ Caps Lock (Matrix Keyboard)

Constants

Constant Value

FTDI to USB Serial Transmission 4800-8-N-2
➔ Baud 4800
➔ 8 Packet Bits
➔ No Parity
➔ 2 Stop bits

Hexpad Keyboard return values ➔ 0-F Keys, 00H-0FH
➔ Plus, 10H
➔ Minus, 11H
➔ GO, 12H
➔ AD, 13H

48

LCD Cheatsheet
Z80 instructions to communicate with the LCD screen are given as direct
commands. IE: OUT (04),A. Mon3 also provides API routines that do the
same but also check for the LCD busy state. If using direct port
instructions, the LCD busy flag is to be checked prior to the instruction call.
The example code provided uses the API routines.

To move the cursor to Row 2, Column 10 do LD A, 0xC9 / OUT (04), A
For IN A, (04), If Bit 7 is set, then LCD is Busy. Other bits are the current Address Counter

49

Character Table

50

Example Using CGRAM and DDRAM

_stringToLCD .equ 13
_charToLCD .equ 14
_commandToLCD .equ 15

; LCD Setup
ld c,_commandToLCD 4000 0E 0F ;LCD Instruction API routine
ld b,01H 4002 06 01 ;Clear display
rst 10H 4004 D7 ;call API routine
ld b,38H 4005 06 38 ;8-Bit, 2 Lines, 5x8 Characters
rst 10H 4007 D7 ;call API routine
; Tell the LCD that next data will be to CGRAM
ld b,40H 4008 06 40 ;CGRAM entry
rst 10H 400A D7 ;call API routine
; Save multiple characters to CGRAM using lookup table
ld b,40H 400B 06 40 ;8 Characters (8 bytes each)
ld c,_charToLCD 400D 0E 0E ;LCD Data API routine
ld hl,403FH 400F 21 3F 40 ;LCD custom character table

loop1:
ld a,(hl) 4012 7E ;get custom character byte
inc hl 4013 23 ;move to next item in table
rst 10H 4014 D7 ;call API routine
djnz loop1 4015 10 FB ;continue for all 64 char bytes
; Display first line of text
ld c,_commandToLCD 4017 0E 0F ;LCD Instruction API routine
ld b,82H 4019 06 82 ;Move Cursor to Row 1, Col 3
rst 10H 401B D7 ;call API routine
ld hl,4034H 401C 21 34 40 ;ASCII text
ld c,_stringToLCD 401F 0E 0D ;LCD String API routine
rst 10H 4021 D7 ;call API routine
; Display customer characters
ld c,_commandToLCD 4022 0E 0F ;LCD Instruction API routine
ld b,0C0H 4024 06 C0 ;Move Cursor to Row 2, Col 1
rst 10H 4026 D7 ;call API routine
ld b,08H 4027 06 08 ;8 Characters
ld c,_charToLCD 4029 0E 0E ;LCD Data API routine

loop2:
ld a,b 402B 78 ;set A to current character
rst 10H 402C D7 ;call API routine
ld a,20H 402D 3E 20 ;space character
rst 10H 402F D7 ;call API routine
djnz loop2 4030 10 F9 ;continue for all 8 characters
; All Done, what for key press and exit
rst 08H 4032 CF ;key wait and press (HALT)
ret 4033 C9 ;exit

TEXT TABLE: 4034 48 45 4C 4C 4F 20 54 45 43 21 00 ; “HELLO TEC!”
CHAR TABLE: 403F 00 0A 1F 1F 0E 04 00 00 ; Heart

4047 04 0E 0E 0E 1F 00 04 00 ; Bell
404F 1F 15 1F 1F 0E 0A 1B 00 ; Alien
4057 00 01 03 16 1C 08 00 00 ; Tick
405F 01 03 0F 0F 0F 03 01 00 ; Speaker
4067 01 03 05 09 09 0B 1B 18 ; Note
406F 00 0E 15 1B 0E 0E 00 00 ; Skull
4077 0E 11 11 1F 1B 1B 1F 00 ; Lock

51

I/O Connectors

Expander Socket General Purpose I/O

TEC Deck

Z80 Bus Connector

52

