
Cambridge Books Online

http://ebooks.cambridge.org/

Software Modeling and Design

UML, Use Cases, Patterns, and Software Architectures

Hassan Gomaa

Book DOI: http://dx.doi.org/10.1017/CBO9780511779183

Online ISBN: 9780511779183

Hardback ISBN: 9780521764148

Chapter

5 - Overview of Software Modeling and Design Method pp. 61-68

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511779183.007

Cambridge University Press



5

Overview of Software Modeling
and Design Method

The software modeling and design method described in this book is called COMET
(Collaborative Object Modeling and Architectural Design Method), which uses the
UML notation. COMET is an iterative use case–driven and object-oriented method
that specifically addresses the requirements, analysis, and design modeling phases
of the software development life cycle. This chapter considers the COMET method
from a software life cycle perspective. The development process for the COMET
method is a use case–based software process, which is compatible with the Unified
Software Development Process (USDP) (Jacobson, Booch, and Rumbaugh 1999)
and the spiral model (Boehm 1988). This chapter presents the COMET use case–
based software life cycle and describes how the COMET method may be used with
the USDP or the spiral model. It then outlines the main activities of the COMET
method and concludes with a description of the steps in using COMET.

Section 5.1 describes the COMET use case–based software life cycle, and Section
5.2 compares COMET with other software processes. Section 5.3 gives an overview
of the requirements, analysis, and design modeling activities in COMET. Section 5.4
gives an overview of the design of different kinds of software architectures covered
in this textbook.

5.1 COMET USE CASE–BASED SOFTWARE LIFE CYCLE

The COMET use case–based software life cycle model is a highly iterative software
development process based around the use case concept. In the requirements model,
the functional requirements of the system are described in terms of actors and use
cases. Each use case defines a sequence of interactions between one or more actors
and the system. In the analysis model, the use case is realized to describe the objects
that participate in the use case and their interactions. In the design model, the soft-
ware architecture is developed, describing components and their interfaces. The full
COMET use case–based software life cycle model is illustrated in Figure 5.1 and
described next. The COMET life cycle is highly iterative. The COMET method ties
in the three phases of requirements, analysis, and design modeling by means of a
use case–based approach, as outlined next.

61

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:51 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.007

Cambridge Books Online © Cambridge University Press, 2016



Requirements
Modeling

Analysis 
Modeling

Incremental
Software

Construction

Incremental
Software 

Integration

System 
Testing

Incremental
Prototyping

Throwaway
Prototyping

Customer

User

Design 
Modeling

Figure 5.1. COMET use case–based software life cycle model

62

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:51 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.007

Cambridge Books Online © Cambridge University Press, 2016



Overview of Software Modeling and Design Method 63

5.1.1 Requirements Modeling

During the requirements modeling phase, a requirements model is developed in
which the functional requirements of the system are described in terms of actors
and use cases. A narrative description of each use case is developed. User inputs
and active participation are essential to this effort. If the requirements are not well
understood, a throwaway prototype can be developed to help clarify the require-
ments, as described in Chapter 2.

5.1.2 Analysis Modeling

In the analysis modeling phase, static and dynamic models of the system are devel-
oped. The static model defines the structural relationships among problem domain
classes. The classes and their relationships are depicted on class diagrams. Object
structuring criteria are used to determine the objects to be considered for the anal-
ysis model. A dynamic model is then developed in which the use cases from the
requirements model are realized to show the objects that participate in each use case
and how they interact with each other. Objects and their interactions are depicted
on either communication diagrams or sequence diagrams. In the dynamic model,
state-dependent objects are defined using statecharts.

5.1.3 Design Modeling

In the design modeling phase, the software architecture of the system is designed,
in which the analysis model is mapped to an operational environment. The analysis
model, with its emphasis on the problem domain, is mapped to the design model,
with its emphasis on the solution domain. Subsystem structuring criteria are pro-
vided to structure the system into subsystems, which are considered as aggregate
or composite objects. Special consideration is given to designing distributed sub-
systems as configurable components that communicate with each other using mes-
sages. Each subsystem is then designed. For sequential systems, the emphasis is on
the object-oriented concepts of information hiding, classes, and inheritance. For the
design of concurrent systems, such as real-time, client/server, and distributed appli-
cations, it is necessary to consider concurrent tasking concepts in addition to object-
oriented concepts.

5.1.4 Incremental Software Construction

After completion of the software architectural design, an incremental software con-
struction approach is taken. This approach is based on selecting a subset of the sys-
tem to be constructed for each increment. The subset is determined by choosing
the use cases to be included in this increment and the objects that participate in
these use cases. Incremental software construction consists of the detailed design,
coding, and unit testing of the classes in the subset. This is a phased approach by
which the software is gradually constructed and integrated until the whole system is
built.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:51 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.007

Cambridge Books Online © Cambridge University Press, 2016



64 Overview

5.1.5 Incremental Software Integration

During incremental software integration, the integration testing of each software
increment is performed. The integration test for the increment is based on the
use cases selected for the increment. Integration test cases are developed for each
use case. Integration testing is a form of white box testing, in which the interfaces
between the objects that participate in each use case are tested.

Each software increment forms an incremental prototype. After the software
increment is judged to be satisfactory, the next increment is constructed and inte-
grated by iterating through the incremental software construction and incremental
software integration phases. However, if significant problems are detected in the
software increment, iteration through the requirements modeling, analysis model-
ing, and design modeling phases might be necessary.

5.1.6 System Testing

System testing includes the functional testing of the system – namely, testing the
system against its functional requirements. This testing is black box testing and is
based on the black box use cases. Thus, functional test cases are built for each black
box use case. Any software increment released to the customer needs to go through
the system testing phase.

5.2 COMPARISON OF THE COMET LIFE CYCLE WITH
OTHER SOFTWARE PROCESSES

This section briefly compares the COMET life cycle with the Unified Software
Development Process (USDP) and the spiral model. The COMET method can be
used in conjunction with either the USDP or the spiral model.

5.2.1 Comparison of the COMET Life Cycle with Unified Software
Development Process

The USDP, as described in Jacobson, Booch, and Rumbaugh (1999) and briefly
described in Chapter 3, emphasizes process and – to a lesser extent – method. The
USDP provides considerable detail about the life cycle aspects and some detail
about the method to be used. The COMET method is compatible with USDP. The
workflows of the USDP are the requirements, analysis, design, implementation, and
test workflows.

Each phase of the COMET life cycle corresponds to a workflow of the USDP.
The first three phases of COMET have the same names as the first three work-
flows of the USDP – not surprising, because the COMET life cycle was strongly
influenced by Jacobson’s earlier work (Jacobson 1992). The COMET incremental
software construction activity corresponds to the USDP implementation workflow.
The incremental software integration and system test phases of COMET map to
the test workflow of USDP. COMET separates these activities because integration

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:51 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.007

Cambridge Books Online © Cambridge University Press, 2016



Overview of Software Modeling and Design Method 65

testing is viewed as a development team activity, whereas a separate test team
should carry out system testing.

5.2.2 Comparison of the COMET Life Cycle with the Spiral Model

The COMET method can also be used with the spiral model (Boehm 1988). Dur-
ing the project planning for a given cycle of the spiral model, the project manager
decides what specific technical activity should be performed in the third quadrant,
which is the product development quadrant. The selected technical activity, such as
requirements modeling, analysis modeling, or design modeling, is then performed
in the third quadrant. The risk analysis activity, performed in the second quadrant,
and cycle planning, performed in the fourth quadrant, determine how many itera-
tions are required through each of the technical activities.

5.3 REQUIREMENTS, ANALYSIS, AND DESIGN MODELING

The UML notation supports requirements, analysis, and design concepts. The
COMET method described in this book separates requirements activities, analy-
sis activities, and design activities. It should be emphasized that the UML models
need to be supplemented with additional information to fully describe the software
architecture.

Requirements modeling addresses developing the functional and nonfunctional
requirements of the system. COMET differentiates analysis from design as follows:
analysis is breaking down or decomposing the problem so it is understood better;
design is synthesizing or composing (putting together) the solution. These activities
are described in more detail in the next sections.

5.3.1 Activities in Requirements Modeling

In the requirements model, the system is considered as a black box. The use case
model is developed.

■ Use case modeling. Define actors and black box use cases. The functional
requirements of the system are described in terms of use cases and actors. The
use case descriptions are a behavioral view; the relationships among the use cases
give a structural view. Use case modeling is described in Chapter 6.

■ Addressing nonfunctional requirements is also important at the requirements
phase. The UML notation does not address this. However, the use case mod-
eling approach can be supplemented to address nonfunctional requirements, as
described in Chapter 6.

5.3.2 Activities in Analysis Modeling

In the analysis model, the emphasis is on understanding the problem; hence, the
emphasis is on identifying the problem domain objects and the information passed
between them. Issues such as whether the object is active or passive, whether the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:51 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.007

Cambridge Books Online © Cambridge University Press, 2016



66 Overview

message sent is asynchronous or synchronous, and what operation is invoked at the
receiving object are deferred until design time.

In the analysis model, the analysis of the problem domain is considered. The
activities are as follows:

■ Static modeling. Define problem-specific static model. This is a structural view
of the information provided in the system. Classes are defined in terms of their
attributes, as well as their relationship with other classes. Operations are defined
in the design model. For information-intensive systems, this view is of great
importance. The emphasis is on the information modeling of real-world classes
in the problem domain. Static modeling is described in Chapter 7.

■ Object structuring. Determine the objects that participate in each use case.
Object structuring criteria are provided to help determine the software objects
in the system, which can be entity objects, boundary objects, control objects,
and application logic objects. Object structuring is described in Chapter 8. After
the objects have been determined, the dynamic interactions between objects are
depicted in the dynamic model.

■ Dynamic interaction modeling. The use cases are realized to show the interac-
tion among the objects participating in each use case. Communication diagrams
or sequence diagrams are developed to show how objects communicate with
each other to execute the use case. Chapter 9 describes stateless dynamic mod-
eling, including the dynamic interaction modeling approach, which is used to
help determine how objects interact with each other to support the use cases.
Chapter 11 describes state-dependent dynamic interaction modeling, in which
the interaction among the state-dependent control objects and the statecharts
they execute is explicitly modeled.

■ Dynamic state machine modeling. The state-dependent view of the system is
defined using hierarchical statecharts. Each state-dependent object is defined
in terms of its constituent statechart. Designing finite state machines and state-
charts is described in Chapter 10.

5.3.3 Activities in Design Modeling

In the design model, the solution domain is considered. During this phase, the anal-
ysis model is mapped to a concurrent design model. For designing software archi-
tectures, the following activities are performed:

■ Integrate the object communication model. Develop integrated object commu-
nication diagram(s). This is described in Chapter 13.

■ Make decisions about subsystem structure and interfaces. Develop the over-
all software architecture. Structure the application into subsystems. This is
described in Chapter 13.

■ Make decisions about what software architectural and design patterns to use
in the software architecture. Software architectural patterns are described in
Chapters 12, 15, 16, 17, and 18.

■ Make decisions about class interfaces, in particular for sequential software archi-
tectures. For each subsystem, design the information hiding classes (passive

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:51 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.007

Cambridge Books Online © Cambridge University Press, 2016



Overview of Software Modeling and Design Method 67

classes). Design the operations of each class and the parameters of each oper-
ation. This is described in Chapter 14.

■ Make decisions about how to structure the distributed application into dis-
tributed subsystems, in which subsystems are designed as configurable
components, and define the message communication interfaces between the
components. This is described in Chapters 13, 15, 16, and 17.

■ Make decisions about the characteristics of objects, particularly whether they
are active or passive. For each subsystem, structure the system into concur-
rent tasks (active objects). During task structuring, tasks are structured using
the task-structuring criteria, and task interfaces are defined. This is described in
Chapter 18.

■ Make decisions about the characteristics of messages, particularly whether they
are asynchronous or synchronous (with or without reply). Architectural commu-
nication patterns are described in Chapters 12, 13, 15, 16, 17, and 18.

COMET emphasizes the use of structuring criteria at certain stages in the anal-
ysis and design process. Object structuring criteria are used to help determine the
objects in the system, subsystem structuring criteria are used to help determine the
subsystems, and concurrent object structuring criteria are used to help determine
the concurrent (active) objects in the system. UML stereotypes are used through-
out to clearly show the use of the structuring criteria.

5.4 DESIGNING SOFTWARE ARCHITECTURES

During software design modeling, design decisions are made relating to the charac-
teristics of the software architecture. The chapters in the design modeling section of
this textbook describe the design of different kinds of software architectures:

■ Object-Oriented Software Architectures. Chapter 14 describes object-oriented
design using the concepts of information hiding, classes, and inheritance.

■ Client/Server Software Architectures. Chapter 15 describes the design of
client/server software architectures. A typical design consists of one server and
multiple clients.

■ Service-Oriented Architectures. Chapter 16 describes the design of service-
oriented architectures, which typically consist of multiple distributed
autonomous services that can be composed into distributed software applica-
tions.

■ Distributed Component-Based Software Architectures. Chapter 17 describes
the design of component-based software architectures, which can be deployed
to execute on distributed platforms in a distributed configuration.

■ Real-Time Software Architectures. Chapter 18 describes the design of real-time
software architectures, which are concurrent architectures usually having to deal
with multiple streams of input events. They are typically state-dependent, with
either centralized or decentralized control.

■ Software Product Line Architectures. Chapter 19 describes the design of soft-
ware product line architectures, which are architectures for families of products
that need to capture both the commonality and variability in the family.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:51 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.007

Cambridge Books Online © Cambridge University Press, 2016



68 Overview

5.5 SUMMARY

This chapter described the COMET use case–based software life cycle for the de-
velopment of UML-based object-oriented software applications. It compared the
COMET life cycle with the USDP and the spiral model, and described how the
COMET method can be used with either the USDP or the spiral model. The chapter
then described the main activities of the COMET method and concluded with a
description of the steps in using COMET. Each of the steps in the COMET method
is described in more detail in the subsequent chapters of this textbook.

For software intensive systems, in which the software is one component of a
larger hardware/software system, systems modeling can be carried out before soft-
ware modeling. A dialect of UML called SysML is a general purpose modeling lan-
guage for systems engineering applications (Friedenthal et al 2009).

EXERCISES

The following questions relate to the
software modeling and design method
(COMET) described in this book.

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is carried out during requirements
modeling?
(a) Functional requirements of the sys-

tem are described in terms of func-
tions, inputs, and outputs.

(b) Functional requirements of the sys-
tem are described in terms of actors
and use cases.

(c) Functional requirements of the sys-
tem are described textually.

(d) Functional requirements of the sys-
tem are determined by interviewing
users.

2. What is carried out during analysis
modeling?
(a) Developing use case models
(b) Developing data flow and entity-

relationship diagrams
(c) Developing static and dynamic

models
(d) Developing software architectures

3. What is carried out during design mod-
eling?
(a) Developing use case models

(b) Developing data flow and entity-
relationship diagrams

(c) Developing static and dynamic
models

(d) Developing software architectures
4. What is carried out during incremental

software construction?
(a) Detailed design and coding of the

classes in a subset of the system
(b) Detailed design, coding, and unit

testing of the classes in a subset of
the system

(c) Coding and unit testing of the
classes in a subset of the system

(d) Unit and integration testing of the
classes in a subset of the system

5. What is carried out during incremental
software integration?
(a) Implementation of the classes in

each software increment
(b) Unit testing of the classes in each

software increment
(c) Integration testing of the classes in

each software increment
(d) System testing of the classes in each

software increment
6. What is carried out during system test-

ing?
(a) White box testing
(b) Black box testing
(c) Unit testing
(d) Integration testing

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:51 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.007

Cambridge Books Online © Cambridge University Press, 2016


