
Cambridge Books Online

http://ebooks.cambridge.org/

Software Modeling and Design

UML, Use Cases, Patterns, and Software Architectures

Hassan Gomaa

Book DOI: http://dx.doi.org/10.1017/CBO9780511779183

Online ISBN: 9780511779183

Hardback ISBN: 9780521764148

Chapter

18 - Designing Concurrent and Real-Time Software Architectures pp. 318

-343

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge University Press



18

Designing Concurrent and Real-Time
Software Architectures

This chapter describes the design of concurrent and real-time software architectures.
Real-time software architectures are concurrent architectures that usually have to
deal with multiple streams of input events. They are typically state-dependent, with
either centralized or decentralized control. Thus, the design of finite state machines,
as described in Chapter 10, state-dependent interaction modeling, as described in
Chapter 11, and the control patterns, as described in this chapter, are very important
in the design of real-time software architectures.

Section 18.1 describes concepts, architectures, and patterns for designing concur-
rent and real-time software architectures. Section 18.2 describes the characteristics
of real-time systems. Section 18.3 describes control patterns for real-time software
architectures. Section 18.4 describes the concurrent task structuring criteria. Sec-
tion 18.5 describes the I/O task structuring criteria, and Section 18.6 describes the
internal task structuring criteria. Section 18.7 describes the steps in developing the
concurrent task architecture. Section 18.8 describes designing the task interfaces
using task communication and synchronization. Section 18.9 describes documenting
task interface and behavior specifications. Section 18.10 describes concurrent task
implementation in Java using threads.

18.1 CONCEPTS, ARCHITECTURES, AND PATTERNS FOR
CONCURRENT AND REAL-TIME SOFTWARE ARCHITECTURES

An important activity in designing real-time software architectures is to design con-
current objects, which are referred to as concurrent tasks in this chapter. Chapter 14
described the design of passive objects, which do not have threads of control. Con-
currency concepts were introduced in Chapter 4. The design of concurrent and real-
time software architectures consists of designing the concurrent tasks, as described
in this chapter, and designing the information hiding classes from which passive
objects are instantiated, as described in Chapter 14. Real-time software architec-
tures can also be distributed; for this reason they can be considered a special case
of component-based software architectures. In this context, a task is equivalent to

318

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 319

a simple component, as described in Chapter 17, and the two terms are used inter-
changeably in this chapter.

During concurrent software design, a concurrent software architecture is devel-
oped in which the system is structured into concurrent tasks, and the interfaces
and interconnections between the concurrent tasks are defined. To help determine
the concurrent tasks, concurrent task structuring criteria are provided to assist in
mapping an object-oriented analysis model of the system to a concurrent software
architecture. These criteria are a set of heuristics, also referred to as guidelines,
that capture expert designer knowledge in the software design of concurrent
and real-time systems. Concurrent tasks also participate in software architectural
patterns; thus, they can participate in patterns already described, such as Layered
patterns (Chapter 12) and Client/Service patterns (Chapter 15), in which both
the client and service could be designed as concurrent software architectures. In
addition, it is possible for concurrent tasks to participate in various control patterns,
as described in Section 18.3.

18.2 CHARACTERISTICS OF REAL-TIME SYSTEMS

Real-time systems (Figure 18.1) are concurrent systems with timing constraints.
They have widespread use in industrial, commercial, and military applications.
The term real-time system usually refers to the whole system, including the real-
time application, real-time operating system, and the real-time I/O subsystem, with
special-purpose device drivers to interface to the various sensors and actuators.
Because the emphasis in this chapter is on designing applications, we use the term
real-time application and not real-time system. However, this section describes real-
time applications in the broader context of real-time systems.

Real-time systems are often complex because they have to deal with multiple
independent streams of input events and produce multiple independent outputs.
These events have arrival rates that are often unpredictable, although they must
be subject to timing constraints specified in the system requirements. Frequently,

Real-Time 
System

Sensor 1 Sensor 2 Sensor N

Actuator 1 Actuator 2 Actuator N

Input from 
Sensor

Input from 
Sensor

Input from 
Sensor

Output to 
Actuator

Output to 
Actuator

Output to 
Actuator

Figure 18.1. Real-time system

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



320 Architectural Design

the order of incoming events is not predictable. Also, the input load might vary
significantly and unpredictably with time.

Real-time systems are frequently classified as hard real-time systems or soft real-
time systems. A hard real-time system has time-critical deadlines that must be met
to prevent a catastrophic system failure. In a soft real-time system, missing deadlines
occasionally is considered undesirable but not catastrophic, so it can be tolerated.

18.3 CONTROL PATTERNS FOR REAL-TIME SOFTWARE
ARCHITECTURES

Many real-time systems have a control function. This section describes the different
kinds of control patterns that could be used for this purpose: centralized control
patterns, distributed control patterns, and hierarchical control patterns. To make
the patterns applicable to component-based software architectures as well as real-
time software architectures, the «component» stereotype is used in these patterns.

18.3.1 Centralized Control Architectural Pattern

In the Centralized Control architectural pattern, there is one control component,
which conceptually executes a statechart and provides the overall control and
sequencing of the system. The control component receives events from other com-
ponents with which it interacts. These include events from various input components
and user interface components that interact with the external environment – for
example, through sensors that detect changes in the environment. An input event to
a control component usually causes a state transition on its statechart, which results
in one or more state-dependent actions. The control component uses these actions
to control other components, such as output components, which output to the exter-
nal environment – for example, to switch actuators on and off. Entity objects are also
used to store any temporary data needed by the other objects.

Examples of this pattern can be found in the Cruise Control System (Gomaa
2000) and the Microwave Oven Control System case study (Gomaa 2005). Figure
18.2 gives an example of the Centralized Control architectural pattern from the
latter case study, in which the concurrent components are depicted on a generic
communication diagram. The Microwave Control component is a centralized con-
trol component, which executes the statechart that provides the overall control and
sequencing for the microwave oven. Microwave Control receives messages from three
input components – Door Component, Weight Component, and Keypad Component –
when they detect inputs from the external environment. Microwave Control actions
are sent to two output components, Heating Element Component (to switch the heat-
ing element on or off) and Microwave Display (to display information and prompts
to the user).

18.3.2 Distributed Control Architectural Pattern

The Distributed Control pattern contains several control components. Each of these
components controls a given part of the system by conceptually executing a state-
chart. Control is distributed among the various control components, with no single

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 321

sendControlRequest(keypadEvent)

displayPrompt(promptId)

displayTime(time)
startCooking(level)

stopCooking()

sendControlRequest

(doorEvent)
sendControlRequest

(weightEvent)

«control»

«component»

: MicrowaveControl

«input»

«component»

: DoorComponent

«input»

«component»

: WeightComponent

«output»

«component»

: MicrowaveDisplay

«output»

«component»

: HeatingElementComponent

«input»

«component»

: KeypadComponent

Figure 18.2. Example of the Centralized Control architectural pattern

component in overall control. To notify each other of important events, the control
components communicate through peer-to-peer communication. They also interact
with the external environment as in the Centralized Control pattern (see Section
12.2.6).

An example of the Distributed Control pattern is given in Figure 18.3, in which
the control is distributed among the several distributed controller components. Each
distributed controller executes a state machine, receiving inputs from the external
environment through sensor components and controlling the external environment
by sending outputs to actuator components. Each distributed controller communi-
cates with the other distributed controller components by means of messages con-
taining events.

18.3.3 Hierarchical Control Architectural Pattern

The Hierarchical Control pattern (also known as the Multilevel Control pattern)
contains several control components. Each component controls a given part of a
system by conceptually executing a state machine. In addition, a coordinator com-
ponent provides the overall system control by coordinating several control com-
ponents. The coordinator provides high-level control by deciding the next job

«control» 

«component»

: Distributed

Controller

«control» 

«component»

: Distributed

Controller

event event

event event
sensor

Input actuator

Output
sensor

Input
actuator

Output

sensor

Input

actuator

Output

«output» 

component»

: ActuatorCmpt

«output» 

component»

: ActuatorCmpt

«output» 

component»

: ActuatorCmpt

«input» 

«component»

: SensorCmpt

«input» 

«component»

: SensorCmpt

«control» 

«component»

: Distributed

Controller

«input» 

«component»

: SensorCmpt

Figure 18.3. Example of the Distributed Control architectural pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



322 Architectural Design

response

command

sensor

Input

actuator

Output
sensor

Input

actuator

Output
sensor

Input

actuator

Output

command

command response

response

«control» 

«component»

: Distributed

Controller

«control» 

«component»

: Distributed

Controller

«coordinator» 

«component»

: Hierarchical

Controller

«output»

component»

: ActuatorCmpt

«output» 

component»

: ActuatorCmpt

«output» 

component»

: ActuatorCmpt

«input» 

«component»

: SensorCmpt

«input» 

«component»

: SensorCmpt

«input» 

«component»

: SensorCmpt

«control 

component»

: Distributed

Controller

Figure 18.4. Example of the Hierarchical Control architectural pattern

for each control component and communicating that information directly to the
control component. The coordinator also receives status information from the con-
trol components.

One example of the Hierarchical Control pattern is given in Figure 18.4, in which
the Hierarchical Controller sends high-level commands to each of the distributed
controllers. The distributed controllers provide the low-level control, interacting
with sensor and actuator components, and respond to the Hierarchical Controller
when they have finished. They may also send progress reports to the Hierarchical
Controller.

18.4 CONCURRENT TASK STRUCTURING

A concurrent task is an active object, also referred to as a process or thread. In this
chapter, the term concurrent task is used to refer to an active object with one thread
of control. In some systems, a concurrent task would be implemented as a single-
threaded process; in other systems, it might be implemented as a thread (lightweight
process) within a heavyweight process (Gomaa 2000).

The concurrent structure of a system is best understood by considering the
dynamic aspects of the system. In the analysis model, the system is represented as a
collection of collaborating objects that communicate by means of messages. During
the concurrent task structuring phase, the concurrent nature of the system is for-
malized by defining the concurrent tasks and the communication/synchronization
interfaces between them.

The objects in the analysis model are analyzed to determine which of these may
execute concurrently and which need to execute sequentially. Hence, the deter-
mination is made as to which of the analysis model objects should be active and
which should be passive. In addition, a composite concurrent task can contain pas-
sive objects, whose operations are executed sequentially within the thread of control
of the composite task.

Following the approach used in Chapter 8 for object structuring, stereotypes are
used to depict the different kinds of concurrent tasks. Each task is depicted with two

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 323

stereotypes: the first is the object role criterion, which is determined during object
structuring, as described in Chapter 8; and the second stereotype is used to depict
the type of concurrency. During concurrent task structuring, if an object in the anal-
ysis model is determined to be active, it is categorized further to show its concurrent
task characteristics. For example, an active «I/O» object is concurrent and is cate-
gorized further using a second stereotype as one of the following: an «event driven»
task, a «periodic» task, or a task activated on «demand». Stereotypes are also used
to depict the kinds of devices to which the concurrent tasks interface. Thus, an
«external input device» is further classified, depending on its characteristics, into
an «event-driven» external input device or a «passive» external input device.

18.5 I/O TASK STRUCTURING CRITERIA

This section describes the various I/O task structuring criteria. An important factor
in deciding on the characteristics of an I/O task is to determine the characteristics of
the I/O device to which it has to interface.

18.5.1 Event Driven I/O Tasks

An event driven I/O task is needed when there is an event driven (also referred to as
interrupt driven) I/O device to which the system has to interface. The event driven
I/O task (referred to as asynchronous I/O task in [Gomaa 2000]) is activated by
an interrupt from the event driven device. During task structuring, each device I/O
object in the analysis model that interfaces to an event driven I/O device is designed
as an event driven I/O task.

An event driven I/O task is constrained to execute at the speed of the I/O device
with which it is interacting. Thus an input task might be suspended indefinitely
awaiting an input. However, when activated by an interrupt, the input task often
has to respond to a subsequent interrupt within a few milliseconds to avoid any loss
of data. After the input data is read, the input task processes the data and then
passes it on, e.g., it sends the data to be processed by another task. This frees the
input task to respond to another interrupt that might closely follow the first.

Another kind of event driven I/O task is the event driven proxy task, which inter-
faces to an external system instead of an I/O device. An event driven proxy task
usually interacts with an external system by using messages.

As an example of an event driven I/O task, consider the Door Sensor Interface
input object shown on the analysis model communication diagram in Figure 18.5a.
The Door Sensor Interface object receives door inputs from the real-world door,
which is depicted as an external input device. The Door Sensor Interface object then
converts the input to an internal format and sends the door request to the Microwave
Control object. For task structuring, it is given that the door is an event driven input
device, depicted on the design model concurrent communication diagram (Figure
18.5b) with the stereotypes «event driven» «external input device», which generates
an interrupt when the door is opened or closed. The Door Sensor Interface object is
designed as an event driven input task of the same name, depicted on the concur-
rent communication diagram with the stereotype «event driven» «input». When the
task is activated by the Door Interrupt, it reads the Door Input, converts the input to

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



324 Architectural Design

«external input 
device»

: DoorSensor

«input»
: DoorSensor

Interface

: Microwave
Control

1: Door Input 2: Door Request

Hardware / software boundary

: Microwave
Control

«event driven» 
«external input 

device»
: DoorSensor

1: doorInterrupt 
(doorInput) 2: doorRequest

Hardware / software boundary

(Note: the dashed line for the hardware/software boundary is for illustrative purposes only and does not conform to 
the UML notation.)

«event driven»
«input»

: DoorSensorInterface

(a)

(b)

Figure 18.5. Example of event driven I/O task: (a) Analysis model: communication
diagram. (b) Design model: concurrent communication diagram

an internal format, and sends it as a Door Request message to the Microwave Control
task. In the design model, the interrupt is depicted as an asynchronous event.

18.5.2 Periodic I/O Tasks

Unlike an event driven I/O task, which deals with an event driven I/O device, a
periodic I/O task deals with a passive I/O device, in which the device is polled on a
regular basis. In this situation, the activation of the task is periodic but its function is
I/O-related. The periodic I/O task is activated by a timer event sent by an external
timer, performs an I/O action, and then waits for the next timer event. The task’s
period is the time between successive activations.

Periodic I/O tasks are often used for simple I/O devices that, unlike event driven
I/O devices, do not generate interrupts when I/O is available. Thus, they are often
used for passive sensor devices that need to be sampled periodically. The concept
of a periodic I/O task is used in many sensor-based industrial systems. Such sys-
tems often have a large number of digital and analog sensors. A periodic I/O task is
activated on a regular basis, scans the sensors, and reads their values.

Consider a passive digital input device – for example, the engine sensor. This
is handled by a periodic I/O task. The task is activated by a timer event and then
reads the status of the device. If the value of the digital sensor has changed since
the previous time it was sampled, the task indicates the change in status. In the case
of an analog sensor – a temperature sensor, for example – the device is sampled
periodically and the current value of the sensor is read.

As an example of a periodic I/O task, consider the Temperature Sensor
Interface object shown in Figure 18.6a. In the analysis model depicted on the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 325

«external input 
device»

: Temperature
Sensor

«input»
: Temperature

Sensor
Interface

: Temperature
Data

1: Temperature
Input

2: Current 
Temperature

Hardware / software boundary

«passive»
«external input

device»
: Temperature

Sensor

1: read
(out temperatureInput)

2: update (in current
Temperature)

Hardware / software boundary

«external timer»
: DigitalClock

0: timerEvent

: Temperature
Data

«periodic»
«input»

: Temperature
SensorInterface

(a)

(b)

(Note: the dashed line for the hardware/software boundary is for illustrative purposes only and does not conform to 
the UML notation.)

Figure 18.6. Example of a periodic I/O task: (a) Analysis model: communication
diagram. (b) Design model: concurrent communication diagram

communication diagram, the Temperature Sensor Interface object is an «input» object
that receives temperature inputs from the real-world Temperature Sensor, depicted
with the stereotype «external input device». Because the Temperature Sensor is a
passive device, it is depicted on the concurrent communication diagram with the
stereotypes «passive» «external input device» (see Figure 18.6b). Because a pas-
sive device does not generate an interrupt, an event driven input task cannot be
used. Instead, this case is handled by a periodic input task, the Temperature Sen-
sor Interface task, which is activated periodically by an external timer to sample the
value of the temperature sensor. Thus, the Temperature Sensor Interface object is
designed as the Temperature Sensor Interface «periodic» «input» task, as depicted
on the concurrent communication diagram. To activate the Temperature Sensor
Interface task periodically, it is necessary to add an «external timer» object, the
Digital Clock, as depicted in Figure 18.6b. When activated, the Temperature Sen-
sor Interface task samples the temperature sensor, updates the Temperature Data
entity object with the current value of temperature, and then waits for the next
timer event. The timer event is depicted as an asynchronous event in the design
model.

18.5.3 Demand Driven I/O Tasks

Demand driven I/O tasks (referred to as passive I/O task in Gomaa [2000]) are used
when dealing with passive I/O devices that do not need to be polled and, hence,
do not need periodic I/O tasks. In particular, they are used when it is considered

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



326 Architectural Design

«entity»
: SensorData
Repository

«algorithm»
: Sensor
Statistics
Algorithm

«output»
: SensorStatistics
DisplayInterface

1: Sensor 
Request

2: Temperature and
Pressure Statistics

Hardware / software boundary

«external
output 

device»
: Display

3: Sensor 
Statistics

«entity»
: SensorData
Repository

1: read (out 
sensorData)

2: temperature
andPressure
Statistics

Hardware / software boundary

«passive» 
«external 

output 
device»
: Display

3: sensor 
Statistics

«demand»
«algorithm»

: Sensor
Statistics
Algorithm

«demand»
«output»

: SensorStatistics
DisplayInterface

(a)

(b)

(Note: the dashed line for the hardware/software boundary is for illustrative purposes only and does not conform to 
the UML notation.)

Figure 18.7. Example of a demand driven output task: (a) Analysis model: commu-
nication diagram. (b) Design model: concurrent communication diagram

desirable to overlap computation with I/O. A demand driven I/O task is used in
such a situation to interface to the passive I/O device. Consider the following cases:

■ In the case of input, overlap the input from the passive device with the compu-
tational task that receives and consumes the data. This is achieved by using a
demand driven input task to read the data from the input device when requested
to do so.

■ In the case of output, overlap the output to the device with the computational
task that produces the data. This is achieved by using a demand driven output
task to output to the device when requested to do so, usually via a message.

Demand driven I/O tasks are used more often with output devices than with
input devices, because the output can be overlapped with the computation more
often, as shown in the following example. Usually, if the I/O and computation are
to be overlapped for a passive input device, a periodic input task is used.

Consider a demand driven output task that receives a message from a producer
task. A demand driven task is depicted with the stereotype «demand». Overlap-
ping computation and output is achieved as follows: the consumer task outputs the
data contained in the message to the passive output device, the display, while the
producer is preparing the next message. This case is shown in Figure 18.7. The Sen-
sor Statistics Display Interface is a demand driven output task. It accepts a mes-
sage to display from the Sensor Statistics Algorithm task, and it displays the sensor
statistics while the Sensor Statistics Algorithm task is computing the next set of values
to display; thus, the computation is overlapped with the output. The Sensor Statistics
Display Interface task is depicted on the concurrent communication diagram with the
stereotypes «demand» «output» task.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 327

«external timer»
: DigitalClock

«timer»
: Microwave

Timer

«entity»
: OvenData

: Microwave
Control

1: Timer Event
3: Timer 
Expired

2: Decrement 
Time

2.1: Time
Left

«periodic»
«timer»

: Microwave
Timer

«external timer»
: DigitalClock

«entity»
: OvenData

1: timerEvent
3: timer
Expired

2: decrementTime
(out timeLeft)

: Microwave
Control

(a)

(b)

Figure 18.8. Example of a periodic task: (a) Analysis model: com-
munication diagram. (b) Design model: concurrent communication
diagram

18.6 INTERNAL TASK STRUCTURING CRITERIA

Whereas the I/O task structuring criteria are used to determine I/O tasks, the inter-
nal task structuring criteria are used to determine internal (i.e., non I/O) tasks.

18.6.1 Periodic Tasks

Many real-time and concurrent systems have activities that need to be executed on
a periodic basis – for example, computing the distance traveled by the car or the
current speed of the car. These periodic activities are typically handled by periodic
tasks. Although periodic I/O activities are structured as periodic I/O tasks, periodic
internal activities are structured as periodic tasks. Internal periodic tasks include
periodic algorithm tasks.

An activity that needs to be executed periodically (i.e., at regular, equally spaced
intervals of time) is structured as a separate periodic task. The task is activated by a
timer event, performs the periodic activity, and then waits for the next timer event.
The task’s period is the time between successive activations.

As an example of a periodic task, consider the Microwave Timer object shown in
Figure 18.8a. The Microwave Timer object is activated by a timer event every second.
It then requests the Oven Data object to decrement the cooking time by one second
and return the time left. If the cooking time has expired, then the Microwave Timer
object sends a Timer Expired message to Microwave Control. The Microwave Timer
object is designed as a periodic task (Figure 18.8b) that, when activated periodi-
cally, requests the Oven Data object to decrement the cooking time. The Microwave

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



328 Architectural Design

Timer task is depicted on the concurrent communication diagram with the stereo-
type «periodic» task. Oven Data is a passive object. The timer event is depicted as an
asynchronous event.

18.6.2 Demand Driven Tasks

Many real-time and concurrent systems have activities that need to be executed on
demand. These demand-driven activities are typically handled by means of demand
driven tasks. Whereas event driven I/O tasks are activated by the arrival of external
interrupts, demand driven internal tasks (also referred to as aperiodic tasks) are
activated on demand by the arrival of internal messages or events.

An object that is activated on demand (i.e., when it receives an internal message
or event sent by a different task) is structured as a separate demand driven task.
The task is activated on demand by the arrival of the message or event sent by
the requesting task, performs the demanded request, and then waits for the next
message or event. Internal demand driven tasks include demand driven algorithm
and tasks. A demand driven task is depicted with the stereotype «demand».

An example of a demand driven task is given in Figure 18.9. In the analysis
model, the Gas Flow Algorithm object is activated on demand by the arrival of a
Pump Command message from the Pump Control object. It then executes an algorithm

«state dependent 
control»

: PumpControl

«algorithm»
: GasFlow
Algorithm

«entity»
: GasPrice

«entity»
: GasFlow

1: Pump 
Command

2: Read 2.1: Gas Price

«output»
: PumpDisplay

Interface

3: Read

3.1: Current Gas Flow

4: Display Total Gallons, 
Price

«entity»
: GasPrice

«entity»
: GasFlow

1: pump 
Command

2: read 
(out gasPrice)

3: read(out currentGasFlow)

4: display(gallons, price)

«demand»
«algorithm»
: GasFlow
Algorithm

«state dependent 
control»

: PumpControl

«output»
: PumpDisplay

Interface

(a)

(b)

Figure 18.9. Example of a demand driven task: (a) Analysis model: commu-
nication diagram. (b) Design model: concurrent communication diagram

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 329

to read the current gas flow and the gas price and compute the total gallons pumped
and total price, which are then sent to the Pump Display Interface object (Figure
18.9a). In the design model, the Gas Flow Algorithm object is structured as a demand
driven algorithm task with the same name, which is activated by the arrival of a
Pump Command message. The Gas Flow Algorithm task is depicted on the concurrent
communication diagram with the stereotypes «demand» «algorithm» task (Figure
18.9b). The Pump Control and Pump Display Interface objects are also structured as
tasks. The Gas Flow and Gas Price entity objects are passive objects.

18.6.3 Control Tasks

In the analysis model, a state-dependent control object executes a statechart. Using
the restricted form of statecharts whereby concurrency within an object is not per-
mitted, it follows that the execution of a statechart is strictly sequential. Hence, a
task, whose execution is also strictly sequential, can perform the control activity. A
task that executes a sequential statechart (typically implemented as a state transi-
tion table) is referred to as a state-dependent control task. A control task is usually a
demand driven task that is activated on demand by a message sent by another task.
A state-dependent control task is depicted with the stereotype «state-dependent
control».

An example of a control task is shown in Figure 18.10. The state-dependent con-
trol object Microwave Control (Figure 18.10a), which executes the Microwave Control
statechart, is structured as the Microwave Control task (Figure 18.10b) because exe-
cution of the statechart is strictly sequential. The task is depicted on the concurrent
communication diagram with the stereotypes «demand» «state-dependent control»
task.

It is possible to have many objects of the same type. Each object is designed as a
task, in which all the tasks are instances of the same task type. In the case of a state-
dependent control object, each object executes an instance of the same sequential
statechart, although each object is likely to be in a different state. This is addressed
by having one state-dependent control task for each control object, in which the task
executes the statechart.

An example of multiple control tasks of the same type comes from the Eleva-
tor Control System, as shown in Figure 18.11. The control aspects of a real-world

«input»
: DoorSensor

Interface

«state dependent 
control»

: Microwave
Control

1: Door Request
: Heating
Element
Interface

2: Microwave
Command

«demand»
«state dependent 

control»
: Microwave

Control

1: doorRequest
: Heating
Element
Interface

2: microwave
Command«event driven»

«input»
: DoorSensor

Interface

(a)

(b)

Figure 18.10. Example of a control task: (a) Analysis model: communica-
tion diagram. (b) Design model: concurrent communication diagram

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



330 Architectural Design

«state dependent 
control»

: Elevator
Control

«demand»
«state dependent 

control»
: Elevator
Control

(a) (b)

Figure 18.11. Example of multiple control tasks of same type: (a) Analysis
model: control object (multiple instances). (b) Design model: one task for
each elevator

elevator are modeled by means of a state-dependent control object, Elevator Con-
trol, and defined by means of a sequential statechart. During task structuring, the
Elevator Control object is designed as an Elevator state-dependent Control task. In
a multiple-elevator system, there is one elevator task for each Elevator Control
object. The tasks are identical, and each task executes an instance of the same
statechart. However, each elevator is likely to be in a different state on its state-
chart. In both Figures 18.11a and 18.11b the multiple instances of the Elevator Con-
trol object and Elevator Control task are depicted using the UML multiple instance
notation.

In addition to state-dependent control objects, coordinator objects from the
analysis model are designed as coordinator tasks. In this case, the job of the task
is to control other tasks, although it is not state-dependent.

18.6.4 User Interaction Tasks

A user typically performs a set of sequential actions. Because the user’s interaction
with the system is a sequential activity, this can be handled by a user interaction task.
The speed of this task is frequently constrained by the speed of user interaction. As
its name implies, a user interaction object in the analysis model is designed as a user
interaction task. User interaction tasks are usually event driven because they are
awakened by inputs from the external user.

A user interaction task usually interfaces with various standard I/O devices, such
as the input keyboard, output display, and mouse, that are typically handled by the
operating system. Because the operating system provides a standard interface to
these devices, it is usually not necessary to develop special-purpose I/O tasks to
handle them.

The concept of one task per user is typical in many multiuser operating systems.
For example, in the UNIX operating system, there is one task (process) per user.
If, on the other hand, the user engages in several activities concurrently, one user
interaction task is allocated for each sequential activity. Thus, in the UNIX oper-
ating system, users can spawn background tasks. All the user interaction tasks that
belong to the same user execute concurrently.

The concept of one task per sequential activity is also used on modern worksta-
tions with multiple windows. Each window executes a sequential activity, so there
is one task for each window. In the Windows operating system, it is possible for the
user to have Word executing in one window and PowerPoint executing in another
window. There is one user interaction task for each window, and each of these tasks
can spawn other tasks (e.g., to overlap printing with editing).

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 331

«user
interaction»
: Operator
Interaction

«entity»
: SensorData
Repository

: Operator

1: Operator
Command

3: Display 
Data

2: Sensor
Request

2.1: Sensor Data

«entity»
: SensorData
Repository

: Operator

1: operator
Command

3: display 
Data

2: read(out
sensorData)«event driven»

«user 
interaction»
: Operator
Interaction

: Operator

«entity»
: FactoryStatus

Repository

«entity»
: FactoryAlarm

Repository

2: read(out
factoryStatus)

2A: read(out
alarmStatus)

1: factoryStatusQuery

1A: alarmQuery

3A: alarmDisplayData

3: statusDisplayData

«event driven»
«user 

interaction»
: FactoryStatus

Window

«event driven»
«user 

interaction»
: FactoryAlarm

Window

(a)

(b)

(c)

Figure 18.12. Example of a user interaction task: (a) Analysis model:
communication diagram. (b) Design model: concurrent communication
diagram with one task. (c) Design model: concurrent communication
diagram with two tasks.

An example of a user interaction task is given in Figure 18.12. The object
Operator Interface accepts operator commands, reads from the Sensor Data Repos-
itory entity object, and displays data to the operator (Figure 18.12a). Because all
operator interactions are sequential in this example, the Operator Interface object
is structured as a user interaction task (Figure 18.12b). The task is depicted on
the concurrent communication diagram with the stereotypes «event driven» «user
interaction» task. It is activated by an input from the user.

In a multiple-window workstation environment, a factory operator might view
factory status in one window (supported by one user interaction task) and acknowl-
edge alarms in another window (supported by a different user interaction task). An
example of this is given in Figure 18.12c. Two user interaction tasks, Factory Status
Window and Factory Alarm Window, are active concurrently. The Factory Status Win-
dow task interacts with the passive Factory Status Repository object while the Factory
Alarm Window task interacts with the passive Factory Alarm Repository object.

18.7 DEVELOPING THE CONCURRENT TASK ARCHITECTURE

The task structuring criteria may be applied to the analysis model in the following
order. In each case, one must first decide whether the analysis model object should
be designed as an active object (task) or a passive object in the design model. It is
possible to have multiple tasks of the same type.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



332 Architectural Design

Table 18.1. Mapping from analysis model objects to design model tasks

Analysis model (Object) Design model (Task)

User interaction Event driven user interaction
Input/Output (input, output, I/O) Event driven I/O (input, output, I/O)

Periodic I/O (input, output, I/O)
Demand driven I/O (usually output)

Proxy Event driven proxy
Timer Periodic timer
State-dependent control Demand driven state-dependent control
Coordinator Demand driven coordinator
Algorithm Demand driven algorithm

Periodic algorithm

1. I/O tasks. Start with the device I/O objects that interact with the outside
world. Determine whether the object should be structured as an event driven
I/O task, a periodic I/O task, or a demand driven I/O task.

2. Control tasks. Analyze each state-dependent control object and coordinator
object. Structure this object as a (usually demand driven) state-dependent
control or coordinator task.

3. Periodic tasks. Analyze the internal periodic activities, which are structured
as periodic tasks.

4. Other internal tasks. For each internal task activated by an internal event,
structure this task as a demand driven task.

The guidelines for mapping analysis model objects to design model tasks are sum-
marized in Table 18.1.

18.7.1 Initial Concurrent Communication Diagram

After structuring the system into concurrent tasks, an initial concurrent communica-
tion diagram is drawn, showing all the tasks in the system. On this initial concurrent
communication diagram, the interfaces between the tasks are still simple messages
as depicted on the analysis model communication diagrams. An example of an ini-
tial concurrent communication diagram is given in Figure 18.13 for the ATM Client
subsystem of the Banking System case study. The design of the ATM Client is
described in detail in Chapter 21. Designing task interfaces is described next.

18.8 TASK COMMUNICATION AND SYNCHRONIZATION

After structuring the system into concurrent tasks, the next step is to design the
task interfaces. At this stage, the interfaces between tasks are still simple messages
as depicted on the analysis model communication diagrams. It is necessary to map
these interfaces to task interfaces in the form of message communication, event syn-
chronization, or access to information hiding objects.

The UML notation for message communication is described in Chapter 2. Mes-
sage communication patterns for concurrent components are described in Chapters
12 and 15. In the communication diagrams developed for the analysis model and in

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



«event driven»
«external I/O 

device»
: CardReader

«data 
abstraction»
: ATMCard

«data 
abstraction»

: ATM
Transaction

«passive» 
«external output 

device»
: Receipt
Printer

«passive» 
«external output 

device»
: Cash

Dispenser

Bank
Responses

ATM
Transactions

Card Inserted, 
Card Ejected,
Card Confiscated

Eject,
Confiscate

Start Up,
Closedown

Cash 
Added

Cash 
Response

Dispenser
Output

Operator
Information

Printer
Output

Operator
Input

Transaction
Details

Customer Info.,
Customer Selection

Display
Prompts

Update
Transaction
Status
(Cash details),
Update
PIN Status

Customer 
Events
(Transaction
details)

Card 
Request

Card
Data

Card
Input
Data

Card
Reader
Output

Card
Reader
Input

Customer 
Input

Display
Information

«event driven»
«user 

interaction»
: Customer
Interaction

«demand»
«state 

dependent 
control»

: ATMControl

«event driven» 
«I/O»

: CardReader
Interface

«event driven»
«user 

interaction»
: Operator
Interaction

Cash 
Withdrawal
Amount

«service» 
«subsystem»

: BankingService

«client» 
«subsystem»
: ATMClient

«event driven»
«external 

user»
: Operator

«event driven»
«external user»
: ATMCustomer
KeypadDisplay

«data
abstraction»
: ATMCash

«demand»
«output»

: CashDispenser
Interface

Dispense Cash 
(Cash details)

Cash
Dispensed

«demand»
«output»

: ReceiptPrinter
Interface

Transaction
Data

Transaction
Request

Receipt
Printed

Print
Receipt

Figure 18.13. Task architecture: example of initial concurrent communication diagram for ATM Client subsystem

333

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



334 Architectural Design

«demand»
«state dependent 

control»
: Microwave

Control

1: microwave
Request

«event driven»
«input»

: DoorSensor
Interface

Figure 18.14. Example of Asynchronous Message Communication

the preliminary concurrent communication diagram for the design model, all com-
munication is shown using simple messages. In this step of the design modeling,
the task interfaces are defined and depicted on revised concurrent communication
diagrams.

Message interfaces between tasks are either asynchronous (loosely coupled) or
synchronous (tightly coupled), as introduced in Chapter 4 and described in more
detail in Chapter 12. For synchronous message communication, two possibilities
exist: synchronous message communication with reply and synchronous message
communication without reply.

18.8.1 Asynchronous (Loosely Coupled) Message Communication

Asynchronous message communication, also referred to as loosely coupled message
communication, between concurrent tasks is based on the Asynchronous Message
Communication pattern described in Section 12.3.3. The producer sends a message
to the consumer and continues without waiting for a response.

Consider the concurrent communication diagram (Figure 18.14), which depicts
the Door Sensor Interface task sending a message to the Microwave Control task. It is
desirable to design this message interface as using asynchronous message communi-
cation. The Door Sensor Interface task sends the message and does not wait for it to
be accepted by the Microwave Control task. This allows the Door Sensor Interface task
to quickly service any new external input that might arrive. Asynchronous message
communication also provides the greatest flexibility for the Microwave Control task,
because it can wait on a queue of messages that arrive from multiple sources. It then
accepts the first message that arrives, whatever the source.

18.8.2 Synchronous (Tightly Coupled) Message Communication
with Reply

Synchronous message communication with reply, also referred to as tightly coupled
message communication with reply, between concurrent tasks is based on the Syn-
chronous Message Communication with Reply pattern described in Section 12.3.4.
The producer sends a message to the consumer and then waits for a reply.

Although used in client/server systems (Chapter 15), Synchronous Message
Communication with Reply can also involve a single producer sending a message
to a consumer and then waiting for a reply, in which case no message queue devel-
ops between the producer and the consumer. An example of Synchronous Message
Communication with Reply involving a producer and consumer is from the Auto-
mated Guided Vehicle System, in which the producer task, Vehicle Control, sends
start and stop messages to the consumer task, Motor Interface, and waits for a reply,

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 335

«demand»

«state dependent 

control»

: AGVControl

«demand»

«output»

: MotorInterface

1: startMotor

2: started

Figure 18.15. Example of Synchronous Message Communication with Reply

as depicted on the concurrent communication diagram (Figure 18.15). The producer
needs to be tightly coupled with the consumer, because it sends a message and then
waits for a response. After receiving the message, the consumer processes the mes-
sage, prepares a reply, and sends the reply to the producer. The notation for Syn-
chronous Message Communication with Reply on the concurrent communication
diagram (Figure 18.15) shows a synchronous message sent from the producer to the
consumer with a dashed message, representing the response, sent by the consumer
back to the producer.

18.8.3 Synchronous (Tightly Coupled) Message Communication
without Reply

Synchronous message communication without reply, also referred to as tightly cou-
pled message communication without reply, between concurrent tasks is based on
the Synchronous Message Communication without Reply pattern. The producer
sends a message to the consumer and then waits for acceptance of the message
by the consumer. When the message arrives, the consumer accepts the message,
thereby releasing the producer. The producer and consumer then both continue.
The consumer is suspended if no message is available.

An example of Synchronous Message Communication without Reply is shown
in Figure 18.16. The Sensor Statistics Display Interface is a demand output task. It
accepts a message to display from the Sensor Statistics Algorithm task, as depicted on
the concurrent communication diagram (Figure 18.16). It displays the sensor statis-
tics while the Sensor Statistics Algorithm task is computing the next set of values to
display. Thus, the computation is overlapped with the output.

The producer task, the Sensor Statistics Algorithm task, sends temperature and
pressure statistics to the consumer task, the Sensor Statistics Display Interface, which
then displays the information. In this example, the decision made is that there is
no point in having the Sensor Statistics Algorithm task compute temperature and
pressure statistics if the Sensor Statistics Display Interface cannot keep up with
displaying them. Consequently, the interface between the two tasks is designed as
a Synchronous Message Communication without Reply interface, as depicted on

«demand»
«algorithm»

: Sensor
Statistics
Algorithm

1: temperature
andPressure

Statistics «demand»
«output»

: SensorStatistics
DisplayInterface

Figure 18.16. Example of Synchronous Message Communication without Reply

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



336 Architectural Design

the revised concurrent communication diagram (Figure 18.16). The Sensor Statistics
Algorithm computes the statistics, sends the message, and then waits for the accep-
tance of the message by the Sensor Statistics Display Interface before resuming exe-
cution. The Sensor Statistics Algorithm is held up until the Sensor Statistics Display
Interface finishes displaying the previous message. As soon as the Sensor Statistics
Display Interface accepts the new message, the Sensor Statistics Algorithm is released
from its wait and computes the next set of statistics while the Sensor Statistics Dis-
play Interface displays the previous set. By this means, computation of the statistics
(a compute-bound activity) can be overlapped with displaying of the statistics (an
I/O bound activity), while preventing an unnecessary message queue build-up of
statistics at the display task. Thus, the synchronous interface between the two tasks
acts as a brake on the producer task.

18.8.4 Event Synchronization

Three types of event synchronization are possible: an external event, a timer event,
and an internal event. An external event is an event from an external object, typi-
cally an interrupt from an external I/O device. An internal event represents inter-
nal synchronization between a source task and a destination task. A timer event
represents a periodic activation of a task. Events are depicted in UML, using the
asynchronous message notation to depict an event signal.

An example of an external event, typically a hardware interrupt from an input
device, is given in Figure 18.17. The Door Sensor «event driven» «external input
device» generates an interrupt when it has door Input. The interrupt activates the
Door Sensor Interface «event driven» «input» task, which then reads the doorInput.
This interaction could be depicted as an event signal input from the device, fol-
lowed by a read by the task. However, it is more concise to depict the interaction as
an asynchronous event signal sent by the device, with the input data as a parameter,
as depicted on the concurrent communication diagram (Figure 18.17).

An example of a timer event is given in Figure 18.18. The digital clock, which
is an external timer device, generates a timer event to awaken the Microwave Timer
«periodic» task. The Microwave Timer task then performs a periodic activity – in
this case, decrementing the cooking time by one second and checking whether the
cooking time has expired (see Figure 18.8). The timer event is generated at fixed
intervals of time.

«event driven»
«external input

device»
: DoorSensor

1: doorInterrupt 
(doorInput)

Hardware / software boundary

«event driven»
«input»

: DoorSensorInterface

(Note: the dashed line for the hardware/software boundary is for illustrative 
purposes only and does not conform to the UML notation.)

Figure 18.17. Example of external event

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 337

«periodic»
«timer»

: Microwave
Timer

«external timer»
: DigitalClock

1: timerEvent

Figure 18.18. Example of timer event

Internal event synchronization is used when two tasks need to synchronize their
actions without communicating data between the tasks. The source task signals the
event. The destination task waits for the event and is suspended until the event is
signaled. It is not suspended if the event has previously been signaled. The event
signal is depicted in UML by an asynchronous message that does not contain any
data. An example of this is shown in Figure 18.19, in which the pick-and-place robot
task signals the event partReady. This awakens the drilling robot, which operates on
the part and then signals the event partCompleted, which the pick-and-place robot is
waiting to receive.

18.8.5 Task Interaction via Information Hiding Object

It is also possible for tasks to exchange information by means of a passive informa-
tion hiding object. Access to information hiding objects was previously described in
Chapter 14. An example of task access to a passive information hiding object is given
in Figure 18.20, in which the Sensor Statistics Algorithm task reads from the Sensor
Data Repository entity object, and the Sensor Interface task updates the entity object.
On the initial concurrent communication diagram, the Sensor Statistics Algorithm
task sends a simple message, Read, to the entity object and receives a Sensor Data
response, which is also depicted as a simple message (Figure 18.20a). Because the
task is reading from a passive information hiding object, this interface corresponds
to an operation call. The entity object provides a read operation, which is called by
the Sensor Statistics Algorithm task. The sensorData response is an output parameter
of the call. The read operation is executed in the thread of control of the task. On
the revised concurrent communication diagram (Figure 18.20b), the call to the read
operation is depicted by using the synchronous message notation. The sensor Data
response is depicted as the output parameter of the read synchronous message. The
Sensor Interface task calls a write operation provided by the Sensor Data Repository
entity object, with the sensorData as an input parameter.

It is important to realize how the synchronous message notation used between
two concurrent tasks differs from that used between a task and a passive object.
The notation looks the same in the UML: an arrow with a filled-in arrowhead. The
semantics are different, however. The synchronous message notation between two
concurrent tasks represents a producer task waiting for a consumer task to either

«demand»
«state dependent 

control»
pick&Place

Robot

«demand»
«state dependent 

control»
drillingRobot

1: partReady

2: partCompleted

Figure 18.19. Example of internal events

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



338 Architectural Design

W1: Sensor Data
«entity»

: SensorData
Repository

R1: Read

R1.1: Sensor Data

«demand»
«algorithm»

: Sensor
Statistics
Algorithm

«periodic»
«input»
: Sensor
Interface

W1: write
(in sensorData)

«entity»
: SensorData
Repository

R1: read (out 
sensorData)

«demand»
«algorithm»

: Sensor
Statistics
Algorithm

«periodic»
«input»
: Sensor
Interface

(a)

(b)

Figure 18.20. Example of tasks invoking operations of passive object:
(a) Initial concurrent communication diagram with simple messages.
(b) Revised concurrent communication diagram with tasks invoking
operations of passive object

respond to or accept the producer’s message, as shown in Figures 18.15 and 18.16.
The synchronous message notation between a task and a passive object represents
an operation call, as shown in Figures 18.20.

18.8.6 Revised Concurrent Communication Diagram

After having determined the task interfaces, the initial concurrent communication
diagram is revised to depict the various types of task interface. An example of the
revised concurrent communication diagram is given for the ATM Client subsystem
of the Banking System case study, as shown in Figure 18.21, in which the initial
concurrent communication diagram of Figure 18.13 is updated to show all the task
interfaces. The design of the ATM Client is described in detail in Chapter 21.

18.9 TASK INTERFACE AND TASK BEHAVIOR SPECIFICATIONS

A task interface specification (TIS) describes a concurrent task’s interface. It is an
extension of the class interface specification with additional information specific to
a task, including task structure, timing characteristics, relative priority, and errors
detected. A task behavior specification (TBS) describes the task’s event sequenc-
ing logic. The task’s interface defines how it interfaces to other tasks. The task’s
structure describes how its structure is derived, using the task structuring criteria.
The task’s timing characteristics address frequency of activation and estimated exe-
cution time. This information is used for real-time scheduling purposes and is not
discussed further in this textbook.

The TIS is introduced with the task architecture to specify the characteristics of
each task. The TBS is defined later, during detailed software design, and describes
the task event sequencing logic, which is how the task responds to the input events
it receives.

A task (active class) differs from a passive class in that it should be designed with
only one operation (in Java, this can be implemented as the run method). For this
reason, the TIS only has a specification of one operation, instead of several for a

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



update

Transaction

Status

(cashDetails),

updatePINStatus

(status),
print

(receiptInfo)

withdrawCash

(in cashAmount,

out fivesToDispense,

out tensToDispense,

out twentiesToDispense)

«event driven»

«external I/O 

device»

: CardReader

«data

abstraction»

: ATMCard

«passive»

«external 

output device»

: Receipt

Printer

«data 

abstraction»

: ATMCash

«passive» 

«external

output

device»

: Cash

Dispenser

bank

Response

ATM

Transaction

cardInserted, 

cardEjected,

cardConfiscated

eject,

confiscate startUp,

closedown

addCash

(in fivesAdded,

in tensAdded,

in twentiesAdded)

dispenser

Output

operator

Information

printer

Output

operator

InputupdateCustomerInfo

(cardData, PIN),

updateCustomerSelection

(in selection, 

out transactionDetails)

display

Prompts

customer 

Event

(transaction

Details)

read

(out
card

Data) 

write

(card

Data)

card

Reader

Output

card

Reader

Input

Customer 

Input

Display

Information

«event driven»

«user 

interaction»

: Customer

Interaction

«demand»

«state

dependent 

control»

: ATMContro l

«event driven»

«I/O»

: CardReader

Interface

«event driven»

«user 

interaction»

: Operator

Interaction

«service» 

«subsystem»

: BankingService

«client»

«subsystem»

: ATMClien t

«event 

driven»

«external 

user»

: Operator

«event driven»

«external user»

: ATMCustomer

KeypadDisplay

«demand»

«output»

: CashDispenser

Interface

«demand»

«output»

: ReceiptPrinter

Interface

«data

abstraction»

: ATM

Transaction

read(out transaction

Data)

dispense

(cashAmount)

Figure 18.21. Task architecture: example of revised concurrent communication diagram for ATM Client subsystem

339

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



340 Architectural Design

typical passive class. The TIS is defined as follows, with the first five items identical
to the class interface specification:

■ Name
■ Information hidden
■ Structuring criteria: For class structuring criteria, only the role criterion (e.g.,

input) is used; for concurrent tasks, the concurrency criterion (e.g., event driven)
needs to be added.

■ Assumptions
■ Anticipated changes
■ Task interface: The task interface should include a definition of

� Messages inputs and outputs. For each message interface (input or output)
there should be a description of
◦ Type of interface: asynchronous, synchronous with reply, or synchronous

without reply
◦ For each message type supported by this interface: message name and mes-

sage parameters
� Events signaled (input and output), name of event, type of event: external,

internal, timer
� External inputs or outputs. Define the inputs from and outputs to the external

environment.
� Passive objects referenced

■ Errors detected by this task

This section describes the possible errors that could be detected during execution
of this task.

The TBS describes the task’s event sequencing logic, which is how the task
responds to each of its message or event inputs, in particular, what output is gen-
erated as a result of each input. The event sequencing logic is defined during the
detailed software design step. Examples of task event sequencing logic are given in
the Banking System case study in Chapter 21.

18.9.1 Example of TIS for Banking Service Task

The TIS for the Banking Service task (described in Chapter 21 and illustrated in
Figure 18.21) is described here:

Name: BankingService
Information hidden: Details of how BankingService processes ATM transactions
Structuring criteria: role criterion: service; concurrency criterion: demand driven
Assumptions: Transactions are processed sequentially.
Anticipated changes: Possible addition of further transactions; possible change

from sequential service to concurrent service processing
Task interface:

Task inputs:

Synchronous message communication with reply:

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 341

Messages:
� validatePIN

Input parameters: cardId, PIN
Reply: PINValidationResponse

� withdraw

Input parameters: cardId, account#, amount
Reply: withdrawalResponse

� query

Input parameters: cardId, account#
Reply: queryResponse

� transfer

Input parameters: cardId, fromAccount#,
toAccount#, amount
Reply: transferResponse

Task outputs:

Message replies as described previously.
Errors detected: Unrecognized message

18.9.2 Example of TIS for Card Reader Interface Task

The task interface specification for the Card Reader Interface task (Chapter 21 and
Figure 18.21) is described here:

Name: CardReaderInterface
Information hidden: Details of processing input from and output to card reader
Structuring criteria: role criterion: input/output; concurrency criterion: event

driven
Assumptions: only one ATM card input and output is handled at one time.
Anticipated Changes: Possible additional information will need to be read from

ATM card.
Task interface:

Task inputs:
Event input: Card reader external interrupt to indicate that a card has been

input.
External input: cardReaderInput.
Synchronous message communication without reply:

� eject
� confiscate

Task outputs:
External output: cardReaderOutput

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



342 Architectural Design

Asynchronous message communication:
� cardInserted
� cardEjected
� cardConfiscated

Passive objects accessed: ATMCard
Errors detected: Unrecognized card, Card reader malfunction.

18.10 IMPLEMENTATION OF CONCURRENT TASKS IN JAVA

As an example of task implementation, consider implementation in Java, in which
tasks are implemented as threads. The simplest way to design a thread class in Java
is to inherit from the Java Thread class, which has one method called run. The new
thread class must then implement the run method, which, when invoked, will exe-
cute independently with its own thread of control. In the example below, the ATM
Control class is designed to be a thread. The body of the thread is contained in the
run method. Typically, the body of the task is a loop, in which the task would either
wait for an external event (from an external device or timer) or wait for a message
from a producer task.

public class ATMControl extends Thread{}
public void run (){
while (true)
//task body
}

18.11 SUMMARY

During the task structuring phase, the system is structured into concurrent tasks and
the task interfaces are defined. To help determine the concurrent tasks, task struc-
turing criteria are provided to assist in mapping an object-oriented analysis model of
the system to a concurrent tasking architecture. The task communication and syn-
chronization interfaces are also defined. Each task is determined by using the task
structuring criteria. A case study of designing a real-time software architecture is
given for the Automated Guided Vehicle System described in Chapter 24. In addi-
tion, an example of concurrent software design is the design of the ATM Client
subsystem in the Banking System case study in Chapter 21.

More information on UML modeling for real-time and embedded systems is
given in MARTE, the UML profile for Modeling and Analysis of Real-Time and
Embedded Systems (Espinoza et al 2009). More information about designing real-
software architectures is given in Gomaa (2000). To make concurrent task design
more efficient (i.e., less demanding of resources), a group of related tasks can be
combined into one clustered task by applying task clustering criteria, such as sequen-
tial, temporal, or control clustering (Gomaa 2000).

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016



Designing Concurrent and Real-Time Software Architectures 343

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is the difference between an
active object and a passive object?
(a) An active object controls a passive

object.
(b) An active object does not have a

thread of control; a passive object
has a thread of control.

(c) An active object executes in a dis-
tributed system; a passive object
executes in a centralized system.

(d) An active object has a thread of
control; a passive object does not
have a thread of control.

2. What is an event-driven input task?
(a) A task that executes every few sec-

onds
(b) A task that controls other tasks
(c) A task that receives inputs from an

external device when it generates
interrupts

(d) A task that checks whether there
is new input from an external de-
vice

3. What is a periodic task?
(a) A task that responds to each mes-

sage it receives
(b) A task that is activated by a timer

event
(c) A task that is activated by an exter-

nal event
(d) A task that is activated by an input

event
4. What is a demand-driven task?

(a) A task that responds to each mes-
sage it receives

(b) A task that is activated by an inter-
nal message or event from another
task

(c) A task that is activated by an exter-
nal event

(d) A task that is activated by an input
event

5. What is a control task?
(a) A task that control other tasks
(b) A task that executes a statechart
(c) A task that executes on demand

(d) A task that controls I/O devices
6. What is a user interaction task?

(a) A task that interacts with I/O
devices

(b) A task that interacts with users
(c) A task that interacts with a user

sequentially
(d) A task that interacts with a user

concurrently
7. Which of the following is true for a Cen-

tralized Control architectural pattern?
(a) Control is divided among various

control components.
(b) It provides the overall control and

sequencing of the system.
(c) It provides overall control by coor-

dinating several control compo-
nents.

(d) It provides overall control over var-
ious I/O objects.

8. Which of the following is true for a Dis-
tributed Control architectural pattern?
(a) Control is divided among various

control components.
(b) It responds to multiple requests

from client subsystems.
(c) It provides overall control by coor-

dinating several control compo-
nents.

(d) It provides distributed control over
various I/O objects.

9. Which of the following is true for a
Hierarchical Control architectural pat-
tern?
(a) Control is divided among various

control components.
(b) It provides overall control over sev-

eral client subsystems.
(c) It provides overall control by coor-

dinating several control compo-
nents.

(d) It provides overall control over var-
ious I/O objects.

10. Which of the following is NOT a case of
event synchronization?
(a) External event
(b) Internal event
(c) Timer event
(d) User event

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:15 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.020

Cambridge Books Online © Cambridge University Press, 2016


