
Cambridge Books Online

http://ebooks.cambridge.org/

Software Modeling and Design

UML, Use Cases, Patterns, and Software Architectures

Hassan Gomaa

Book DOI: http://dx.doi.org/10.1017/CBO9780511779183

Online ISBN: 9780511779183

Hardback ISBN: 9780521764148

Chapter

12 - Overview of Software Architecture pp. 193-211

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge University Press

12

Overview of Software Architecture

The software architecture separates the overall structure of the system, in terms of
subsystems and their interfaces, from the internal details of the individual subsys-
tems. A software architecture is structured into subsystems, in which each subsys-
tem should be relatively independent of other subsystems. This chapter presents an
overview of software architecture, which is also referred to as a high- level design.
The concepts of software architecture and multiple views of a software architecture
were first introduced in Chapter 1. The concepts of design patterns, components,
and interfaces were introduced in Chapter 4.

In this chapter, Section 12.1 describes the concepts of software architecture and
component-based software architecture. Section 12.2 then describes how having
multiple views of a software architecture helps with both its design and understand-
ing. Section 12.3 introduces the concept of software architectural patterns as a basis
for developing software architectures, whereas Section 12.4 describes how to docu-
ment such patterns. Section 12.5 describes the concept of software components and
interfaces. Finally, Section 12.6 provides an overview of designing software archi-
tectures, as described in Chapters 14 through 20.

12.1 SOFTWARE ARCHITECTURE AND COMPONENT-BASED
SOFTWARE ARCHITECTURE

A software architecture is defined by Bass, Clements, and Kazman (2003) as follows:

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them.”

Thus, a software architecture is considered primarily from a structural per-
spective. In order to fully understand a software architecture, however, it is also
necessary to study it from several perspectives, including both static and dynamic
perspectives, as described in Section 12.2. It is also necessary to address the architec-
ture from functional (functionality provided by the architecture) and nonfunctional

193

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

194 Architectural Design

perspectives (quality of the functionality provided). The software quality attributes
of an architecture are described in Chapter 20.

12.1.1 Component-Based Software Architecture

A structural perspective on software architecture is given by the widely held concept
of component-based software architecture. A component-based software architec-
ture consists of multiple components in which each component is self-contained
and encapsulates certain information. A component is either a composite object
composed of other objects or a simple object. A component provides an inter-
face through which it communicates with other components. All information that
is needed by one component to communicate with another component is contained
in the interface, which is separate from the implementation. Thus, a component can
be considered a black box, because its implementation is hidden from other compo-
nents. Components communicate with each other in different ways using predefined
communication patterns.

A sequential design is a program in which the components are classes and com-
ponent instances are objects (instances of the classes); the components are passive
classes without a thread of control. A component is self-contained; therefore, it can
be compiled separately, stored in a library, and then subsequently instantiated and
linked into an application. In a sequential design, the only communication pattern
is call/return, as described in Section 12.3.2.

In a concurrent or distributed design, the components are active (concurrent)
and capable of being deployed to different nodes in a distributed environment. In
this design, concurrent components can communicate with each other using several
different communication patterns (see Section 12.3), such as synchronous, asyn-
chronous, brokered, or group communication. An underlying middleware frame-
work is typically provided to allow components to communicate.

12.1.2 Architecture Stereotypes

In UML 2, a modeling element can be described with more than one stereotype.
During analysis modeling, one stereotype was used to represent the role character-
istic of a modeling element (class or object), During design modeling, a different
stereotype can be used to represent the architectural characteristic of a modeling
element. This capability is very useful, and the COMET method takes full advantage
of it. In particular, one stereotype is used to describe the role played by the mod-
eling element, such as whether it is a boundary or entity class. A second stereotype
can be used in design modeling to represent the architectural structuring element
such as subsystem (Chapter 12), component (Chapter 17), service (Chapter 16), or
concurrent task (Chapter 18). It is important to realize that for a given class, the
role stereotype and the architectural structuring stereotype are orthogonal – that is,
independent of each other.

12.2 MULTIPLE VIEWS OF A SOFTWARE ARCHITECTURE

The design of the software architecture can be depicted from different perspectives,
referred to as different views. The structural view of the software architecture is

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

Overview of Software Architecture 195

depicted on class diagrams, as described in Section 12.2.1. The dynamic view of
the software architecture is depicted on communication diagrams, as described in
Section 12.2.2. The deployment view of the software architecture is depicted on
deployment diagrams, as described in Section 12.2.3. Another architectural view,
the component-based software architecture view, is described in Chapter 17.

12.2.1 Structural View of a Software Architecture

The structural view of a software architecture is a static view, which does not change
with time. At the highest level, subsystems are depicted on a class diagram. In par-
ticular, a subsystem class diagram depicts the static structural relationship between
the subsystems, which are represented as composite or aggregate classes, and mul-
tiplicity of associations among them.

As an example of the structural view of a software architecture, consider the
design of a client/server software architecture, in which there are multiple clients
and a single service. An example of such an architecture is the Banking System, in
which there are multiple instances of the ATM Client subsystem and a single instance
of the Banking Service subsystem. In Figure 12.1, the client and service subsystems
are depicted on a class diagram, which provides a static view of the architecture.
Figure 12.1 depicts the static relationship between the Banking Service and the ATM
Client for the Banking System, particularly the name and direction of the associa-
tion ATM Client Requests Service From Banking Service, as well as the multiplicity
of the association, namely, the one-to-many association between the service and
the clients. Furthermore, both the client and service subsystems (depicted as aggre-
gate classes in Figure 12.1) are depicted with two stereotypes, the first is the role

«external output
device»

ReceiptPrinter

«external I/O
device»

CardReader

«external output device»

CashDispenser

«software system»
BankingSystem

«client»
«subsystem»
ATMClient

«service»
«subsystem»

BankingService

«external user»
Operator

«external user»
ATMCustomer

1

1

1

1

1

1

1

1

1

1

1

1..*

Requests Service
From

Figure 12.1. Structural view of client/server software architecture: high-level
class diagram for Banking System

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

196 Architectural Design

stereotype, client or service, and the second is the architectural structuring stereo-
type, which, in this example, is subsystem for both.

12.2.2 Dynamic View of a Software Architecture

The dynamic view of a software architecture is a behavioral view, which is depicted
on a communication diagram. A subsystem communication diagram shows the sub-
systems (depicted as aggregate or composite objects) and the message communica-
tion between them. As the subsystems can be deployed to different nodes, they are
depicted as concurrent components, because they execute in parallel and communi-
cate with each other over a network.

An example of the dynamic view of the architecture is given for the Banking Sys-
tem client/server software architecture, which is depicted on a subsystem commu-
nication diagram in Figure 12.2. Figure 12.2 depicts two subsystems of the Banking
System: ATM Client, of which there are many instances, and Banking Service, of which
there is one instance. Each ATM Client sends transactions to and receives responses
from the Banking Service. The ATM Client and Banking Service are depicted as con-
current components, because each executes in parallel with the other, although at
times they need to communicate with each other. Thus, while one client is prepar-
ing to make a request to the service, the Banking Service can be servicing a different
client. While the service is processing the request of a given client, the client typically
waits for the response. This form of communication, synchronous message commu-
nication with reply, is described in more detail in Section 12.3.4. On UML commu-
nication diagrams such as Figure 12.2, the synchronous message (ATMTransaction)
is depicted with a black arrowhead and the reply (bankResponse) is depicted as a
dashed arrow with a stick arrowhead. An alternative notation for synchronous com-
munication is described in Section 12.3.4 and depicted in Figure 12.11.

«software system»

: BankingSystem

«service»

«subsystem»

: Banking

Service

«external I/O

device»

: CardReader

«external output

device»

: ReceiptPrinter

«external output

device»

: CardDispenser

cardReaderOutputcardReaderInput

customerInput

display

Information

operator

Input

operator

Information

printer

Output

dispenser

Output

«external user»

: Operator

«external user»

: ATMCustomer

KeypadDisplay
«client»

«subsystem»

: ATMClient

ATMTransaction

bankResponse

Figure 12.2. Dynamic view of client/server software architecture: high-level
communication diagram for Banking System

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

Overview of Software Architecture 197

A subsystem communication diagram is a generic communication diagram, be-
cause it depicts all possible interactions between objects (see Section 9.1.5). Because
it depicts all possible scenarios, message sequence numbers are not used. Further-
more, because generic communication diagrams depict generic instances (which
means that they depict potential instances rather than actual instances), they use
the UML 2 convention of not underlining the object names.

In addition to being generic, a subsystem communication diagram is also concur-
rent because it depicts objects executing concurrently (see Section 2.8 for descrip-
tion of UML notation). Thus, Figure 12.2 depicts two concurrent subsystems, the
ATM Client and Banking Service, which are geographically distributed.

12.2.3 Deployment View of a Software Architecture

The deployment view of the software architecture depicts the physical configura-
tion of the software architecture, in particular how the subsystems of the architec-
ture are allocated to physical nodes in a distributed configuration. A deployment
diagram can depict a specific deployment with a fixed number of nodes. Alterna-
tively, it can depict the overall structure of the deployment – for example, identifying
that a subsystem can have many instances, each deployable to a separate node, but
not depicting the specific number of instances. An example of this view is given in
Figure 12.3 for the Banking System client/server software architecture. In this
deployment, each ATM Client instance is allocated to its own physical node,
whereas the centralized Banking Service is allocated to a single node. In addition,
the nodes are connected by means of a wide area network.

Banking

Service

{server node}

«wide area network»

ATM

Client3

{client node}

ATM

Client2

{client node}

ATM

Client1

{client node}

Figure 12.3. Deployment view of client/server software architecture:
deployment diagram

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

198 Architectural Design

12.3 SOFTWARE ARCHITECTURAL PATTERNS

Chapter 4 introduced the concept of software patterns and the different kinds of pat-
terns, including software architectural patterns and software design patterns. Soft-
ware architectural patterns provide the skeleton or template for the overall software
architecture or high-level design of an application. Shaw and Garlan (1996) referred
to architectural styles or patterns of software architecture, which are recurring archi-
tectures used in a variety of software applications (see also Bass, Clements, and
Kazman 2003). These include such widely used architectures as client/server and
layered architectures.

Software architectural patterns can be grouped into two main categories: archi-
tectural structure patterns, which address the static structure of the architecture,
and architectural communication patterns, which address the dynamic communica-
tion among distributed components of the architecture. This chapter introduces the
concept of software architectural patterns and describes one architectural structure
pattern, the Layers of Abstraction pattern (Section 12.3.1). It also describes three
architectural communication patterns – the Call/Return pattern (Section 12.3.2),
the Asynchronous Message Communication pattern (Section 12.3.3), and the Syn-
chronous Message Communication with Reply pattern (Section 12.3.4). Other pat-
terns are described in later chapters. Tables 12.1, 12.2, and 12.3 summarize where
the patterns are described.

12.3.1 Layers of Abstraction Architectural Pattern

The Layers of Abstraction pattern (also known as the Hierarchical Layers or Levels
of Abstraction pattern) is a common architectural pattern that is applied in many
different software domains (Buschmann et al. 1996). Operating systems, database
management systems, and network communication software are examples of soft-
ware systems that are often structured as hierarchies.

As Parnas (1979) pointed out in his seminal paper on designing software for
ease of extension and contraction (see also Hoffman and Weiss 2001), if software is
designed in the form of layers, it can be extended by the addition of upper layers that
use services provided by lower layers and contracted by the removal of upper layers.

With a strict hierarchy, each layer uses services in the layer immediately below it
(e.g., layer 3 can only invoke services provided by layer 2). With a flexible hierarchy,
a layer does not have to invoke a service at the layer immediately below it, but it

Table 12.1. Software architectural structure patterns

Software architectural structure patterns Chapter

Centralized Control Pattern Chapter 18, Section 18.3.1
Distributed Control Pattern Chapter 18, Section 18.3.2
Hierarchical Control Pattern Chapter 18, Section 18.3.3
Layers of Abstraction Pattern Chapter 12, Section 12. 3.1
Multiple Client/Multiple Service Pattern Chapter 15, Section 15.2.2
Multiple Client/Single Service Pattern Chapter 15, Section 15.2.1
Multi-tier Client/Service Pattern Chapter 15, Section 15.2.3

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

Overview of Software Architecture 199

Table 12.2. Software architectural communication patterns

Software architectural communication patterns Chapter

Asynchronous Message Communication Pattern Chapter 12, Section 12.3.3
Asynchronous Message Communication with Callback

Pattern
Chapter 15, Section 15.3.2

Bidirectional Asynchronous Message Communication Chapter 12, Section 12.3.3
Broadcast Pattern Chapter 17, Section 17.6.1
Broker Forwarding Pattern Chapter 16, Section 16.2.2
Broker Handle Pattern Chapter 16, Section 16.2.3
Call/Return Chapter 12, Section 12.3.2
Negotiation Pattern Chapter 16, Section 16.5
Service Discovery Pattern Chapter 16, Section 16.2.4
Service Registration Chapter 16, Section 16.2.1
Subscription/Notification Pattern Chapter 17, Section 17.6.2
Synchronous Message Communication with Reply

Pattern
Chapter 12, Section 12.3.4;

Chapter 15, Section 15.3.1
Synchronous Message Communication without Reply

Pattern
Chapter 18, Section 18.8.3

can invoke services at more than one layer below (e.g., layer 3 could directly invoke
services provided by layer 1).

The Layers of Abstraction architectural pattern is used in the TCP/IP, which is
the most widely used protocol on the Internet (Comer 2008). Each layer deals with
a specific characteristic of network communication and provides an interface, as a
set of operations, to the layer above it. For each layer on the sender node, there is
an equivalent layer on the receiver node. TCP/IP is organized into five conceptual
layers, as shown in Figure 12.4 and enumerated here:

Layer 1: Physical layer. Corresponds to the basic network hardware, including
electrical and mechanical interfaces, and the physical transmission medium.

Layer 2: Network interface layer. Specifies how data are organized into frames
and how frames are transmitted over the network.

Layer 3: Internet layer, also referred to as the Internet Protocol (IP) layer. Spec-
ifies the format of packets sent over the Internet and the mechanisms for for-
warding packets through one or more routers from a source to a destination
(Figure 12.5). The router node in Figure 12.5 is a gateway that interconnects a
local area network to a wide area network.

Layer 4: Transport layer (TCP). Assembles packets into messages in the order
they were originally sent. The Transmission Control Protocol, or TCP, uses
the IP network protocol to carry messages. It provides a virtual connection

Table 12.3. Software architectural transaction patterns

Software architectural transaction patterns Chapter

Compound Transaction Pattern Chapter 16, Section 16.4.2
Long-Living Transaction Pattern Chapter 16, Section 16.4.3
Two-Phase Commit Protocol Pattern Chapter 16, Section 16.4.1

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

200 Architectural Design

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application Layer

Transport Layer

(TCP)

Internet Layer

(IP)

Network Interface

Layer

Physical Layer

Figure 12.4. Layers of Abstraction architectural pattern:
example of the Internet (TCP/IP) reference model

from an application on one node to an application on a remote node, hence
providing what is termed an end-to-end protocol (see Figure 12.5).

Layer 5: Application layer. Supports various network applications, such as file
transfer (FTP), electronic mail, and the World Wide Web.

An interesting characteristic of the layered architecture is that it is straightfor-
ward to replace the upper layers of the architecture with different layers that use

«local area network» «wide area network»

Router

Node

Node 1

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application

Layer

Network
Interface

Layer

Physical

Layer

Internet

Layer (IP)

Layer 1 Physical Layer

Layer 3
Internet Layer

(IP)

Layer 2
Network
Interface

Layer

Node 2

Layer 5

Layer 4

Application

Layer

Layer 3
Internet

Layer (IP)

Layer 2

Network
Interface

Layer

Layer 1
Physical

Layer

Transport
Layer
(TCP)

Transport
Layer
(TCP)

Figure 12.5. Layers of Abstraction architectural pattern: Internet communication with TCP/IP

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

Overview of Software Architecture 201

the unchanged services provided by the lower layers. Another interesting charac-
teristic of the layered architecture is shown in Figure 12.5. The router node uses the
lower three layers of the TCP/IP protocol, whereas the application nodes use all five
layers.

An example of a strict layered software architecture from one of the case studies
in the book is the Online Shopping System described in Chapter 22 and depicted in
Figure 12.6. At the lowest layer is the Service Layer, which provides services that are
used by higher layers. The top layer is a User Layer consisting of user interaction
objects. The middle layer is a Coordination Layer that coordinates user requests to
the services.

12.3.2 Call/Return Pattern

The simplest form of communication between objects uses the Call/Return pattern.
A sequential design consists of passive classes, which are instantiated as passive
objects. The only possible form of communication between objects in a sequential
design is operation (also known as method) invocation, which is also referred to
as the Call/Return pattern. In this pattern, a calling operation in the calling object
invokes a called operation in the called object, as depicted in Figure 12.7a. Control
is passed from the calling operation to the called operation at the time of operation
invocation. Any input parameters are passed from the calling operation to the called
operation at the same time that control is passed. When the called operation finishes
executing, it returns control and any output parameters to the calling operation. On
UML communication diagrams such as Figure 12.7a, the Call/Return pattern uses
the UML notation for synchronous communication (arrow with black arrowhead).

As an example of the Call/Return pattern, consider the example of a sequential
design with instance of the checking account and savings account classes (Figure
12.7b). Each object provides credit and debit operations, which can be invoked by
the Withdrawal Transaction Manager or Transfer Transaction Manager objects. The
Withdrawal Transaction Manager invokes the debit operation of either account object
with input parameters consisting of the account# and the withdrawal amount. When
called, another operation, readBalance, returns the account balance after withdrawal.
To process a transfer request, the Transfer Transaction Manager invokes the debit
operation of one account (with account# and debit amount as parameters) and
the credit operation of the other account (with account# and credit amount as
parameters).

12.3.3 Asynchronous Message Communication Pattern

In concurrent and distributed designs, other forms of communication are possi-
ble. With the Asynchronous (also referred to as Loosely Coupled) Message Com-
munication pattern, the producer component sends a message to the consumer
component (Figure 12.8) and does not wait for a reply. The producer continues
because it either does not need a response or has other functions to perform before
receiving a response. The consumer receives the message; if the consumer is busy
when the message arrives, the message is queued. Because the producer and con-
sumer components proceed asynchronously (i.e., at different speeds), a first-in, first-
out (FIFO) message queue can build up between producer and consumer. If no

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

«user interaction»
Supplier

Interaction

«service»
DeliveryOrder

Service

«service»
Inventory
Service

«service»
Catalog
Service

«service»
CustomerAccount

Service

{Layer 3}

{Layer 2}

{Layer 1}

«user interaction»
Customer
Interaction

«service»
CreditCard

Service

«service»
Email

Service

«layer»

User Layer

«layer»

Coordination Layer

«layer»

Service Layer

«coordinator»
Customer

Coordinator

«coordinator»
Supplier

Coordinator

«coordinator»
Billing

Coordinator

Figure 12.6. Example of layered architecture: Online Shopping System

202

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

Overview of Software Architecture 203

: Transfer

Transaction

Manager

: Withdrawal

Transaction

Manager

: Checking

Account

: Savings

Account

debit(account#,

amount),

credit(account#,

amount),

readBalance

debit(account#,

amount),

credit(account#,

amount),

readBalance

debit(account#,

amount),

credit(account#,

amount),

readBalance

callingObject

(a) Call/Return pattern

(b) Example of Call/Return pattern

calledObject

invokeOperation(in inputParameter,

out outputParameter)

debit(account#,

amount),

credit(account#,

amount),

readBalance

Figure 12.7. Call/return pattern

message is available when the consumer requests one, the consumer is suspended.
The consumer is then reawakened when a message arrives. In distributed environ-
ments, the Asynchronous Message Communication pattern is used wherever possi-
ble for greater flexibility. This approach can be used if the sender does not need a
response from the receiver.

Figure 12.8 is a UML instance communication diagram because it shows a par-
ticular scenario consisting of a producer sending an asynchronous message to a con-
sumer. On UML communication diagrams such as Figure 12.8, the Asynchronous
Message Communication pattern uses the UML notation for asynchronous commu-
nication (arrow with stick arrowhead).

An example of the Asynchronous Message Communication pattern in a dis-
tributed environment is given on the generic communication diagram depicted in
Figure 12.9 for the Automated Guided Vehicle System, in which all communication

1: sendAsynchronousMessage (in message)

aProducer aConsumer

Figure 12.8. Asynchronous Message Communication pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

204 Architectural Design

arriving (station#)

moveToStation

(station#)

: SupervisorySystem

Proxy

: VehicleControl

: ArrivalSensor

Component

Figure 12.9. Example of the Asynchronous Message Communi-
cation pattern: Automated Guided Vehicle System

between the components is asynchronous. Both the Supervisory System Proxy and
the Arrival Sensor Component send asynchronous messages to Vehicle Control, which
are queued first-in-first-out. Vehicle Control has one input message queue from which
it receives whichever message arrives first, move message or arriving message.

It is also possible to have peer-to-peer communication between two compo-
nents, which send asynchronous messages to each other. This kind of communica-
tion is referred to as bidirectional asynchronous communication and is depicted in
Figure 12.10. Examples of bidirectional asynchronous communication are given in
Chapters 16 and 18.

12.3.4 Synchronous Message Communication with Reply Pattern

With the Synchronous (also referred to as Tightly Coupled) Message Communica-
tion with Reply pattern, the client component sends a message to the service com-
ponent and then waits for a reply from the service (Figure 12.11). When the mes-
sage arrives, the service accepts it, processes it, generates a reply, and then sends
the reply. The client and service then both continue. The service is suspended if no
message is available. Although there might only be one client and one service, it is
more likely that synchronous message communication involves multiple clients and
one service. Because this pattern is fundamental to client/server architectures, it is
described in more detail in Chapter 15.

Figure 12.11 is a UML instance communication diagram because it shows a par-
ticular scenario consisting of a producer sending a synchronous message to a con-
sumer and receiving a response. On UML communication diagrams such as Figure
12.11, the Synchronous Message Communication pattern uses the UML notation
for synchronous message communication with reply (arrow with black arrowhead),
the outgoing request is the input parameter message, and the reply is the output
parameter response.

1: sendAsynchronousMessage (in message)

2: sendAsynchronousResponse (in response)

aProducer aConsumer

Figure 12.10. Bidirectional Asynchronous Message Communication pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

Overview of Software Architecture 205

1: sendSynchronousMessagewithReply

(in message, out response)

aClient aService

Figure 12.11. Synchronous Message Communication with Reply pattern

12.4 DOCUMENTING SOFTWARE ARCHITECTURAL PATTERNS

Whatever the category of pattern, it is very useful to have a standard way of describ-
ing and documenting a pattern so that it can be easily referenced, compared with
other patterns, and reused. Three important aspects of a pattern that need to be cap-
tured (Buschmann et al. 1996) are the context, problem, and solution. The context
is the situation that gives rise to a problem. The problem refers to a recurring prob-
lem that arises in this context. The solution is a proven resolution to the problem.
A template for describing a pattern usually also addresses its strengths, weaknesses,
and related patterns. A typical template looks like this:

■ Pattern name
■ Aliases. Other names by which this pattern is known.
■ Context. The situation that gives rise to this problem.
■ Problem. Brief description of the problem.
■ Summary of solution. Brief description of the solution.
■ Strengths of solution
■ Weaknesses of solution
■ Applicability. When you can use the pattern.
■ Related patterns
■ Reference. Where you can find more information about the pattern.

An example of documenting a pattern is given next for the Layered Pattern. The
complete set of patterns described in this book are documented with this standard
template in Appendix A.

Pattern name Layers of Abstraction
Aliases Hierarchical Layers, Levels of Abstraction
Context Software architectural design
Problem A software architecture that encourages design for ease of

extension and contraction is needed.
Summary of solution Components at lower layers provide services for components at

higher layers. Components may use only services provided by
components at lower layers.

Strengths of solution Promotes extension and contraction of software design
Weaknesses of solution Could lead to inefficiency if too many layers need to be traversed
Applicability Operating systems, communication protocols, software product

lines
Related patterns Kernel can be lowest layer of Layers of Abstraction architecture.

Variations of this pattern include Flexible Layers of Abstraction.
Reference Chapter 12, Section 12.3.1; Hoffman and Weiss 2001; Parnas

1979.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

206 Architectural Design

12.5 INTERFACE DESIGN

An important goal of both object-oriented design and component-based software
architecture is the separation of the interface from the implementation. An interface
specifies the externally visible operations of a class, service, or component without
revealing the internal structure (implementation) of the operations. The interface
can be considered a contract between the designer of the external view of the class
and the implementer of the class internals. It is also a contract between a class that
requires (uses) the interface (i.e., invokes the operations provided by the interface)
and the class that provides the interface.

Following the concept of information hiding (Section 4.2), class attributes are
private and the public operations provided by a class constitute the interface. In
static modeling using class diagram notation, the interface (class operations) is
depicted in the third compartment of the class. An example of this is in Figure 12.12,
which shows the class Account, with two private attributes depicted in the second
compartment of the class (“minus” sign depicts private in UML) and the interface
consisting of the five public operations depicted in the third compartment of the
class (“plus” sign depicts public in UML).

Because the same interface can be implemented in different ways, it is useful
to depict the design of the interface separately from the component that realizes
(i.e., implements) the interface. Furthermore, interfaces can be realized in wider
contexts than classes. Thus, interfaces for subsystems, distributed components, and
passive classes can all be depicted using the same interface notation.

An interface can be depicted with a different name from the class or component
that realizes the interface. By convention, the name starts with the letter “I.” In
UML, an interface can be modeled separately from a component that realizes the
interface. An interface can be depicted in two ways: simple and expanded. In the
simple case, the interface is depicted as a little circle with the interface name next
to it. The class or component that provides the interface is connected to the small
circle, as shown in Figure 12.13a. In the expanded case, the interface is depicted
in a rectangular box with the static modeling notation, as shown in Figure 12.13b,
with the stereotype «interface» and the interface name in the first compartment. The
operations of the interface are depicted in the third compartment. The second com-
partment is left blank (note that in other texts, interfaces are sometimes depicted
with the middle compartment omitted).

An example of an interface is IBasicAlarmService, which provides two operations,
one to read alarm data and one to post new alarms, as follows:

Account

- accountNumber : Integer

- balance : Real

+ readBalance () : Real

+ credit (amount : Real)

+ debit (amount : Real)

+ open (accountNumber : Integer)

+ close ()

Figure 12.12. Example of class with public interface and private attributes

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

Overview of Software Architecture 207

IBasicAlarmService

out alarmData)

«interface»
IBasicAlarmService

IBasicAlarmService

BasicAlarm

Service

OperatorInteraction

IBasicAlarmService

BasicAlarm

Service

IBasicAlarmService

OperatorInteraction

BasicAlarm

Service

a) component with provided

Interface

d) component with required

interface

b) specification of interface

c) component realizing interface

e) requiring component uses

interface of providing component

alarmRequest(in request,

post(in alarm)

Figure 12.13. Example of interface and class that realizes interface

Interface: IBasicAlarmService
Operations provided:

� alarmRequest (in request, out alarmData)
� post (in alarm)

The component that realizes the interface is called BasicAlarmService, which pro-
vides the implementation of the interface. In UML, the realization relationship is
depicted as shown in Figure 12.13c (dashed arrow with a triangular arrowhead),
which shows the component BasicAlarmService realizing the IBasicAlarmService inter-
face. A required interface is depicted with a small semicircle notation with the inter-
face name next to it. The class or component that requires the interface is con-
nected to the semicircle, as shown in Figure 12.13d. To show that a component
with a required interface uses a component with a provided interface, the semicir-
cle (sometimes referred to as a socket) with the required interface is drawn around
the circle (sometimes referred to as a ball) with the provided interface, as shown in
Figure 12.13e.

12.6 DESIGNING SOFTWARE ARCHITECTURES

During software design modeling, design decisions are made relating to the charac-
teristics of the software architecture. The following chapters describe the design of
different kinds of software architectures:

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

208 Architectural Design

■ Object-oriented software architectures. Chapter 14 describes object-oriented
design using the concepts of information hiding, classes, and inheritance. This
results in the design of a sequential object-oriented software architecture, which
would be implemented as a sequential program with one thread of control. This
chapter describes the design of object-oriented software architectures, to clearly
distinguish how object-oriented concepts are applied, before considering other
important concepts that are usually needed in designing software architectures.

■ Client/server software architectures. Chapter 15 describes the design of client/
server software architectures. A typical design consists of one service and mul-
tiple clients. Decisions need to be made about the design of both the client and
server architectures: whether they should be designed as sequential or concur-
rent subsystems, and what patterns to use for the design of the individual sub-
systems. Client/server software architectures and architecture patterns are so
widespread in software systems that it is worthwhile understanding the funda-
mental concepts and issues in designing these systems.

■ Service-oriented architectures. Chapter 16 describes the design of service-
oriented architectures, which typically consist of multiple distributed autono-
mous services that can be composed into distributed software applications. This
chapter describes how to design service-oriented architectures, including how
to design services, how to coordinate different services, and how to reuse ser-
vices. Service-oriented architectures, which are increasingly being used, incorpo-
rate concepts from client/server and distributed component-based systems. The
architectural issues dealing with service-oriented architecture are addressed in
this chapter.

■ Distributed component-based software architectures. Chapter 17 describes the
design of component-based software architectures. It describes the component
structuring criteria for designing components that can be deployed to execute
on distributed platforms in a distributed configuration. The design of component
interfaces is described, with component ports that have provided and required
interfaces and connectors that join compatible ports. The component-based soft-
ware architecture is depicted with the UML 2 notation for composite structure
diagrams. Distributed applications are usually component-based, in which the
exact nature of the systems depends on the component technology used. How-
ever, there are important architectural concepts for developing these systems,
which are addressed in this chapter.

■ Concurrent and real-time software architectures. Chapter 18 describes the
design of real-time software architectures, which are concurrent architectures
usually having to deal with multiple streams of input events. They are typi-
cally state-dependent, with either centralized or decentralized control. For these
systems, a concurrent software architecture is developed in which the system
is structured into concurrent tasks, and the interfaces and interconnections
between the concurrent tasks are defined. Real-time embedded software sys-
tems are an important domain of software applications. Many of the concepts
described for the other types of software architectures, such as information
hiding and concurrency, can also be applied in real-time design. This chapter
addresses other important issues in designing real-time software architectures.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

Overview of Software Architecture 209

■ Software product line architectures. Chapter 19 describes the design of software
product line architectures, which are architectures for families of products that
need to capture both the commonality and variability in the family. The prob-
lems of developing individual software architectures are scaled upwards when
developing software product line architectures because of the increased com-
plexity due to variability management. Software product line concepts can be
applied to all the different architectures described in previous chapters, because
they address issues of commonality and variability in software families. They are
also a natural way to explicitly model evolving systems, in which each version
can be considered a member of the software family.

Chapter 20 describes the quality attributes of software architectures that address
nonfunctional requirements of software, which can have a profound effect on the
quality of a software product. Many of these attributes can be addressed and evalu-
ated at the time the software architecture is developed. Software quality attributes
include maintainability, modifiability, testability, traceability, scalability, reusability,
performance, availability, and security.

12.7 SUMMARY

This chapter presented an overview of software architecture. It described the mul-
tiple views of a software architecture, particularly the static, dynamic, and deploy-
ment views. In designing the overall software architecture, it helps to consider apply-
ing the software architectural patterns, both architectural structure patterns and
architectural communication patterns. Architectural structure patterns are applied
to the design of the overall structure of the software architecture, which addresses
how the system is structured into subsystems. One architectural structure pattern,
the Layers of Abstraction pattern, was described. Architectural communication pat-
terns address the ways in which subsystems communicate with each other. Three
architectural communication patterns, the Call/Return pattern, the Asynchronous
Message Communication pattern, and the Synchronous Message Communication
with Reply pattern, were described. Each subsystem is designed such that its inter-
face is explicitly defined in terms of the operations it provides, as well as the oper-
ations it uses. Communication between distributed subsystems can be synchronous
or asynchronous.

During software design modeling, design decisions are made relating to the char-
acteristics of the software architecture. Chapter 13 describes the transition from
analysis to design and the structuring of the system into subsystems. Chapter 14
describes object-oriented design using the concepts of information hiding, classes,
and inheritance. Chapter 15 describes the design of client/server software architec-
tures, in which a typical design consists of one server and multiple clients. Chap-
ter 16 describes the design of service-oriented architectures, which typically consist
of multiple distributed autonomous services that can be composed into distributed
software applications. Chapter 17 describes the design of component-based soft-
ware architectures, including the design of component interfaces, with component

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

210 Architectural Design

ports that have provided and required interfaces, and connectors that join compati-
ble ports. Chapter 18 describes the design of real-time software architectures, which
are concurrent architectures usually having to deal with multiple streams of input
events. Chapter 19 describes the design of software product line architectures, which
are architectures for families of products that need to capture both the commonality
and variability in the family.

Chapter 20 describes the software quality attributes of a software architecture
and how they are used to evaluate the quality of the software architecture. Chapters
21 to 24 provide case study examples of applying COMET/UML to the modeling
and design of different software architectures.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What does the software architecture
describe?
(a) The software inside a building
(b) The structure of a client/server sys-

tem
(c) The overall structure of a software

system
(d) The software classes and their rela-

tionships
2. Which of the following statements is

NOT true for a component?
(a) A composite object composed of

other objects
(b) An operation
(c) A simple object
(d) Provides an interface

3. What is a structural view of a software
architecture?
(a) A view in terms of a module hierar-

chy
(b) A view in terms of components and

connectors
(c) A view of the physical configura-

tion in terms of nodes and intercon-
nections

(d) A view in terms of objects and mes-
sages

4. What is a dynamic view of a software
architecture?
(a) A view in terms of a module hierar-

chy
(b) A view in terms of components and

connectors
(c) A view of the physical configura-

tion in terms of nodes and intercon-
nections

(d) A view in terms of objects and mes-
sages

5. What is a deployment view of a software
architecture?
(a) A static view in terms of a module

hierarchy
(b) A static view in terms of compo-

nents and connectors
(c) A view of the physical configura-

tion in terms of nodes and intercon-
nections

(d) A dynamic interaction view in
terms of objects and messages

6. What is a software architectural pat-
tern?
(a) The structure of the major subsys-

tems of a system
(b) The components and connectors in

a software architecture
(c) A small group of collaborating

objects
(d) A recurring architecture used in a

variety of systems
7. What happens in a Layers of Abstrac-

tion pattern?
(a) Each layer uses services in the layer

immediately below it.
(b) Each layer uses services in the layer

immediately above it.
(c) Each layer uses services in the lay-

ers immediately above it and below
it.

(d) Each layer is independent of the
other layers.

8. What happens in a Call/Return pattern?
(a) A calling operation in the calling

object sends a message to an oper-
ation (a.k.a. method) in the called
object.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

Overview of Software Architecture 211

(b) A calling operation in the calling
object invokes an operation (a.k.a.
method) in the called object.

(c) The calling object waits for a res-
ponse from the called object.

(d) The calling object does not wait for
a response from the called object.

9. A producer sends a message to a con-
sumer. Which one of the following is
asynchronous message communication?
(a) The producer waits for a response

from the consumer.
(b) The producer does not wait for a

response from the consumer.

(c) The producer goes to sleep.
(d) The producer waits for a timeout.

10. A producer sends a message to a con-
sumer. Which one of the following
is synchronous message communication
with reply?
(a) The producer waits for a response

from the consumer.
(b) The producer does not wait for a

response from the consumer.
(c) The producer goes to sleep.
(d) The producer waits for a time-

out.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.014

Cambridge Books Online © Cambridge University Press, 2016

