
TEC-1G MON3
User guide

By Brian Chiha v1.4

Mon3 (Talking Electronics Computer Monitor version 3) is custom-built for
the TEC-1G Single Board Z80 Computer. Mon3 is the heart of the TEC-1G. It
brings the hardware to life. Consider it an Operating System that provides
the ability to program the TEC. The monitor is jam-packed with features,
designed for beginners who are just learning to code Z80 and rich enough
for the advanced software developer.

Table of Contents
Basic Operation...4

Cold Reset.. 4
Warm Reset.. 4

Main Menu...5
Intel HEX Load... 6
Smart Block Copy..6
Block Backup... 7
Export Z80 Assembly..7
Export Raw Data..8
Export Hex Dump... 8
Import Binary File... 9
Tiny Basic.. 9
Music Routine.. 10
Terminal Monitor...11
Settings..11
Credits...11

Memory Map... 12
Data Entry Mode..13

Basic Operation...13
LCD Screen.. 14
Function Keys... 15

Matrix Keyboard.. 17
Debugging Programs.. 18
Terminal Monitor... 19

Starting up TMON... 19
Using TMON.. 19
The Command Prompt.. 20
DATA mode...20
TMON Commands.. 21

TEC Magazine Code on the TEC-1G.. 24
Advanced Programming..25

RST (Restart) commands.. 26
Interrupts..27
NMI (Non-Maskable Interrupts).. 27
API (Application Programming Interface) commands................................ 29

General conventions..29
API Call List.. 30
API Utility Calls..31

2

API LCD Calls.. 34
API Input Calls..35
API Serial Data Transfer Calls...37
API Menu & Parameter Calls..40
API Sound Calls...43
API System Latch Calls..44
Miscellaneous Calls.. 45

Real Time Clock (RTC) Add-On Interface... 46
RTC API Calls...47

Graphical LCD Add-On Interface..53
General Conventions...54
GLCD API Calls list... 55
GLCD API Configure Calls.. 55
GLCD API Graphics Calls... 57
GLCD API Text Calls..59
GLCD API Utility Calls... 60
GLCD Examples.. 62

Quick Start Programs... 63
Appendix...69

Ports...69
Serial Connection... 70
LCD Cheatsheet..71

Useful Links..74
I/O Connectors.. 75

The version of this document corresponds to the version of the monitor
binary file. IE: Version 1.2 of this document is for fileMON3-1G_BC23-12.bin.
The 12 at the end of the file is the version number.

3

Basic Operation
With the monitor loaded into the ROM socket and all the jumpers set
correctly for the ROM used. Turn the TEC on. If all is working well, a
welcome banner will be displayed on the LCD and a short tune will be
heard.

Cold Reset
When the TEC turns on after being powered down, a Cold Reset occurs. A
Cold Reset signified with the display of the welcome banner and the short
tune. A Cold Reset will configure the monitor for first-time use after
powering it on. It will default monitor variables and configure the LCD for
first use.

If the TEC isn’t responding normally or something “weird” is occurring, a
manual Cold Reset can be performed. Programs loaded in RAM will be
retained when a manual Cold Reset is done. To do a manual Cold Reset,
while pressing and releasing the RESET key, hold the Fn key down. The
distinctive LCD Banner and music tone will indicate that the Cold Reset
was successful. A manual Cold Reset on the HexPad will still work if the
Matrix Keyboard is in use.

Warm Reset
AWarm Reset occurs when pressing and releasing the RESET key. A warm
reset returns the TEC to its initial editing location on a Cold Reset. It's a
quick way to get back to the start of a code block.

4

Main Menu
Amenu is provided on the LCD screen to help with navigating the inbuilt
routines that the monitor comes with. A menu will appear on Cold Reset.

Navigating the menu should be intuitive. Press the Plus or Minus keys to
scroll down and up. Press GO to run the selected routine. A right-facing
Arrow indicates which menu item is currently selected. One thing that
might not be obvious is how to exit the menu and move into Data Entry
mode. This is achieved by pressing the AD key. Once this is known, it's
hard to forget it. Menus can be nested up to 3 deep. Pressing the AD key
will exit to the parent menu or Data Entry mode if at the main menu.

The current items on the menu are

Menu Text Description

Intel HEX Load Receive data in Intel Hex File format via the
FTDI connector

Smart Block Copy Move a block of code AND update all 2-byte
addresses that are within the block

Block Backup Move a block of code

Export Z80 Assembly Display Z80 Assembly to a Serial terminal via
the FTDI connector

Export Raw Data Send binary data via the FTDI connector

Export Hex Dump Display a 16-byte per line HEX dump to a Serial
terminal via the FTDI connector

Import Binary File Receive data in binary format via the FTDI

5

connector

Tiny Basic Run Tiny Basic on a Serial terminal

Terminal Monitor Serial terminal monitor interface

Music Routine Play musical notes at a given address

Settings Update monitor settings

Credit Display the people who made the TEC-1G

Intel HEX Load
Intel created a text file format that contains information on loading bytes
into memory. When this routine is run, the TEC seven segments will go
blank and wait for a file to be received. This is done via the FTDI connector
and serial terminal. When data is transmitted, the rightmost segment will
illuminate in a pattern. This indicates data is being read. Once the file has
fully loaded, the letters “PASS” will display on the seven segments. This
means that the load was successful. Press any key to exit. If the segments
display the word “FAIL”, then there is something wrong with the file or your
serial connection.

Smart Block Copy
This very clever routine shifts a program from one spot in memory to
another and changes all absolute jumps and calls. Memory pointers are
also altered if the memory pointers are within the start and end address of
the program being relocated. Any reference to a location outside the start
and end range is not altered.

The block copy treats Data bytes as instructions and might change data
bytes as well. IE: .db C3, 23, 01 could be seen as a JP 0123 instruction.

When this routine is run, it will ask for a START, END and DESTINATION
address. Type in the 16-bit address via the HEX PAD and use the Plus or
Minus keys to change the selected parameter. Press GO to run the routine.

6

Here is an example of copying 4000H-4009H to location 2000H

Original After Copy

4000 11 09 40 LD DE,4009
4003 E7 RST 20
4004 FE 13 CP 13
4006 C2 00 40 JP NZ,4000
4009 C9 RET

2000 11 09 20 LD DE,2009
2003 E7 RST 20
2004 FE 13 CP 13
2006 C2 00 20 JP NZ,2000
2009 C9 RET

Block Backup
This routine simply copies a data block from one address location to
another. No bytes are altered when the copy is performed. This routine is
also useful to copy data reference tables like music data for the music
routine.

When this routine is run, it will ask for a START, END and DESTINATION
address. Type in the 16-bit address via the HEX PAD and use the Plus or
Minus keys to change the selected parameter. Press GO to run the routine.

Here is an example of copying 4000H-4009H to location 2000H

Original After Copy

4000 11 09 40 LD DE,4009
4003 E7 RST 20
4004 FE 13 CP 13
4006 C2 00 40 JP NZ,4000
4009 C9 RET

2000 11 09 40 LD DE,4009
2003 E7 RST 20
2004 FE 13 CP 13
2006 C2 00 40 JP NZ,4000
2009 C9 RET

Export Z80 Assembly
If the TEC is connected to a serial terminal via an FTDI to USB adaptor,
code that is stored or written on the TEC can be disassembled and sent to
the terminal. This is a great way to view the code that is on the TEC in a
readable format and could be passed into a Z80 compiler on a PC.

7

When this routine is run, it will ask for a START and END address. Type in
the 16-bit address via the HEX PAD and use the Plus or Minus keys to
change the selected parameter. Press GO to run the routine.

Here is an example of its output.

4000 3E 3F LD A,3F
4002 D3 01 OUT (02),A
4004 3E 04 LD A,04
4006 D3 02 OUT (02),A
4008 CF RST 08
4009 C9 RET

Export Raw Data
This routine will send binary data from the TEC to a serial connection. It’s a
way of saving the code written on the TEC to a PC. As binary data is being
sent, the data can only be properly viewed through a HEX file viewer or
HEX dump routine.

When this routine is run, it will ask for a START and END address. Type in
the 16-bit address via the HEX PAD and use the Plus or Minus keys to
change the selected parameter. Press GO to run the routine.

Export Hex Dump
This routine will display binary data in a readable format to a serial terminal
connected via an FTDI to USB adaptor. It will display up to 16 bytes per line.

When this routine is run, it will ask for a START and END address. Type in
the 16-bit address via the HEX PAD and use the Plus or Minus keys to
change the selected parameter. Press GO to run the routine.

Here is an example of its output.

C100: 31 80 08 21 00 40 CD FC C5 AF D3 05 D3 06 DB 03
C110: 47 E6 10 C2 00 80 3A 9F 08 E6 04 0E 01 B1 D3 FF
C120: 32 9D 08 78 E6 02 32 9E 08 3A 9D 08 E6 01 28 0B
C130: 21 00 C0 11 00 00 01 00 01 ED B0 21 00 40 22 86
C140: 08 22 A0 08 DB 03 0F 38 06 DB 00 E6 20 18 08 CD

8

Import Binary File
This routine will upload a binary file from a PC onto the TEC via an FTDI to
USB adaptor. This is the opposite of the Export Raw Data routine and will
load binary data to a given address on the TEC.

When this routine is executed, it will ask for a START and END address. This
address range must match the size of the binary file being sent. Type in
the 16-bit address via the HEX PAD and use the Plus or Minus keys to
change the selected parameter. Press GO to run the routine. The TEC will
wait for data to be received and will end when END-START+1 bytes are
received.

Tiny Basic
Mon3 comes with Tiny Basic installed. Tiny Basic is an easy-to-use BASIC
programming language. At this stage, all interactions with BASIC are done
on a serial terminal via an FTDI to USB adapter. Some extra commands
have been implemented to interact with the TEC-1G hardware.

Z80 TINY BASIC 2.2b
TEC-1G VERSION BY B CHIHA, 2023

OK
>LIST
5 REM ** FIBONACCI SEQUENCE **
10 PRINT "FIBONACCI SEQUENCE"
20 FOR I=1 TO 22
30 GOSUB 70
40 PRINT "F",I,F
50 NEXT I
60 STOP
70 LET A=0; LET B=1
80 FOR J=1 TO I
90 LET T=A+B; LET A=B; LET B=T
100 NEXT J
110 LET F=A
120 RETURN

For information on how to use Tiny Basic, go to this link:
https://github.com/bchiha/BMon/wiki/tiny_basic.

9

https://github.com/bchiha/BMon/wiki/tiny_basic

Music Routine
Use this routine to play some notes to the TEC speaker. It is based on John
Hardy’s Mon1 routine adjusted for a 4 Mhz clock speed. The routine uses
similar input codes making it suitable for existing tunes to be used.

When this routine is executed, it will ask for a START address of the music
data—type in the 16-bit address via the HEX PAD. Press GO to run the
routine.

Two octaves are playable. Here is a reference to the note code and its
musical note. A Pause is represented by 00 and any other note code that
isn’t listed will exit the routine.

Note Code Note Code Note Code Note Code

G 01 C# 07 G 0D C# 13

G# 02 D 08 G# 0E D 14

A 03 D# 09 A 0F D# 15

A# 04 E 0A A# 10 E 16

B 05 F 0B B 11 F 17

C 06 F# 0C C 12 F# 18

Here are some examples tunes that can be typed in a played
Bealach
06, 06, 0A, 0D, 06, 0D, 0A, 0D, 12, 16, 14, 12, 0F, 11, 12, 0F
0D, 0D, 0D, 0A, 12, 0F, 0D, 0A, 08, 06, 08, 0A, 0F, 0A, 0D, 0F
06, 06, 0A, 0D, 06, 0D, 0A, 0D, 12, 16, 14, 12, 0F, 11, 12, 0F
0D, 0D, 0D, 0A, 12, 0F, 0D, 0A, 08, 06, 08, 0A, 06, 12, 00, 1F
Angels On High
0F, 0F, 0F, 0F, 0F, 0F, 12, 12, 12, 12, 12, 10, 0F, 0F, 0F, 0F
0F, 0F, 0D, 0D, 0F, 0F, 12, 12, 0F, 0F, 0F, 0D, 0B, 0B, 0B, 0B
0F, 0F, 0F, 0F, 0F, 0F, 12, 12, 12, 12, 12, 10, 0F, 0F, 0F, 0F
0F, 0F, 0D, 0D, 0F, 0F, 12, 12, 0F, 0F, 0F, 0D, 0B, 0B, 0B, 0B
12, 12, 12, 12, 14, 12, 10, 0F, 10, 10, 10, 10, 12, 10, 0F, 0D
0F, 0F, 0F, 0F, 10, 0F, 0D, 0B, 0D, 0D, 0D, 06, 06, 06, 06, 06
0B, 0B, 0D, 0D, 0F, 0F, 10, 10, 0F, 0F, 0F, 0F, 0D, 0D, 00, 00
00, 12, 12, 12, 12, 14, 12, 10, 0F, 10, 10, 10, 10, 12, 10, 0F
0D, 0F, 0F, 0F, 0F, 10, 0F, 0D, 0B, 0D, 0D, 0D, 06, 06, 06, 06
06, 0B, 0B, 0D, 0D, 0F, 0F, 10, 10, 0F, 0F, 0F, 0F, 0D, 0D, 0D
0D, 0B, 0B, 0B, 0B, 0B, 0B, 0B, 0B, 00, 00, 00, 00, 00, 00, 1F

10

Terminal Monitor
Terminal Monitor or TMON gives the user the ability to interface with the
TEC-1G via a serial terminal. There is an extensive chapter regarding the
use of TMON below.

Settings
The settings allow the user to configure the monitor. Turning the power off
from the TEC will return these settings to their default state. Some settings
will be retained if an RTC Add-on board is connected with battery backup.

● Toggle Key Beep - Turn the keypress ‘beep’ indication on or off.
● Toggle Address Inc - Turn the automatic address increase after a byte

has been keyed on or off.
● Configure RTC - Set Time/Date of RTC (if RTC Add-on is connected).
● Reset RTC PRAM - Reset RTC NVRAM (if RTC Add-on is connected).
● Toggle EXPAND - software controlled the expansion socket to toggle

between lower and upper 16Kb memory for a 32Kb ROM/RAM chip.

Credits
Display the people who developed and tested the TEC-1G

● Mark Jelic - Designer of the TEC-1G
● Brian Chiha - Mon3 Programmer
● Craig Hart - TECnical Expert
● Ian McLean - Tester and QA
● James Elphick - Tester and QA
● John Hardy & Ken Stone - The original designers

11

Memory Map
The table below outlines how the full 64Kb of address space is allocated on
the TEC-1G.

Address Contents Type

0000H-00FFH Reserved for Z80 instructions RAM

0100H-07FFH Free RAM RAM

0800H-087FH Reserved for Hardware Stack RAM

0880H-0FFFH Reserved for Monitor RAM RAM

1000H-3FFFH Free RAM RAM

4000H-7FFFH Free RAM (Protected) RAM

8000H-BFFFH Expansion Socket RAM/ROM

C000H-FFFFH Monitor ROM ROM

Some things to be considered are:
● Any RAM location can be updated, but it is highly recommended not

to update Monitor Reserved RAM locations. This can/will cause
undesirable effects on the running of the TEC. A Cold Reset will
restore the TEC to its default running state (hopefully).

● The address range between 4000H-7FFFH is a special area that can
be made READ ONLY. This is called a Protected area. Protect mode
can be switched on using the configuration 3-DIP switch. If protect
is enabled and code is being executed. No RAM update can be done
in this range. This feature is designed to protect keyed-in code from
being inadvertently erased by a rogue routine.

● The Expansion Socket on the TEC can have a 32Kb ROM or RAM
inserted. Only 16kb can be accessed at one time. To switch between
high and lowmemory use the Expand switch on the configuration
3-DIP switch. The switch can also be overridden in software by
toggling the Expand flag in the Settings menu or pressing Fn-E.

● If the monitor ROM is a legacy monitor, IE: Mon1, Mon2, JMon or
BMon, The address range 0000H-07FFHwill be READ ONLY and will
emulate the same addressing that is used for that particular ROM.
Shadowmode will be active by default and will be indicated by an
illuminated LED segment on the system latch BAR component.

12

Data Entry Mode
Data Entry Mode allows the user to enter Z80 Op Codes directly into the
TEC. To access Data Entry Mode from the Main Menu simply press the AD
key. In this mode, the 4 left seven-segment displays will show the current
editing address and the 2 right segments will display the byte at that
address.

Address Data

The decimal place LED on the segments indicates which part, Address or
Data is currently enabled for direct updates. In the picture above, the dots
are on the Data segments.

The initial starting address is 4000H. This address was chosen as it's within
the Protect RAM area.

Basic Operation
To update a byte at an address, simply use the 0-F keys on the keypad.
After the byte has been entered, by default when the next byte is keyed,
the current editing address will automatically move to the next address
location. This saves the user from pressing the Plus key after each byte is
added. This option can be switched off in the Settings menu.

To navigate to another address, press the Plus or Minus key. Or press the
AD key. The decimal place dots will move to the address segments
indicating that the address field is updatable. Key in a new 16-bit address
by using the 0-F keys. Press the AD key to move back to data updating
mode.

And finally, to execute code, navigate to the address where the code starts
and press the GO key. Protect mode will be honoured if switched on. If the
code ends with a RET instruction (C9), execution will cleanly exit back to the
monitor.

13

One thing to note is that while data is being entered, the decimal place
LED on the data segments will change from displaying two lights to one.
The one light will indicate which Nibble (half byte) has been entered. This
will assist in knowing if the whole byte has been entered or not.

If a mistake is made during data entry and the byte is to be re-entered. To
stop the address from automatically incrementing, press the AD key twice.
This will reset the Nibble counter and allow a new byte to be entered.

If any key is held down, after a short period, the key will automatically
repeat. This is mostly useful while holding down the Plus or Minus key to
quickly move to a new address. But can also be used to populate memory
with 00 or FF or anything else.

LCD Screen
In Data Entry Mode the LCD Screen will display 12 bytes of data. 4 bytes
before the current editing location and 8 bytes from the current editing
location. These bytes are displayed in groups of 4 (3 lines). A right arrow
indicates the byte at the current editing location.

Displayed on the right side of the screen is the current edit mode, da=Data,
ad=Address, the current byte in LCD ASCII and the Nibble Counter. The
picture below is showing: The current address is 4000, Data mode, “>” = 3E
in ASCII and 0 nibble count.

On the 4th line of the LCD, the Z80 Assembly of the current OP Code(s) is
shown. This can be useful to see what instruction is currently being keyed.

By displaying a range of bytes on the LCD, the user can check if the correct
bytes have been entered without individually moving to each address.

14

Function Keys
Various extra options can be selected via the Function Key. To use these
functions, hold the Fn key down and press one of the 0-F keys.

The routines attached to the Function Key are:
● Fn-AD - Display the Main Menu

● Fn-0 - Save Current Address. Press 1,2 or 3 to save the current editing
address in RAM to quickly jump to this location later. Three
addresses can be saved. This is useful if code is in a location other
than 4000H and the Reset button has been pressed. Press AD to exit
the routine. The initial default address is 4000H.

● Fn-1,2,3 - Quick jump to Address. This will move the monitor's
current editing location to the saved address set by Fn-0 above.

● Fn-4 - Intel Hex Load. This is a shortcut to the Main Menu routine.

● Fn-B - Block Backup. This is a shortcut to the Main Menu routine.

● Fn-C - Smart Block Copy. This is a shortcut to the Main Menu routine.

15

● Fn-D - Switch between Data Entry View and Disassembly View.
Disassembly View displays the next 4 Assembly instructions. To
move through the instructions press the Plus or Minus keys. Data
entry can still be done in this mode if desired.

● Fn-E - Toggle the Expansion Socket Expand flag. This will switch
between the upper and lower memory of the 32Kb ROM/RAM in the
expansion socket.

● Fn-Plus - Insert an NOP instruction at the current editing location
ANDmove all bytes up to max RAM by one address upwards. It will
also do a Smart Block Copy to all moved bytes. This routine can add
a Breakpoint (F7) or missing opcodes to an existing program.

● Fn-Minus - Delete a byte from the current editing location AND
move all bytes down by one address. It will also do a Smart Block
Copy to all moved bytes.

16

Matrix Keyboard
Mon3 will work with the TEC Matrix Keyboard Add-on. The Keyboard is
connected to the Keyboard Socket on the lower left of the PCB. How your
Keyboard PCB is designed might affect which pins can be connected.
Please view the TEC-1G Schematic for information on pin configuration.

To activate the Keyboard, The Matrix switch on the 3-DIP switch is to be
turned on. This activates the Matrix Keyboard and disables the onboard
Hex Keypad (except Reset). Mon3 only maps keys present on the TEC-1G to
the Matrix Keyboard.

The Keyboard map to Hex Keypad is as follows:

● AD - Esc
● Plus - Right Arrow
● 0-F, Fn - 0-F, Fn keys

● GO - Enter
● Minus - Left Arrow
● Reset - Reset key if connected

The full range of keys can be accessed and converted when developing
programs via the matrixScan and matrixToASCII API routines.

17

Debugging Programs
Breakpoints can be inserted within a program which can help with viewing
the state of the CPU registers. To break the execution of your code, insert a
RST 30H or F7 at the current address where the break should occur.

An easy way to insert a byte into an existing program is to press Fn-Plus.
This will insert a NOP instruction at the current address. Then change this
byte to F7.

When the execution of code is interrupted with a breakpoint, the TEC will
pause and display register information on the LCD screen.

The contents of the Z80 CPU registers AF, HL, BC, DE, IX, IY, the Program
Counter and Stack Pointer are displayed. CPU Flags are also displayed.
Flags that are set are in Capitals. To continue code execution press the GO
key and to quit execution and return to the Monitor press the AD key.
Finally, to remove an inserted Breakpoint press Fn-Minus at the address
where the Breakpoint is. This will remove the breakpoint and adjust the
code to its original state. Note: Breakpoints will be ignored if a connection
is made between the + and the D5 pins on the G.IMP header. Warning: Do
not connect the + to the - pin on the G.IMP header!!! This will short out the
TEC!

18

Terminal Monitor
The Terminal Monitor (TMON) is a complete serial port-based monitor for
the TEG-1G, designed for users who prefer to interact with the TEC-1G via a
terminal. TMON is written by Craig Hart

Starting up TMON
Connect a serial terminal to the TEC-1G via the FTDI to USB connector.
Then, select Terminal Monitor from the main menu by pressing GO and
look at the serial terminal.

TMON for TEC-1G Version 1.0
MON-3 Version: 2023.11
RAM Found between 0000h and 3FFFh - 16384 bytes
1000 >

Using TMON
TMON is an interactive tool that works with a serial terminal e.g. PuTTY or
Tera Term on a PC, or a 'real' VT100 serial terminal such as a Wyse WY-60.
The TEC-1G keypad and 7-seg displays are not used once the program
starts, and do not do anything (except for the testing routines documented
below).

Interactions with TMON are via the serial console. The user types
commands interactively and the results are displayed on the terminal.

All interactions with TMON use HEX format - so a byte is 00 to FF, etc. The
"h" or "0x" is omitted for brevity.

Typically, the ADDR key exits any interactive command, or by entering "Q"
from the terminal.

The above text is the default display when TMON first starts. TMON is now
awaiting input and commands from the Available Commands list can be
entered.

19

The Command Prompt

1000 >

The 1000 represents the CURRENT ADDRESS in HEX. Many commands
default to their actions interacting with memory at this address. The
CURRENT ADDRESS changes as with certain commands. e.g. inputting
code and data, and can be set by the ADDR command. By default, TMON
points to itself.

The command input editor is very simple. Invalid inputs are typically
ignored and result in the user simply being returned to the command
prompt. The maximum command length accepted is 40 characters,
however, presently the longest valid command possible is 9 characters in
length. When the user's input exceeds the maximum command length,
the TEC will emit a beep tone to indicate this condition has been reached.
Backspace is supported, to correct typos.

All data entered at all times is assumed to be HEX - 4 bytes for addresses, 2
bytes for data. Invalid data input is ignored.

DATAmode
When the DATA command is given, TMON switches to interactive data
entry mode. This is signified by the prompt changing as follows:

XXXX nn :

XXXX continues to represent the CURRENT ADDRESS however the nn
represents the HEX byte stored at that address, which you are presently
editing.

● Enter a HEX byte and it will be written to memory at CADDR;
CURRENT ADDR is then incremented by one.

● ENTER increments CURRENT ADDRESS by one and leaves the
existing value as-is. In this way, any bytes that don’t need altering are
skipped over.

● - decrements the CURRENT ADDRESS by one. This allows for
correcting input errors by going back one address after erroneous
input.

● Q exits data entry mode.

20

Invalid entries will be ignored.

The DATA entry system is very simple and will continue to be improved in
future versions.

TMON Commands

HELP ? EXIT

INTEL BEEP BELL

VER STATE CLS

RAMCHK GO [xxxx] DUMP [xxxx]

ADDR [xxxx] DATA [xxxx] INC

7SEG SMON HALT

DEBUG KEYTEST FILL xxxx yyyy nn

PRINT

Parameters marked with square brackets e.g. \[xxxx\] are optional.

HELP
Displays help text

?
Display the list of commands

EXIT
Reboots the 1G back to MON3

INTEL
Calls the Intel Hex file transfer routine built into MON-3

BEEP
Beeps the 1G speaker

BELL
Sents the BELL command to the remote console

21

VER
Displays the version number of TMON and MON-3

STATE
Displays the state of the 1G system - SHADOW, PROTECT, EXPAND, CAPS
LOCK

CLS
Sens a clear screen sequence to the remote console

RAMCHK
Runs a simple test to determine howmuch RAM is installed, and at what
momentary address(e)s. Uses whichever bank EXPAND is set to, but does
not alter the EXPAND state. Supports multiple discontinuous RAM blocks,
if fitted.

GO xxxx
Executes code from the CURRENT ADDRESS, or from xxxx if supplied.

DUMP xxxx
DUMP the contents of 64 bytes of memory; provides HEX and ASCII
outputs so memory can be examined.

DUMP pauses at completion - space repeats the command (CADDR
continues to increment if auto-increment is on; otherwise the same block
repeats). This allows you to quickly run through larger blocks without
needing to type commands repeatedly.

Q quits and returns to the command prompt.

ADDR xxxx
Set the CURRENT ADDRESS. If no address is supplied, display the CADDR
instead.

DATA xxxx
Interactively Input data into memory. Input one hex byte at a time; the
value input is stored in the CADDRmemory location.

Enter Q to quit input mode. See full description of DATA mode, above.

22

INC ON/OFF
Set auto-increment mode of CADDR. No parameter supplied = Display the
current auto-increment mode. Sometimes turning auto-increment off is
helpful for debugging or monitoring.

7SEG
Displays the CADDR and byte of memory on the TEC 7-seg displays. + and -
keys increment/decrement CADDR. Pressing the ADDR key exits to TMON.

SMON
Serial data streammonitor. Accepts serial input from the terminal and
displays the HEX bytes received on screen. Great for debugging terminal
comms and understanding control codes received from the PC (e.g. VT100
sequences). This is a crude implementation but does display the
limitations of the bit-bang serial in not being able to adequately buffer
incoming bytes in real time (try pressing an arrow key or a PC function
key).

Enter Q (capital) to exit SMON back to TMON.

If a terminal program such as Tera Term is used to add a small delay (e.g
20ms) between bytes transmitted from the PC, SMON can accurately show
VT100 control codes such as a PC arrow or function key. Without the delay,
the bit-bang serial normally gets the first byte only, or perhaps the first and
fourth or fifth byte, hence demonstrating the limitations of the bit-bang
interface.

HALT
Executes a CPU HALT instruction - on TEC-1F, press any key to resume.

DEBUG
Calls the MON-3 debugger/breakpoint tool to examine register contents.

KEYTEST
Tests the selected keyboard - the last pressed key's scancode will appear
on the 7-segment displays. Fn is displayed by bit 5 set. Matrix keypad keys
supported by MON3 (NOT the full matrix keyset) will be returned if MATRIX
mode is enabled. Pressing the ADDR key exits to TMON.

23

FILL xxxx yyyy nn
Fill memory between address xxxx and yyyy with data nn. note: Fill range
must be at least 2 bytes long. Does not do any checks for safety - use with
caution, as you can overwrite any area of memory including the stack,
program code or data. This does not apply if Protect Mode is on.

PRINT your-text-here
your-text-here is echoed back to the serial terminal.

24

TEC Magazine Code on the TEC-1G
A great way to learn how to use the TEC-1G is to key in programs presented
in the TE Magazines Issues 10 to 15. If the programs are keyed in directly,
they probably won’t work! This is because they usually start at addresses
0800H or 0900H. These addresses are reserved for Mon3. To get the code
working, simply update all 2-byte address references to match the address
location of the code on the 1G.

Keypad interactions are a bit more complicated. The old monitors use the
register I and the NMI (Non-Maskable Interrupt) to trigger and save a
keypad press. Mon3 uses ‘Polling’ instead and RST/API calls to do keypad
reading. See the next chapter for more information on RST and API calls.

Below is a conversion table to help convert older code to work on Mon3
when a keypad press is required.

Old
Command

Mon3
Replacement

Reason

HALT RST 08H RST 08H simulates a HALT command and sets
register Awith the key value pressed.

LD A,I LD C,10H
RST 10H

A LD A,I by itself is ‘polling’ for a key press. Call the
scanKey API routine (10H) which sets register Awith
the key value pressed.
If LD A,I is immediately after a HALT instruction,
then just use RST 08H as described above.

Here is an example of magazine code at 0800Hwith key input converted to
use Mon3 at RAM address 4000H. The code in RED has been modified.

LD A,80H 4000 3E 80
OUT (2),A 4002 D3 02
LD B,03H 4004 06 03
LD A,B 4006 78
OUT (1),A 4007 D3 01
RST 08H 4009 CF
CP 10H 400A FE 10
JP NZ,4014H 400C C2 14 40
RLC B 400F CB 00
JP 4006H 4011 C3 06 40
CP 0CH 4014 FE 0C
JP NZ,4009H 4016 C2 09 40
RRC B 4019 CB 08
JP 4006H 401B C3 06 40

25

Advanced Programming
To assist when developing Z80 programs, Mon3 contains inbuilt
functionality that makes it easy to interface with the TEC-1G hardware.

RST (Restart) commands
RST commands on the Z80 are one-byte call commands that execute code
at certain address locations defined by the Z80. The following table
outlines the routines.

Command Op Code Description

RST 00H C7 Software monitor reset.

RST 08H CF Key wait and press routine. This simulates a
HALT command where the TEC will wait for a
key to be pressed and continue execution. If a
key is currently being held down, the routine
will wait first until the key is released and then
detect the next key. The key that has been
pressed will be stored in register A. EG:

RST 08H ; Wait for keypress
LD B,A ; Load key to register B

RST 10H D7 API entry call. Executes a monitor routine. See
the API calls section below for more details.

RST 18H DF API 2 entry call. Graphical LCD routine entry.
See the GLCD section below for more details.

RST 20H E7 Scan Seven Segments and Key. Multiplex the
seven-segment displays and check for a key
press. It can be used to display information on
the seven segments and check for a key to be
pressed. It must be called in a loop until a key is
pressed to maintain 7 segment persistence..
Returns Zero flag set when a key is pressed and
Register A with the key value. Register DE
points to the seven-segment data. See the first
program in the Quick Start Programs chapter
for an example.

26

RST 28H EF LCD Busy Check. To be called prior to sending a
command to the LCD if directly communicating
with the LCD. The routine will only exit when
the LCD Busy flag is not set. EG:

RST 28H ; Check LCD busy flag
LD A,01H ; Load A with clear screen
OUT (04),A ; Send instruction to LCD

RST 30H F7 Breakpoint entry. Break execution of the code
at the current address location. See the
Debugging Programs chapter for more details.

RST 38H FF Maskable interrupt handler. Jumps here with
Interrupts Enabled (EI), Interrupt Mode 1 (IM 1)
and when the INT pin on the CPU goes low.
Mon3 will do nothing when this happens.
However, a user-defined routine can be used.
See the Interrupt section below on how to do
this.

Interrupts
The Z80 CPU has the ability to interrupt the execution of code, handle the
interrupt and then resume code execution. This is done in software with
Interrupts Enabled (EI) and Interrupt Mode 1 (IM 1) and by hardware when
the INT line on the CPU goes low. Mon3 ignores interrupts, but a
user-defined routine can be provided to handle the interrupt. To do this,
the address of the interrupt routine is to be placed at RAM address 0892H.

ei ; Enable interrupts
im 1 ; Interrupt mode 1
ld hl,myINT ; Interrupt routine
ld (0892H),hl ; Save address in 0892H
… continue

myINT:
ld c,03H ; Bell routine
rst 10H ; Call API
reti ; Exit Int routine

This code will sound a bell tone in the speaker when an interrupt occurs.

27

NMI (Non-Maskable Interrupts)
Non-Maskable Interrupts occur when the NMI line on the CPU goes low.
These interrupts will always trigger. Mon3 ignores the NMI line, but a
user-defined routine can be provided to handle the interrupt. To do this,
the address of the interrupt routine is to be placed at RAM address 0894H.

ld hl,myNMI ; NMI routine
ld (0894H),hl ; Save address in 0894H
… continue

myNMI:
ld c,03H ; Bell routine
rst 10H ; Call API
retn ; Exit NMI routine

This code will sound a bell tone in the speaker when an NMI occurs. The
TEC-1G has an NMI jumper that can set NMI to trigger on a Keypad press, a
HALT instruction or externally (no jumper).

Credit: Ken Stone

28

API (Application Programming Interface) commands.
The API on Mon3 exposes routines used by Mon3 which can be used in
your own programs. No need to rewrite the world! But more importantly,
it makes writing code quicker and easier with most of the complicated
stuff removed.

General conventions
The register C holds the API Call number. All other registers except the IX
register can be used as parameters if needed. Executing a RST 10H or D7
calls the API.

General Interface

ld c,[API Call Number]
rst 10H

Some Examples

;Produce a short Beep from the speaker
0E 03 ld c,3 ;beep call number
D7 rst 10H

;Display the letter 'G' on the LCD Screen
0E 0E ld c,14 ;charToLCD call number
3E 47 ld a,"G" ;parameter
D7 rst 10H

;Wait for a period of time
0E 21 ld c,33 ;timeDelay call number
21 00 30 ld hl,3000H ;parameter
D7 rst 10H

To assist with API call number references, the file api_includes.z80, in the
GitHub repository, contains the API Call Number with its Text equivalent for
use with your own code.

See https://github.com/MarkJelic/TEC-1G/tree/main/ROMs/MON3/source

29

https://github.com/MarkJelic/TEC-1G/tree/main/ROMs/MON3/source

API Call List

Utility Calls # 0x Serial Calls # 0x System Latch Call # 0x

softwareID 0 0 serialEnable 20 14 getCaps 37 25

versionID 1 01 serialDisable 21 15 getShadow 38 26

preInit 2 02 txByte 22 16 getProtect 39 27

beep 3 03 rxByte 23 17 getExpand 40 28

convAToSeg 4 04 intexHexLoad 24 18 setCaps 41 29

regAToASCII 5 05 sendToSerial 25 19 setShadow 42 2A

ASCIIToSegment 6 06 receiveFromSerial 26 1A setProtect 43 2B

stringCompare 7 07 sendAssembly 27 1B setExpand 44 2C

HLToString_ 8 08 sendHex 28 1C

AToString 9 09 genDataDump 29 1D Misc. Calls # 0x

scanSegments 10 0A stringToSerial 45 2D timeDelay 33 21

displayError 11 0B RTCAPI 46 2E

checkStartEnd 30 1E Input Calls # 0x random 49 31

scanKeys 16 10 setDisStart 50 32

LCD Calls # 0x scanKeysWait 17 11 getDisNext 51 33

LCDBusy 12 0C matrixScan 18 12 getDisassembly 52 34

stringToLCD 13 0D joystickScan 19 13

charToLCD 14 0E matrixScanASCII 53 35

commandToLCD 15 0F

Sound Calls # 0x

Menu Calls # 0x playNote 34 22

menuDriver 31 1F playTune 35 23

paramDriver 32 20 playTuneMenu 36 24

menuPop 47 2F

30

API Utility Calls
softwareID #0
Get Software ID String

● Input: nothing
● Return: HL = Pointer to SOFTWARE ASCII String
● Destroy: none

versionID #1
Get Version Number and Version String

● Input: nothing
● Return: HL = Pointer to Release ASCII String

BC = Release major version number
DE = Release minor version number

● Destroys: none

preInit #2
Performs a cold reset as if the TEC-1G had just been powered on. Returns to
MON3 to its default state.

beep #3
Makes a short beep tone to the TEC Speaker

● Input: nothing
● Destroys: A

convAToSeg #4
Convert register A to Seven Segment display format

● Inputs: A = byte to convert
DE = address to store segment values (2 bytes)

● Destroys: BC

regAToASCII #5
Convert register A to ASCII. IE: 2CH -> "2C"

● Input: A = byte to convert
● Output: HL = two-byte ASCII string
● Destroys: A

31

ASCIItoSegment #6
ASCII to Segment. Converts an ASCII character to Seven Segment display
format

● Input: A = ASCII character
● Return: A = Segment character or 0 if out of range
● Destroys: none

stringCompare #7
Compare two string

● Input: HL = source pointer
DE = target pointer
B = #bytes to compare (up to 256)

● Output: Zero Flag Set = compare match
● Destroys: HL, DE, A, BC

HLToString #8
Convert HL to ASCII string. IE: 2C0FH -> "2C0F"

● Input: HL = value to convert
DE = address of string destination (4 bytes)

● Output: DE = address one after last ASCII entry
● Destroys: A

AToString #9
Convert register A to ASCII string. IE: 2CH -> "2C"

● Input: A = byte to convert
DE = address of string destination (2 bytes)

● Output: DE = address one after last ASCII entry
● Destroys: A

scanSegments #10
Multiplex the Seven Segment displays with the contents of DE. Must be
called repetitively for segments to stay persistent.

● Inputs: DE = pointer to 6-byte location of segment data
● Destroys: A, B, DE = DE + 6

displayError #11
Display ERROR on the Seven Segments and wait for keypress

● Input: none
● Destroys: all

32

checkStartEnd #30
Check start and end address differences.

● Input: HL = address location of START value
HL+2 = address location of END value

● Output: HL = start address
BC = length of end-start
Carry = set if end is less than start

● Destroys: DE

33

API LCD Calls
LCDBusy #12
LCD busy check. Checks the LCD busy flag and loops until LCD isn't busy

● Input: nothing
● Destroys: none

stringToLCD #13
ASCII string to LCD. Writes a string (text) to the current cursor location on
the LCD

● Input: HL = ASCII string terminated with a zero byte
● Destroy: A, HL (moves to end of the list)

TEXT: .db “HELLO TEC!”,0

ld hl,TEXT
ld c,13
rst 10h

charToLCD #14
ASCII character to LCD. Writes one character to the LCD at the current
cursor location

● Input: A = ASCII character
● Destroy: none

ld a,”G”
ld c,14
rst 10h

commandToLCD #15
Command to LCD. Sends an LCD instruction to the LCD

● Input: B = Instruction byte
● Destroy: none

ld b,01 ;clear LCD
ld c,15
rst 10h

34

API Input Calls
scanKeys #16
Universal Key input detection routine. Supports HexPad and Matrix. The
routine does not wait for a key press the returns immediately. Only
Hexpad keys are detected if using the Matrix Keyboard.

● Return: A = key value (if the following is met)
zero flag set if a key is pressed
carry flag set if press detected of a new key
carry flag not set for a key pressed and held or if

no key has been pressed
● Destroys: DE if using Matrix Keyboard

Key mapping returned in register A

0-F = 00-0F
Plus = 10
Minus = 11
GO = 12
AD = 13

Fn-0-F = 20-2F (Bit 5 set)
Fn-Plus = 30
Fn-Minus = 31
Fn-GO = 32
Fn-AD = 33

scanKeysWait #17
Generic Key input detection routine. Supports HexPad and Matrix. Waits
until a key is pressed. The routine will only detect a key if all keys are
released first. Only Hexpad keys are detected if using the Matrix Keyboard.

● Return: A = key value (if following are met)
● zero flag set if a key is pressed
● Destroys: DE if using Matrix Keyboard

See table above for return values in register A

joystickScan #19
Joystick port scan routines. This routine will return a value based on the
movement/button of the joystick or any combination: IE: UP+DOWN = 03H,
Routine must be called repetitively.

● Input: None
● Output: A = Joystick return value between 00H-5FH (0-95)

01H = Up 10H = Fire 2
02H = Down 20H = Comm2 (Pin 9)
04H = Left 40H = Fire 1
08H = Right 80H = Fire 3

zero flag set if no joystick value returned
● Destroy: none

35

matrixScan #18
Key scan routine for the Matrix Keyboard. This routine detects up to two
key presses at the same time. Key values stored in DE. The routine must
be called repetitively.

● Input: None
● Output: E = Key pressed between 00H-3FH (0-63)

D = Second key, FF=no key,00=shift,01=Ctrl,02=Fn
zero flag set if a key is pressed or combination valid

Key mapping returned in register E (note: some gaps are present)

Shift = 00
Ctrl = 01
Fn = 02
Up = 03
Down = 04
Left = 05
Right = 06
Caps = 07
Del = 08
Tab = 09
Enter = 0A

Esc = 0C
Space = 0D
Single Qt = 0E
Comma = 0F
Minus = 10
F.Stop = 11
/ = 12
0 = 13
1 = 14
2 = 15
3 = 16

4 = 17
5 = 18
6 = 19
7 = 1A
8 = 1B
9 = 1C
; = 1E
= = 20
A = 24
B = 25
C = 26

D = 27
E = 28
F = 29
G = 2A
H = 2B
I = 2C
J = 2D
K = 2E
L = 2F
M = 30
N = 31

O = 32
P = 33
Q = 34
R = 35
S = 36
T = 37
U = 38
V = 39
W = 3A
X = 3B
Y = 3C

Z = 3D
\ = 3F

matrixScanASCII #53
Convert the output of the matrixScan routine to ASCII. matrixScan returns
values between 0 and 64, these represent key presses on the keyboard.
This routine will convert the output of matrixScan DE, to the actual key
pressed in ASCII. If the key doesn't map to an ASCII character then the
matrix key value is returned.

● Input: DE = value return from matrixScan.
E = key, D = Secondary key

● Output: A = key pressed in ASCII
● Destroy: BC, HL

Example code on using matrixScanASCII can be found in the Quick Start
Programs chapter below.

36

API Serial Data Transfer Calls
serialEnable #20
Activates the BitBang serial port for serial transmit. Disco LED's glow blue
to indicate ready status.

● Input: none
● Destroy: A

serialDisable #21
Deactivates the BitBang serial port for serial transmit. Disco LEDs turn off.

● Input: none
● Destroy: A

txByte #22
Bit Bang FTDI USB transmit routine. Send one byte via the FTDI USB serial
connection. It assumes a UART connection of 4800-8-N-2.

● Input: A = byte to transmit
● Output: nothing
● Destroy: none

rxByte #23
Bit Bang FTDI USB receive routine. Receive one byte via the FTDI USB
serial connection. It assumes a UART connection of 4800-8-N-2. Note
routine will wait until a bit is detected.

● Input: nothing
● Return: A = byte received
● Destroy: none

intelHexLoad #24
Load an Intel Hex file via the FTDI USB serial connection. Displays file
progress on the segments and PASS or FAIL at the end of the load. Intel
Hex file format is a string of ASCII with the following parts:

MARK | LENGTH | ADDRESS | RECORD TYPE | DATA | CHECKSUM
:10200000210621CD7D20CD98203A00213C320021AF <- EXAMPLE LINE

MARK is a colon character, LENGTH is the number of bytes per line,
ADDRESS is the 2-byte address of where the data is to be stored. RECORD
TYPE is 00 for Data and 01 for EOF. DATA is the bytes to be stored.
CHECKSUM is the addition of all bytes in one line.

37

● Input: nothing
● Output: nothing
● Destroy: HL,DE,BC,A

sendToSerial #25
SIO Binary Dump. Transfer data on the TEC to a serial terminal. From
address and Length of data is needed for input. Use checkStartEnd to
get length if using From/To address.

● Input: HL = start address
DE = length in bytes of data to send

● Destroys: A,HL,DE,BC

receiveFromSerial #26
SIO receives binary data. Receive binary data from FTDI. From address
and Length of data is needed for input. Use checkStartEnd to get length
if using From/To address.

● Input: HL = start address
DE = length in bytes of data to receive

● Destroys: A,HL,DE,BC

sendAssembly #27
Send Assembly instructions to the serial port. Print out the disassembled
code that is on the TEC in readable assembly language on the serial
terminal. From address and Length of data is needed for input. Use
checkStartEnd to get length if using From/To address.

● Input: HL = start address
DE = length in bytes of data to disassemble

● Destroys: A,HL,DE,BC

sendHex #28
Send a traditional HEX dump as text to the serial terminal. Up to 16 bytes
are displayed per line. From address and Length of data is needed for
input. Use checkStartEnd to get length if using From/To address.

● Input: HL = start address
DE = length in bytes of data to send as Hex

● Destroys: A,HL,DE,BC

38

genDataDump #29
Generate data dump in ASCII. Print the Address and then B number of
bytes. This routine is a subroutine in the _sendHex routine.

● Input: B = number of bytes to display
● HL = start address of data dump
● DE = address of string destination
● Output: DE = zero terminated address one after last ASCII

entry
IE: "4000: 23 34 45 56 78 9A BC DE",0

● Destroys: A, HL (moves to next address after last byte)

stringToSerial #45
ASCII string to FTDI Serial Port. Writes a string (text) to the serial port

● Input: HL = ASCII string terminated with a zero byte
● Destroy: A, HL (moves to end of the list)

TEXT: .db “HELLO TEC!”,0

ld hl,TEXT
ld c,55
rst 10h

39

API Menu & Parameter Calls
menuDriver #31
Menu driver for user programs. Creates a selectable custommenu/list.
Keys: Go = Select menu item, AD = Exit Menu, Plus/Minus = Navigate menu.
If a menu item is selected by pressing Go, a jump is performed to the
menu routine address (see example below). If the user routine ends with a
RET instruction, control will be brought back to the menu. There is no need
to call the menuDriver again after the routine returns.

If after the RET the menu is to be removed or popped off, then call the
menuPop routine prior to the RET. This will return control to the previous
menu or enter Data Entry mode.

The menu can also be used as a selectable List. UsemenuPop to close the
list once the item has been selected. See an example below on how to do
this.

● Input: HL = Pointer to Menu configuration.
● Destroys: A, HL

All strings are ZERO terminated! Except the 7 Segment Text must be ASCII
of exactly 6 bytes. Menu configuration is as follows.

<# Menu Entries>, <7 Segment Text>, <Menu Text Title>,
[<Menu Text Label>, <Menu Routine Address>]+

EG: .db 2 ; Two menu items
.db "MyGame" ; 7 segment text (6 bytes)
.db "Games",0 ; Menu title
.db "TEC Invaders",0 ; Text and Routine
.dw invaders
.db "TEC Maze",0 ; Text and routine
.dw maze

40

paramDriver #32
Parameter data entry driver. Creates a list of editable two-byte parameters.
Keys: Go = Continue, AD = Exit, Plus/Minus = Navigate, 0-F = enter values

● Input: HL = Pointer to Parameter configuration.

Once the Go key is pressed, code will continue after the API call. The
parameter view on the LCD will automatically be removed and the LCD will
display the prior view to the parameter call. There is no need to call
menuPop to restore the previous LCD view.

Parameter text can be no longer than 14 characters. Parameters entered
will be stored in the Param RAM Address locations of two-bytes each. All
strings are ZERO terminated! Except the 7 Segment Text must be ASCII
of exactly 6 bytes. Parameter configuration is as follows.

<No. of Entries>, <7 Segment Text>, <Parameter Title
Text>, [<Param Text Label>, <Param RAM Address>]+

EG: .db 3 ; Three parameters
.db "Params" ; 7 segment text (6 bytes)
.db "= Enter Parameters =",0 ; Parameter title
.db "Start Address:",0 ; Text and Address
.dw RAM_LOC_1
.db "End Address:",0 ; Text and Address
.dw RAM_LOC_2
.db "Dest. Address:",0 ; Text and Address
.dw RAM_LOC_3

menuPop #47
Replace the current menu with its parent menu if any. If menus have been
nested, then the parent menu will become the active menu. This is the
same as pressing the AD key but done in software. If no parent menu
exists then the Monitor mode is changed to Data Entry View. Useful if
using the menu as a Select List where execution of code is to be continued.

● Input: none.
● Destroys: A

41

Menu and Parameter Driver Example
Create a Menu with 3 items. The first item jumps to a routine which is the
standard way to use the menu. The second item displays a selectable list
that saves a value in RAM and returns to the menu. The last item will
create a parameter entry list of four 2-byte items.

MENUDRIVER .EQU 1FH ;Menu API
PARAMDRIVER .EQU 20H ;Param API
MENUPOP .EQU 2FH ;Menu Pop API

PROGRAM1 .EQU 1000H ;Program 1
BAUD .EQU 2008H ;Baud value
PARAM1 .EQU 2000H ;two bytes
PARAM2 .EQU 2002H ;per param
PARAM3 .EQU 2004H
PARAM4 .EQU 2006H

;Create Menu
0E 1F ld c,MENUDRIVER
21 00 30 ld hl,menuCFG ;config
D7 rst 10H ;API call
;Code continues in menu routines

;Create Selectable List
setBaud:
0E 1F ld c,MENUDRIVER
21 00 30 ld hl,baudCFG ;config
D7 rst 10H ;API call
;Code continues in menu routines

;Baud rate saving code
baud12:
21 00 12 ld hl,1200H ;baud rate
18 0D jr saveBaud ;cont..
baud24:
21 00 24 ld hl,2400H ;baud rate
18 08 jr saveBaud ;cont..
baud48:
21 00 48 ld hl,4800H ;baud rate
18 03 jr saveBaud ;cont..
baud96:
21 00 96 ld hl,9600H ;baud rate
saveBaud:
22 08 20 ld (BAUD),hl ;save baud
0E 2F ld c,MENUPOP
D7 rst 10H ;API call
C9 ret ;Return to Main Menu

;Create Parameter Entry
createParam:
0E 20 ld c,PARAMDRIVER
21 80 30 ld hl,paramCFG ;config
D7 rst 10H ;API call
...Parameter code continues
C9 ret ;Return to Main Menu

;Main Menu Configuration
menuCFG:

.db 3 ;three entries

.db "-Menu-"

.db "= MENU TITLE =",0

.db "Run Program",0

.dw PROGRAM1

.db "Set Baud Rate",0

.dw setBaud

.db "Parameters",0

.dw createParam

;Selectable List Configuration
baudCFG:

.db 4 ;four entries

.db "BAUDrt"

.db "= Select Baud =",0

.db "1200",0

.dw baud12

.db "2400",0

.dw baud24

.db "4800",0

.dw baud48

.db "9600",0

.dw baud96

;Parameter Entry Configuration
paramCFG:

.db 4 ;four entries

.db "Input "

.db "= PARAM TITLE =",0

.db "Start Address",0

.dw PARAM1

.db "End Address",0

.dw PARAM2

.db "Copy Address",0

.dw PARAM3

.db "Backup Address",0

.dw PARAM4

42

API Sound Calls
playNote #34
Play a note. Play a note with a given frequency and wavelength

● Input: HL = frequency (01-7F)
B = wavelength (00-FF)

● Destroys: HL, BC, A

playTune #35
Play a series of notes. To play a note use a reference between 01H and 18H.
Where 01H is the lowest frequency and 18H is the highest frequency. Use
00H for a pause and any value greater than 18H to exit. A single pause can
be used to separate notes.

Note reference table is as follows:

G 01H C# 07H G 0DH C# 13H

G# 02H D 08H G# 0EH D 14H

A 03H D# 09H A 0FH D# 15H

A# 04H E 0AH A# 10H E 16H

B 05H F 0BH B 11H F 17H

C 06H F# 0CH C 12H F# 18H

● Input: DE = Address of first note
● Destroy: A,B,DE,HL

playTuneMenu #36
Play a series of notes with the _playTune routine, but the address of the
first note is selected via a parameter menu.

● Input: none
● Destroy: A,B,DE,HL

43

API System Latch Calls
getCaps #37
Get Caps lock state

● Input: none
● Output: A = caps lock state; 0 = off, 80H = on

getShadow #38
Get SHADOW state

● Input: none
● Output: A = shadow state; 0 = off, 01H = on

getProtect #39
Get PROTECT state

● Input: none
● Output: A = protect state; 0 = off, 02H = on

getExpand #40
Get EXPAND state

● Input: none
● Output: A = expand state; 0 = off, 04H = on

setCaps #41
Set Caps lock state

● Input: A = Desired caps lock state; 0 = off, 80H = on
● Destroy: A

setShadow #42
Set Shadow state

● Input: A = Desired shadow state; 0 = off, 01H = on
● Destroy: A

setProtect #43
Set Protect state

● Input: A = Desired protect state; 0 = off, 02H = on
● Destroy: A

setExpand #44
Set Expand state

● Input: A = Desired expand state; 0 = off, 04H = on
● Destroy: A

44

Miscellaneous Calls
timeDelay #33
A 16-bit delay routine. An input delay of 2000H is approximately 50ms.

● Input: HL = delay amount
● Destroys: none

random #49
Random number generator. Return a random number between 00H-FFH

● Input: none
● Output: A = pseudo-random number
● Destroy: B

setDisStart #50
Set Disassembly start address. Set the first address for disassembly output

● Input: HL = start address
● Output: none
● Destroy: none

getDisNext #51
Get Disassembly next address. The new start address for the next output.

● Input: none
● Output: HL = start address
● Destroy: none

getDisassembly #52
Generate Disassembly line. Must call setDisStart prior. Only need to call
setDisStart once as the next address is automatically increased.

● Input: none
● Output: HL = pointer to disassembly ASCII, zero

terminated
● Destroy: none

RCTAPI #46
Call a Real Time Clock (RTI) routine for the RTC add on board. See the RTC
chapter below for detailed information on this add-on.

● Input: B = RTC routine number
Other = Depends on the RTC routine

45

Real Time Clock (RTC) Add-On Interface
A RTC add-on board that connects to the
General Purpose IO port on the TEC-1G
can be interfaced with Mon3. The board
uses the DS1302 Real Time Clock chip.
The RTC chip is designed to respond on
port FCH.

The DS1302 supports 12 and 24 hour
clock modes, a 100 year calendar
(2000-2099) with leap year support, and
31 bytes of general purpose nonvolatile
RAM. The TEC Designers have called the
NVRAM, “Parameter RAM” or PRAM.

To initially set the RTC, a convenient RTC Setup routine has been provided
in the Settings item in the Main Menu. Select “Configure RTC”. Press the
following keys to update the time/date: 0 = Hour, 1 = Minute, 2 = Second, 3 =
12/24h, 4 = Day of week, 5 = Day, 6 = Month, 7 = Year, 8 = View RTC PRAM, F =
Reset RTC, AD = Exit. When viewing RTC PRAM data, Plus = Move Down,
Minus = Move Up, AD = Exit back to RTC Setup.

Mon3 will
automatically utilise
the internal PRAM to
retain some settings
when the TEC-1G is
powered down. 14
Free bytes are

available to be used by the user. The reserved Mon3 PRAM slots are:

Slot Reserved for Slot Reserved for Slot Reserved for

0-5 Quick Jump Addresses 12-15 Mon3 Future Use 30 Mon3 Checksum

6-11 Start/End/Dest Addresses 16-29 User Free RAM

When the RTC board is first used, TEC-1G settings are saved to the PRAM
during power on. Manual resetting of the PRAM can also be achieved by
selecting the “Reset RTC PRAM” option in the Settings item in the Main
Menu. This will only reset Mon3 reserved values.

46

RTC API Calls
The RTC API uses the standard rst 10H call with the addition of the B
register to specify which RTC API function is required. In this way, all RTC
functions only occupy a single Mon3 API call.

General Interface

ld c,2EH ;RTC API call number
ld b,[RTC Call Number]
rst 10H

Some Examples

;Get the current time
01 2E 02 ld bc,022EH ;getTime + RTC API
D7 rst 10H

;Set the current time to 10:24:46
01 2E 03 ld bc,032EH ;setTime + RTC API
21 00 30 ld hl,1024H ;10 hours, 24 minutes
16 46 ld d,46H ;46 seconds
D7 rst 10H

;Write a byte to the RTC NV Ram
01 2E 0C ld bc,0C2EH ;writeRTCbyte + RTC API
11 FF 02 ld de,02FFH ;Save FF in position 02
D7 rst 10H

RTC Routine # 0x RTC Routine # 0x RTC Routine # 0x

checkDS1302 0 0 setDay 7 07 BCDToBin 14 0E

resetDS1302 1 01 get1224Mode 8 08 binToBCD 15 0F

getTime 2 02 set12HrMode 9 09 formatTime 16 10

setTime 3 03 set24HrMode 10 0A formatDate 17 11

getDate 4 04 readRTCByte 11 0B RTCSetup 18 12

setDate 5 05 writeRTCByte 12 0C

getDay 6 06 burstRTCRead 13 0D

47

checkDS1302 #0
Check if a DS1302 is detectable, by verifying that the DS1302's registers
return expected results.

● Input: none
● Output: Carry flag set = no RTC add-on board present
● Destroy: A

resetDS1302 #1
Resets the DS1302 to a known state - clears existing Time and Calendar.
Does not clear RTC RAM. Sets DS1302 to 01:00.00 AM, 01/01/2000.

● Input: none
● Destroy: none

Note: To be used onlywhen the RTC requires a settings reset e.g. if it's not
"ticking". Use checkDS1302 to "reset" the DS1302 to a ready state, as part of
program initialization.

getTime #2
Get time from RTC. Time is formatted in either 12 or 24 hour mode,
depending on selected mode.

● Input: none
● Output: H = hour, bit 5=am/pm flag (in 12hr mode). 1=PM

L = minute
D = second

● Destroy: A

Note that all returned registers are BCD coded, so 10:24:36 results in
HL=1024h, D=36h

setTime #3
Sets the time in the RTC chip. Time is formatted in either 12 or 24 hour
mode, depending on selected mode.

● Input: H = hour, bit 5=am/pm flag (in 12hr mode). 1=PM
L = minute
D = second

● Destroy: A,E

The 12/24 hour mode flag is preserved. Note that all registers are BCD
coded, so 10:24:36 is formatted as HL=1024h, D=36h

48

getDate #4
Returns the present Calendar date, month, year.

● Input: none
● Output: H = date

L = month
DE = year

● Destroy: A

Note that values returned are BCD coded.

setDate #5
Sets the Calendar to a specified date/month/year. Invalid dates may be
accepted e.g. 30 February as the DS1302 does not validate dates as
programmed; it simply rolls over at midnight.

● Input: H = date
L = month
DE = year 2000-2099, D is assumed to be 20h

● Destroy: A

Note that values returned are BCD coded.

49

getDay #6
Gets the Day of the week i.e. "Monday", "Tuesday", etc. 01 = Monday, 07 =
Sunday.

● Input: none
● Output: D = 01-07 (Day of week)

HL = address of zero terminated DOW string
● Destroy: A

The names of the days of the week are stored in the Mon3 ROM; HL points
to the correct string for that day.

setDay #7
Sets the Day of the week. 01 = Monday, 07 = Sunday.

● Input: D = 01-07 (Day of week)
● Output: Carry Flag set = invalid value supplied
● Destroy: A

get1224Mode #8
Reports if the RTC is presently in 12 or 24 hour mode.

● Input: none
● Output: A = 00H (24hr), 80H (12hr), Zero flag set
● Destroy: none

set12HrMode #9
Sets the RTC to 12 hour mode. That is, the hour is subsequently returned as
01-12, and an AM/PM flag.

● Input: none
● Output: Carry Flag set = already in 12 hr mode
● Destroy: A,D

set24HrMode #10
Sets the RTC to 24 hour mode (also known as Military Time). That is, the
hour is subsequently returned as 00-23.

● Input: none
● Output: Carry Flag set = already in 24 hr mode
● Destroy: A,D

50

readRTCByte #11
Reads a byte from the RTC PRAM.

● Input: D = memory slot to return 0–30
● Output: A = value stored in memory
● Destroy: none

writeRTCByte #12
Writes a byte to the RTC PRAM.

● Input: D = memory slot to write to 0–30
E = value to store

● Destroy: A

burstRTCRead #13
Reads all 31 RTC PRAM bytes and fills a user-supplied buffer with that data.
The user buffer should be 31 bytes long.

● Input: HL = location to write to (31 bytes)
● Output: HL = moved to address after last byte
● Destroy: A

binToBcd #14
Converts the value in register A from BCD encoded, to binary. i.e. "23h"
becomes "23" decimal.

● Input: A = BCD Value to convert
● Output: A = Binary value of BCD
● Destroy: none

bcdToBin #15
Converts the value in register A from binary to BCD. i.e. "52" decimal
becomes "52h".

● Input: A = Binary Value to convert
● Output: A = BCD value of Binary
● Destroy: none

51

formatTime #16
Takes a time and fills a user-supplied buffer with an ASCIIZ string
formatted as human-readable text. The user-supplied buffer should be at
least 12 bytes long.

Bits 7 and 5 of the hour is used to format the time, if it is a 12hr mode
timestamp - AM or PM is appended accordingly.

● Input: H = hour (bit 7 = 12/24hr, 1=12hr mode)
(bit 5 = am/pm flag, 1=PM)

L = minute
D = second
IY = address of user supplied buffer

● Output: IY = moved to address after last byte
● Destroy: A

formatDate #17
Takes a date and fills a user-supplied buffer with an ASCIIZ string
formatted as human-readable text. The user-supplied buffer should be at
least 11 bytes long.

Dates are output as DD/MM/YYYY
● Input: H = Date

L = Month
DE = Year (2000 - 2099)
IY = address of user supplied buffer

● Output: IY = moved to address after last byte
● Destroy: A

RTCSetup #18
Standalone application that assists with configuring the RTC for initial use.
The LCD displays the current RTC time and date along with the
instructions.

Keys: 0 = Hour, 1 = Minute, 2 = Second, 3 = 12/24h, 4 = Day of week, 5 = Day, 6
= Month, 7 = Year, 8 = View RTC PRAM, F = Reset RTC, AD = Exit.

When viewing RTC RAM data, Plus = Move Down, Minus = Move Up, AD =
Exit back to RTC Setup.

52

Graphical LCD Add-On Interface
Mon3 includes a Graphical LCD (GLCD) library that will work with the
TEC-DECK Graphical LCD PCB Add-On. If the Graphical LCD is installed on
the TEC-1G via the TEC-DECK headers, special GLCD API calls can be used
to interface with the GLCD. The library is for GLCDs with the ST7920 chip.

The GLCD library contains a variety of routines that can produce simple
shapes and lines, these include text, lines, rectangles, circles and pixels.

53

General Conventions
The register A holds the API Call number. All other registers except the IX
register can be used as parameters if needed. Executing a RST 18H or DF
calls the GLCD API.

General Interface

ld a,[API Call Number]
rst 18H

The following code will draw a box and write text to the GLCD

; Initialise and set to Graphics Mode
3E 00 ld a,0 ; Initialise GLCD
DF rst 18H
3E 04 ld a,4 ; Graphics Mode
DF rst 18H

; Draw Box - Box Outline Example
01 20 00 ld bc,0020H ; X0, Y0
11 3F 7F ld de,7F3FH ; X1, Y1
3E 06 ld a,6 ; Draw a outline box from X0,Y0 to X1,Y1
DF rst 18H

; Plot Graphics to LCD Screen (must do)
3E 0C ld a,12 ; Plot To LCD
DF rst 18H

;Write Text to the Screen
3E 05 ld a,5 ; Text Mode
DF rst 18H
0E 01 ld c,01H ; Row 1
3E 0D ld a,13 ; Print String
DF rst 18H
54 45 43 2D 31 47 00 .db "TEC-1G",0

initLCDmust be called at the start of every program. The GLCD has two
modes, Text and Graphics. Both Text and Graphics can be displayed at the
same time. These modes must be selected prior to the drawing or text
routine. Also, plotToLCDmust be called to display any graphics drawn to
the screen. The above example displays these to principals.

54

GLCD API Calls list

Routine # 0x Routine # 0x

initLCD 0 0 fillCircle 11 0B

clearGBUF 1 01 plotToLCD 12 0C

clearGrLCD 2 02 printString 13 0D

clearTxtLCD 3 03 printChars 14 0E

setGrMode 4 04 delayUS 15 0F

setTxtMode 5 05 delayMS 16 10

drawBox 6 06 setBufClear 17 11

drawLine 7 07 setBufNoClear 18 12

drawCircle 8 08 clearPixel 19 13

drawPixel 9 09 flipPixel 20 14

fillBox 10 0A

GLCD API Configure Calls
initLCD #0
Initialise the LCD Screen. This routine is to be called before any other
routine.

● Input: nothing
● Destroy: All

clearGBUF #1
Clear the Graphics Buffer. The Graphics Buffer or GBUF is the internal
memory area that contains pixel data for the LCD. The drawing routines
write data to the GBUF. Once all pixels are set, this buffer is then plotted to
the LCD with the plotToLCD Routine. Clearing the GBUF is a good way to
ensure the pixel area is empty.

● Input: nothing
● Destroy: All

55

clearGrLCD #2
Clear the Graphics LCD Screen. This routine clears the GDRAM or Graphics
screen on the LCD.

● Input: nothing
● Destroy: All

clearTxtLCD #3
Clear the Text LCD Screen. This routine clears the DDRAM or Text screen
on the LCD.

● Input: nothing
● Destroy: All

setGrMode #4
Set the LCD to Graphics Mode. This routine puts the LCD in Graphics mode
(Extended Instructions) and any further instructions to the LCD will be for
the graphics screen. It only needs to be called once if multiple graphics
routines are used.

● Input: nothing
● Destroy: AF,DE

setTxtMode #5
Set the LCD to Text Mode. This routine puts the LCD in Text mode (Basic
Instructions) and any further instructions to the LCD will be for the text
screen. It only needs to be called once if multiple text routines are used.

● Input: nothing
● Destroy: AF,DE

56

GLCD API Graphics Calls
drawBox #6
Draws a single-line rectangle between two points X1, Y1 and X2, Y2.

● Input: B = X1-coordinate (0-127)
C = Y1-coordinate (0-63)
D = X2-coordinate (0-127)
E = Y2-coordinate (0-63)

● Destroy: AF,HL

ld bc,0020H ;X0, Y0
ld de,7F3FH ;X1, Y1
ld a,6 ;drawBox
rst 18H

drawLine #7
Draws a straight line between X1, Y1 and X2, Y2. Uses the Bresenham Line
drawing algorithm. http://members.chello.at/~easyfilter/bresenham.html

● Input: B = X1-coordinate (0-127)
C = Y1-coordinate (0-63)
D = X2-coordinate (0-127)
E = Y2-coordinate (0-63)

● Destroy: All

ld bc,0010H ;X0, Y0
ld de,7F30H ;X1, Y1
ld a,7 ;drawLine
rst 18H

drawCircle #8
Draws a circle from amidpoint to a radius.

● Input: B = Mid-X-coordinate (0-127)
C = Mid-Y-coordinate (0-63)
E = Radius (1-63)

● Destroy: All

ld bc,0818H ;Mid X, Mid Y
ld e,08H ;Radius
ld a,8 ;drawCircle
rst 18H

57

http://members.chello.at/~easyfilter/bresenham.html

drawPixel #9
Draws a single Pixel.

● Input: B = X-coordinate (0-127)
C = Y-coordinate (0-63)

● Destroy: AF,HL

ld bc,4020H ;X,Y
ld a,9 ;drawPixel
rst 18H

fillBox #10
Draws a filled rectangle between X1, Y1 and X2, Y2.

● Input: B = X1-coordinate (0-127)
C = Y1-coordinate (0-63)
D = X2-coordinate (0-127)
E = Y2-coordinate (0-63)

● Destroy: AF,HL

ld bc,0020H ;X0, Y0
ld de,7F3FH ;X1, Y1
ld a,10 ;fillBox
rst 18H

fillCircle #11
Draws a filled circle from amidpoint to a radius. This routine iteratively
calls the drawCircle routine increasing the radius until it equals the
register E. There might be gaps in the filled circle, but hey it looks just like
what you get on a BASIC program.

● Input: B = Mid-X-coordinate (0-127)
C = Mid-Y-coordinate (0-63)
E = Radius (1-63)

● Destroy: All

ld bc,1018H ;Mid X, Mid Y
ld e,08H ;Radius
ld a,11 ;fillCircle
rst 18H

58

plotToLCD #12
This routine draws the Graphics Buffer or GBUF to the Graphics LCD
screen. It is usually called after one of the drawing routines is called. This
routine must be called for any graphics to appear on the GLCD. After
plotting the GBUF is cleared. Use setBufNoClear to retain the GBUF.

● Input: nothing
● Destroy: All

GLCD API Text Calls
printString #13
Prints ASCII text on a given row. There are 4 text rows on the LCD screen.
The text is to be defined directly after the RST 18H routine and is to be
terminated with a zero.

● Input: C = row number (0-3)
Text = "String" on the next line, terminate with 0

● Destroy: All

ld c,02H ;Row 2
ld a,13 ;printString
rst 18H
.db 02H, " This Text ", 1BH ,00H

There are 128 characters that are available from 00H-7FH. Conveniently,
Alphanumeric characters align with the ASCII table.

59

printChars #14
Print Characters on the screen in a given row and column. This routine is
similar to the one above but character row and column placement can be
made. Characters to be printed are to be terminated with a zero.

Even though there are 16 columns, only every second column can be
written to and two characters are to be printed. IE: if one character is to be
printed in column 2, then set B=0 and print " x", putting a space before
the character.

● Input: B = column (0-7)
C = row (0-3)
HL = start address of text data

● Destroy: All. (HL will be at the end of the text data)

ld hl,TEXT_DATA
ld bc,0102H ;Column 1, Row 2
ld a,14 ;printChars
rst 18H
...
TEXT_DATA:
.db "Hello!",0

GLCD API Utility Calls
delayUS #15
Delay loop for LCD to complete its instruction. Every time a command is
sent to the LDC, it requires a small amount of time to complete that
operation. IE: setting extended instruction mode. The time needed for
most operations is defined in the LDC specification. It is usually around
72us. This routine is used internally, but can also be used directly. The
delay time depends on how fast the CPU is running.

● Input: nothing
● Destroy: AF,DE

ld a,02H ;Home instruction
out (07),a ;send instruction to GLCD
ld a,15 ;delayUS
rst 18H

60

delayMS #16
This is the same as the above routine, but the delay can be software
controlled.

● Input: DE = delay value
● Destroy: AF,DE

ld a,01H ;Clear instruction
out (07),a ;send instruction to GLCD
ld de,0050H ;longer delay
ld a,16 ;delayMS
rst 18H

setBufClear #17
On every plotToLCD call, clear the graphics buffer GBUF. Calling this
routine will clear the graphics buffer on every draw to the LCD. This is
useful if doing animation that requires a new drawing to be displayed on
every plot or frame.

● Input: none
● Destroy: AF

setBufNoClear #18
Do not clear the graphics buffer on every plotToLCD. Calling this routine
will not clear the graphics buffer on every draw to LCD. This is useful for
adding graphics data to an existing drawing.

● Input: none
● Destroy: AF

clearPixel #19
Removes or clears a single Pixel from the LCD.

● Input: B = X-coordinate (0-127)
C = Y-coordinate (0-63)

● Destroy: AF,HL

ld bc,4020H ;X,Y
ld a,19 ;clearPixel
rst 18H

61

flipPixel #20
Inverts a single Pixel. If the Pixel is on, it will turn off and if the Pixel is off, it
will turn on.

● Input: B = X-coordinate (0-127)
C = Y-coordinate (0-63)

● Destroy: AF,HL

ld bc,4020H ;X,Y
ld a,20 ;flipPixel
rst 18H

GLCD Examples
Provided in the TEC-1G GitHub repository are three GLCD programs. The
programs have already been converted to Intel Hex files and are ready to
load onto the TEC. All programs start at address 2000H. Source code for all
programs are provided and can be changed and studied.

The TEC-1G GitHub account is here: https://github.com/MarkJelic/TEC-1G
and the GLCD examples are in the TEC-Deck/Graphical_LCD directory.

lcd_3d_demo
Draw 3D wireframe graphics and rotate them. This program requires
keypad input to rotate the objects. Buttons 4,8 and C rotate the object in
the 3-axis. Plus and Minus will zoom the object in and out. 0 will return to
the main menu. Pressing GO will exit the program

lcd_mad_program
Draw the face of Alfred E. Neuman. This program draws lines between two
points and creates the face of the Mad Magazine mascot. It draws one line
at a time, similar to how it would display on an Apple][. But if the program
is run at 2022H it will generate instantly. https://meatfighter.com/mad/

lcd_maze_gen
Create a maze. This program generates a maze using a recursive
backtracking algorithm. Watch the maze slowly generate before your eyes.

Some easy-to-type examples have also been provided in the Quick Start
Programs chapter below.

62

https://github.com/MarkJelic/TEC-1G
https://meatfighter.com/mad/

Quick Start Programs
Who wants the TEC-1G to say Hello? Here are three different ways the TEC
can do this. Only a summary of the programs has been provided, making
the examples a good exercise for learning how they work. The programs
utilise Mon3 API routines as discussed in the Advanced Programming
chapter.

This routine is the shortest. It will
display the data at 4009 using RST
20 to multiplex and key scan. If the
AD key is pressed the routine will
exit. Data at 4009 is hardcoded to
display HELLO on the seven
segments

This routine will convert the ASCII
“HELLO!” to seven segment code
using the ASCIItoSegment routine.
Then it will use RST 20 to multiplex
and key scan. Change the ASCII at
401A to display something
different.

4000 11 09 40 LD DE,4009
4003 E7 RST 20
4004 FE 13 CP 13
4006 20 F8 JR NZ,4000
4008 C9 RET
4009 6E C7 C2 .db 6E C7 C2
400B C2 EB 18 .db C2 EB 18

4000 21 1A 40 LD HL,401A
4003 11 20 20 LD DE,2020
4006 06 06 LD B,06
4008 0E 06 LD C,06
400A 7E LD A,(HL)
400B D7 RST 10
400C 12 LD (DE),A
400D 23 INC HL

This routine will display HELLO on
the LCD Screen. It first clears the
LCD by calling commandToLCD and
then calling stringToLCD to display
a zero-terminated ASCII string.
Press the AD key to exit.

400E 13 INC DE
400F 10 F9 DJNZ 400A
4011 11 20 20 LD DE,2020
4014 E7 RST 20
4015 FE 13 CP 13
4017 20 F8 JR NZ,4011

4000 06 01 LD B,01
4002 0E 0F LD C,0F
4004 D7 RST 10
4005 21 11 40 LD HL,4011
4008 0E 0D LD C,0D
400A D7 RST 10
400B CF RST 08
400C FE 13 CP 13
400E 20 FB JR NZ,400B
4010 C9 RET
4011 48 45 4C .db “HEL”
4014 4C 4F 21 00 .db “LO!”,0

4019 C9 RET
401A 48 45 4C .db “HEL”
401D 4C 4F 21 .db “LO!”

63

Matrix Keyboard echo to the Serial Terminal
This program demonstrates how to read in key presses from the Matrix
Keyboard, convert the keys to ASCII, handle key bounce and send the ASCII
to a serial terminal. Fun Task: Modify the program to display on the LCD.

MATRIXSCAN .EQU 12H
SERIALENABLE .EQU 14H
TXBYTE .EQU 16H
TOGGLECAPS .EQU 2DH
MATRIXSCANASCII .EQU 35H
KEY_VALUE .EQU 2000H ;RAM location of key value

4000 0E 14 LD C,SERIALENABLE ;set serial to send bytes
4002 D7 RST 10H ;API call
4003 0E 12 LD C,MATRIXSCAN ;Scan the keyboard
4005 D7 RST 10H ;API call
4006 28 06 JR Z,400E ;valid key has been pressed
4008 AF XOR A ;reset last key pressed
4009 32 00 20 LD (KEY_VALUE),A
400C 18 F5 JR 4003 ;get next key
400E 3E 07 LD A,07H ;is the key CAPS LOCK?
4010 BB CP E
4011 20 09 JR NZ,401C ;no, then skip caps toggle
4013 3A 00 20 LD A,(KEY_VALUE) ;was the previous key CAPS?
4016 BB CP E
4017 28 03 JR Z,401C ;yes, then skip caps toggle
4019 0E 2D LD C,TOGGLECAPS ;toggle caps lock flag
401B D7 RST 10H ;API call
401C 0E 35 LD C,MATRIXSCANASCII ;convert to ASCII
401E D7 RST 10H ;API call
401F FE 03 CP 03H ;ignore Shift,Ctrl or Fn if
4021 38 E0 JR C,4003 ;first key pressed
4023 4F LD C,A
4024 3A 00 20 LD A,(KEY_VALUE) ;ignore key if its the same
4027 B9 CP C ;as the previous key
4028 28 D9 JR Z,4003
402A 79 LD A,C
402B 32 00 20 LD (KEY_VALUE),A ;store new key pressed
402E 0E 16 LD C,TXBYTE ;send key pressed to serial
4030 D7 RST 10H ;API call

4031 18 D0 JR 4003 ;loop back to matrixScan

64

Seven Segment Scroller via the Serial Terminal
This program reads in text from the serial terminal and scrolls the text on
the Seven Segment Displays. Pressing Enter (Carriage Return) will start
the scroll. It uses ASCIITOSEGMENT to convert ASCII to Seven Segment
Display format. Fun Task: Modify the program to display text on the LCD.

ASCIITOSEGMENT .EQU 06H
SERIALENABLE .EQU 14H
TXBYTE .EQU 16H
RXBYTE .EQU 17H
START_STR .EQU 2000H ;Start of string address
ASCII_STR .EQU 2002H ;RAM location of ASCII text

4000 0E 14 LD C,SERIALENABLE ;set serial to send bytes
4002 D7 RST 10H ;API call
4003 11 02 20 LD DE,ASCII_STR ;set DE to store ASCII
4006 0E 17 LD C,RXBYTE ;get a byte from terminal
4008 D7 RST 10H ;API call
4009 FE 0D CP 0DH ;is the byte a CR?
400B 28 0A JR Z,4017 ;yes jump to scroll routine
400D 0E 16 LD C,TXBYTE ;echo byte back to terminal
400F D7 RST 10H ;API call
4010 0E 06 LD C,ASCIITOSEGMENT ;convert ASCII to 7-Seg
4012 D7 RST 10H ;API call
4013 12 LD (DE),A ;save modified ASCII
4014 13 INC DE ;move to next RAM location
4015 18 EF JR 4006 ;loop for more input
4017 3E FF LD A,0FFH ;place FF at end of string
4019 12 LD (DE),A
401A 21 02 20 LD HL,ASCII_STR ;scroll loop starts here
401D 22 00 20 LD (START_STR),HL ;reset to start of string
4020 26 00 LD H,00H ;set timer to zero
4022 ED 5B 00 20 LD DE,(START_STR) ;point to start of string
4026 E7 RST 20H ;scan segments & scan keys
4027 C8 RET Z ;if key is pressed, exit
4028 25 DEC H ;delay for full 256 bytes
4029 20 F7 JR NZ,4022 ;repeat multiplex
402B 1A LD A,(DE) ;check to see if FF is
402C 3C INC A ;the next char to display
402D 28 EB JR Z,401A ;it is, go back to begining
402F 21 00 20 LD HL,START_STR ;shift start by one address
4032 34 INC (HL) ;(max 254 characters!)
4033 18 EB JR 4020 ;display scroll again

65

Two GLCD demos are provided to demonstrate how to use the GLCD API
calls. The first example is a circle animation that uses graphics mode and
the second displays all known fonts on the GLCD which uses text mode.

Making Bubbles
This program first sets up the LCD to use Graphics and ensures that on
every plotToLCD the internal graphics buffer is cleared. This makes the
circle animate. Then a circle is expanded until it reaches the end of the
screen. A beep is played and the code is repeated.

INITLCD .EQU 0
SETGRMODE .EQU 4
DRAWCIRCLE .EQU 8
PLOTTOLCD .EQU 12
SETBUFCLEAR .EQU 17
BEEP .EQU 3
TIMEDELAY .EQU 33

4000 3E 00 LD A,INITLCD ;Initialise the GLCD
4002 DF RST 18H
4003 3E 04 LD A,SETGRMODE ;Set Graphics Mode
4005 DF RST 18H
4006 3E 11 LD A,SETBUFCLEAR ;Set Gr Buffer to Clear
4008 DF RST 18H
4009 0E 03 LD C,BEEP ;Play a Beep
400B D7 RST 10H
400C 1E 01 LD E,1 ;Set initial radius to 1
400E 01 20 40 LD BC,4020H ;Set X,Y to mid screen
4011 C5 PUSH BC ;Save BC/DE
4012 D5 PUSH DE
4013 3E 08 LD A,DRAWCIRCLE ;Draw Circle
4015 DF RST 18H
4016 3E 0C LD A,PLOTTOLCD ;Output to LCD
4018 DF RST 18H
4019 0E 21 LD C,TIMEDELAY ;Wait a bit
401B 21 00 40 LD HL,4000H
401E D7 RST 10H
401F D1 POP DE ;Restore BC/DE
4020 C1 POP BC
4021 1C INC E ;Increase radius by 1
4022 CB 6B BIT 5,E ;Check if bubble hits edge
4024 20 E3 JR NZ,4009 ;Yes, reset radius
4026 18 E9 JR 4011 ;No, redraw circle

66

GLCD Font Display
This program cycles through all stored fonts on the GLCD. Characters on the GLCD are
stored in the Character Generator ROM (CGROM). The program sets up the LCD for text
mode and displays characters on the screen. Press any key to continue. The code also
uses the GLCD ports directly, skipping the API. This is perfectly fine to do. See the ST7920
manual on how to send instructions directly to the GLCD.

INITLCD .EQU 0
SETTXTMODE .EQU 5
PRINTSTRING .EQU 13
DELAYUS .EQU 15

4000 3E 00 LD A,INITLCD ;Initialise the GLCD
4002 DF RST 18H
4003 3E 05 LD A,SETTXTMODE ;Set Text Mode
4005 DF RST 18H
4006 3E 0D LD A,PRINTSTRING ;Display Text
4008 DF RST 18H
4009 20 50 72 65 .DB " Press Any Key",0
400D 73 73 20 41
4011 6E 79 20 4B
4015 65 79 00
4018 0E 00 LD C,0 ;Character Counter
401A CF RST 08H ;Wait for key press
401B 06 40 LD B,40H ;64 Characters per screen
401D 3E 80 LD A,80H ;row 1 on LCD
401F CD 47 40 CALL 4047 ;Set Row on LCD
4022 79 LD A,C ;Get Character
4023 CD 4B 40 CALL 404B ;Display Character on LCD
4026 0C INC C ;Next Character
4027 CB 79 BIT 7,C ;Is C=80H
4029 20 04 JR NZ,402F ;Yes, display chinese chars
402B 10 F5 DJNZ 4022 ;No, display next character
402D 18 EB JR 401A ;Page done, next page
402F 21 40 A1 LD HL,A140H ;Point to Chinese ROM
4032 CF RST 08H ;Wait for key press
4033 06 20 LD B,20H ;32 Characters per screen
4035 3E 80 LD A,80H ;row 1 on LCD
4037 CD 47 40 CALL 4047 ;Set Row on LCD
403A 7C LD A,H ;Get Character High Byte
403B CD 4B 40 CALL 404B ;Display Character on LCD
403E 7D LD A,L ;Get Character Low Byte
403F CD 4B 40 CALL 404B ;Display Character on LCD
4042 23 INC HL ;Next Character
4043 10 F5 DJNZ 403A ;Display next character
4045 18 EB JR 4032 ;New Page
4047 D3 07 OUT (07H),A ;Send instruction to LCD
4049 18 02 JR 404D ;Do Delay
404B D3 87 OUT (87H),A ;Send data to LCD
404D 3E 0F LD A,DELAYUS ;Set Delay
404F DF RST 18H
4050 C9 RET

67

Display a Clock on the Seven Segments
This program requires the RTC Add-on board and will display the current
time set on the RTC Board on the Seven Segments.. A check for 12/24 hour
mode is done to determine how the Hours are displayed. If in 12 hour
mode, Bit 5 is cleared and a decimal point is inserted. Pressing AD will quit
the program.
RTCPRESENT .EQU 00H
GETTIME .EQU 02H
GET1224MODE .EQU 08H
CONVATOSEG .EQU 04H
RTCAPI .EQU 46H
DISP_BUFF .EQU 2000H ;7 Segment Display Buffer
4000 0E 2E LD C,RTCAPI ;RTC API Entry
4002 06 00 LD B,RTCPRESENT ;Is RTC Board Installed?
4004 D7 RST 10H ;API call
4005 D8 RET C ;Carry Set = No, Just Exit
4006 0E 2E LD C,RTCAPI ;RTC API Entry
4008 06 02 LD B,GETTIME ;Get Current RTC Time
400A D7 RST 10H ;API call
400B 7A LD A,D ;Get Seconds
400C 11 04 20 LD DE,DISP_BUFF+4 ;point DE to seconds buffer
400F 0E 04 LD C,CONVATOSEG ;Convert A to 7 Segment
4011 D7 RST 10H ;API call saves in DE
4012 7D LD A,L ;Get Minutes
4013 11 02 20 LD DE,DISP_BUFF+2 ;point DE to minutes buffer
4016 0E 04 LD C,CONVATOSEG ;Convert A to 7 Segment
4018 D7 RST 10H ;API call saves in DE
4019 0E 2E LD C,RTCAPI ;RTC API Entry
401B 06 08 LD B,GET1224MODE ;Check if 12 or 24 Hour
401D D7 RST 10H ;API call
401E 28 0A JR Z,402A ;24 Mode, skip AM/PM setup
4020 CB AC RES 5,H ;Remove AM/PM Flag (Bit 5
4022 3A 03 20 LD A,(DISP_BUFF+3) ;Get 4th segment value
4025 F6 10 OR 10H ;Set Decimal Point Segment
4027 32 03 20 LD (DISP_BUFF+3),A ;Save back to segment
402A 7C LD A,H ;Get Hour
402B 11 00 20 LD DE,DISP_BUFF ;point DE to hour buffer
402E 0E 04 LD C,CONVATOSEG ;Convert A to 7 Segment
4030 D7 RST 10H ;API call saves in DE
4031 11 00 20 LD DE,DISP_BUFF ;point to start of buffer
4034 E7 RST 20H ;Scan Segments & Key Press
4035 FE 13 CP 13H ;Is key press “AD” key?
4037 20 CD JR NZ,4006 ;No, Loop Main Display
4039 C9 RET ;Exit back to Monitor

68

Appendix

Ports

Port Direction Description

00H In Keypad press encoder
➔ Bit 0-4 HexPad
➔ Bit 5 Function Key (Active Low)
➔ Bit 6-7 N/A

01H Out Seven segment digits switch
➔ Bit 0-1 Data Segments
➔ Bit 2-5 Address Segments
➔ Bit 6 FTDI Rx (Out), Disco LED’s
➔ Bit 7 Speaker

02H Out Seven segment LED switch
➔ Bit 0 G segment
➔ Bit 1 F segment
➔ Bit 2 C segment
➔ Bit 3 D segment
➔ Bit 4 E segment
➔ Bit 5 DP segment
➔ Bit 6 B segment
➔ Bit 7 A segment

03H In System Input
➔ Bit 0 Matrix Keyboard (DIP-3)
➔ Bit 1 Protect Mode (DIP-3)
➔ Bit 2 Expand Mode (DIP-3)
➔ Bit 3 Expand Status
➔ Bit 4 Cartridge Flag
➔ Bit 5 General Input
➔ Bit 6 Keypress Flag
➔ Bit 7 FTDI Tx (In)

04H In/Out LCD Instruction

05H Out LED 8x8 Matrix Horizontal (TEC Expander)

06H Out LED 8x8 Matrix Vertical (TEC Expander)

07H Out Graphical LCD Instruction

69

Port Direction Description

84H In/Out LCD Data

87H Out Graphical LCD Data

F8H In/Out Spare (TEC Expander & I/O Bus)

F9H In/Out Spare (TEC Expander & I/O Bus)

FAH In/Out Spare (I/O Bus)

FBH In/Out Spare (General I/O & I/O Bus)

FCH In/Out RTC (Real Time Clock) (General I/O & I/O Bus)

FDH In/Out SD (Secure Digital) Flash Card (General I/O)

FEH In Matrix Keyboard

FFH Out System Latch
➔ Bit 0 Shadow (Active Low)
➔ Bit 1 Protect
➔ Bit 2 Expand
➔ Bit 3 FF-D3 (Mem Bus)
➔ Bit 4 FF-D4 (Mem Bus)
➔ Bit 5 FF-D5 (Mem Bus)
➔ Bit 6 FF-D6 (Mem Bus)
➔ Caps Lock (Matrix Keyboard)

Serial Connection

Constant Value

FTDI to USB Serial Transmission 4800-8-N-2
➔ Baud 4800
➔ 8 Packet Bits
➔ No Parity
➔ 2 Stop bits

70

LCD Cheatsheet
Z80 instructions to communicate with the LCD screen are given as direct
commands. IE: OUT (04),A. Mon3 also provides API routines that do the
same but also check for the LCD busy state. If using direct port
instructions, the LCD busy flag is to be checked prior to the instruction call.
The example code provided uses the API routines.

To move the cursor to Row 2, Column 10 do LD A,0xC9 / OUT (04),A
For IN A,(04), If Bit 7 is set, then LCD is Busy. Other bits are the current Address Counter

71

Character Table

72

Example Using CGRAM and DDRAM

_stringToLCD .equ 13
_charToLCD .equ 14
_commandToLCD .equ 15

; LCD Setup
ld c,_commandToLCD 4000 0E 0F ;LCD Instruction API routine
ld b,01H 4002 06 01 ;Clear display
rst 10H 4004 D7 ;call API routine
ld b,38H 4005 06 38 ;8-Bit, 2 Lines, 5x8 Characters
rst 10H 4007 D7 ;call API routine
; Tell the LCD that next data will be to CGRAM
ld b,40H 4008 06 40 ;CGRAM entry
rst 10H 400A D7 ;call API routine
; Save multiple characters to CGRAM using lookup table
ld b,40H 400B 06 40 ;8 Characters (8 bytes each)
ld c,_charToLCD 400D 0E 0E ;LCD Data API routine
ld hl,403FH 400F 21 3F 40 ;LCD custom character table

loop1:
ld a,(hl) 4012 7E ;get custom character byte
inc hl 4013 23 ;move to next item in table
rst 10H 4014 D7 ;call API routine
djnz loop1 4015 10 FB ;continue for all 64 char bytes
; Display first line of text
ld c,_commandToLCD 4017 0E 0F ;LCD Instruction API routine
ld b,82H 4019 06 82 ;Move Cursor to Row 1, Col 3
rst 10H 401B D7 ;call API routine
ld hl,4034H 401C 21 34 40 ;ASCII text
ld c,_stringToLCD 401F 0E 0D ;LCD String API routine
rst 10H 4021 D7 ;call API routine
; Display customer characters
ld c,_commandToLCD 4022 0E 0F ;LCD Instruction API routine
ld b,0C0H 4024 06 C0 ;Move Cursor to Row 2, Col 1
rst 10H 4026 D7 ;call API routine
ld b,08H 4027 06 08 ;8 Characters
ld c,_charToLCD 4029 0E 0E ;LCD Data API routine

loop2:
ld a,b 402B 78 ;set A to current character
rst 10H 402C D7 ;call API routine
ld a,20H 402D 3E 20 ;space character
rst 10H 402F D7 ;call API routine
djnz loop2 4030 10 F9 ;continue for all 8 characters
; All Done, what for key press and exit
rst 08H 4032 CF ;key wait and press (HALT)
ret 4033 C9 ;exit

TEXT TABLE: 4034 48 45 4C 4C 4F 20 54 45 43 21 00 ; “HELLO TEC!”
CHAR TABLE: 403F 00 0A 1F 1F 0E 04 00 00 ; Heart

4047 04 0E 0E 0E 1F 00 04 00 ; Bell
404F 1F 15 1F 1F 0E 0A 1B 00 ; Alien
4057 00 01 03 16 1C 08 00 00 ; Tick
405F 01 03 0F 0F 0F 03 01 00 ; Speaker
4067 01 03 05 09 09 0B 1B 18 ; Note
406F 00 0E 15 1B 0E 0E 00 00 ; Skull
4077 0E 11 11 1F 1B 1B 1F 00 ; Lock

73

Useful Links
TEC-1G GitHub Repository
https://github.com/MarkJelic/TEC-1G

TEC-1 Facebook Page
https://www.facebook.com/groups/tec1z80

Z80 Instruction Set Reference
https://clrhome.org/table/

Online Z80 Compiler and Debugger
https://www.asm80.com/

Rodney Zaks Programming the Z80
https://archive.org/details/ptz80

TEC Seven Segment Value Calculator
https://slartibartfastbb.itch.io/seven-segment-calculator

Ready? Z80 YouTube Channel (TEC related content)
https://www.youtube.com/@ReadyZ80

Mon3 video demonstration
https://youtu.be/0peIG2HKX3Q

TEC-1 GitHub Group
https://github.com/tec1group/

Talking Electronics Website including original TEC related magazines
https://www.talkingelectronics.com/te_interactive_index.html

74

https://github.com/MarkJelic/TEC-1G
https://www.facebook.com/groups/tec1z80
https://clrhome.org/table/
https://www.asm80.com/
https://archive.org/details/ptz80
https://slartibartfastbb.itch.io/seven-segment-calculator
https://www.youtube.com/@ReadyZ80
https://youtu.be/0peIG2HKX3Q
https://github.com/tec1group/
https://www.talkingelectronics.com/te_interactive_index.html

I/O Connectors

Expander Socket General Purpose I/O

Z80 Bus Connector TEC Deck Connectors

Note: pin 28 is RD

75

