
Cambridge Books Online

http://ebooks.cambridge.org/

Software Modeling and Design

UML, Use Cases, Patterns, and Software Architectures

Hassan Gomaa

Book DOI: http://dx.doi.org/10.1017/CBO9780511779183

Online ISBN: 9780511779183

Hardback ISBN: 9780521764148

Chapter

Appendix A - Catalog of Software Architectural Patterns pp. 495-520

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge University Press

APPENDIX A

Catalog of Software Architectural Patterns

A template for describing a pattern typically addresses the following items from the
perspective of the prospective user of the pattern:

■ Pattern name
■ Aliases. Other names by which this pattern is known.
■ Context. The situation that gives rise to this problem.
■ Problem. Brief description of the problem.
■ Summary of solution. Brief description of the solution.
■ Strengths of solution. Use to determine if the solution is right for your design

problem.
■ Weaknesses of solution. Use to determine if the solution is wrong for your design

problem.
■ Applicability. Situations in which you can use the pattern.
■ Related patterns. Other patterns to consider for your solution.
■ Reference. Where you can find more information about the pattern.

The architectural structure patterns, architectural communication patterns, and
architectural transaction patterns are documented with this template in Sec-
tions A.1, A.2, and A.3, respectively. The patterns are summarized in the follow-
ing tables:

Table A.1. Software architectural structure patterns

Software architectural structure patterns Pattern description Reference chapter

Broker Pattern Section A.1.1 Chapter 16, Section 16.2
Centralized Control Pattern Section A.1.2 Chapter 18, Section 18.3.1
Distributed Control Pattern Section A.1.3 Chapter 18, Section 18.3.2
Hierarchical Control Pattern Section A.1.4 Chapter 18, Section 18.3.3
Layers of Abstraction Pattern Section A.1.5 Chapter 12, Section 12.3.1
Multiple Client/Multiple Service Pattern Section A.1.6 Chapter 15, Section 15.2.2
Multiple Client/Single Service Pattern Section A.1.7 Chapter 15, Section 15.2.1
Multi-tier Client/Service Pattern Section A.1.8 Chapter 15, Section 15.2.3

495

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

496 Appendix A: Catalog of Software Architectural Patterns

Table A.2. Software architectural communication patterns

Software architectural
communication patterns

Pattern
description Reference chapter

Asynchronous Message
Communication Pattern

Section A.2.1 Chapter 12, Section 12.3.3

Asynchronous Message
Communication with Callback
Pattern

Section A.2.2 Chapter 15, Section 15.3.2

Bidirectional Asynchronous
Message Communication

Section A.2.3 Chapter 12, Section 12.3.3

Broadcast Pattern Section A.2.4 Chapter 17, Section 17.6.1
Broker Forwarding Pattern Section A.2.5 Chapter 16, Section 16.2.2
Broker Handle Pattern Section A.2.6 Chapter 16, Section 16.2.3
Call/Return Section A.2.7 Chapter 12, Section 12.3.2
Negotiation Pattern Section A.2.8 Chapter 16, Section 16.5
Service Discovery Pattern Section A.2.9 Chapter 16, Section 16.2.4
Service Registration Section A.2.10 Chapter 16, Section 16.2.1
Subscription/Notification Pattern Section A.2.11 Chapter 17, Section 17.6.2
Synchronous Message

Communication with
Reply Pattern

Section A.2.12 Chapter 12, Section 12.3.4;
Chapter 15, Section 15.3.1

Synchronous Message
Communication without Reply
Pattern

Section A.2.13 Chapter 18, Section 18.8.3

Table A.3. Software architectural transaction patterns

Software architectural transaction
patterns

Pattern
description Reference chapter

Compound Transaction Pattern Section A.3.1 Chapter 16, Section 16.4.2
Long-Living Transaction Pattern Section A.3.2 Chapter 16, Section 16.4.3
Two-Phase Commit Protocol Pattern Section A.3.3 Chapter 16, Section 16.4.1

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 497

A.1 SOFTWARE ARCHITECTURAL STRUCTURE PATTERNS

This section describes the architectural structure patterns, which address the static
structure of the architecture, in alphabetical order, using the standard template.

A.1.1 Broker Pattern

Pattern name Broker
Aliases Object Broker, Object Request Broker
Context Software architectural design, distributed systems
Problem Distributed application in which multiple clients

communicate with multiple services. Clients do not know
locations of services.

Summary of solution Services register with broker. Clients send service requests
to broker. Broker acts as intermediary between client and
service.

Strengths of solution Location transparency: Services may relocate easily. Clients
do not need to know locations of services.

Weaknesses of solution Additional overhead because broker is involved in message
communication. Broker can become a bottleneck if there
is a heavy load at the broker. Client may keep outdated
service handle instead of discarding.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Broker Forwarding, Broker Handle
Reference Chapter 16, Section 16.2

Client

Broker

Service

Locates Service through

Registers with

1..*

1

1..*

1..*

1

1

Requests Service
From

Figure A.1. Broker pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

498 Appendix A: Catalog of Software Architectural Patterns

A.1.2 Centralized Control Pattern

Pattern name Centralized Control
Aliases Centralized Controller, System Controller
Context Centralized application where overall control is needed
Problem Several actions and activities are state-dependent and need

to be controlled and sequenced.
Summary of solution There is one control component, which conceptually

executes a statechart and provides the overall control
and sequencing of the system or subsystem.

Strengths of solution Encapsulates all state-dependent control in one component
Weaknesses of solution Could lead to overcentralized control, in which case

decentralized control should be considered.
Applicability Real-time control systems, state-dependent applications
Related patterns Distributed Control, Hierarchical Control
Reference Chapter 18, Section 18.3.1

sendControlRequest(keypadEvent)

displayPrompt(promptId)
displayTime(time)

startCooking(level)
stopCooking()

sendControlRequest
(doorEvent) sendControlRequest

(weightEvent)

«control»
«component»

: MicrowaveControl

«input»
«component»

: DoorComponent

«input»
«component»

: WeightComponent

«output»
«component»

: MicrowaveDisplay
«output»

«component»
: HeatingElementComponent

«input»
«component»

: KeypadComponent

Figure A.2. Centralized Control pattern: Microwave Oven Control System example

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 499

A.1.3 Distributed Control Pattern

Pattern name Distributed Control
Aliases Distributed Controller
Context Distributed application with real-time control requirement
Problem Distributed application with multiple locations where

real-time localized control is needed at several locations
Summary of solution There are several control components, such that each

component controls a given part of the system by
conceptually executing a state machine. Control is
distributed among the various control components; no
single component has overall control.

Strengths of solution Overcomes potential problem of overcentralized control.
Weaknesses of solution Does not have an overall coordinator. If this is needed,

consider using Hierarchical Control pattern.
Applicability Distributed real-time control, distributed state-dependent

applications
Related patterns Hierarchical Control, Centralized Control
Reference Chapter 18, Section 18.3.2

«control»
«component»
: Distributed
Controller

«control»
«component»
: Distributed
Controller

event event

event event
sensor
Input actuator

Output
sensor
Input

actuator
Output

sensor
Input

actuator
Output

«output»
component»

: ActuatorCmpt

«output»
component»

: ActuatorCmpt

«output»
component»

: ActuatorCmpt

«input»
«component»

: SensorCmpt

«input»
«component»

: SensorCmpt

«control»
«component»
: Distributed
Controller

«input»
«component»
: SensorCmpt

Figure A.3. Distributed Control pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

500 Appendix A: Catalog of Software Architectural Patterns

A.1.4 Hierarchical Control Pattern

Pattern name Hierarchical Control
Aliases Multilevel Control
Context Distributed application with real-time control requirement
Problem Distributed application with multiple locations where both

real-time localized control and overall control are needed
Summary of solution There are several control components, each controlling a

given part of a system by conceptually executing a
statechart. There is also a coordinator component, which
provides high-level control by deciding the next job for
each control component and communicating that
information directly to the control component.

Strengths of solution Overcomes potential problem with Distributed Control
pattern by providing high-level control and coordination

Weaknesses of solution High-level coordinator may become a bottleneck when the
load is high and is a single point of failure.

Applicability Distributed real-time control, distributed state-dependent
applications

Related patterns Distributed Control, Centralized Control
Reference Chapter 18, Section 18.3.3

response

command

sensor
Input

actuator
Output

sensor
Input

actuator
Output

sensor
Input

actuator
Output

command

command response

response

«control»
«component»
: Distributed
Controller

«control»
«component»
: Distributed
Controller

«coordinator»
«component»
: Hierarchical

Controller

«output»
component»

: ActuatorCmpt

«output»
component»

: ActuatorCmpt

«output»
component»

: ActuatorCmpt

«input»
«component»

: SensorCmpt

«input»
«component»

: SensorCmpt

«input»
«component»

: SensorCmpt

«control»
«component»
: Distributed
Controller

Figure A.4. Hierarchical Control pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 501

A.1.5 Layers of Abstraction Pattern

Pattern name Layers of Abstraction
Aliases Hierarchical Layers, Levels of Abstraction
Context Software architectural design
Problem A software architecture that encourages design for ease of

extension and contraction is needed.
Summary of solution Components at lower layers provide services for

components at higher layers. Components may use only
services provided by components at lower layers.

Strengths of solution Promotes extension and contraction of software design
Weaknesses of solution Could lead to inefficiency if too many layers need to be

traversed
Applicability Operating systems, communication protocols, software

product lines
Related patterns Software kernel can be lowest layer of Layers of Abstraction

architecture. Variations of this pattern include Flexible
Layers of Abstraction.

Reference Chapter 12, Section 12. 3.1; Hoffman and Weiss 2001;
Parnas 1979

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application Layer

Transport Layer
(TCP)

Internet Layer
(IP)

Network Interface
Layer

Physical Layer

Figure A.5. Layers of Abstraction pattern: TCP/IP example

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

502 Appendix A: Catalog of Software Architectural Patterns

A.1.6 Multiple Client/Multiple Service Pattern

Pattern name Multiple Client/Multiple Service
Aliases Client/Service, Client/Server
Context Software architectural design, distributed systems
Problem Distributed application in which multiple clients require

services from multiple services
Summary of solution Client communicates with multiple services, usually

sequentially but could also be in parallel. Each service
responds to client requests. Each service handles
multiple client requests. A service may delegate a client
request to a different service.

Strengths of solution Good way for client to communicate with multiple services
when it needs different information from each service.

Weaknesses of solution Client can be held up indefinitely if there is a heavy load at
any server.

Applicability Distributed processing: client/service and distribution
applications with multiple services

Related patterns Multiple Client/Single Service and Multi-tier Client/Service
Reference Chapter 15, Section 15.2.2

Service1
{1 server node}

«local area network»

Client3
{1 client node}

Client2
{1 client node}

Client1
{1 client node}

Service2
{1 server node}

Figure A.6. Multiple Client/Multiple Service Pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 503

A.1.7 Multiple Client/Single Service Pattern

Pattern name Multiple Client/Single Service
Aliases Client/Service, Client/Server
Context Software architectural design, distributed systems
Problem Distributed application in which multiple clients require

services from a single service
Summary of solution Client requests service. Service responds to client requests

and does not initiate requests. Service handles multiple
client requests.

Strengths of solution Good way for client to communicate with service when it
needs a reply from service. Very common form of
communication in client/server applications.

Weaknesses of solution Client can be held up indefinitely if there is a heavy load at
the server.

Applicability Distributed processing: client/service applications
Related patterns Multiple Client/Multiple Service and Multi-tier Client/Service
Reference Chapter 15, Section 15.2.1

«external output device»
ReceiptPrinter

«external input/output
device»

CardReader

«external output device»
CashDispenser

«software system»
BankingSystem

«client»
 «subsystem»

ATMClient

«service»
«subsystem»

BankingService

«external user»
Operator

«external user»
ATMCustomer

1

1

1

1

1

1

1

1

1

1

1

1..*

Requests Service
From

Figure A.7. Multiple Client/Single Service Pattern: Banking System example

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

504 Appendix A: Catalog of Software Architectural Patterns

A.1.8 Multi-tier Client/Service Pattern

Pattern name Multi-tier Client/Service
Aliases Client/Service, Client/Server
Context Software architectural design, distributed systems
Problem Distributed application in which there is more than one tier

(layer) of service
Summary of solution Client requests service. Solution consists of more than one

tier of service. Intermediate tier provides both client and
service role. There can be more than one intermediate
tier.

Strengths of solution Good way of layering services if multiple services are
needed to handle an individual client’s request and one
service needs assistance of another service.

Weaknesses of solution Client can be held up indefinitely if there is a heavy load at
the server.

Applicability Distributed processing: client/service and distribution
applications with multiple services

Related patterns Multiple Client/Single Service and Multiple Client/Multiple
Service

Reference Chapter 15, Section 15.2.3

ATMClient BankingService DatabaseService

Figure A.8. Multi-tier Client/Service Pattern: Banking System example

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 505

A.2 SOFTWARE ARCHITECTURAL COMMUNICATION PATTERNS

This section describes the architectural communication patterns, which address
the dynamic communication among distributed components of the architecture, in
alphabetical order, using the standard template.

A.2.1 Asynchronous Message Communication Pattern

Pattern name Asynchronous Message Communication
Aliases Loosely Coupled Message Communication
Context Concurrent or distributed systems
Problem Concurrent or distributed application has concurrent

components that need to communicate with each other.
Producer does not need to wait for consumer. Producer
does not need a reply.

Summary of solution Use message queue between producer component and
consumer component. Producer sends message to
consumer and continues. Consumer receives message.
Messages are queued FIFO if consumer is busy.
Consumer is suspended if no message is available.
Producer needs timeout notification if consumer node is
down.

Strengths of solution Consumer does not hold up producer.
Weaknesses of solution If producer produces messages more quickly than

consumer can process them, the message queue will
eventually overflow.

Applicability Centralized and distributed environments: real-time
systems, client/server and distribution applications

Related patterns Asynchronous Message Communication with Callback
Reference Chapter 12, Section 12.3.3

1: sendAsynchronousMessage (in message)

aProducer aConsumer

Figure A.9. Asynchronous Message Communication pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

506 Appendix A: Catalog of Software Architectural Patterns

A.2.2 Asynchronous Message Communication with Callback Pattern

Pattern name Asynchronous Message Communication with Callback
Aliases Loosely Coupled Communication with Callback
Context Concurrent or distributed systems
Problem Concurrent or distributed application in which concurrent

components need to communicate with each other. Client
does not need to wait for service but does need to
receive a reply later.

Summary of solution Use synchronous communication between clients and
service. Client sends request to service, which includes
client operation (callback) handle. Client does not wait for
reply. After service processes the client request, it uses
the handle to call the client operation remotely (the
callback).

Strengths of solution Good way for client to communicate with service when it
needs a reply but can continue executing and receive
reply later

Weaknesses of solution Suitable only if the client does not need to send multiple
requests before receiving the first reply

Applicability Distributed environments: client/server and distribution
applications with multiple servers

Related patterns Consider Bidirectional Asynchronous Message
Communication as alternative pattern.

Reference Chapter 15, Section 15.3.2

1: sendAsynchronousMessage
(in message, in callbackHandle)

2: sendCallbackResponse (in response)

aClient aService

Figure A.10. Asynchronous Message Communication with Callback pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 507

A.2.3 Bidirectional Asynchronous Message Communication Pattern

Pattern name Bidirectional Asynchronous Message Communication
Aliases Bidirectional Loosely Coupled Message Communication
Context Concurrent or distributed systems
Problem Concurrent or distributed application in which concurrent

components need to communicate with each other.
Producer does not need to wait for consumer, although it
does need to receive replies later. Producer can send
several requests before receiving first reply.

Summary of solution Use two message queues between producer component
and consumer component: one for messages from
producer to consumer, and one for messages from
consumer to producer. Producer sends message to
consumer on P→C queue and continues. Consumer
receives message. Messages are queued if consumer is
busy. Consumer sends replies on C→P queue.

Strengths of solution Producer does not get held up by consumer. Producer
receives replies later, when it needs them.

Weaknesses of solution If producer produces messages more quickly than consumer
can process them, the message (P→C) queue will
eventually overflow. If producer does not service replies
quickly enough, the reply (C→P) queue will overflow.

Applicability Centralized and distributed environments: real-time
systems, client/server and distribution applications

Related patterns Asynchronous Message Communication with Callback
Reference Chapter 12, Section 12.3.3

1: sendAsynchronousMessage (in message)

2: sendAsynchronousResponse (in response)

aProducer aConsumer

Figure A.11. Bidirectional Asynchronous Message Communication pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

508 Appendix A: Catalog of Software Architectural Patterns

A.2.4 Broadcast Pattern

Pattern name Broadcast
Aliases Broadcast Communication
Context Distributed systems
Problem Distributed application with multiple clients and services. At

times, a service needs to send the same message to
several clients.

Summary of solution Crude form of group communication in which service sends
a message to all clients, regardless of whether clients
want the message or not. Client decides whether it wants
to process the message or just discard the message.

Strengths of solution Simple form of group communication
Weaknesses of solution Places an additional load on the client, because the client

may not want the message
Applicability Distributed environments: client/server and distribution

applications with multiple servers
Related patterns Similar to Subscription/Notification, except that it is not

selective
Reference Chapter 17, Section 17.6.1

B2a: alarmBroadcast

B2b: alarmBroadcast

B2c: alarmBroadcast

B1: alarm

«service»
: AlarmHandlingService

«user interaction»
«component»

firstOperatorInteraction

«user interaction»
«component»

secondOperatorInteraction

«input»
«component»
: EventMonitor

«user interaction»
«component»

thirdOperatorInteraction

Figure A.12. Broadcast pattern: alarm broadcast example

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 509

A.2.5 Broker Forwarding Pattern

Pattern name Broker Forwarding
Aliases White Pages Broker Forwarding, Broker with Forwarding

Design
Context Distributed systems
Problem Distributed application in which multiple clients

communicate with multiple services. Clients do not know
locations of services.

Summary of solution Services register with broker. Client sends service request
to broker. Broker forwards request to service. Service
processes request and sends reply to broker. Broker
forwards reply to client.

Strengths of solution Location transparency: Services may relocate easily. Clients
do not need to know locations of services.

Weaknesses of solution Additional overhead because broker is involved in all
message communication. Broker can become a
bottleneck if there is a heavy load at the broker.

Applicability Distributed environments: client/server and distribution
applications with multiple servers

Related patterns Similar to Broker Handle; more secure, but performance is
not as good

Reference Chapter 16, Section 16.2.2

1: serviceRequest

3:serviceReply
4: forwardedReply

aBroker

aServiceRequester aService

2: forwardedRequest

Figure A.13. Broker Forwarding pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

510 Appendix A: Catalog of Software Architectural Patterns

A.2.6 Broker Handle Pattern

Pattern name Broker Handle
Aliases White Pages Broker Handle, Broker with Handle-Driven

Design
Context Distributed systems
Problem Distributed application in which multiple clients

communicate with multiple services. Clients do not know
locations of services.

Summary of solution Services register with broker. Client sends service request
to broker. Broker returns service handle to client. Client
uses service handle to make request to service. Service
processes request and sends reply directly to client.
Client can make multiple requests to service without
broker involvement.

Strengths of solution Location transparency: Services may relocate easily. Clients
do not need to know locations of services.

Weaknesses of solution Additional overhead because broker is involved in initial
message communication. Broker can become a
bottleneck if there is a heavy load at the broker. Client
may keep outdated service handle instead of discarding.

Applicability Distributed environments: client/server and distribution
applications with multiple servers

Related patterns Similar to Broker Forwarding, but with better performance
Reference Chapter 16, Section 16.2.3

B1: serviceRequest

B4: serviceReply

B3: serviceRequestWithHandle

B2: serviceHandle

aBroker

aServiceRequester aService

Figure A.14. Broker Handle pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 511

A.2.7 Call/Return Pattern

Pattern name Call/Return
Aliases Operation invocation, method invocation
Context Object-oriented programs and systems
Problem An object needs to call an operation (also known as

method) in a different object.
Summary of solution A calling operation in a calling object invokes a called

operation in a called object. Control is passed, together
with any input parameters, from the calling operation to
the called operation at the time of operation invocation.
When the called operation finishes executing, it returns
control and any output parameters to the calling
operation.

Strengths of solution This pattern is the only possible form of communication
between objects in a sequential design.

Weaknesses of solution If this pattern of communication is not suitable, then most
likely a concurrent or distributed solution will be needed.

Applicability Sequential object-oriented architectures, programs, and
systems. A service designed as a sequential subsystem
that communicates with internal objects using this
pattern.

Related patterns Software architectural communication patterns in which
message passing is used instead of operation invocation.

Reference Chapter 12, Section 12.3.2

: Calling Object

: Called Object

invokeOperation(in inputParameter,
 out outputParameter)

Figure A.15. Call/Return pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

512 Appendix A: Catalog of Software Architectural Patterns

A.2.8 Negotiation Pattern

Pattern name Negotiation
Aliases Agent-Based Negotiation, Multi-Agent Negotiation
Context Distributed multi-agent systems; service-oriented

architectures
Problem Client needs to negotiate with multiple services to find best

available service.
Summary of solution Client agent acts on behalf of client and makes a proposal

to service agent, who acts on behalf of service. Service
agent attempts to satisfy client’s proposal, which might
involve communication with other services. Having
determined the available options, service agent then
offers client agent one or more options that come closest
to matching the original client agent proposal. Client
agent may then request one of the options, propose
further options, or reject the offer. If service agent can
satisfy client agent request, client agent accepts the
request; otherwise, it rejects the request.

Strengths of solution Provides negotiation service to complement other services
Weaknesses of solution Negotiation may be lengthy and inconclusive.
Applicability Distributed environments: client/service and distribution

applications with multiple services, service-oriented
architectures

Related patterns Often used in conjunction with broker patterns (Broker
Forwarding, Broker Handle, Service Discovery)

Reference Chapter 16, Section 16.5

1: propose (tripToLondon,
depart 14 Oct.,

return 21 Oct., <$700)
4: request (UA $750)
8: request (BA $775)

3: offer (UA $750, BA $775),
7: reject,
11: accept

2c.1: response

2c: query

2b.1: response

2b: query

5: reserve

2a: flightQuery

2a.1: response

6: reject

worldWide
TravelAgent

Virtual Atlantic
ReservationService

brittanicAirways
ReservationService

unifiedAirlines
ReservationService

aClientAgent

9: reserve

10: confirm

Figure A.16. Negotiation pattern: airline reservation example

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 513

A.2.9 Service Discovery Pattern

Pattern name Service Discovery
Aliases Yellow Pages Broker, Broker Trader, Discovery
Context Distributed systems
Problem Distributed application in which multiple clients

communicate with multiple services. Client knows the
type of service required but not the specific service.

Summary of solution Use broker’s discovery service. Services register with
broker. Client sends discovery service request to broker.
Broker returns names of all services that match discovery
service request. Client selects a service and uses Broker
Handle or Broker Forwarding pattern to communicate with
service.

Strengths of solution Location transparency: Services may relocate easily. Clients
do not need to know specific service, only the service
type.

Weaknesses of solution Additional overhead because broker is involved in initial
message communication. Broker can become a
bottleneck if there is a heavy load at the broker.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Other broker patterns (Broker Forwarding, Broker Handle)
Reference Chapter 16, Section 16.2.4

1: queryServices

6: serviceReply

5: serviceRequestWithHandle

4: service
Handle

3: select
aService

2: serviceList

aBroker

aService
Requester

aService

Figure A.17. Service Discovery pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

514 Appendix A: Catalog of Software Architectural Patterns

A.2.10 Service Registration Pattern

Pattern name Service Registration
Aliases Broker Registration
Context Software architectural design, distributed systems
Problem Distributed application in which multiple clients

communicate with multiple services. Clients do not know
locations of services.

Summary of solution Services register service information with broker, including
service name, service description, and location. Clients
send service requests to broker. Broker acts as
intermediary between client and service.

Strengths of solution Location transparency: Services may relocate easily. Clients
do not need to know locations of services.

Weaknesses of solution Additional overhead because broker is involved in message
communication. Broker can become a bottleneck if there
is a heavy load at the broker.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Broker, Broker Forwarding, Broker Handle, Service Discovery
Reference Chapter 16, Section 16.2.1

R1:
register
Service

R2:
registrationAck

aBroker

aService

Figure A.18. Service Registration pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 515

A.2.11 Subscription/Notification Pattern

Pattern name Subscription/Notification
Aliases Multicast
Context Distributed systems
Problem Distributed application with multiple clients and services.

Clients want to receive messages of a given type.
Summary of solution Selective form of group communication. Clients subscribe

to receive messages of a given type. When service
receives message of this type, it notifies all clients who
have subscribed to it.

Strengths of solution Selective form of group communication. Widely used on the
Internet and in World Wide Web applications.

Weaknesses of solution If client subscribes to too many services, it may
unexpectedly receive a large number of messages.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Similar to Broadcast, except that it is more selective
Reference Chapter 17, Section 17.6.2

S1: subscribe

N2a: alarmNotify

S2: subscribe

s3: subscribe

N2b: alarmNotify

N2c: alarmNotify

N1: alarm

«service»
: AlarmHandlingService

«input»
«component»
: EventMonitor

«user interaction»
«component»

firstOperatorInteraction

«user interaction»
«component»

secondOperatorInteraction

«user interaction»
«component»

thirdOperatorInteraction

Figure A.19. Subscription/Notification pattern: alarm notification example

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

516 Appendix A: Catalog of Software Architectural Patterns

A.2.12 Synchronous Message Communication with Reply Pattern

Pattern name Synchronous Message Communication with Reply
Aliases Tightly Coupled Message Communication with Reply
Context Concurrent or distributed systems
Problem Concurrent or distributed application in which multiple

clients communicate with a single service. Client needs
to wait for reply from service.

Summary of solution Use synchronous communication between clients and
service. Client sends message to service and waits for
reply. Use message queue at service because there are
many clients. Service processes message FIFO. Service
sends reply to client. Client is activated when it receives
reply from service.

Strengths of solution Good way for client to communicate with service when it
needs a reply. Very common form of communication in
client/server applications.

Weaknesses of solution Client can be held up indefinitely if there is a heavy load at
the server.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Asynchronous Message Communication with Callback
Reference Chapter 12, Section 12.3.4; Chapter 15, Section 15.3.1

1: sendSynchronousMessagewithReply
(in message, out response)

aClient aService

Figure A.20. Synchronous Message Communication with Reply pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 517

A.2.13 Synchronous Message Communication without Reply Pattern

Pattern name Synchronous Message Communication without Reply
Aliases Tightly Coupled Message Communication without Reply
Context Concurrent or distributed systems
Problem Concurrent or distributed application in which concurrent

components need to communicate with each other.
Producer needs to wait for consumer to accept message.
Producer does not want to get ahead of consumer. There
is no queue between producer and consumer.

Summary of solution Use synchronous communication between producer and
consumer. Producer sends message to consumer and
waits for consumer to accept message. Consumer
receives message. Consumer is suspended if no
message is available. Consumer accepts message,
thereby releasing producer.

Strengths of solution Good way for producer to communicate with consumer when
it wants confirmation that consumer received the
message and producer does not want to get ahead of
consumer.

Weaknesses of solution Producer can be held up indefinitely if consumer is busy
doing something else.

Applicability Distributed environments: client/service and distribution
applications with multiple services

Related patterns Consider Synchronous Message Communication with Reply
as alternative pattern.

Reference Chapter 18, Section 18.8.3

1: sendSynchronousMessagewithoutReply (in message)

aProducer aConsumer

Figure A.21. Synchronous Message Communication without Reply pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

518 Appendix A: Catalog of Software Architectural Patterns

A.3 SOFTWARE ARCHITECTURAL TRANSACTION PATTERNS

This section describes the architectural transaction patterns, which address the
transaction management in client/server architectures, in alphabetical order, using
the standard template.

A.3.1 Compound Transaction Pattern

Pattern name Compound Transaction
Aliases
Context Distributed systems, distributed databases
Problem Client has a transaction requirement that can be broken

down into smaller, separate flat transactions.
Summary of solution Break down compound transaction into smaller atomic

transactions, where each atomic transaction can be
performed separately and rolled back separately.

Strengths of solution Provides effective support for transactions that can be
broken into two or more atomic transactions. Effective if a
rollback or change is required to only one of the
transactions.

Weaknesses of solution More work is required to make sure that the individual
atomic transactions are consistent with each other. More
coordination is required if the whole compound
transaction needs to be rolled back or modified.

Applicability Transaction processing applications, distributed databases
Related patterns Two-Phase Commit Protocol, Long-Living Transaction
Reference Chapter 16, Section 16.4.2

1: flightReservation

2: flightConfirmation

3: hotelReservation

4: hotelConfirmation

5: carReservation

6: carConfirmation

worldWide
TravelAgent

airline
ReservationService

hotel
ReservationService

vehicle
RentalService

Figure A.22. Compound Transaction pattern: airline/hotel/car
reservation example

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

Appendix A: Catalog of Software Architectural Patterns 519

A.3.2 Long-Living Transaction Pattern

Pattern name Long-Living Transaction
Aliases
Context Distributed systems, distributed databases
Problem Client has a long-living transaction requirement that has a

human in the loop and that could take a long and
possibly indefinite time to execute.

Summary of solution Split a long-living transaction into two or more separate
atomic transactions such that human decision making
takes place between each successive pair of atomic
transactions.

Strengths of solution Provides effective support for long-living transactions that
can be broken into two or more atomic transactions

Weaknesses of solution Situations may change because of long delay between
successive atomic transactions that constitute the
long-living transaction, resulting in an unsuccessful
long-living transaction.

Applicability Transaction processing applications, distributed databases
Related patterns Two-Phase Commit Protocol, Compound Transaction.
Reference Chapter 16, Section 16.4.3

2: reserve

1a.1:
response

4:
reserve

5: confirm

1c: query

1c.1:
response

1a:
flightQuery

3:
reject 1b:

query

1b.1:
response

worldWide
TravelAgent

unifiedAirlines
ReservationService

brittanicAirways
ReservationService

virtualAtlantic
ReservationService

Figure A.23. Long-Living Transaction pattern: airline reservation example

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

520 Appendix A: Catalog of Software Architectural Patterns

A.3.3 Two-Phase Commit Protocol Pattern

Pattern name Two-Phase Commit Protocol
Aliases Atomic Transaction
Context Distributed systems, distributed databases
Problem Clients generate transactions and send them to the service

for processing. A transaction is atomic (i.e., indivisible). It
consists of two or more operations that perform a single
logical function, and it must be completed in its entirety
or not at all.

Summary of solution For atomic transactions, services needed to commit or
abort the transaction. The two-phase commit protocol is
used to synchronize updates on different nodes in
distributed applications. The result is that either the
transaction is committed (in which case all updates
succeed) or the transaction is aborted (in which case all
updates fail).

Strengths of solution Provides effective support for atomic transactions
Weaknesses of solution Effective only for short transactions; that is, there are no

long delays between the two phases of the transaction.
Applicability Transaction processing applications, distributed databases
Related patterns Compound Transaction, Long-Living Transaction
Reference Chapter 16, Section 16.4.1

1a: prepareTo
Commit

1a.3: readyTo
Commit

1b: prepareTo
Commit

1b.3: readyTo
Commit

: CommitCoordinator

firstService secondService

2a: Commit

2a.3: Commit
Completed

2b: Commit

2b.3: Commit
Completed

: CommitCoordinator

firstService secondService

(a) First phase of Two-Phase Commit Protocol

(b) Second phase of Two-Phase Commit Protocol

Figure A.24. Two-Phase Commit Protocol pattern

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.027

Cambridge Books Online © Cambridge University Press, 2016

