
Cambridge Books Online

http://ebooks.cambridge.org/

Software Modeling and Design

UML, Use Cases, Patterns, and Software Architectures

Hassan Gomaa

Book DOI: http://dx.doi.org/10.1017/CBO9780511779183

Online ISBN: 9780511779183

Hardback ISBN: 9780521764148

Chapter

24 - Real-Time Software Architecture Case Study pp. 472-494

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge University Press

24

Real-Time Software Architecture
Case Study

Automated Guided Vehicle System

The Automated Guided Vehicle (AGV) System case study is an example of a real-
time system. Taken in conjunction with the other systems with which it interfaces,
the Supervisory System and the Display System, it is also an example of a distributed
system of systems. The Supervisory System and the Display System are existing sys-
tems to which the AGV System must interface.

The problem is described in Section 24.1. Section 24.2 describes the use case
model for the AGV System. Section 24.3 describes the static model, which includes
the system context model that depicts the boundary between the system and the
external environment. Section 24.4 describes the object structuring for the AGV
System. Section 24.5 describes dynamic state machine modeling, and Section 24.6
describes dynamic interaction modeling in which communication diagrams are
developed for each of the use cases. Section 24.7 describes the design model for the
AGV System, which involves the design of a component-based real-time software
architecture.

24.1 PROBLEM DESCRIPTION

An AGV System has the following characteristics:
A computer-based AGV can move along a track in the factory in a clockwise

direction, and start and stop at factory stations. The AGV has the following charac-
teristics:

1. A motor, which is commanded to Start Moving and Stop Moving. The motor
sends Started and Stopped responses.

2. An arrival sensor to detect when the AGV has arrived at a station, e.g.,
arrived at station x. If this is the destination station, the AGV should stop.
If it is not the destination station, the AGV should continue moving past the
station.

3. A robot arm for loading and unloading a part onto and off of the AGV.

The AGV system receives Move commands from an external Supervisory
System. It sends vehicle Acknowledgements (Acks) to the Supervisory System

472

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

Real-Time Software Architecture Case Study 473

Move to Station

Send Vehicle Status

Supervisory System

Clock Display System

Arrival Sensor

Figure 24.1. Automated Guided Vehicle System: use cases

indicating that is has started moving, passed a station, or stopped at a station. The
AGV system also sends vehicle status to an external Display System every 30 sec-
onds.

It is given that the arrival sensor is an event-driven input device and that the
motor and arm are passive I/O devices. It is also given that the AGV system com-
municates with the Supervisory System and Display System by means of messages.

24.2 USE CASE MODELING

The use case model for the AGV System is depicted in Figure 24.1. From the prob-
lem description, it can be determined that there are two use cases, one dealing with
the vehicle moving to a station and the second dealing with sending vehicle status to
the display system. There are four actors: Supervisory System, Display System, Arrival
Sensor, and Clock. From the perspective of the AGV System, the Supervisory System
and Display System are external system actors. The Arrival Sensor is an input device
actor, whereas the Clock is a timer actor. The use case descriptions are given next.

24.2.1 Move to Station Use Case

The Supervisory System is a primary actor that initiates the Move to Station use case,
because it sends the move command to the AGV System. The Arrival Sensor is a
secondary actor that participates in the use case as it notifies the vehicle when it has
reached a station. The use case description is as follows:

Use case name: Move to Station
Summary: The AGV moves a part to a factory station
Actor: Supervisory System (primary), Arrival Sensor (secondary)
Precondition: The AGV is stationary.
Main sequence:

1. The Supervisory System sends a message to the AGV system
requesting it to move to a factory station and load a part.

2. The AGV System commands the motor to start moving.
3. The motor notifies the AGV System that the vehicle has started

moving.
4. The AGV System sends a Departed message to the Supervisory Sys-

tem.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

474 Case Studies

5. The arrival sensor notifies the AGV System that it has arrived at
factory station (#).

6. The AGV System determines that this station is the destination sta-
tion and commands the motor to stop moving.

7. The motor notifies the AGV System that the vehicle has stopped
moving.

8. The AGV System commands the robot arm to load the part.
9. The arm notifies the AGV System that the part has been loaded.

10. The AGV System sends an Arrived message to the Supervisory Sys-
tem.

Alternative sequences:
Step 6: If the vehicle arrives at a different station from the destination sta-
tion, the vehicle passes the station without stopping and sends a “Passed
factory station (#) without stopping” message to the Supervisory System.
Steps 8, 9: If the Supervisory System requests the AGV to move to a factory
station and unload a part, the AGV will unload the part after it arrives at
the destination station.
Postcondition: AGV has completed its mission and is at the destination
station.

24.2.2 Send Status Use Case

The Clock is a primary actor, which initiates the Send Vehicle Status use case, for
which the Display System is a secondary actor. The use case description is as follows:

Use case name: Send Vehicle Status
Summary: The AGV sends status information about its location and
idle/busy status to the display system.
Actor: Clock (primary), Display System (secondary)
Precondition: The AGV is operational.
Main sequence:

1. Clock notifies AGV System that the timer has expired.
2. AGV System reads the status information about AGV location and

idle/busy status.
3. AGV System sends the AGV status information to the Display Sys-

tem.
Postcondition: AGV system has sent status information

24.3 STATIC MODELING

This section describes the static model, which consists of the system context model
and the entity class model.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

Real-Time Software Architecture Case Study 475

Sends
Acknowledge to

«system»
Supervisory

System

«system»
Automated

Guided Vehicle
System

«system»
Display
System

«input device»
Arrival
Sensor

«output device»
Motor

«output device»
RobotArm

«timer»
Clock

1 1..* 1..*

Sends Commands to

11

Sends Status to

1 1 1 1

Figure 24.2. Conceptual static model for the Automated Guided Vehicle
System

24.3.1 Conceptual Static Modeling

The conceptual static model is shown in Figure 24.2 using a class diagram. It depicts
a system of systems, consisting of the Supervisory System, the AGV System, and the
Display System. The AGV System is modeled as a composite class, which receives
commands from and sends acknowledgments to the Supervisory System, and sends
status to the Display System. The AGV System is composed of four classes: the
Arrival Sensor, the Motor, the Robot Arm, and the Clock.

24.3.2 Software System Context Modeling

The software system context diagram (Figure 24.3) is modeled from the perspective
of the software system to be developed, the AGV System. It therefore depicts two
external system classes (the Supervisory System and the Display System) and the Clock
external timer class, which were originally depicted as actors in the use case model.

«software
system»

Automated
Guided Vehicle

System

«external system»
Supervisory

System

«external input
device»

ArrivalSensor

«external timer»
Clock

«external output
device»

RobotArm

«external output
device»
Motor

1

1

Outputs to

1

1 Outputs to

1

1

Communicates with

11 Inputs to

1

1

Signals

«external system»
Display
System

1

1

Communicates with

Figure 24.3. Software system context class diagram for Automated Guided
Vehicle System

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

476 Case Studies

1

1

Communicates with

«external system»
SupervisorySystem

«external input
device»

ArrivalSensor

«external timer»
Clock

«proxy»
SupervisorySystem

Proxy

«input»
ArrivalSensor

Interface

«timer»
VehicleTimer

«software system»
Automated Guided
Vehicle System

«state dependent
control»

VehicleControl

«entity»
VehicleStatus

«output»
Arm

Interface

«output»
Motor

Interface

«proxy»
DisplayProxy

«external output
device »

Arm

«external output
device»
Motor

«external system»
DisplaySystem

1

1

Inputs to 1

1

Signals

1

1
Outputs to

1

1
Outputs to

1

1
Communicates with

Figure 24.4. Object structuring for the Automated Guided Vehicle System

There is one external input device class, Arrival Sensor, and two external output
device classes, Motor and Robot Arm.

24.4 OBJECT AND CLASS STRUCTURING

Object structuring for the AGV System is depicted in Figure 24.4. For each exter-
nal class on the software system context diagram, there is a corresponding internal
software class. Thus, there are two proxy classes, Supervisory System Proxy and Dis-
play Proxy, which communicate with the two external systems, Supervisory System
and Display System, respectively. There is one input class, Arrival Sensor Interface,
which communicates with the Arrival Sensor external input device, and two output
classes, Motor Interface and Arm Interface, which communicate with the Motor and
Arm external output devices, respectively. There are two additional classes, a state-
dependent control class, Vehicle Control, which executes the vehicle state machine,
and an entity class, Vehicle Status, which contains data about the vehicle destination
and command. In addition, there is one timer class, Vehicle Timer.

24.5 DYNAMIC STATE MACHINE MODELING

Vehicle Control executes the vehicle state machine, which is depicted on the state-
chart in Figure 24.5. The state machine follows the states of the vehicle as it tran-
sitions from idle state to moving, arriving at destination, loading or unloading the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

Idle Starting Moving
Checking

Destination

Part Loading
Stopping to

Load

Part Unloading
Stopping to

Unload

Vehicle Control

Move to station /

Start Motor,

Store Destination
Started /

Departed

Loaded /

Arrived,

Clear

Unloaded /

Arrived, Clear

No / Passed

Stopped / Load

Load Command /

Stop Motor

Arrived at Station /

Check Destination

Stopped / Unload

Unload Command /

Stop Motor

Figure 24.5. Automated Guided Vehicle statechart

477

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

478 Case Studies

part, and then restarting. The states are determined by following the main sequence
textually described in the Move to Station use case, and are as follows:

■ Idle. This is the initial state, in which the AGV is idle, waiting for a command
from the Supervisory System.

■ Starting. This state is entered when the AGV has received a Move to Station mes-
sage from the Supervisory System and has sent a start command to the motor.

■ Moving. The AGV is moving to the next station.
■ Checking Destination. The AGV has arrived at a station and is checking to

determine whether this is its destination.
■ Stopping to Load. This station is the destination, and the AGV is to load a part.

The AGV commands the motor to stop on entry to this state.
■ Part Loading. This robot arm is loading the part onto the AGV.
■ Stopping to Unload. This station is the destination, and the AGV is to unload a

part. The AGV commands the motor to stop on entry to this state.
■ Part Unloading. This robot arm is unloading the part off the AGV.

Note that the Stopping to Load and the Stopping to Unload states are kept
separate because the actions leaving these states are different (Load and Unload,
respectively).

24.6 DYNAMIC INTERACTION MODELING

For each use case, a communication diagram is developed that depicts the objects
that participate in the use case and the sequence of messages passed between them.
Several objects realize the main use case, Move to Station; however, only three soft-
ware objects are needed to realize the supporting use case, Send Vehicle Status.

24.6.1 Dynamic Modeling for Move to Station

In the communication diagram for the Move to Station use case (Figure 24.6), the
sequence of external inputs and external outputs on the communication diagram
corresponds to the sequence described in the use case and starts with the command
sent by the Supervisory System, which is the primary actor. The objects that real-
ize this use case are Supervisory System Proxy, which receives the inputs from the
Supervisory System; Vehicle Control, which controls the objects that participate in the
use case; Vehicle Status, for storing and retrieving destination location information;
Arm Interface and Motor Interface, for interfacing to the two external output devices;
and Arrival Sensor Interface, for receiving input from the arrival sensor. The message
sequence description is as follows for a scenario in which the vehicle goes past the
first station and stops at the second station to load a part:

1: The external Supervisory System sends a Move command message to the
AGV System requesting it to move to a factory station and load a part.

1.1: The Supervisory System Proxy, which receives the Move command,
sends a Move to Station message to Vehicle Control.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

«external system»
: SupervisorySystem

«external input
device»

: ArrivalSensor

«proxy»
: SupervisorySystem

Proxy

«input»
: ArrivalSensor

Interface

«state dependent
control»

: VehicleControl

«entity»
: Vehicle
Status

«output»
: Arm

Interface

«output»
: Motor

Interface

«external
output device»

: Arm

«external output
device»
: Motor

2, 3: Arrival Sensor Input

2.1, 3.1: Arrived at Station

2.3: No,
3.3: Load
Command

1.2a: Store Destination,
2.2, 3.2: Check Destination,
3.12a: Clear

1.2: Start Motor,
3.4: Stop Motor

1.3: Start Motor Output,
3.5: Stop Motor Output

3.8: Load,
3.8A: Unload

3.9: Arm Output

1.5: Started,
3.7: Stopped

1.4: Started Ack,
3.6: Stopped Ack

3.10: Arm Ack

3.11: Loaded,
3.11A: Unloaded

1.6: Departed,
2.4: Passed,
3.12: Arrived

1.7, 2.5, 3.13: AGV Ack

1.1: Move to Station

1: Move Command

«software
system»
: Automated
GuidedVehicle
System

Figure 24.6. Communication diagram for the Move to Station use case

479

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

480 Case Studies

1.2: Vehicle Control sends a Start Motor command to Motor Interface to
start moving.

1.2a: Vehicle Control stores destination and load/unload command in
Vehicle Status.

1.3: Motor Interface sends Start Motor command to external Motor.
1.4: Motor sends Started acknowledge message to Motor Interface.
1.5: Motor Interface notifies the Vehicle Control that the vehicle has

started moving.
1.6: Vehicle Control sends a Departed message to the Supervisory System

Proxy
1.7: Supervisory System Proxy forwards Departed message to the Supervi-

sory System.
2: The arrival sensor notifies the AGV system that it has arrived at factory

station (#).
2.1: Arrival Sensor Interface sends Arrived at Station message to Vehicle

Control.
2.2: Vehicle Control sends Check Destination message to Vehicle Status.
2.3: Vehicle Status indicates that this is not the destination.
2.4: Vehicle Control sends a Passed message to the Supervisory System

Proxy
2.5: Supervisory System Proxy forwards Passed message to the Supervisory

System.
3: The arrival sensor notifies the AGV System that it has arrived at factory

station (#).
3.1: Arrival Sensor Interface sends Arrived at Station message to Vehicle

Control.
3.2: Vehicle Control sends Check Destination message to Vehicle Status.
3.3: Vehicle Status indicates that this station is the destination station and

that the command is to load a part.
3.4: Vehicle Control sends Stop Motor message to Motor Interface.
3.5: Motor Interface sends Stop Motor command to external Motor.
3.6: Motor sends Stopped acknowledge message to Motor Interface.
3.7: Motor Interface notifies the Vehicle Control that the vehicle has

stopped moving.
3.8: Vehicle Control sends Load message to Arm Interface.
3.9: Arm Interface sends Load message to external Arm.
3.10: Arm sends acknowledgement message to Vehicle Control indicating

that the arm has finished.
3.11: Arm Interface sends Loaded message to Vehicle Control.
3.12: Vehicle Control sends an Arrived message to the Supervisory System

Proxy
3.13: Supervisory System Proxy forwards Arrived message to the Supervi-

sory System.

The messages into and out of Vehicle Control correspond to the events and
actions depicted on the statechart in Figure 24.7 and follow the same scenario given
in the preceding message sequence description.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

Idle Starting Moving
Checking

Destination

Part Loading
Stopping to

Load

Part Unloading
Stopping to

Unload

Vehicle Control

1.1: Move to station /

1.2: Start Motor,

1.2a: Store Destination
1.5: Started /

1.6: Departed

3.11: Loaded /

3.12: Arrived,

3.12a: Clear

Unloaded /

Arrived, Clear

2.3: No / 2.4: Passed

3.7: Stopped / 3.8: Load

3.3: Load Command /

3.4: Stop Motor

2.1, 3.1: Arrived at Station /

2.2, 3.2: Check Destination

Stopped / Unload

Unload Command /

Stop Motor

Figure 24.7. Event and Action sequence numbering on Vehicle Control statechart

481

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

482 Case Studies

«external timer»
: Clock

«timer»
: VehicleTimer

«entity»
: VehicleStatus

«proxy»
: DisplayProxy

«external system»
: DisplaySystem

1: Timer Event

1.3: Update Status

1.4: AGV Status

1.2: Status

1.1: Read

«software
system»
: Automated
GuidedVehicle
System

Figure 24.8. Communication diagram for the Send
Vehicle Status use case

24.6.2 Dynamic Modeling for Send Vehicle Status

The communication diagram for the Send Vehicle Status use case is shown in Fig-
ure 24.8. The objects that realize this use case are the Vehicle Timer, which receives
clock inputs, Vehicle Status, which stores status information, and Display Proxy, which
sends vehicle status to the external Display System. The message sequence starts with
the external timer event from the external Clock and the message numbering is as
follows:

1: Clock sends Timer Event to Vehicle Timer.
1.1, 1.2: Vehicle Timer reads Vehicle Status.
1.3: Vehicle Timer sends Update Status message to Display Proxy.
1.4: Display Proxy sends Vehicle Status to external Display System.

24.7 DESIGN MODELING

The software architecture of the AGV System is designed around a centralized
control pattern. Centralized control is provided by the Vehicle Control component

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

Real-Time Software Architecture Case Study 483

receiving inputs from the Supervisory System and the Arrival Sensor, and control-
ling the external environment by means of the Motor and Arm. When viewed from
the larger perspective of a factory automation system, the architecture is a based
around a hierarchical control pattern, with several instances of the AGV System
(each instance controlling an individual vehicle) operating under the overall direc-
tion of a Supervisory System, which provides hierarchical control of the individual
AGVs by sending move commands to each vehicle.

24.7.1 Integrated Communication Diagram

The initial attempt at design modeling involves developing the integrated commu-
nication diagram for the AGV System, which requires the integration of the two
use case–based communication diagrams shown in Figures 24.6 and 24.8. The inte-
grated communication diagram is depicted in Figure 24.9. The integration is quite
straightforward, because the only object that participates in both the use case–based
communication diagrams is Vehicle Status. The integrated communication diagram
is a generic communication diagram in that it depicts all possible communications
between the objects.

24.7.2 Component-Based Software Architecture
of Factory Automation System

The distributed software architecture for the Factory Automation System, which
is a system of systems, is shown on the system communication diagram in Fig-
ure 24.10. It depicts the three interacting distributed systems (designed as compo-
nents): the Supervisory System, the Automated Guided Vehicle (AGV) System, and
the Display System. There is one instance of the Supervisory System, and multiple
instances of the AGV System and the Display System. All communication between
the distributed components is asynchronous, which allows the greatest flexibility in
message communication. Communication between the Supervisory System and the
AGV System is an example of bidirectional asynchronous communication.

The component-based software architecture for the Factory Automation Sys-
tem is shown in Figure 24.11, in which the three systems are designed as distributed
components. The AGV System has a provided port for receiving messages from
the Supervisory System and a required port for sending messages to the Display
System. The provided port PAGVSystem is a complex port because it has both a
provided interface, IAGVSystem, for receiving command messages and a required
interface, ISupervisorySystem, for sending acknowledgement messages, as shown in
Figure 24.12. The required port RDisplaySystem supports a required interface,
IDisplaySystem, for sending AGV status messages to the Display System. The three
component interfaces are also defined in Figure 24.12.

The configuration of the Factory Automation System is depicted on the deploy-
ment diagram of Figure 24.13. There is one node for each of the Supervisory System,
one node per AGV System and one node for the Display System. The distributed nodes
are connected by a local area network in the factory.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

«external system»
: SupervisorySystem

«external input
device»

: ArrivalSensor

«proxy»
: SupervisorySystem

Proxy

«input»
: ArrivalSensor

Interface

«state dependent
control»

: VehicleControl

«entity»
: Vehicle
Status

«output»
: Arm

Interface

«output»
: Motor

Interface

«external
output device»

: Arm

«external output
device»
: Motor

Arrival Sensor Input

Arrived at Station

No,
Load Command,
Unload Command

Store Destination,
Check Destination,
Clear

Start Motor,
Stop Motor

Start Motor Output,
Stop Motor Output

Load,
Unload

Arm Output

Started,
Stopped

Started Ack,
Stopped Ack

Arm Ack

Loaded,
Unloaded

Departed,
Passed,
Arrived

AGV Ack

Move to Station

Move Command

«external timer»
: Clock

«timer»
: VehicleTimer

«proxy»
: DisplayProxy

«external system»
: DisplaySystem

Timer Event

Update Status

AGV Status

Status

Read

«software
system»
: Automated
GuidedVehicle
System

Figure 24.9. Integrated communication diagram for Automated Guided Vehicle System

484

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

Real-Time Software Architecture Case Study 485

AGV AckMove Command

AGV Status
«component»

«control»
: AutomatedGuided

VehicleSystem

«component»
«user interaction»
: DisplaySystem

«component»
«coordinator»

: SupervisorySystem

Figure 24.10. System communication diagram for Factory
Automation System

24.7.3 Software Architecture of Automatic Guided
Vehicle System

The AGV System is designed as a real-time component-based software archi-
tecture. A component-based design provides the advantages of a configurable
design and follows the concepts described in Chapter 17. The real-time design is
needed because of the characteristics of the application, and it follows the concur-
rent task structuring criteria and message-based task interface design described in
Chapter 18.

The design of the AGV System is based on the centralized control pattern for
real-time designs (see Chapter 18). One control component, Vehicle Control, pro-
vides the overall control of the system. In addition, the AGV System is designed as
a distributed component-based software architecture, which allows the option for
input and output components to reside on separate nodes that are connected by a

«component»

«coordinator»

SupervisorySystem

«component»

«control»

AutomatedGuided

VehicleSystem

«component»

«user interaction»

DisplaySystem

RAGVSystem

PDisplaySystem

PAGVSystem

RDisplaySystem

Figure 24.11. Component-based software architec-
ture for Factory Automation System

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

486 Case Studies

«component»
«coordinator»

SupervisorySystem

«component»
«control»

AutomatedGuided
VehicleSystem

«component»
«user interaction»

DisplaySystem

RAGVSystem

PDisplaySystem

PAGVSystem

RDisplaySystem

ISupervisorySystem IAGVSystem

ISupervisorySystem IAGVSystem

IDisplaySystem

IDisplaySystem

AGVAck (in status)

«interface»
ISupervisorySystem

moveCommand (in command)

«interface»
IAGVSystem

displayAGVStatus (in AGVStatus)

«interface»
IDisplaySystem

Figure 24.12. Composite component ports and interfaces for Factory Automation System

high-speed bus. At system deployment time, the type of configuration required –
centralized or distributed – is determined.

The concurrent software architecture for the AGV System is developed from
the integrated communication diagram by applying the task structuring criteria to
design the concurrent tasks and architectural communication patterns to design
the message communication between tasks. Next the component-based architecture
is designed. Finally, the provided and required interfaces of each component are
described. Each component port is defined in terms of its provided and/or required
interfaces.

SupervisorySystem

{1 node}

AutomatedGuided
VehicleSystem

{1 node per AGV}

DisplaySystem

{1 node}

«local area network»

Figure 24.13. Distributed system deployment for Factory Automa-
tion System

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

Real-Time Software Architecture Case Study 487

24.7.4 Concurrent Software Architecture

In this concurrent real-time design, the concurrent task structuring criteria are
applied to determine the tasks in the Automatic Guided Vehicle System. The con-
current task design (see Figure 22.14) is developed by starting from the integrated
communication diagram in Figure 24.9, which depicts all the objects in the AGV
System. All these objects are concurrent because they need to operate indepen-
dently, except Vehicle Status, which is a passive data abstraction object. Because the
goal is to design a concurrent component-based software architecture, the tasks are
all designed as simple concurrent components, each with its own single thread of
control. Thus, in this design, the terms task and simple component are synonymous.
The concurrent tasks are described in the following list.

■ Input tasks. Concurrent input tasks receive inputs from the external environ-
ment and send corresponding messages to the control task. Arrival Sensor Compo-
nent (Figure 24.14) is designed as an event-driven input task, which is awakened
by the arrival of an arrival sensor input. The input task consists of the individual
input device interface object depicted in the analysis model (see Figure 24.9):
Arrival Sensor Interface.

■ Proxy tasks. Supervisory System Proxy acts on behalf of the Supervisory System,
from which it receives Move commands that are forwarded to Vehicle Control,
and it sends AGV acknowledgements to Supervisory System. Supervisory System
Proxy is designed as an event-driven task, which is awakened by messages from
either the external Supervisory System or the internal Vehicle Control. Note that
if a task receives both external and internal messages, it is categorized as an
event driven task and not a demand driven task. Display Proxy acts on behalf of
the Display System, to which it forwards AGV status messages. Display Proxy
is designed as a demand driven task, awakened on demand by the arrival of a
message from Vehicle Timer.

■ Control task. Vehicle Control is the centralized state dependent control task for
the AGV system. It executes the Vehicle Control state machine and receives mes-
sages from other tasks that contain events, causing Vehicle Control to change state
and send action messages to other tasks. Vehicle Control is designed as a demand
driven task, which is awakened by arrival of a message from either Supervisory
System Proxy or Arrival Sensor Component.

■ Output tasks. The Arm Component interfaces to the external Arm. The Arm Inter-
face object from the analysis model is mapped to this output task (see Figures
24.9 and 24.14). Similarly, the Motor Component interfaces to the external Motor
and is designed from the analysis model Motor Interface object. Both of the out-
put tasks are designed as demand driven tasks, which are awakened on demand
by arrival of a message from Vehicle Control.

24.7.5 Architectural Communication Patterns

The concurrent communication diagram for the AGV System is shown in Figure
24.14, which depicts the concurrent tasks in the AGV software architecture. Next
the task interfaces are designed.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

«external system»
: SupervisorySystem

«external input
device»

: ArrivalSensor

«data
abstraction»
: Vehicle
Status

«external
output device»

: Arm

«external output
device»
: Motor

arrivalSensorInput

arriveAtStation (station#)

update (in destination, in load/unload),
check (in currentStation#, out response),
clear ()

startMotor (out ack),
stopMotor (out ack)

motorOutput (out ack)

load (out ack),
unload (out ack)

armOutput (out ack)

departed,
passed,
arrived

AGVAck (status)

moveToStation
(destination, load/unload)

moveCommand
(command)

«external timer»
: Clock

«external system»
: DisplaySystem

timerEvent

sendAGVStatus
(AGVStatus)

AGVStatus

read (out location, out destination,
out load/unload)

«event driven»
«proxy»

: SupervisorySystem
Proxy

«demand»
«output»

: Arm
Component

«demand»
«state dependent

control»
: VehicleControl

«event driven»
«input»

: ArrivalSensor
Component

«demand»
«output»
: Motor

Component

«demand»
«proxy»

: DisplayProxy

«periodic»
«timer»

: VehicleTimer

«software system»
: AutomatedGuided
VehicleSystem

Figure 24.14. Concurrent communication diagram for Automated Guided Vehicle System

488

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

Real-Time Software Architecture Case Study 489

The messages to be sent between the tasks in the AGV system are determined
from the integrated communication diagram in Figure 24.9. The actual type of mes-
sage communication – synchronous or asynchronous – still needs to be determined.
To handle the variety of communication between the tasks in the AGV System, four
communication patterns are applied:

1. Asynchronous Message Communication. The Asynchronous Message Com-
munication pattern is widely used in the AGV System because most com-
munication is one-way, and this pattern has the advantage of not letting the
consumers hold up the producers. The Vehicle Control task needs to be able to
receive messages from either of its two producers, Supervisory System Proxy
and Arrival Sensor Component, in any order. The best way to handle this
requirement for flexibility is through asynchronous message communication,
with one input message queue for the Vehicle Control task, so that Vehicle Con-
trol will receive whichever message arrives first, move command or station
arrival. The Vehicle Timer task sends asynchronous AGV status messages to
the Display Proxy task, which receives these messages on a message queue.

2. Bidirectional Asynchronous Communication. This communication pattern is
used between the Supervisory System Proxy and Vehicle Control, because con-
siderable time could elapse between Supervisory System Proxy sending the
move command to Vehicle Control and Vehicle Control sending the acknowl-
edge response to the Supervisory System Proxy (after the AGV has arrived at
its destination). Thus, move and acknowledge messages are decoupled.

3. Synchronous Message Communication without Reply. This pattern is used
when the producer needs to make sure that the consumer has accepted the
message before the producer continues. This pattern is used between the Vehi-
cle Control and Arm Component, as well as between Vehicle Control and Motor
Component. In both cases, the consumer task is idle until it accepts the mes-
sage, so the Vehicle Control producer is not held up after sending the message.

4. Call/Return. This pattern is used when AGV Control and Vehicle Timer
invoke the operations of the passive Vehicle Status (see Figure 24.14) data
abstraction object.

24.7.6 Component-Based Software Architecture

The component-based software architecture for the AGV System is given on Figure
24.15. Figure 24.15 depicts a UML composite structure diagram showing the AGV
System component ports and connectors. All the components are concurrent except
one and communicate with other components through ports. The overall architec-
ture and connectivity among components is determined from the AGV System con-
current communication diagram. Thus, the composite structure of the component
architecture depicted in Figure 24.15 is determined from the concurrent communi-
cation design shown in Figure 24.14.

The Automated Guided Vehicle System component is designed as a composite
component that contains eight simple part components; seven of these are concur-
rent components (Supervisory System Proxy, Arrival Sensor Component, Vehicle Con-
trol, Vehicle Timer, Arm Component, Motor Component, and Display Proxy), and the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

«data

abstraction»

VehicleStatus

«proxy»

SupervisorySystem

Proxy

«input»

ArrivalSensor

Component

«output»

Arm

Component

«output»

Motor

Component

«timer»

VehicleTimer

«proxy»

DisplayProxy

«state dependent

control»

VehicleControl

PDisplay

RDisplay

PAGVStatus

RAGVStatus

RAGVStatus

RMotor

PMotorPArm

RArm

PAGVCtrl

RAGVCtrlRAGVCtrl

«software system»

AutomatedGuided

VehicleSystem

RDisplaySystem

RDisplaySystem

PAGVSystem

PAGVSystem

Figure 24.15. Automatic Guided Vehicle System component-based software architecture

490

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

Real-Time Software Architecture Case Study 491

other is a passive data abstraction object (Vehicle Status). The seven simple concur-
rent components correspond to the tasks determined in Section 24.7.4 and depicted
on the concurrent communication diagram of Figure 24.14.

Figure 24.15 shows the decomposition of the Automatic Guided Vehicle Sys-
tem component into the seven simple concurrent components and the passive data
abstraction object described in the previous paragraph. The provided port of the
composite Automatic Guided Vehicle System component is connected directly to the
provided port of the simple Supervisory System Proxy component, and both ports
are given the same name (PAGV System) because they provide the same interface.
The connector joining the two ports is actually a delegation connector, meaning that
the outer port provided by Automatic Guided Vehicle System forwards each message
it receives to the inner port provided by Supervisory System Proxy. The required
ports of the Display Proxy component is also connected to the required port of the
composite Automatic Guided Vehicle System component, via delegation connectors.

Vehicle Control, which executes the vehicle state machine, has one provided
port, which supports a provided interface that receives all incoming messages from
Supervisory System Proxy and Arrival Sensor Component. In this way, Vehicle Con-
trol receives all incoming messages on a FIFO basis. Vehicle Status also has one
provided port and provided interface. Because Vehicle Status is passive, it provides
operations, which are invoked by Vehicle Control and Vehicle Timer. Vehicle Control
also has two required ports through which it communicates with Arm Component and
Motor Component.

Because the two producer components (Supervisory System Proxy and Arrival
Sensor Component) send messages to the Vehicle Control component in Figure 24.14,
each producer component is designed to have an output port, referred to as a
required port, which is joined by means of a connector to the control component’s
input port, referred to as a provided port, as shown in Figure 24.15. The name of the
required port on each producer component is RAGVCtrl; by a COMET convention,
the first letter of the port name is R to emphasize that the component has a required
port. The name of the provided port for Vehicle Control is PAGVCtrl; the first letter of
the port name is P to emphasize that the component has a provided port. Connec-
tors join the required ports of the two producer components to the provided port of
the control component.

24.7.7 Design of Component Interfaces

Each component port is defined in terms of its provided and/or required interfaces.
Some producer components – in particular, the input component – do not provide
a software interface, because they receive their inputs directly from the external
hardware input device. However, they require an interface provided by the control
component in order to send messages to the control component. Figure 24.16 depicts
the port and required interface for the input component Arrival Sensor Component.
This input component, as well as the Supervisory System Proxy component, has the
same required interface – IAGVControl, which is provided by the Vehicle Control
component.

The Vehicle Control component has three required ports from which it sends mes-
sages to the provided ports of the two output components depicted in Figure 24.14

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

492 Case Studies

«data

abstraction»

VehicleStatus

«event driven»

«proxy»

SupervisorySystem

Proxy

«event driven»

«input»

ArrivalSensor

Component

«demand»

«output»

Arm

Component

«demand»

«output»

Motor

Component

«periodic»

«timer»

VehicleTimer

«demand»

«proxy»

DisplayProxy

«demand»

«state dependent

control»

VehicleControl

PDisplay

RDisplay

PAGVStatus

RAGVStatus

RAGVStatus

RMotor

PMotorPArm

RArm

PAGVCtrl

RAGVCtrlRAGVCtrl

IAGVCtrl

IAGVCtrlIAGVCtrlISupervisorySystem

ISupervisorySystem

IArm

IArm IMotor

IMotor

IAGVStatus

IAGVStatus

IAGVStatus

IDisplay

IDisplay

Figure 24.16. Automated Guided Vehicle System component ports and interfaces

(Arm Component and Motor Component), and it invokes operations on Vehicle Status
data abstraction object through its provided port.

The output components do not require a software interface because their out-
puts go directly to external hardware output devices. However, they need to provide
an interface to receive messages sent by the control component. Figure 24.16 depicts
the ports and provided interfaces for the two output components of the AGV Sys-
tem. Figure 24.17 also shows the specifications of the interfaces in terms of the oper-
ations they provide. The Arm Component and Motor Component output components
each have a provided port:

■ PArm for Arm Component, which provides the interface IArm
■ PMotor for Motor Component, which provides the interface IMotor

The Display Proxy component has a provided port called PDisplay, which in turn
provides an interface called IDisplay, as shown in Figure 24.16. Figure 24.17 shows
the specification of the interface.

Some components, such as control components, need to provide interfaces for
the producer components to use and require interfaces that are provided by output
components. The Vehicle Control component has several ports – one provided port
and three required ports – as shown in Figure 24.16. Each required port is used to
interface to a different consumer component and is given the prefix R – for exam-
ple, RArm. The provided port, which is called PAGVControl, provides the interface
IAGVControl, which is required by the producer components.

The Vehicle Control component (see Figures 24.14 and 24.15), which conceptu-
ally executes the AGV statechart, receives asynchronous control request messages
from two producer components. The provided interface IAGVControl is specified in

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

Real-Time Software Architecture Case Study 493

initialize ()
load ()
unload ()

«interface»
IArm

moveToStation (in destination, in load/Unload)
 arrivingAtStation (in station#)

«interface»
IAGVControl

initialize ()
startMotor ()
stopMotor ()

«interface»
IMotor

displayAGVStatus (in
AGVStatus)

«interface»
IDisplay

«interface»
IAGVStatus

update (in destination, in loadUnload)
check (in currentStation#, out response)
read (out AGVid, out location,
out destination, out loadUnload)
clear ()

Figure 24.17. Automated Guided Vehicle System component interface specifications

Figure 24.17. It is kept simple by having only one operation, processControlRequest,
which has an input parameter, controlRequest, that holds the name and contents of
the individual message. Having each control request as a separate operation would
make the interface more complicated when considering evolution of the system
because it would need the addition or deletion of operations rather than changing a
parameter.

The ports and interfaces of the periodic timer component are shown in Fig-
ures 24.16 and 24.17. The Vehicle Timer has two required ports with two required
interfaces. The first required interface is IAGVStatus, which allows it to read AGV
status information from the Vehicle Status data abstraction object. The second
required interface is IDisplay, which allows Vehicle Timer to send AGV status mes-
sages to Display Proxy.

- destination : Integer = 0
- AGVid : Integer = 0

- location : Integer = 0
- loadUnload : Boolean = unload

«data abstraction»
VehicleStatus

+ update (in destination, in loadUnload)
+ check (in currentStation#, out response)
+ read (out AGVid, out location
out destination,out loadUnload)
+ clear ()

«state machine»
VehicleStateMachine

+ processEvent (in event, out action)

+ currentState () : State

Figure 24.18. Vehicle Status data abstraction class and Vehicle State Machine class

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

494 Case Studies

The port and interface of the passive data abstraction object (Vehicle Status)
are shown in Figures 24.16 and 24.17. Vehicle Status provides one interface with
three operations. The update operation stores the next AGV destination and the
command to be executed there (load or unload). The check operation receives the
current station number and returns whether this is the destination or not; if it is
the destination, it also returns whether the station command is load or unload. The
read operation returns the location, destination, and load/unload command. The
attributes of the Vehicle Status data abstraction class are given in Figure 24.18. This
figure also depicts the state machine class design for Vehicle State Machine, which is
encapsulated inside the Vehicle Control component.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:30 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.026

Cambridge Books Online © Cambridge University Press, 2016

