
CHAPTER 4

Software Design Architecture and Patterns
for Embedded Systems

Bruce Douglass

Chapter Outline

Overview of architecture and design 1
Architecture is about system-wide optimization 2

Three levels of design 4

What are design patterns? 5
Must I use object-oriented techniques to use design patterns? 6

An architectural example 8

Name: port proxy pattern 9

Problem context 9

Pattern structure and behavior 9

Consequences 11

Using patterns 11

Making trade-off decisions 13

Software architecture categories and views 15
Primary architectural views 15

Subsystem and component view 17

Concurrency and resource view 18

Deployment view 21

Distribution view 24

Dependability view 26

Secondary viewpoints 28

Summary 29

References 30

Overview of architecture and design

It is interesting that there are probably more definitions of the term “architecture” than

there are architects. The term is constantly being redefined to be more (or less) inclusive

and for more (or fewer) contexts. For the purpose of this discussion, we will heavily

rely on the definition from IEEE 1472000, “IEEE Recommended Practice for

93
Software Engineering for Embedded Systems.

DOI: http://dx.doi.org/10.1016/B978-0-12-415917-4.00004-9

© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415917-4.00004-9

Architectural Description of Software-Intensive Systems” (IEEE Computer Society, IEEE

1472000, 2000):

Architecture is the fundamental organization of a system embodied in its components,

their relationships to each other, and to the environment, and the principles guiding its

design and evolution.

The definition is perhaps a bit vague and broad, so to understand what it is, let’s first

discuss why we need it. After all, the “real work” done by the software is embedded in the

individual lines of code so why do we need larger-scale organization?

Architecture is about system-wide optimization

One key to a good architecture is the organization of the semantic elements into

organizational units that optimize properties of the overall system. The semantic elements are

low-level primitive things such as software functions, lines of code, data structures,

and classes while the organizational units are things like subsystems, components, tasks,

channels, and disciplines. These optimization properties, known as design constraints, are not

really about meeting the functional needs of the system; these are, after all, met by the

semantic elements. These properties are about maximizing some aspect(s) of the system at

the expense of others, which are considered less valuable in the specific context of concern.

Generally speaking, embedded systems have an enhanced requirement for optimization.

Some optimization concerns are:

• Performance

• Worst case

• Average case

• Average throughput

• Burst throughput

• Bandwidth

• Predictability

• Capacity

• Schedulability

• Distributability

• Flexibility

• Scalability

• Adaptability

• Robustness

• Reusability

• Maintainability

94 Chapter 4

• Development (non-recurring) cost

• Manufacturing (recurring) cost

• Ease of use

• Dependability

• Safety

• Reliability

• Security

• Accuracy and fidelity

Collectively, these design constraints are often referred to as Qualities of Service

(QoS).

Architecture seeks to identify units that organize the software semantic elements to

optimize the design constraints of importance to a specific system executing in its

operational context. Note that implicit in the term “optimization” is the notion that you

cannot maximize the values of all these concerns simultaneously. In fact, maximization of

some aspects always minimizes others; that is, optimization of some system features

deoptimizes others.

For example, consider the following system description:

The system reads data from a sensor and performs some complex mathematical computations

and then returns the results of the computation to the client software. The algorithm requires

the storage of a significant amount of data when complete.

If the system samples the data infrequently (with respect to how often the clients need the

data), overall performance can be improved by precomputing the value passed to the client.

This optimizes performance because the computation is performed only once to handle

many client requests. On the other hand, if the data arrives at the sensor much more

frequently than it is used by the client, the system loses performance if it precomputes

the client values.

Even in the case where it makes sense (in terms of improved performance) to precompute

the client value, we are likely to require more memory to store intermediate and final

results since they must be retained between client requests. If performance optimization is

more important than space optimization, then precomputation makes sense; if space

optimization is more important, then it does not.

Trade-offs are not limited to just performance and space. Some other common trade-off

pairs are shown in Table 4.1.

We will talk more about making design trade-offs in the next section on design

patterns.

Software Design Architecture and Patterns for Embedded Systems 95

In light of this discussion, we can characterize a good architecture in the following way:

A good architecture is an architecture in which important system properties are acceptably

optimized at the expense of properties which are less important.

Three levels of design

This optimization of design constraints really takes place at three levels in most

systems. Architectural designs are system-wide optimization decisions that maximize a

set of overall system properties. Architectural design decisions may be categorized into

subject areas, as will be done later in this chapter. Architectural optimizations must

optimize the design properties of the system as a whole and may, in fact, be

suboptimal for performance within a given architectural unit. For example, an object

broker architecture might be selected for a system as a whole, meaning that this

mechanism provides the primary means by which distributed software elements

collaborate. But this decision may result in unacceptable performance overhead in some

specific high-bandwidth channel even though the overall system design optimizes its

performance-space-costs attributes. In this case, the system may either live with the poor

Table 4.1: Common design trade-offs.

Design Property Design Property Trade-off Considerations

Usability Security To make a system more secure usually requires authentication
and management of protective barriers. These often reduce

the perceived ease of use of the system.
Robustness Time to market,

run-time performance
To make a system more robust requires the creation

of additional run-time tests and checks of preconditions and
other invariants. Creating this additional software requires

more development and testing time and effort.
Performance Accuracy Simple but less accurate algorithms can be executed in

less time than more complex, but more accurate ones.
Often more accurate algorithms require computation
of additional corrective terms requiring more time.

Reliability Safety If a system has a fail-safe state, then the safest thing to
do when an error is detected is to enter that state. Since this
is usually less functional, then the reliability of the system
(as measured by the availability of services) decreases.

Predictability Performance A cyclic execution scheduling algorithm is highly
predictable in terms of which lines of code execute when

and in what order. However, a cyclic executive is demonstrably
suboptimal to a far less predictable rate monotonic

priority-based schedule algorithm in terms of responsiveness
to incoming events.

96 Chapter 4

performance for some of the data or may construct a specialized transport for just that data

path.

In contrast, collaboration-level design (known as mechanistic design in the Harmony

process; see ref. [1] for a more detailed description of the process) optimizes software

collaborating within the architectural units. This allows different collaborations to be

optimized for different properties and gives a great deal of flexibility with respect to

meeting design constraints effectively. Although there are few books on patterns at

this level for embedded systems (see ref. [2] for some patterns at this scope) the

major work for collaboration-level patterns is the book by Gamma et al. [3]. While

not specific to embedded systems, many of these patterns may be applied in that

context.

Finally, detailed design focuses on optimizing primitive software units such as data

structures, functions, and individual classes. Although this is the most common area

of design optimization, in general it has the least impact on overall system performance.

In any event, in all cases, the focus is not really on achieving correct functionality,

but rather on achieving that functionality well. Design patterns exist at all three levels

of abstraction and bring value to the designer by providing reusable solutions with known

optimization properties.

What are design patterns?

Design patterns aren’t magic, and they aren’t all that difficult. Applying design patterns

is what good designers (including architects) do everyday anyway � even if they don’t

recognize that is what they are doing. Good designers examine their new design problems

and try to reason about what they’ve done or seen done in the past that solved similar

problems. That’s nothing more or less than apply design patterns, even though it is implicit

rather than explicit. What a design-pattern-centric design approach does is formalize this a

bit to simplify both the capture of good design solutions and their application to specific

design contexts.

A design pattern is a “generalized solution to a commonly occurring problem”. If a design

solution addresses a problem very specific to a particular system, there is no value in

abstracting it into a reusable design pattern. Similarly, a design pattern must abstract away

the specifics of a particular system so that it may be easily applied to other systems

operating in other contexts.

Each design pattern has a number of fundamental aspects that must be considered

in order to effectively use it. First, the pattern must have a name that conveys its essential

application. The name “Broker Architecture Pattern” tells us that a broker is involved

somehow in the identification and delivery of services or data while the name “Observer

Software Design Architecture and Patterns for Embedded Systems 97

Pattern” tells us that there are software elements being observed (called “Subjects” in the

pattern) and elements that are doing the observers (known as “Clients”). “Data Bus Pattern”

brings up images of a central repository (“bus”) for shared data.

Many patterns provide a brief abstract of what they are trying to accomplish and the

mechanism by which they operate. This brief description allows the designer to peruse

a large number of patterns quickly to find the best one for his or her problem.

The next aspect of pattern is the problem context � properties required for its proper

application. That is, what must be true of the system for the appropriate application

of the pattern.

The pattern structure and behavior describes in detail the elements of the pattern (classes,

functions, and data with various relations) and a description of how these elements interact

to achieve the intent of the pattern.

The consequences of the pattern are probably most important � at least in terms of

pattern selection. The consequences include both the benefits and the costs of using the

pattern. This is best described as a set of system or project optimizations and

deoptimizations. Does the pattern optimize worst-case performance at the expense of

additional space complexity, such as memory usage? Does it improve safety at the

expense of additional recurring cost due to additional sensors? Given a set of patterns

that serve a common purpose, the consequences allow us to select the best choice for

our particular system.

Lastly, an example is often provided to illustrate the use and application of the pattern.

While not strictly required, such examples can greatly aid the designer in understanding the

subtle details of a patterns use.

Must I use object-oriented techniques to use design patterns?

If you read that pattern literature, you might come away with the opinion that design

patterns are only available/appropriate/useful for object-oriented systems. As we have

discussed, design patterns are simply generalized design solutions that optimize certain

aspects of systems. While object-oriented design and programming has much to

recommend it, most embedded systems are still written in the C language. There are many

reasons for this, ranging from availability of target compilers and compiler efficiency to

conservatism on the part of developers. Nevertheless, design patterns apply to systems

implemented in C as much as they do to ones implemented in object-oriented languages

(see, for example, ref. [2]).

Having said that, some patterns are clearly object-oriented in their orientation. With respect

to programming style, patterns may be grouped into three distinct styles � structured,

98 Chapter 4

object-based, and object-oriented. All of these styles may be implemented in C but

structured and object-based approaches are more obvious.

Structured programming style patterns use C in a standard way. Basic elements are

header and implementation files, which contain types, constants, variables, functions,

and compiler directives. The system software is the object code compiled and linked

from the set of such files. All very “standard C” in appearance. Patterns applied in

the structured style just add these simple programmatic elements together to

implement the design optimization. This simple form of coding is shown in Code

Listing 4.1.

An object-based programming style merges data and functionality together. This is

pretty straightforward with C structs and typedefs.

With these structs, we can create “objects” � variables (instances) of these struct types.

Stylistically, there are three primary differences between structured and object-based

code. First, we typically create multiple instances of these structs while in structured

code we usually have only single instances (“singletons”). Secondly, we typically

manually munge the data of the struct (now often referred to as the “class”) into the

function name to identify the data that the functions are managing. Lastly, we add a me

pointer to the function’s argument list to identify on which instance we want the

function to operate. Sample code equivalent to that in Code Listing 4.1 is shown in

Code Listing 4.2.

#ifndefine Motor_H
#define Motor_H

typedef enum Motorstate {MOFF, MSLOW, MFAST, MERROR} Motorstate;

/* variables */
int motorspeed;
int updateFrequency;
MotorState ms;

/* functions */
void setMotorSpeed(int s, Motorstate m);
int getMotorSpeed(void);
void init(void);
#endif

Code Listing 4.1:
Structured code.

Software Design Architecture and Patterns for Embedded Systems 99

An object-based approach allows us to design data and the functions that manipulate them

more easily. The object-based approach extends this by adding the notion of subclassing.

A subclass is a class that inherits all the properties of another but then specializes and/or

extends the latter. This is done by not directly referring to the functions in a static way but

rather by using pointers-to-functions to abstract the invocation of these functions. This

enables us to override the original class functions by replacing them, as desired, with

pointers to new functions. This allows us to scope the functions within the struct, leading

to simplified naming (no munging) and allows us to replace the pointer in a subclass to

point to a different function with the same signature (specialization). We can also add

new attributes and functions in the subclass (extension). This is illustrated in Code Listing

4.3. Further information on how to do object-oriented programming in C can be found

elsewhere.

Some patterns are easier to implement in one programming style than another, but

ultimately any pattern can be implemented in whichever programming language you

select.

An architectural example

Let’s consider the following system design problem:

Large architectural units (subsystems) must be connected to enable communication by

sending events and data. Several middleware solutions support this, including CORBA

#ifndefine Motor_H
#define Motor_H

typedef enum Motorstate {MOFF, MSLOW, MFAST, MERROR} Motorstate;
typedef struct Motor { /* class Motor */
 int motorspeed; /* attributes */
 int updateFrequency;
 MotorState ms;
 };

/* functions */
void Motor_setMotorSpeed(const Motor* me, int s, Motorstate m);
int Motor_getMotorSpeed(const Motor* me);
void Motor_init(const Motor* me);
#endif

Code Listing 4.2:
Structured code.

100 Chapter 4

and DDS. However, there is a need to support the same subsystems on different middleware

platforms as well as hosted within the same address space (i.e., without middleware).

The design should allow changing the middleware with a minimum of work � ideally

without having to rewrite a single line of code within the subsystems themselves. That is to

say, reusability and portability are very important design criteria to optimize for the success

of this project.

A key problem faced by designers is that the most common way to implement such

middleware solutions is to write lots of code in a middleware-specific IDL (interface

definition language). This results in software embedded in the various subsystems but

the code is inherently middleware-specific.

This problem can be addressed in any number of ways. One way is to create a new IDL

that can be compiled into different target middlewares. Another solution is to somehow

“tag” the various relations between distributed elements and create IDL for just those links.

A third solution is to create “interface connector objects” that sit between the subsystems

and have them translate communication requests at run-time into appropriate middleware

services. This last pattern has been helpful for this kind of problem in systems as diverse as

avionics FMS (flight management systems) and medical tomography scanners. It is the

Port Proxy Pattern (adapted from ref. [4]).

Name: port proxy pattern

Abstract

This pattern specializes the connection points between architectural units to incorporate

and encapsulate all distribution knowledge.

#ifndefine Motor_H
#define Motor_H

typedef enum Motorstate {MOFF, MSLOW, MFAST, MERROR} Motorstate;
typedef struct Motor { /* class Motor */
 int motorspeed; /* attributes */
 int updateFrequency;
 MotorState ms;
 /* member functions */
 void (*setMotorSpeed)(const Motor* me, int s, Motorstate m);
 int (*getMotorSpeed)(const Motor* me);
 void (*init)(const Motor* me);
 };
#endif

Code Listing 4.3:
Object-oriented code.

Software Design Architecture and Patterns for Embedded Systems 101

Problem context

A set of architectural units (subsystems or components) are connected via a set of

discrete connection points (ports). However, there is a strong desire for independence of

communication infrastructure to support portability and reusability of the architectural

units.

Pattern structure and behavior

The mechanism of action of the pattern is to create proxy objects that sit “between”

the architectural units and translated messages and services from “application” services to

“network” services and vice versa. To deploy the architectural units to a different

communication infrastructure requires only the recreation of the proxy objects, not of the

architectural units themselves.

The basic pattern structure is shown in Figure 4.1.

The AbstractClient and AbstractServer classes both support only “semantic” (application

service) interfaces. They may be connected together directly, if a middleware-free

solution is desired. If they connect across a communication infrastructure such as TCP/

IP, CORBA, or DDS, then the proxies perform a bi-directional conversion between

the semantic interfaces and the network-specific interfaces. This is illustrated in

Figure 4.2.

Figure 4.1:
Port proxy pattern structure.

102 Chapter 4

Consequences

This is a straightforward combination of the Port and Proxy patterns. It isolates

the semantic elements of the software from the details of the communication infrastructure

including network characteristics and middleware IDL. The proxies can be written to

support various kinds of qualities of service (at most once, at least once, or exactly once)

and both synchronous and asynchronous communication. To deploy the client and service

architectural elements on a different communication infrastructure requires no modifications

whatsoever to the elements themselves.

Disadvantages of the pattern include the writing of sets of proxies for each

communication infrastructure to be supported. These proxies may be themselves quite

complex and require significant work. In addition, the use of generalized proxies may

introduce communications delays.

Using patterns

There are three primary ways of using patterns. Pattern mining refers to the creation

of patterns. This is most often done by looking at a set of similar specific solutions and

abstracting the commonalities into a pattern. Pattern hatching describes the selection

of relevant patterns from a pattern library. A recent Googlet search found 7,000,000 hits

for the term “design pattern”. A search on Amazont finds just under 2000 book titles.

Figure 4.2:
Port proxy interactive behavior.

Software Design Architecture and Patterns for Embedded Systems 103

There is a lot of active work available on patterns and literally thousands from which to

choose. The last usage of patterns is pattern instantiation. This activity focuses on applying

patterns in your specific designs to optimize them against your specific criteria.

Unless you’re in the business of defining patterns, you’re likely to start with pattern

hatching and continue on to pattern instantiation. The basic workflow for applying patterns

in design, including architecture, is shown in Figure 4.3.

The first step is to construct the initial model. By that, we mean that we develop software

that is functionally correct. A common problem is optimization of the system too early in

development and our recommendation is that you defer optimization until after the software

Figure 4.3:
Basic design workflow.

104 Chapter 4

is demonstrated to be functionally correct. Having said that, it can be profitable to identify

some aspects of architecture near the beginning of the project (such as the subsystems, their

responsibilities and interfaces), particularly when a large team is involved. The architectural

units can then serve not only as run-time organizational units but also as a means of

dividing up the work among your development teams. We will discuss the different

categories and views of architecture later in this chapter.

The next step is to identify the important design criteria. This is a step often ignored but

this results in systems that do not meet their responsibilities as well as they could.

Remember, when you optimize some aspects of the system you always deoptimize others.

Only by clearly identifying the relevant design constraints can you create a good

architecture that meets the system needs.

Of course, it isn’t enough to merely identify the design criteria � they must also be ranked

in order of criticality. A good design is one in which we optimize the most critical aspects

of the system at the expense of deoptimizing the least. A list of design criteria weighted

with their criticality enables us to perform a trade-off analysis of different alternatives.

The next step is to evaluate different potential solutions (patterns) against the weighted

design criteria. This is typically known as a trade-off analysis, or simply a “trade study”.

The trade-off analysis can be done informally (e.g., in your head) or more formally using

spreadsheets or other tools. A semi-formal way to perform trade-off analysis is described

in the next section.

Following the selection of the patterns you want to use, they must be applied to your

design. A design pattern has two kinds of elements. Pattern elements provide the

functionality of the pattern and the glue that allows the pattern as a whole to provide its

benefits. Formal parameters of the pattern are elements that will be replaced by elements

in your functional software to provide the application behavior needed. This usually

requires a small amount of reorganization of your software, an activity known as

refactoring. Together, the pattern elements and the actual parameters (provided by

your software) form the design solution.

Once the design optimization is in place, it must be tested. First, since the software

was functionally correct before the addition of the pattern, it should be retested to ensure

that the work refactoring the software and instantiating the patterns didn’t break the

software. Secondly, the pattern was added to optimize one or more properties of

the system. The resulting design solution should be tested to ensure that the desired

optimization was achieved. If the pattern was meant to improve performance, is it now

(sufficiently) better? If the pattern was meant to save memory, how much memory did

it free up? If the pattern was intended to improve reusability, the reusability of the

software should be assessed.

Software Design Architecture and Patterns for Embedded Systems 105

While this workflow looks linear, the fact remains that this can be done both iteratively

and continuously. We recommend that the software be developed and tested in small cycles

lasting no more than an hour. (In the Harmonyt process, this is known as the nanocycle.

See ref. [1] as well as later in this book: Chapter 22 � Agile development for embedded

systems.) Once that software meets its functional requirements, we can begin to optimize it

using the workflow described in Figure 4.3. We might end up instantiating four distinct

patterns for the software but we can do this not only one pattern at a time, but also a piece

of a pattern at a time.

Making trade-off decisions

In order to make good optimization decisions, the design criteria must be identified and

ranked according to the criticality of the criterion. Next, a set of possible solutions are

identified. Each of these solutions must then be assessed against each criterion. The degree to

which a given solution optimizes a design criterion is known as its score for that criterion.

By summing up the cross product of the criticality of the criteria and the related scores, the

overall effectiveness of the pattern is computed; this is a value called the total weighted score.

The solution with the highest score is the winner and is instantiated in the design solution.

Spreadsheets provide a simple tool for the computation of the total weighted score for a

set of pattern alternatives. Table 4.2 shows how such a table might look.

In this case, there are five different criteria. The weight is a value representing

the criticality of the criterion. In this table, the weights are normalized to be in the range

of 0 to 10. These are the central columns in the spreadsheet.

The rows show the scores of the different alternative pattern solutions � these are our

assessments of degree of the optimization for each aspect with this pattern. Alternative 1, for

example, does a pretty good job on Criterion 1 (7) and a less good job on Criterion 2. The

Table 4.2: Design trade-off spreadsheet.

Design Solution

Design Criteria

Total Weighted

Score

Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5

Weight5 7 Weight55 Weight5 3 Weight5 2 Weight51.5

Score Score Score Score Score

Alternative 1 7 3 6 9 4 106
Alternative 2 4 8 5 3 4 95
Alternative 3 10 2 4 8 8 120
Alternative 4 2 4 9 7 6 84

106 Chapter 4

total weighted score is simply the cross product of the scores and the weights. For Alternative

1, this is 7�71 3�51 6�31 9�21 4�155 106. The best solution appears to be Alternative 3,

which has a total weighted score of 120. This is the pattern that will be instantiated.

Patterns are a key approach to making design optimizations effectively. First, construct

a functional model of the system that is demonstrably correct. Second, identify and rank the

design criteria you want to optimize. Then, select design patterns that optimize the aspects

you have deemed most important. Lastly, verify that you’ve done a good job.

Architecture is the highest level of design. Architectural design patterns optimize the

system at a gross, overall level. Using design patterns will optimize your system structure,

make it more understandable, and provide a context in which more detailed design

optimizations can take place.

Software architecture categories and views

Architecture is not a single, primitive thing. It is a set of design patterns that integrate

together to organize, orchestrate, and optimize the important aspects of the system as a

whole. Because of the complexity and breadth of a system architecture, we define

categories that focus on related aspects. These categories may also be considered

viewpoints of the architect in that they bring to the fore these design decisions around

these related aspects.

Primary architectural views

The primary views of the architecture are considered key for a couple of reasons. First,

they are generally important in most systems in the embedded space. Almost all embedded

systems must define some optimizations within these areas of concern. Secondly, they have

a profound impact on the overall structure, behavior, or performance of the system. Other

architectural categories may be very important for your specific system but may be less

universal or have less overall impact on system structure or behavior.

In the Harmony process mentioned earlier, there are five important categories of the

architecture, as shown in Figure 4.4. Each of these viewpoints is represented in most or all

systems in the embedded space and has a profound impact on the structure, behavior and

performance of the delivered system. Each of these viewpoints is a relatively independent

subject matter with a rich vocabulary, conceptual ontology, and set of patterns. A system

architecture is (mostly) composed of one or more patterns in each of these subject areas.

Table 4.3 describes these viewpoints.

Let’s briefly discuss each of these areas of architectural interest.

Software Design Architecture and Patterns for Embedded Systems 107

Subsystem and component view

This category of architectural decisions identifies the largest-scale pieces of the system,

assigns them responsibilities, characterizes their interfaces, and allocates any existing

software elements to those structures. In UML 2, components and subsystem are just

structured classes � elements that delegate their responsibilities and behaviors to internal

parts (each of which is typically typed by other classes). Because of this, we’ll just refer

to such elements as subsystems, knowing that components are included in that description

as well. The UML standard is pretty flexible on how subsystems and components are used.

We recommend that subsystems are the largest pieces, components the next, followed by

tasks that execute within the components, then by other structured classes and finally

by simple (unstructured) classes (Figure 4.5).

Robust subsystems contain parts which are relatively tightly coupled to each other

(good cohesion), provide a coherent set of services (coherence) and hide the implementation

details from other subsystems (encapsulation). Subsystems serve not only as run-time

organizational units but also as a means to distribute work to teams. Each subsystem is

often constructed as a set of components, such as math libraries, middleware, and

Dependability
View

Subsystem
And

Components
View

Concurrency
and

Resource View
Harmony ESW

Architecture

Deployment
View

Distribution
View

Figure 4.4:
Primary architectural viewpoints.

108 Chapter 4

application components. Each component may have multiple threads of internal execution.

The real work is done ultimately by the primitive classes, functions, and variables � for this

reason, these small elements are often called the “semantic elements” of the system.

Subsystem patterns vary how the system functionality and knowledge is divided and

connected. For example, a Layered Pattern sets up subsystems as a set of layers of

abstraction or control. For many systems, this is a useful way to partition in the system.

One layer might deal with application concepts, which are in turn implemented using the

facilities of a lower layer containing middleware, UI, and physics models, which are

ultimately implemented at the lowest layer in terms of hardware. This pattern optimizes the

Table 4.3: Primary architectural viewpoints.

Viewpoint Description Example Patterns
�

Subsystem and
component view

This view identifies the largest scale
organizational units of the system and details
their responsibilities and allocation of services
and data and characterizes their interfaces,

both offered and required.

Layered pattern
Microkernel pattern

Recursive containment pattern
Hierarchical control pattern

Port pattern
Concurrency and
resource view

This view identifies the concurrency units and
related concurrency metadata, scheduling
policies, and resource sharing policies.

Cyclic executive pattern
Static priority pattern

Dynamic priority pattern
Interrupt pattern

Guarded call pattern
Message queue pattern
Rendezvous pattern

Deployment View This view identifies the different engineering
disciplines involved (such as software,

electronic, hydraulic, pneumatic, optical,
and so on), the responsibilities of each, and
the interfaces between these disciplines.

Static allocation pattern
Hardware proxy pattern
Hardware adapter pattern

Mediator pattern
Debouncing pattern

Distribution view This view identifies the policies for
distributing software across multiple address
spaces (single or multicore), how elements
discover services and collaborate over the
communication infrastructure, including

network topology, middleware and
communication protocols.

Shared memory pattern
Observer pattern
Proxy pattern

Port proxy pattern
Data bus pattern
Broker pattern

Dependability view This view addresses the integrated concerns
of safety, reliability, and security and

how normal and exceptional functionality
must deal with these issues.

Protected single channel pattern
Homogeneous redundancy pattern
Heterogeneous redundancy pattern

CRC pattern
Smart data pattern

Proxy-based firewall pattern
Secure channel Pattern

�Details of these patterns can be found in the author’s Real-Time Design Patterns [5] and Design Patterns for Embedded Systems
in C [2] books, or in other references.

Software Design Architecture and Patterns for Embedded Systems 109

reusability of the software for different hardware platforms (by replacing the lower layer),

middlewares or UIs (by replacing the middle layers) or by providing a platform

environment (by replacing the upper application layer). Layered patterns often add

performance overhead because requests must be delegated through the layers.

Alternatively, while the Microkernel Architecture also structures the system into a set

of layers, these layers are organized into more and less critical features. Such a structure

is more like an onion than a stack. At the core is the kernel � a set of critical features.

Outside that is the set of next most important features. Outside that is the set of slightly less

important features. And so on. This allows for the creation of different product variants of

differing capabilities with different footprints.

A Channel Pattern organizes the system into a set of units, each of which acquires raw

sensor data and controls some physical output. Internally, the subsystem (known as a

channel) performs a series of data transformations in order to compute the correct actuation

signals. Such a structure is very helpful for safety-critical and high-reliability systems

because it is a simple matter to create multiple parallel channels that act in concert to

deliver services even if one of the channels fails. The channel pattern usually has a higher

recurring cost (cost per shipped system) because of the need to replicate hardware and

increased memory requirements.

The Port Pattern is a simple pattern for the connection of different subsystems based on

interface compatibility. A port is simply a named connection point that supports one

or more interfaces. Two ports may be connected if they are port conjugates � that is, if one

offers the services needed by the other, and vice versa. The pattern allows systems to be

Component
Active
Class

Structured Class ClassSubsystem

Figure 4.5:
Recommend size taxonomy.

110 Chapter 4

connected together not on the basis of the type (class) of the subsystem, but rather on the

compliance to the specified interfaces. However, ports also add some delegation overhead.

Sometimes this overhead can be optimized away but not always.

All of these patterns (and more) provide benefits � that is, they optimize some aspect

of the system. They also provide costs � they deoptimize other aspects. Figure 4.6

graphically shows the differences in three of these patterns.

Concurrency and resource view

The concurrency and resource view is another of the key architectural perspectives.

Concurrency refers to the simultaneous execution of concurrency units, such as tasks, threads,

and processes. Each concurrency unit contains a sequence of action executions with a known

execution sequence (including branching). But the order of executions of actions between

concurrency units is generally unknown, except at explicit synchronization points. True

concurrency occurs when the concurrency units can actually execute in parallel, such as on

different CPUs and on different cores of a multicore processor. This architectural view must

also concern itself with pseudoconcurrency in which concurrency units must be executed one-

at-a-time because they share a common computational resource but for the most part appear

concurrent. Task- or context-switching is an important consideration in embedded systems

because too much of it (known as “thrashing”) leads to loss of performance and too little of it

(known as “starvation”) leads to work not getting done in the right time frame.

If the execution of concurrency units is truly independent, then design is very

straightforward, although there are design optimization decisions to be made. When the

concurrency units interact � either directly (e.g., with asynchronous events or function

calls) or indirectly (e.g., through sharing data or other resources), then designs become

much more complex.

Level 3 Services

Level 2 Services

Level 1 Services
Data

Transform

Actuator
Control

Input
Acquisition

Channel

0.10,1

kernel (core services)

App Layer

Ul Layer

Middleware Layer

Hardware Layer

Layered
Pattern

Microkernel
Pattern

Channel
Pattern

Figure 4.6:
Comparison of three subsystem patterns.

Software Design Architecture and Patterns for Embedded Systems 111

The primary areas of design concern for the concurrency and resource architecture

category are:

• scheduling � defines when tasks run, both in isolation and with respect to each other;

• “thread-safe” sharing of resources � defines the means by which resources may be used

by multiple concurrency units;

• deadlock avoidance � specifies how deadlock is avoided.

Performance issues appear in all of these areas of design concern, including worst-case

and average-case execution time, bandwidth, throughput, and predictability.

In the UML, concurrency units are represented as «active» classes and running tasks

are instances of them. These classes have the responsibility to create the thread in which

their semantic elements run and manage the event and message queue for those semantic

elements. Resources are typically modeled as classes that provide services or data to the

semantic elements within the concurrency units. Care must be taken to avoid getting bad

results or even corrupting system data. A class diagram that presents the concurrency

architecture is commonly known as a task diagram. An example is shown in Figure 4.7.

Figure 4.7:
UML task diagram.

112 Chapter 4

In this example, «active» classes are shown with heavy side borders, and stereotypes

identify the «active» and resources as well. Semaphores and the data queue are explicitly

shown. In addition, concurrency metadata, describing the task execution characteristics,

is given in constraints.

Scheduling policies are design patterns that focus on when and how tasks are

scheduled. This is particularly important for pseudoconcurrent systems in which

concurrency units must share common single-threaded computational hardware. (True

concurrency means that the objects execute simultaneously. Pseudoconcurrent objects

give the appearance of executing concurrently but since they execute on a single-

threaded computational resource (CPU), the resource switches focus among concurrency

units, so that only one is actually executing at any point in time.) Different scheduling

patterns provide different benefits. Some of the common scheduling design patterns are

shown in Table 4.4.

Table 4.4: Some scheduling design patterns.

Pattern Description Benefits Costs

Cyclic executive The scheduler runs a list of tasks
(each to completion) in the same

order in a repetitive cycle.

Simple
Fair

Highly predictable

Low responsiveness
Unstable

Suboptimal performance
Requires tuning

Time-triggered
cyclic executive

Same as cyclic executive except
that each cycle begins on a

time-based epoch.

Simple
Fair

Highly predictable
Synchronizes with
reference clock

Low responsiveness
Unstable

Suboptimal performance
Requires tuning

Rate monotonic
scheduling
(RMS)

All tasks are assumed to be periodic
with the deadline at the end of the

period. Priorities are assigned at design
time on the basis of period � the
shorter the period, the higher
the priority. Highest priority

task always runs.

Stable
Optimal
Robust

Unfair
May not scale to very

complex systems
More complex
Less predictable

Earliest deadline
first (EDF)

Priorities are assigned at run-time
based on the nearness of the deadline
(i.e., its urgency). Highest priority

waiting task always runs.

Optimal
Robust

Unfair
Naive implementation
leads to thrashing

Unstable
More complex
Less predictable

Software Design Architecture and Patterns for Embedded Systems 113

Deployment view

In the development of embedded systems, not all of the implementation is represented in

the software. It is, in fact, the collaboration of elements from a number of different

engineering disciplines that fully realizes the system functionality. Such disciplines

might include:

• Software

• Electronics

• Analog

• Digital

• Mechanical

• Hydraulics

• Pneumatics

• Structural

• Optical

• Nuclear

• Chemical

• Biological.

The deployment view is important for a couple of reasons. First, it is important to

understand the allocation of requirements and functionality to the elements of the different

disciplines. That makes the scope and content clear to the different engineering teams.

Secondly, it is crucial to have well-defined interfaces between adjacent disciplines.

(An adjacent discipline is one that contains design elements that connect directly to

elements of another; for example software often controls electronics, so software and

electronics are adjacent. To control a pneumatic pump, however, software needs to control

electronics that in turn control the mechanical parts, so software is not adjacent to

mechanical engineering.) A common problem is that these inter-disciplinary interfaces are

poorly defined, leading to long integration times and late, expensive rework.

Although UML defines a kind of diagram called a “deployment diagram”, it is very limited

in expressiveness. When we defined the SysML specification (Systems Modeling Language,

a profile of the UML standard [6]), we rejected the use of the deployment diagram to

represent the deployment view but instead relied on block diagrams (i.e., class diagrams)

to depict the deployment architecture. An example, part of a medical gas delivery system, is

shown in Figure 4.8. Stereotypes identify the different disciplines to which the elements

belong. Although usually software elements remain unstereotyped, explicit stereotypes

were added in the example figure for clarity.

The interfaces for such elements can be identified in UML tags associated with

the stereotype and filled in for each separate model element. For example, the

114 Chapter 4

electronic-software interface details of the setAirflow(flow) operation is provided by

the tags defined for that element, shown in Figure 4.9. These details show that it is a

memory-mapped interface located at address.

The published pattern literature for this view focus primarily on the software-electronic

allocation and interfaces (See Table 4.5).

Distribution view

Many, if not most, embedded systems have multiple processing units, whether they are

different cores of a multi-core CPU or different CPUs altogether, each of which runs

software. One of the challenges of modern-day embedded systems is getting the software

distributed across different address spaces to communicate and collaborate effectively

and efficiently. We call this view of the architecture the “distribution view”.

Figure 4.8:
Deployment architecture diagram.

Software Design Architecture and Patterns for Embedded Systems 115

The distribution view includes the architectural decisions about how the software

in different address spaces communicates � including the sharing of data and control

messages, initiation and termination of communications, how quality of service for the

communication is managed, network data formats, and the use of shared memory,

sockets, middleware and communication protocols.

This is such an important topic that there are many books that focus exclusively on it.

Table 4.6 shows some common patterns in this architectural viewpoint.

Dependability view

Dependability refers to our ability to depend on the systems we construct. Dependability

has three primary aspects. The first is safety, which may be defined as “freedom from

harm”. The second, reliability, is a stochastic measure of the availability of services of the

system. The last aspect is security, or “freedom from outside influence, intrusion, or theft”.

The importance of the dependability view of architecture continues to increase as we make

our systems both smarter (for some definition of the term) and give them roles in which

their misadventures can have huge negative impact on the lives of people around them.

Sometimes the concerns of the different aspects are independent and sometimes they are

coincident. A few examples:

• Making the car media player more secure (so that user credit card information used

to download media to the player isn’t stolen) doesn’t affect the safety of the car.

Figure 4.9:
Electronics interface details for setAirFlow() operation.

116 Chapter 4

• Adding an air bag power-on safety check makes the car safer but reduces its reliability

since there are now more components that can fail.

• Requiring the user to log in with a long password before allowing brake, acceleration,

and steering functionality makes the car more difficult to steal but reduces safety

in emergency conditions.

• Adding additional brake pedal position sensors improves the reliability of the brake

pedal assembly and makes the car safer at the same time.

Every system is different and the dependability needs of those affected by the system in the

specific context of its intended use must be considered. If an automobile is only used to

play a radio (and not to drive) then most safety concerns go away. A cardiac assist device

in an attended environment (meaning that medical personnel are nearby and monitoring

Table 4.5: Some deployment patterns.

Pattern Description Benefits Costs

Static
allocation

The functionality of a hardware-software
interface is defined at design time.

Simple Doesn’t provide
robustness in

the presence of faults
Lack of flexibility

of use
Symmetric
allocation

The functionality of a hardware-software
interface is dynamically configurable.

Provides flexibility
for different loads
and conditions
Can dynamically
reconfigure in the
presence of faults

More complex
Typically requires

more hardware and
recurring cost

Hardware
proxy

The proxy publishes services that allow values
to be read from and written to the device,

as well as initialize, configure, and shut down
the device as appropriate. The proxy provides
an encoding and connection-independent
interface for clients and so promotes easy

modification should the nature of the device
interface or connection change.

Simplified
maintenance

May have run-time
performance overhead

Hardware
adapter

This pattern provides an adapter
for mismatched hardware-software interfaces.
Useful when existing hardware and software
are brought together in a new system context.

Improves portability
Improves reusability

Adds a level of
indirection and may
negatively impact
performance

Mediator The Mediator pattern is particularly useful
for managing different hardware elements
when their behavior must be coordinated
in well-defined but complex ways. It is

particularly useful for C applications because
it doesn’t require a lot of specialization

(subclassing), which can introduce its own
complexities into the implementation.

Simplifies coupling
of many elements

in complex
control systems

Especially valuable
in C2 (command
and control)
applications

May negatively
affect performance

Complicates
bi-directional

communication
among elements

Software Design Architecture and Patterns for Embedded Systems 117

the system) has a very different set of requirements than one that is used “unattended”.

In general, safety analysis and assessment must take into account many factors to make the

“safety case” for the system.

A “dependable” systems employ redundancy in various ways to provide safety, security,

and reliability. The different patterns implement this redundancy to optimize different

specific concerns at varying degrees of cost. Table 4.7 shows a few of these patterns.

Table 4.6: Some distribution patterns.

Pattern Description Benefits Costs

Shared memory Uses multi-ported (often
dual-ported) memory to
share global data and

events.

Large data sets may be
efficiently shared

Low run-time performance
overhead

Requires special hardware
to manage synchronization

Doesn’t scale well to
large number of
interconnections

Observer Instruments servers with
subscribe/unsubscribe

functionality to decouple
from clients.

Maintains proper client-
server knowledge

Good run-time performance
Easy to implement different

notification policies

Complicates the server
somewhat

Proxy Implements an observer
pattern across different

address spaces.

Isolates details of
communications means
away from application

semantics
Minimizes network traffic

Proxies may themselves
become quite complex

Port proxy Encapsulates all
communication media
details into connective

objects (ports) that manage
marshalling, transmission,

and unmarshalling of
messages.

Isolates application
semantics from

communication semantics
Network protocols can be
changed with no change
to application software
Aids portability and

reusability

Requires writing of
multiple sets of proxies
Port proxies may be

complex

Data bus Virtualizes data into a
common repository “bus”
to add distribution and

decouple clients and servers.
Comes in both “push” and

“pull” variants.

Localizes data into
a single location

Manages large data sets well
Scales to many clients well
Simplifies linkage topologies

Vulnerable to single
point faults

Data bus itself may be
complex

Broker Provides a repository of
clients and servers making
connections flexible and

robust

Easy to implement
fault-tolerant systems
Supports symmetric
multiprocessing well

Brokers may be complex
(although commercial
solutions are available)

Brokers often have a large
memory footprint and
significant performance

overhead

118 Chapter 4

Table 4.7: Some dependability patterns.

Pattern Description Benefits Costs

Protected
single channel

The protected single channel Pattern
is a simple pattern in which data
checks are added at one or more

concrete data transformation steps.
It provides lightweight redundancy

but typically cannot continue
to provide service if a fault

is discovered.

Low design cost
Low recurring cost

Straightforward means for checking
correctness of input and/or

computation

Can’t continue in the
presence of a fault

(requires fail-safe state)

Homogeneous
redundancy

Uses multiple instances of identical
channels that operate in either

parallel or backup fashion, so that if
one channel fails, the system can

continue to provide service.

Low design cost
Identifies random faults

Can continue in the presence
of a fault

High recurring cost
Cannot identify systematic

faults (i.e., design or
implementation errors)

Heterogeneous
redundancy

Uses multiple instances of differently
designed or implemented channels
that operate either in parallel or
backup fashion so that if one
channel fails, the system can
continue to provide service.

Can continue in the presence of a
faultIdentifies random and

systematic faults

High design cost
High recurring cost

CRC The Cyclic Redundancy Check (CRC)
pattern computes a fixed-length

binary code, called a CRC value, on
your data to detect whether or not it
has been corrupted. This code is

stored in addition to the data values
and is set when the data is updated
and checked when the data is read.

Identifies single with absolute
confidence and multiple bit errors

with high confidence

Some computational
overhead for checking the

data on every access
Cannot continue if fault

is detected
Tabular implementation

uses more memory
Algorithmic

implementation uses
more time

Smart data Encapsulates data into classes and
access required accessors that check
pre- and post-conditional invariants,
throwing exceptions when they are

violated.

Widely applicable and different
kinds of invariant checking can be

easily added

Performance suffers since
invariants must be

verified on each access
Some additional memory
required for range and
limit data, if necessary

Proxy-based
firewall

�
Application-specific proxies filter and

screen incoming and outgoing
network traffic.

Identifies application-specific
threats addresses the primary threat

vector for networked systems
May be set to allow only specifically
expected traffic and reject all other

messages

Additional development
costs not adaptable to
changing environments

Secure channel Sensitive communications
transmitted across public media are
sent via channel in which all data is

encrypted.

Security is improved; even captured
data cannot be interpreted

Middleware solutions commonly
available

Additional design cost
There may be

performance overhead for
encryption and decryption
May decrease the ability
to perform symmetric
processing since server
affinity may result

�Proxy-based firewall and secure channel patterns can be found in ref. [7].

Software Design Architecture and Patterns for Embedded Systems 119

Figure 4.10 shows the basic structure of the protected single channel pattern.

The SensorDeviceDriver acquires the data. A linked set of ConcreteDataTransforms

process the data in a series of steps until the outcome of the computation is used to drive

some actuator via the AcutatorDeviceDriver. The “protected” part comes in by attaching

data verifiers, known in the pattern as AbstractTransformCheckers, to check the

intermediate processing of the data. This might be done by ensuring the data is within

some range limit, or that backwards computation might recreate the original sensor value.

If a problem is identified, then the appropriate safety mechanism is invoked.

An example use of this pattern is shown in Figure 4.11. In this case, data comes from

two sensor classes � the Thermometer and FanSpeedSensor � plus a device for setting

the desired temperature (Thermostat). The temperature data is checked by the

CheckTemperature class. The ComputeHeatFlow classes use the data from the two

sensors to calculate the actual heat flow. The desired heat flow is calculated by the

ComputeReqHeatFlow class. Both of these values are checked by the HeatFlowLimits

class to ensure that both the actual and the requested heat flow are within appropriate

limits. The difference between actual and desired is used to calculate the parameters to

Figure 4.10:
Structure of the protected single channel pattern.

120 Chapter 4

drive the furnace, which is the actuator in this system. The intermediate checks of the

system improve safety by ensure pre- and post-conditional invariants are true.

Secondary viewpoints

The five primary views certainly do not cover all aspects of architecture. The ones covered

by the primary views generally have the greatest impact on the structure and behavior of

the system overall. Nevertheless, other architectural optimizations must be made as well.

Other architectural viewpoints that might be important include data management, exception

handling and reporting, and system maintenance support. The overall architecture is the

sum of all the architectural decisions, both primary and secondary.

Summary

Architecture is the collection of organization and optimization design decisions at the

highest level. Different architectural decisions can result in significantly different

performance properties despite identical functionality. Architecture is important because

it allows us to optimize the product for technological, contextual, economic and

deployment advantages.

Figure 4.11:
Example of the protected single channel pattern.

Software Design Architecture and Patterns for Embedded Systems 121

A valuable approach to developing architectures is to understand the fundamental grouping

of design criteria. In the Harmony process, these are

• subsystem and component view

• concurrency and resource view

• distribution view

• dependability view

• deployment view.

Each of these viewpoints has different sets of criteria and a different literature that defines

core concepts and needs. The overall architecture is the collection of design optimizations

in each of these separate aspects.

For each one of these viewpoints, the recommended architectural optimization approach

is similar:

1. Identify and characterize the important optimization criteria.

2. Rank the criteria in order of criticality or importance.

3. Identify design solutions (patterns) that optimize the most important criteria at the

expense of the least.

4. Apply the design solutions.

5. Verify that the functionality is properly maintained and the desired optimizations are

achieved.

This design pattern workflow has been used to successfully architect a great many

systems, ranging from small hand-held sensors to large interconnected avionics systems.

The wide availability of patterns, both in books and on the web, has further enhanced

this approach.

References

[1] B.P. Douglass, Real-Time Agility, Addison-Wesley, 2009.

[2] B.P. Douglass, Design Patterns for Embedded Systems in C by Bruce Powel Douglass, Elsevier Press,

2010.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley, 1994.

[4] B.P. Douglass, Real-Time UML Workshop for Embedded Systems, Newnes, 2006.

[5] B.P. Douglass, Real-Time Design Patterns, Addison-Wesley, 2003.

[6] Available from: http://www.omg.org/spec/SysML/1.2/PDF.

[7] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, P. Sommerlad, Security Patterns:

Integrating Security and Systems Engineering, John Wiley, 2006.

122 Chapter 4

http://www.omg.org/spec/SysML/1.2/PDF

	4 Software Design Architecture and Patterns for Embedded Systems
	Overview of architecture and design
	Architecture is about system-wide optimization

	Three levels of design
	What are design patterns?
	Must I use object-oriented techniques to use design patterns?
	An architectural example
	Name: port proxy pattern
	Abstract

	Problem context
	Pattern structure and behavior
	Consequences

	Using patterns
	Making trade-off decisions

	Software architecture categories and views
	Primary architectural views
	Subsystem and component view
	Concurrency and resource view
	Deployment view
	Distribution view
	Dependability view

	Secondary viewpoints

	Summary
	References

