
Cambridge Books Online

http://ebooks.cambridge.org/

Software Modeling and Design

UML, Use Cases, Patterns, and Software Architectures

Hassan Gomaa

Book DOI: http://dx.doi.org/10.1017/CBO9780511779183

Online ISBN: 9780511779183

Hardback ISBN: 9780521764148

Chapter

9 - Dynamic Interaction Modeling pp. 132-150

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge University Press

9

Dynamic Interaction Modeling

Dynamic modeling provides a view of a system in which control and sequencing are
considered, either within an object (by means of a finite state machine) or between
objects (by analysis of object interactions). This chapter addresses dynamic interac-
tion between objects.

Dynamic interaction modeling is based on the realization of the use cases devel-
oped during use case modeling. For each use case, it is necessary to determine how
the objects that participate in the use case dynamically interact with each other.
The object structuring criteria described in Chapter 8 are applied to determine the
objects that participate in each use case. This chapter describes how, for each use
case, an interaction diagram is developed to depict the objects that participate in
the use case and the sequence of messages passed between them. The interaction
is depicted on either a communication diagram or a sequence diagram. A narrative
description of the object interaction is also provided in a message sequence descrip-
tion. Please note that all references to system in this chapter are to the software
system.

This chapter first describes object interaction modeling using communication
diagrams and sequence diagrams before describing how they are used in dynamic
interaction modeling. It then describes the details of the dynamic interaction model-
ing approach for determining how objects collaborate with each other. This chapter
describes stateless dynamic interaction modeling, also referred to as basic dynamic
interaction modeling. Chapter 11 describes state-dependent dynamic interaction
modeling, which, unlike stateless dynamic interaction modeling, involves state-
dependent communication controlled by a statechart.

Section 9.1 presents an overview of object interaction modeling and describes
the two kinds of interaction diagrams, communication and sequence diagrams.
Section 9.2 describes message sequence numbering on interaction diagrams. Sec-
tion 9.3 introduces dynamic interaction modeling, and Section 9.4 describes state-
less dynamic interaction modeling. Section 9.5 provides two examples of stateless
dynamic interaction modeling.

132

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

Dynamic Interaction Modeling 133

View Alarms

Monitoring
Operator

Figure 9.1. Use case diagram for the View Alarms use case

9.1 OBJECT INTERACTION MODELING

For each use case, the objects that realize the use case dynamically cooperate with
each other and are depicted on either a UML communication diagram or a UML
sequence diagram, as described in this section.

9.1.1 Communication Diagrams

A communication diagram is a UML interaction diagram that depicts a dynamic
view of a group of objects interacting with each other by showing the sequence
of messages passed among them. During analysis modeling, a communication dia-
gram is developed for each use case; only objects that participate in the use case are
depicted. On a communication diagram, the sequence in which the objects partici-
pate in each use case is depicted by means of message sequence numbers. The mes-
sage sequencing on the communication diagram should correspond to the sequence
of interactions between the actor and the system already described in the use case.

As an example of using a communication diagram to depict the objects that par-
ticipate in a use case, consider the View Alarms use case from the Emergency Mon-
itoring System case study (Figure 9.1), in which a Monitoring Operator views out-
standing alarms. The communication diagram (Figure 9.2) for this simple use case

«user interaction»
: OperatorInteraction

«service»
: AlarmService

A1: Operator
Request

A1.3: Display
Info

A1.1: Alarm
Request A1.2: Alarm

: Monitoring
Operator

Figure 9.2. Communication diagram for the View Alarms use case

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

134 Software Modeling

consists of only two objects: a user interaction object and a service object. The user
interaction object is called Operator Interaction. The service object is called Alarm
Service.

The communication diagram for this use case depicts the user interaction object,
Operator Interaction, making a request to the service object, Alarm Service and receiv-
ing a response (see Figure 9.2).

9.1.2 Sequence Diagrams

The interaction among objects can also be shown on a sequence diagram, which
shows object interactions arranged in time sequence. A sequence diagram shows the
objects participating in the interaction and the sequence in which messages are sent.
Sequence diagrams can also depict loops and iterations. Sequence diagrams and
communication diagrams depict similar (although not necessarily identical) infor-
mation, but in different ways. Usually either communication diagrams or sequence
diagrams are used to describe a dynamic view of a system, but not both.

Because the sequence diagram shows the order of messages sent sequentially
from the top to the bottom of the diagram, numbering the messages is not essen-
tial. In the following example, however, the messages on the sequence diagram are
numbered to show their correspondence to the communication diagram.

An example of a sequence diagram for the View Alarms use case is shown in Fig-
ure 9.3. This sequence diagram conveys the same information as the communication
diagram shown in Figure 9.2.

9.1.3 Analysis and Design Decisions in Object Interaction Modeling

In the analysis model, messages represent the information passed between objects.
Interaction diagrams (communication diagrams or sequence diagrams) help in
determining the operations of the objects because the arrival of a message at an
object usually invokes an operation. In COMET, however, the emphasis during

«user interaction»
: Operator
Interaction

«service»
: AlarmService

: Monitoring
Operator

A1: Operator Request

A1.3: Display Info

A1.1: Alarm Request

A1.2: Alarm

Figure 9.3. Sequence diagram for the View Alarms use case

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

Dynamic Interaction Modeling 135

analysis modeling is on capturing the information passed between objects, rather
than on the operations invoked. During design, we might decide that two differ-
ent messages arriving at an object invoke different operations or, alternatively, the
same operation, with the message name being a parameter of the operation. How-
ever, these decisions should be postponed to the design phase. The kind of message
passed between objects – synchronous or asynchronous – is a design decision that
is also postponed to the design phase. At the analysis stage, all messages passed
between objects are shown as simple messages.

In the analysis phase, no decision is made about whether an object is active or
passive; this decision is also deferred to the design phase.

9.1.4 Sequence Diagram versus Communication Diagram

Either a sequence diagram or a communication diagram can be used to depict the
object interaction and sequence of messages passed among objects. In its sequen-
tial form, the sequence diagram clearly shows the order in which messages are
passed between objects, but seeing how the objects are connected to each other is
more difficult. However, using iterations (such as do-while) and decision statements
(if-then-else) can obscure the sequence of object interactions.

The communication diagram shows the layout of the objects, particularly how
the objects are connected to each other. The message sequence is shown on both
diagrams. Because the message sequence depicted on the communication diagram
is less readily visible than on the sequence diagram, the message sequence is num-
bered. However, even with the message numbering on the communication diagram,
it sometimes takes longer to see the sequence of messages. On the other hand, if
an interaction involves many objects, a sequence diagram can become difficult to
read. The diagram might have to be shrunk to fit on a page, or it might span several
pages.

The COMET preference is to use communication diagrams rather than sequence
diagrams, because an important step in the transition to design is the integration of
the communication diagrams to create the initial software architecture of the sys-
tem, as described in Chapter 13. This integration is much easier with communication
diagrams than with sequence diagrams. If the analysis started with sequence dia-
grams, it would be necessary to convert each sequence diagram to a communication
diagram before the integration could be done. Sometimes, however, the sequence
diagram is very helpful, in particularly for very complex and lengthy interactions.

9.1.5 Use Cases and Scenarios

A scenario is one specific path through a use case. Thus, a particular message
sequence depicted on an interaction diagram actually depicts a scenario and not
a use case. To show all the alternatives through a use case, development of more
than one interaction diagram is often necessary.

By using conditions, it is possible to depict alternatives on an interaction diagram
and, hence, to depict the whole use case on a single interaction diagram. However,
such comprehensive interaction diagrams are usually more difficult to read. In prac-
tice, depicting an individual scenario on an interaction diagram is usually clearer.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

136 Software Modeling

By using a sequence diagram with loops and branches, it is also possible to depict
the interaction sequence of the whole use case consisting of the main sequence and
all the alternative sequences. This is described in more detail in Section 9.5.

9.1.6 Generic and Instance Forms of Interaction Diagrams

The two forms of an interaction (sequence or communication) diagram are the
generic form and the instance form. The instance form describes a specific scenario
in detail, depicting one possible sequence of interactions among object instances.
The generic form describes all possible interactions in which the objects might par-
ticipate, and so can include loops, branches, and conditions. The generic form of an
interaction diagram can be used to describe both the main sequence and the alter-
natives of a use case. The instance form is used to depict a specific scenario, which
is one instance of the use case. Using the instance form might require several inter-
action diagrams to depict a given use case, depending on how many alternatives are
described in the use case. Examples of instance and generic forms of interaction
diagrams, both communication diagrams and sequence diagrams, are given in the
examples in Section 9.5.

For all but the simplest use cases, an interaction diagram is usually much clearer
when it depicts an instance form rather than a generic form of interaction. It can
rapidly become too complicated if several alternatives are depicted on the same
diagram. In the instance form of the sequence diagram, time moves down the page,
so that it is easy to follow the message sequence. However, in the generic form –
with loops, branches, and conditions – this is no longer the case, making the message
sequence more difficult to follow.

9.2 MESSAGE SEQUENCE NUMBERING ON INTERACTION DIAGRAMS

Messages on a communication diagram or sequence diagram are given message
sequence numbers. This section provides some guidelines for numbering message
sequences. These guidelines follow the general UML conventions; however, they
have been extended to better address concurrency, alternatives, and large message
sequences. These conventions are followed in the examples given in this chapter (see
Section 9.5 for more examples) and in the case studies in Chapters 20 through 24.

9.2.1 Message Labels on Interaction Diagrams

A message label on a communication or sequence diagram has the following syntax
(only those parts of the message label that are relevant in the analysis phase are
described here):

[sequence expression]: Message Name (argument list)

where the sequence expression consists of the message sequence number and an
indicator of recurrence.

■ Message sequence number. The message sequence number is described as fol-
lows: The first message sequence number represents the event that initiates the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

Dynamic Interaction Modeling 137

message sequence depicted on the communication diagram. Typical message
sequences are 1, 2, 3, . . . ; A1, A2, A3, . . .

A more elaborate message sequence can be depicted with the Dewey classi-
fication system, such that A1.1 precedes A1.1.1, which in turn precedes A1.2. In
the Dewey system, a typical message numbering sequence would be A1, A1.1,
A1.1.1, A1.2.

■ Recurrence. The recurrence term is optional and represents conditional or iter-
ative execution. The recurrence term represents zero or more messages that are
sent, depending on the conditions being met.
1. ∗ [iteration-clause]. An asterisk (∗) is added after the message sequence num-

ber to indicate that more than one message is sent. The optional iteration
clause is used to specify repeated execution, such as [j := 1,n]. An exam-
ple of an iteration by putting an asterisk after the message sequence number
is 3∗.

2. [condition-clause]. A condition is specified in square brackets to indicate
a branch condition. The optional condition clause is used for specifying
branches – for example, [x < n] – meaning that the message is sent only if
the condition is true. Examples of conditional message passing by showing a
condition after the message sequence number are 4[x < n] and 5[Normal]. In
each case, the message is sent only if the condition is true.

■ Message name. The message name is specified.
■ Argument list. The argument list of the message is optional and specifies any

parameters sent as part of the message.

There can also be optional return values from the message sent. However, it is
recommended to use only simple messages during the analysis phase, in which case
there are no return values, and to postpone to the design phase the decision about
which kind of message to use.

9.2.2 Message Sequence Numbering on Interaction Diagrams

On a communication diagram supporting a use case, the sequence in which the
objects participate in each use case is described and depicted by message sequence
numbers. A message sequence number for a use case takes the following form:

[first optional letter sequence] [numeric sequence] [second optional

letter sequence]

The first optional letter sequence is an optional use case ID and identifies a spe-
cific concrete use case or abstract use case. The first letter is an uppercase letter and
might be followed by one or more upper- or lowercase letters if a more descriptive
use case ID is desired.

The simplest form of message sequencing is to use a sequence of whole num-
bers, such as M1, M2, and M3. However, in an interactive system with several exter-
nal inputs from the actor, it is often helpful to include a numeric sequence that
includes decimal numbers – that is, to number the external events as whole num-
bers followed by decimal numbers for the ensuing internal events. For example, if

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

138 Software Modeling

the actor’s inputs were designated as A1, A2, and A3, the full message sequence
depicted on the communication diagram would be A1, A1.1, A1.2, A1.3, . . . , A2,
A2.1, A2.2, . . . , and A3, A3.1, A3.2,

An example is V1, where the letter V identifies the use case and the number
identifies the message sequence within the communication diagram supporting the
use case. The object sending the first message – V1 – is the initiator of the use case–
based communication. Thus, in the communication and sequence diagram examples
in Figures 9.2 and 9.3, respectively, the input from the actor is V1. Subsequent mes-
sage numbers following this input message are V1.1, V1.2, and V1.3. If the dialog
were to continue, the next input from the actor would be V2.

9.2.3 Concurrent and Alternative Message Sequences

The second optional letter sequence is used to depict special cases of branches –
either concurrent or alternative – in the message sequence numbering.

Concurrent message sequences may also be depicted on a communication
diagram. A lowercase letter represents a concurrent sequence; in other words,
sequences designated as A3 and A3a would be concurrent sequences. For exam-
ple, the arrival of message A2 at an object X might result in the sending of two
messages from object X to two objects Y and Z, which could then execute in par-
allel. To indicate the concurrency in this case, the message sent to object Y would
be designated as A3, and the one to object Z, as A3a. Subsequent messages in the
A3 sequence would be A4, A5, A6, . . . , and subsequent messages in the indepen-
dent A3a sequence would be A3a.1, A3a.2, A3a.3, and so on. Because the sequence
numbering is more cumbersome for the A3a sequence, use A3 for the main mes-
sage sequence and A3a and A3b for the supporting message sequences. An alter-
native way to show two concurrent sequences is to avoid A3 altogether and use
the sequence numbers A3a and A3b; however, this can lead to a more cumber-
some numbering scheme if A3a initiates another concurrent sequence, so the former
approach is preferred.

Alternative message sequences are depicted with the condition indicated after
the message. An uppercase letter is used to name the alternative branch. For exam-
ple, the main branch may be labeled 1.4[Normal], and the other, less frequently used
branch could be named 1.4A[Error]. The message sequence numbers for the normal
branch would be 1.4[Normal], 1.5, 1.6, and so on. The message sequence numbers
for the alternative branch would be 1.4A[Error], 1.4A.1, 1.4A.2, and so on.

9.2.4 Message Sequence Description

A message sequence description is supplementary documentation, which is use-
ful to provide with an interaction diagram. It is developed as part of the dynamic
model and describes how the analysis model objects participate in each use case
as depicted on an interaction diagram. The message sequence description is a nar-
rative description, describing what happens when each message arrives at a des-
tination object depicted on a communication diagram or sequence diagram. The
message sequence description uses the message sequence numbers that appear

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

Dynamic Interaction Modeling 139

on the communication diagram. It describes the sequence of messages sent from
source objects to destination objects and describes what each destination object
does with a message it receives. The message sequence description usually pro-
vides additional information that is not depicted on the object interaction diagram.
For example, every time an entity object is accessed, the message sequence descrip-
tion can provide additional information, such as which attributes of the object are
referenced.

Examples of message sequence descriptions are given in Section 9.5.

9.3 DYNAMIC INTERACTION MODELING

Dynamic interaction modeling is an iterative strategy to help determine how the
analysis model objects interact with each other to support the use cases. Dynamic
interaction modeling is carried out for each use case. A first attempt is made to
determine the objects that participate in a use case, using the object structuring
criteria described in Chapter 8. Then the way in which these objects collaborate
to execute the use case is analyzed. This analysis might show a need for additional
objects and/or additional interactions to be defined.

Dynamic interaction modeling can be either state-dependent or stateless,
depending on whether the object communication is state-dependent. This chapter
describes stateless dynamic interaction modeling. State-dependent dynamic interac-
tion modeling is described in Chapter 11.

9.4 STATELESS DYNAMIC INTERACTION MODELING

The main steps in the stateless dynamic interaction modeling approach are as fol-
lows, starting with the use case. Next consider the objects needed to realize the use
case, then determine the sequence of message communication among the objects.

1. Develop use case model. This step is described in Chapter 6. For dynamic
modeling, consider each interaction between the primary actor and the sys-
tem. Remember that the actor starts the interaction with the system through
an external input. The system responds to this input with some internal exe-
cution and then typically provides a system output. The sequence of actor
inputs and system responses is described in the use case. Start by developing
the communication sequence for the scenario described in the main path of
the use case. Consider each interaction in sequence between the actor and the
system.

2. Determine objects needed to realize use case. This step requires applying the
object structuring criteria (see Chaper 8) to determine the software objects
needed to realize the use case, both boundary objects (2a below) and internal
software objects (2b below).

2a. Determine boundary object(s). Consider the actor (or actors) that partici-
pates in the use case; determine the external objects (external to the sys-
tem) through which the actor communicates with the system, and the software
objects that receive the actor’s inputs.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

140 Software Modeling

Start by considering the inputs from the external objects to the system.
For each external input event, consider the software objects required to pro-
cess the event. A software boundary object (such as an input object or user
interaction object) is needed to receive the input from the external object. On
receipt of the external input, the boundary object does some processing and
typically sends a message to an internal object.

2b. Determine internal software objects. Consider the main sequence of the use
case. Using the object structuring criteria, make a first attempt at determining
the internal software objects that participate in the use case, such as control
or entity objects.

3. Determine message communication sequence. For each input event from the
external object, consider the communication required between the boundary
object that receives the input event and the subsequent objects – entity or
control objects – that cooperate in processing this event. Draw a communica-
tion diagram or sequence diagram showing the objects participating in the use
case and the sequence of messages passing between them. This sequence typ-
ically starts with an external input from the actor (external object), followed
by a sequence of internal message between the participating software objects,
through to an external output to the actor (external object). Repeat this pro-
cess for each subsequent interaction between the actor(s) and the system. As a
result, additional objects may be required to participate, and additional mes-
sage communication, along with message sequence numbering, will need to
be specified.

4. Determine alternative sequences. Consider the different alternatives, such as
error handling, which are described in the Alternatives section of the use case.
Then consider what objects need to participate in executing the alternative
branches and the sequence of message communication among them.

9.5 EXAMPLES OF STATELESS DYNAMIC INTERACTION MODELING

Two examples are given of stateless dynamic interaction modeling. The first exam-
ple starts with the use case for View Alarms, and the second example starts with the
use case for Process Delivery Order.

9.5.1 View Alarms Example

As an example of stateless dynamic interaction modeling, consider View Alarms
use case from the Emergency Monitoring System case study. This example follows
the four steps for dynamic modeling described in Section 9.4, although because it is
a simple example, there are no alternative sequences.

1. Develop Use Case Model
There is one actor in the View Alarms use case, the monitoring operator, who

can request to view the status of alarms, as shown in Figure 9.1. The use case descrip-
tion is briefly described as follows:

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

Dynamic Interaction Modeling 141

Use case name: View Alarms
Actor: Monitoring Operator
Summary: The monitoring operator views outstanding alarms and
acknowledges that the cause of an alarm is being addressed.
Precondition: The monitoring operator is logged in.
Main sequence:

1. The Monitoring Operator requests to view the outstanding alarms.
2. The system displays the outstanding alarms. For each alarm, the

system displays the name of the alarm, alarm description, lo-
cation of alarm, and severity of alarm (high, medium, low).

Postcondition: Outstanding alarms have been displayed.

2. Determine Objects Needed to Realize Use Case
Because View Alarms is a simple use case, only two objects participate in the use

case, as shown in Figure 9.2. The required objects can be determined by a careful
reading of the use case. These are a user interaction object called Operator Interac-
tion, which receives inputs from and sends outputs to the actor, and a service object
called Alarm Service, which provides access to the alarm repository and responds to
alarm requests.

3. Determine Message Communication Sequence
The communication diagram for this use case depicts the user interaction object,

the Operator Interaction object, making a request to the service object, Alarm Service,
which responds with the desired information (see Figure 9.2). The message sequence
corresponds to the interaction sequence between the actor and the system described
in the use case, and is described as follows:

A1: The Monitoring Operator requests an alarm handling service – for exam-
ple, to view alarms or to subscribe to receive alarm messages of a specific
type. The request is sent to Operator Interaction.

A1.1: Operator Interaction sends the alarm request to Alarm Service.
A1.2: Alarm Service performs the request – for example, reads the list of

current alarms or adds the name of this user interaction object to the
subscription list – and sends a response to the Operator Interaction object.

A1.3: Operator Interaction displays the response – for example, alarm infor-
mation – to the operator.

9.5.2 Make Order Request Example

The second example of stateless dynamic interaction modeling is from the online
shopping service-oriented system. This example follows the four steps for dynamic
modeling described in Section 9.4.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

142 Software Modeling

Make Order Request

Customer

Figure 9.4. Use case diagram for the Make Order Request use case

1. Develop Use Case Model
In the Make Order Request use case, a customer actor enters the order request

information; the system then gets the account information and requests credit card
authorization. If the credit card is authorized, the system creates a new delivery
order and displays the order. The use case diagram is depicted in Figure 9.4 and the
use case description is as follows:

Use case name: Make Order Request
Summary: Customer enters an order request to purchase items from the
online shopping system. The customer’s credit card is checked for validity
and sufficient credit to pay for the requested catalog items.
Actor: Customer
Precondition: Customer has selected one or more catalog items.
Main sequence:

1. Customer provides order request and customer account Id to pay for
purchase.

2. System retrieves customer account information, including the cus-
tomer’s credit card details.

3. System checks the customer’s credit card for the purchase amount
and, if approved, creates a credit card purchase authorization
number.

4. System creates a delivery order containing order details, customer
Id, and credit card authorization number.

5. System confirms approval of purchase and displays order information
to customer.

6. System sends email confirmation to customer.

Alternative sequences:

Step 2: If customer does not have account, the system prompts the cus-
tomer to provide information in order to create a new account. The cus-
tomer can either enter the account information or cancel the order.
Step 3: If authorization of the customer’s credit card is denied (e.g., invalid
credit card or insufficient funds in the customer’s credit card account),
the system prompts the customer to enter a different credit card number.
The customer can either enter a different credit card number or cancel
the order.

Postcondition: System has created a delivery order for the customer.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

Dynamic Interaction Modeling 143

aCustomer

«user interaction»
: Customer
Interaction

M1: Order Request

M10: Customer Output

M2: Order Request

«coordinator»
aCustomerCoordinator

M9: Order Confirmation

«service»
: CustomerAccountService

M3: Account Request

M4: Account Info

M5: Authorize Credit Card Request
«service»

: CreditCard
Service

M6: Credit Card Approved

«service»
: DeliveryOrderService

M7: Store Order M8: Order Confirmation

«service»
: EmailService

M9a: Send Order
Confirmation Email

Figure 9.5. Communication diagram for the Make Order Request use case: main sequence

2. Determine Objects Needed to Realize Use Case
As before, the objects needed to realize this use case can be determined by a

careful reading of the use case, as shown in bold type. Given the customer actor,
there will need to be a user interaction object, Customer Interaction. Service objects
are needed for the four services needed to realize this use case, Customer Account
Service, Credit Card Service, Delivery Order Service, and Email Service. There will also
need to be a coordinator object, Customer Coordinator, to coordinate the interactions
between Customer Interaction and the four service objects.

3. Determine Message Communication Sequence
Next consider the sequence of interactions among these objects, as depicted in

Figure 9.5. The interaction sequence among the objects needs to reflect the inter-
action sequence between the actor and the system, as described in the use case.
The use case description (step 1) indicates that the customer requests to create an
order. To realize this use case step, Customer Interaction makes an order request to
Customer Coordinator (messages M1 and M2 in the communication diagram). In step
2 of the use case, the system retrieves the account information. To realize this use
case step, Customer Coordinator needs to request account information from Customer
Account Service (messages M3 and M4 in the communication diagram). In step 3 of
the use case, the system checks the customer’s credit card. To realize this use case
step, Customer Coordinator needs to request credit card authorization from Credit
Card Service (message M5 in the communication diagram). In the main sequence of
the use case, the credit card authorization request is approved, as given by message
M6 on the communication diagram. In step 4 of the use case, the system creates
a delivery order. To realize this use case step, Customer Coordinator needs to store
the order at Delivery Order Service (messages M7 and M8 in the communication dia-
gram). Next in the use case, the system confirms the order to the user (messages M9
and M10), and sends a confirmation email via the email service (concurrent message
M9a).

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

144 Software Modeling

The communication diagram for the Make Order Request use case is depicted in
Figure 9.5. The message descriptions are as follows:

M1: The customer provides order request to Customer Interaction.
M2: Customer Interaction sends the order request to Customer Coordinator.
M3, M4: Customer Coordinator sends the account request to Customer

Account Service and receives the account information, including the cus-
tomer’s credit card details.

M5: Customer Coordinator sends the customer’s credit card information to
Credit Card Service.

M6: Credit Card Service sends a credit card approval to Customer Coordinator.
M7, M8: Customer Coordinator sends order request to Delivery Order Service.
M9, M9a: Customer Coordinator sends the order confirmation to Customer

Interaction and sends an email of the order confirmation to the customer
via the Email Service.

M10: Customer Interaction outputs the order confirmation to the customer.

The sequence diagram for the same scenario, namely, the main sequence of the
Make Order Request use case, is depicted in Figure 9.6, which shows the message
sequence from top to bottom of the page.

4. Determine Alternative Sequences
Alternative scenarios for this use case are that the customer does not have an

account, in which case a new account will be created, or that the credit card autho-
rization is denied, in which case the customer has the option of selecting a different
card. Both of these alternative scenarios are analyzed.

The new account alternative scenario is depicted in Figure 9.7. This scenario
diverges from the main scenario at step M4A. The alternative response to the
account request of step M3 is M4A [no account]: Account does not exist. M4A is a
conditional message, which is only sent if the Boolean condition [no account] con-
dition is true. The message sequence for this alternative scenario is M4A through
M4A.8, which is described as follows:

M4A: Customer Account Service returns message to Customer Coordinator
indicating customer has no account.

M4A.1, M4A.2: Customer Coordinator sends a new account request to cus-
tomer via Customer Interaction.

M4A.3, M4A.4: Customer inputs account information to Customer Interac-
tion, which forwards the message to Customer Coordinator.

M4A.5: Customer Coordinator requests Customer Account Service to create a
new account.

M4A.6, M4A.7, M4A.8: Customer Account Service confirms new account,
which is returned to the customer via Customer Coordinator and Customer
Interaction.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

aCustomer

«user interaction»
: Customer
Interaction

«coordinator»
aCustomer
Coordinator

«service»
: Customer

AccountService

«service»
: CreditCard

Service

«service»
: DeliveryOrder

Service

«service»
: EmailService

M1: Order Request

M2: Order Request

M3: Account Request

M4: Account Info

M5: Authorize Credit Card Request

M6: Credit Card Approved

M7: Store Order

M8: Order Confirmation

M9: Order Confirmation M9a: Send Order Confirmation Email

M10: Customer Output

Figure 9.6. Sequence diagram for the Make Order Request use case: main sequence

145

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

146 Software Modeling

aCustomer

«user interaction»
: Customer
Interaction

«coordinator»
aCustomer

Coordinator

«service»
: Customer

AccountService

M1: Order Request
M2: Order Request

M3: Account Request

M4A[No account]: Account Not Exist
M4A.1: Account Required

M4A.2: Customer Output

M4A.3: Account Input
M4A.4: Account Info

M4A.5: Create Account

M4A.6: Account Created
M4A.7: Account Confirmation

M4A.8: Customer Output

[No account]

Figure 9.7. Sequence diagram for the Make Order Request use case: alternative sequence for
Create New Account

The credit card denied alternative scenario is depicted in Figure 9.8. This sce-
nario diverges from the main scenario at step M6A. The alternative response to the
authorize credit card request of step M5 is M6A [denied]: Credit card denied. M6A
is a conditional message, which is only sent if the Boolean condition [denied] is true.
The message sequence for this alternative scenario is M6A through M6A.2, which
is described as follows:

M6A: Credit Card Service sends message to Customer Coordinator denying
authorization of credit card.

M6A.1: Customer Coordinator notifies Customer Interaction of credit card
denial.

M6A.2: Customer Interaction informs customer of denial and prompts for
different credit card.

aCustomer

«user interaction»
: Customer
Interaction

M1: Order Request

M6A.2: Customer Output

M2: Order Request

«coordinator»
aCustomerCoordinator

M6A.1: Credit Card Denied

«service»
: CustomerAccountService

M3: Account Request

M4: Account Info

M5: Authorize Credit Card Request
«service»

: CreditCard
Service

M6A [Denied]: Credit Card Denied

Figure 9.8. Communication diagram for the Make Order Request use case: alternative
sequence for Credit Card Denied

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

M9a: Send Order
Confirmation Email

aCustomer

«user interaction»
: Customer
Interaction

M1: Order Request
M4A.3: Account Input

M4A.2, M4A.8, M6A.2, M10:
Customer Output

M2: Order Request
M4A.4: Account Info

«coordinator»
aCustomerCoordinator

M4A.1: Account Required
M4A.7: Account Confirmation
M6A.1: Credit Card Denied
M9: Order Confirmation

M3: Account Request
M4A.5: Create AccountM5: Authorize Credit Card Request

«service»
: CreditCard

Service
M6 [Approved]: Credit Card Approved
M6A [Denied]: Credit Card Denied

«service»
: DeliveryOrderService

M7: Store Order M8: Order Confirmation

«service»
: EmailService

M4 [Account exists]: Account Info
M4A [No account]: Account Not Exist
M4A.6: Account Created

«service»
: CustomerAccountService

Figure 9.9. Generic communication diagram for the Make Order Request use case: main and alternative sequences

147

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

148 Software Modeling

The sequence diagram in Figure 9.6 and the communication diagrams in Figures
9.5, 9.7, and 9.8 all depict individual scenarios (main or alternative) of the Make Order
Request use case. It is possible to combine several scenarios onto a generic inter-
action diagram. Figure 9.9 depicts a generic communication diagram for the three
scenarios depicted on Figure 9.5 (main sequence) and Figures 9.7 and 9.8 (alterna-
tive sequences). Note the use of alternative message sequence numbering for the
different scenarios. The alternatives to the M3 account request message are the two
alternatives given by M4 [account exists] and M4A [no account]. The alternatives to
the M5 authorize credit card request message are the two alternatives given by M6
[approved] and M6A [denied].

The same three scenarios of the Make Order Request use case are depicted
on the generic sequence diagram in Figure 9.10. The sequence diagram depicts
the two alternative sequences for account creation and the other for credit card
approval. The first alt segment depicts the two alternatives of [account exists] and
[no account]. The second alt segment depicts the two alternatives of [approved]
and [denied]. In each case, a dashed line is the separator between the alternatives.
The message sequence numbering is optional on the sequence diagram; however,
it is explicitly depicted to illustrate the correspondence with the communication
diagram.

9.6 SUMMARY

This chapter discussed dynamic modeling, in which the objects that participate in
each use case are determined, as well as the sequence of their interactions. This
chapter first described communication diagrams and sequence diagrams before
explaining how they are used in dynamic modeling. It then described the details
of the dynamic interaction modeling approach for determining how objects collab-
orate with each other. State-dependent dynamic interaction modeling involves a
state-dependent communication controlled by a statechart (as described in Chapter
11), and stateless dynamic interaction modeling does not.

During design, the communication diagrams corresponding to each use case
are synthesized into an integrated communication diagram, which represents the
first step in developing the software architecture of the system, as described in
Chapter 13. During analysis, all message interactions are depicted as simple mes-
sages, because no decision has yet been made about the characteristics of the mes-
sages. During design, the message interfaces are defined as described in Chapters 12
and 13.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What does an interaction diagram
depict?
(a) The state and transitions inside a

control object
(b) Classes and their relationships

(c) Software objects and the sequence
of their interactions

(d) The external objects communicat-
ing with the system

2. How is an actor depicted on an interac-
tion diagram?
(a) An actor has an association with

the interaction diagram.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

aCustomer

«user interaction»
: Customer
Interaction

«coordinator»
aCustomer
Coordinator

«service»
: Customer

AccountService

«service»
: CreditCard

Service

«service»
: DeliveryOrder

Service

«service»
: EmailService

M1: Order Request
M2: Order Request

M3: Account Request

M4: Account Info

M5: Authorize Credit Card Request

M6: Credit Card Approved

M7: Store Order

M8: Order Confirmation

M9: Order Confirmation
M9a: Send Order Confirmation Email

M10: Customer Output

M4A: Account Not Exist
M4A.1: Account Required

M4A.2: Customer Output

M4A.3: Account Input
M4A.4: Account Info

M4A.5: Create Account

M4A.6: Account Created

M6A: Credit Card Denied
M6A.1: Credit Card Denied

M6A.2: Customer Output

Alt

Alt

[Account exists]

[No account]

M4A.7: Account Confirmation

M4A.8: Customer Output

[Approved]

[Denied]

Figure 9.10. Generic sequence diagram for the Make Order Request use case: main and alternative sequences

149

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

150 Software Modeling

(b) An actor can provide input to or
receive output from a boundary
object.

(c) An actor can provide input to or
receive output from a boundary
class.

(d) An instance of an actor can provide
input to or receive output from a
boundary object.

3. What does a sequence diagram depict?
(a) The sequence of external objects

communicating with each other
(b) Classes and their relationships
(c) Software objects and the sequence

of their interactions
(d) The external objects communicat-

ing with the system
4. What does a communication diagram

depict?
(a) The sequence of external objects

communicating with each other
(b) Classes and their relationships
(c) Software objects and the sequence

of their interactions
(d) The external objects communicat-

ing with the system
5. What is the instance form of an interac-

tion diagram?
(a) Depicts several object instances

interacting with each other
(b) Depicts one possible sequence

of interactions among object
instances

(c) Depicts all possible interactions
among object instances

(d) Depicts all object instances and
their links to each other

6. What is the generic form of an interac-
tion diagram?
(a) Depicts several objects interacting

with each other
(b) Depicts one possible sequence of

interactions among objects
(c) Depicts all possible interactions

among objects

(d) Depicts all classes and their associ-
ations with each other

7. During dynamic interaction modeling,
use cases are realized as follows:
(a) Determine objects that participate

in each use case and the sequence
of interactions among them.

(b) Determine external objects and the
sequence in which they provide
inputs to and receive outputs from
each use case.

(c) Determine sequence of interac-
tions among use cases.

(d) Determine how a use case is
depicted through internal states
and transitions between them.

8. Which of the following interactions
could happen on an interaction dia-
gram?
(a) An external user sends a message

to a user interaction object.
(b) An external user sends a message

to an entity object.
(c) An external user sends a message

to an I/O object.
(d) An external user sends a message

to a printer object.
9. Which of the following interactions is

NOT likely to happen on an interaction
diagram?
(a) A user interaction object sends a

message to an entity object.
(b) An input object sends a message to

a state-dependent control object.
(c) An input object sends a message to

a printer object.
(d) A user interaction object sends a

message to a proxy object.
10. What kind of object would be the first

object to receive an input from an
external object?
(a) A user interaction object
(b) A proxy object
(c) An entity object
(d) A boundary object

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:09 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.011

Cambridge Books Online © Cambridge University Press, 2016

