
CHAPTER 5

Real-Time Building Blocks:
Events and Triggers

Erich Styger

Chapter Outline

Events and triggers 2

Room temperature unit 2

Event system 4

Event handle 5

Event methods 7

Event data structure 8

Reentrancy 9
Disable and enable interrupts 10

EnterCritical and ExitCritical 10

Semaphores 10

Implementation with Enter/ExitCritical 11

Event processing 11

Integration 12

Triggers 14

Blinking LED 14

Design idea 15

Tick timer 16

Trigger interface 17

Trigger descriptor 18

Data allocation 19

SetTrigger 20

IncTicks 22

Making it reentrant 26

Initialization 27

Blink! 28

Beep! 29

Real-time aspects 31

Summary and source code 32

123
Software Engineering for Embedded Systems.

DOI: http://dx.doi.org/10.1016/B978-0-12-415917-4.00005-0

© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415917-4.00005-0

Events and triggers

A key element of a real-time system is the interaction with the real world: this means with

the real time of the real world. An embedded system needs to synchronize with the events

from the outside world, and the system itself can create events. Events are things like a

button pressed, a sensor reaching a certain value, or the system flagging a status to another

part of the system. Such an infrastructure you might find in a real-time operating system

(RTOS). However, you want to use that functionality in a context where an operating

system is either not desired or not needed.

The other element in real-time systems is real time: once there is an event, the system has

to react in a timely manner. Not only has the system to produce the correct result, it has to

produce the correct result at the right time. For this, we need a mechanism to perform an

action at a guaranteed time. In this chapter we are using a trigger for this: a way to do

something at a given (relative) time.

Room temperature unit

To illustrate the need for events, we are going to use a simple example. A typical

asynchronous event is the handling of a key or switch pressed.

Imagine an air-conditioning system (Figure 5.1) which uses a remote device. The remote

device in the room has buttons and a display: using the up or down button the user

main loop

up
pressed?

yes

yes

increase
temper-

ature

decrease
temper-

ature

no

down
pressed?

no

Figure 5.1:
Example system.

124 Chapter 5

can increase or decrease the desired room temperature. If the application detects a key

pressed, then it will update the display with the new desired temperature and transmit the

new desired value to the heating system (e.g., through a wireless communication channel).

In many cases you might have an interrupt raised to detect the switch pressed.

One approach to deal with this use case is to handle everything directly in the interrupt

service routine (Figure 5.2).

This approach is simple, but has one problem: updating the display and transmitting the

new value might take some time, up to several hundreds of milliseconds. Depending

on your microcontroller and interrupt system, all other interrupts might be holding off

during the interrupt execution. So this will greatly increase the interrupt latency time unless

your system allows nested interrupts.

Additionally it violates a fundamental design rule for interrupt service routines:

1. Keep interrupt handlers as small and fast as possible.

2. Only do things in the interrupt handler which cannot wait.

The first rule is about latency and performance for the main program. The longer an

interrupt handler takes to execute, the longer the main program will be interrupted and

cannot perform its normal work. Additionally it impacts the latency of other interrupts. The

latency is defined by the time it takes from the occurrence of the interrupt (e.g., a switch

pressed) upon entry of the corresponding interrupt (e.g., keyboard interrupt). Some systems

have non-nested interrupts: if during execution of an interrupt service routine another

interrupt happens, it needs to wait until the currently executed interrupt service routine

start of
interrupt

update
LCD

display

transmit
new value

end of
interrupt

Figure 5.2:
AC room unit ISR.

Real-Time Building Blocks: Events and Triggers 125

finishes. If the system allows nested interrupts (an interrupt routine can be executed

while another interrupt is already served), this still means that lower-priority interrupts

still have to wait.

Updating a display and doing a wireless transmission is typically not simple and fast.

On the other hand: the display has not been updated at the same microsecond as the button

is pressed: for the user it should be acceptable if this happens in the next 100 to 200

milliseconds. Even more, the wireless transmission of the new desired room temperature

can happen a few seconds later. An AC system cannot react very fast and is a rather slow

system.

The second rule is a consequence of the first rule: to keep things fast, only do things which

are really needed and cannot wait. What we do need to do fast is to recognize the key press.

So we want a mechanism to recognize something fast, which can set a flag to do the things

which are not urgent. Such a flag we name Event here. And this is what we are going to

implement.

Event system

We are going to implement a system which helps us to handle quickly things which need to

be fast, and postponing things which can wait. For this we are going to implement an Event

module. I’m going to describe first the interface and the high-level concept, and then go

into the implementation details later.

The Event module proposed here follows the idea that the interrupt service routine only sets

an event flag. That flag is processed asynchronously by the event handler loop (Figure 5.3).

That way the main loop or event handler does the heavy work, while the interrupt service

routine only sets a notification of the event. This approach is not limited only to interrupts,

it can be used for polled keys (Figure 5.4) or other cases. It is possible that a single event

can cause multiple actions, or that an event can cause the creation of additional events.

That way a sequence of events and actions can be created, or actions and events can be

nested.

ISR

SetEvent()

GetEvent()
event loop

event array

Figure 5.3:
Event ISR system.

126 Chapter 5

With this in mind, we can start defining the interface for our Event module:

• Static number of events: the number and kind of events are known at compilation time.

• Singularity: an event of a kind can only exist once. It is not possible to have multiple

events of the same kind.

• Static memory: as the number of events is known, we are using an array of event

descriptors. We are not using lists or dynamic memory for efficiency reasons.

• Event handle: we are using numbers as an event handle or identifier. As using an array

of event descriptors, this event handle is an index into the event array.

Event handle

First, we declare a type for the event handle:

typedef uint8_t EVNT_Handle;

/*!, We support up to 256 different events */

Using an 8-bit type allows us to use up to 256 different events, which will be sufficient for

most applications. If you are wondering about the comments starting with /*!: these are

normal comments, but treated in a special way by the doxygen (www.doxygen.org)

compiler which can generate documentation based on source files.

Next we list the different events we are going to use:

#define EVNT_INIT 0

/*!, System Initialization Event */

#define EVNT_SW1_PRESSED 1

/*!, SW1 pressed */

event loop

GetEvent() SetEvent()

event array

key poll

Figure 5.4:
Event polling system.

Real-Time Building Blocks: Events and Triggers 127

http://www.doxygen.org

#define EVNT_SW2_PRESSED 2

/*!, SW2 pressed */

#define EVNT_SW3_PRESSED 3

/*!, SW3 pressed */

#define EVNT_SW4_PRESSED 4

/*!, SW4 pressed */

#define EVNT_NOF_EVENTS 5

/*!, Must be last one! */

The first event handle number starts with zero. We define an initialization event which will

be set at application startup. Additionally we define events for the number of switches we

are going to support. Additionally there is a sentinel event number (EVNT_NOF_EVENTS) at the

end which gives us the number of different events. Alternatively we could use an

enumeration type:

typedef enum {

EVNT_INIT, /*!, System Initialization Event */

EVNT_SW1_PRESSED, /*!, SW1 pressed */

EVNT_SW2_PRESSED, /*!, SW2 pressed */

EVNT_SW3_PRESSED, /*!, SW3 pressed */

EVNT_SW4_PRESSED, /*!, SW4 pressed */

EVNT_NOF_EVENTS, /*!, Must be last one! */

} EVNT_Handle;

Using an enumeration is a more elegant way. However, as enum is defined as int in

ANSI-C, the code might not be as efficient. It depends on the microcontroller and compiler

used. An 8-bit microcontroller will handle an 8-bit type more efficiently, while a 32-bit

(or even 16-bit) controller might handle an int better. Additionally there are many

compilers for which you can set the enumeration standard type to a user-defined type

(e.g., to an unsigned 8-bit type).

With the fact that our events are numbered, we could use the numbering as well

with a prioritization scheme: depending on your implementation, the lower the

event number, the higher the priority of the event could be (or the other way

around).

128 Chapter 5

Event methods

The interface for our event module is straightforward: methods to set, clear and check

events. Additionally there is a method which checks whether there are any pending events

and which calls a provided callback:

/*!

* \brief Sets an event.

* \param[in] event The handle of the event to set.

*/

void EVNT_SetEvent(EVNT_Handle event);
/*!

* \brief Clears an event.

* \param[in] event The event handle of the event to clear.

*/

void EVNT_ClearEvent(EVNT_Handle event);
/*!

* \brief Returns the status of an event.

* \param[in] event The event handler of the event to check.

* \return TRUE if the event is set, FALSE otherwise.

*/

bool EVNT_GetEvent(EVNT_Handle event);
/*!

* \brief Routine to check if an event is pending.

* If an event is pending, the event is cleared

* and the callback is called.

* \param[in] callback Callback routine to be called.

* The event handle is passed as argument to the callback.

*/

void EVNT_HandleEvent(void (*callback)(EVNT_Handle));
/*! \brief Event module initialization */
void EVNT_Init(void);

Real-Time Building Blocks: Events and Triggers 129

Event data structure

With the high-level interface set, it is time to get into the details of the implementation.

As previously mentioned, we are going to implement the events with an array of event

descriptors. We do have a type to be used as event handle (EVNT_Handle), and an event

can be either set or not set (cleared). As such, all that we need is an array of bits. The

number of bits needed is defined by EVNT_NOF_EVENTS. With this, we can come up with the

following implementation for the event array which packs the event bits into an array

of bytes:

static uint8_t EVNT_Events[((EVNT_NOF_EVENTS-1)/8)11];

/*!, Bit set of events */

This implementation has the advantage of using minimal memory. But as we see later on,

this comes with additional costs for accessing the events. If performance is a concern,

you might trade in memory for additional run-time performance. An alternative

implementation would use a byte for each event, which will simplify access to the event

array. As long as you do have enough RAM available and not too many events, that might

be a valuable alternative implementation. The interface proposed for our module allows

one to change the implementation without impacting the application.

Figure 5.5 shows how the event handle numbers are mapped to bit numbers in the array

of bytes. Figure 5.5 shows the first byte of the array.

To set an event, we need to access and set the corresponding bit number in the array,

based on the event handle. This can be accomplished with a combination of division, shift

and modulo operations on the event array:

EVNT_Events[event/8] j5 0380..(event%8);

/*!, Set the event */

0

EVNT_Events[] [0]

EVNT_INIT

EVNT_SW1_PRESSED EVNT_SW3_PRESSED

EVNT_SW4_PRESSEDEVNT_SW2_PRESSED

1 2 3 4 5 6 7

Figure 5.5:
Event to bit mapping.

130 Chapter 5

Clearing an event bit is accomplished in a similar way:

EVNT_Events[(event)/8] &5 B(0380..((event)%8))

/*!, Clear the event */

And finally the implementation to determine whether an event is set or not:

(bool)(EVNT_Events[(event)/8]&(0380..((event)%8)))

/*!, Return TRUE if event is set */

With this we are now able to implement the methods for our module:

void EVNT_SetEvent(EVNT_Handle event) {

SET_EVENT(event);

}
void EVNT_ClearEvent(EVNT_Handle event) {

CLR_EVENT(event);

}
bool EVNT_GetEvent(EVNT_Handle event) {

return GET_EVENT(event);

}

Reentrancy

One problem remains: as shown in Figure 5.3 it is possible that our event array data

structure is accessed both by our main program and by an ISR. As a consequence, we need

to protect access to the event array. Or in other words: we need to have a way to grant

mutual exclusive access to the data structure. What we need is a mutex. Basically the

mutex can be something like:

1. Disable/Enable Interrupts

2. EnterCritical and ExitCritical

3. SemaphoreTake and SemaphoreGive

Disabling and enabling interrupts is simple, but does not preserve the interrupt state

(whether interrupts are enabled or not). EnterCritical and ExitCritical exist as macros for

many microprocessors: they preserve the state of the interrupts. Semaphores are something

provided by an operating system and might not always be available.

Real-Time Building Blocks: Events and Triggers 131

Disable and enable interrupts

As we need to protect access to the common data from any other routines, and as such

other routines could access the data from an ISR, the easiest way is to simply disable all

interrupts before accessing the data, and enable the interrupts afterwards again. For an

HCS08 microcontroller this could look like this:

#define EnableInterrupts() asm(“cli”)
#define DisableInterrupts() asm(“sei”)

DisableInterrupts();
/* critical section here */
EnableInterrupts();

This approach works fine and is very efficient. However, if interrupts were already

disabled, they will always be enabled after the critical section.

EnterCritical and ExitCritical

To solve the previous problem, another approach is to save and restore the current interrupt

status. For the HCS08 microcontroller this would look like this:

#define EnterCritical() \

{ asm PSHA; asm TPA; asm SEI; asm STA savedReg; asm PULA; }

#define ExitCritical() \

{ asm PSHA; asm LDA savedReg; asm TAP; asm PULA; }

EnterCritical();
/* critical section */
ExitCritical();

The difference is that the macros now save the previous condition register content

(which contains the interrupt mask bit) and restore it at the end of the critical section.

Still, you need to be careful about where the register content is stored: if this is a global

variable, then you need to make sure that you do not nest multiple EnterCritical()

and ExitCritical(). You might consider an implementation which stores the register value

on the stack instead in global memory.

Semaphores

Last but not least, if you are using an operating system, you could use the mutual exclusion

and critical section protection methods offered by the operating system. Mutual exclusion

refers to the problem of ensuring that multiple threads/processes/interrupts have exclusive

132 Chapter 5

access to a piece of code or data at the same time. A “critical section” is a piece

of code that accesses a shared resource. Normally every operating system offers some

means of protecting critical sections using semaphores or similar means. Compared with

previous methods they are more powerful and flexible, but they use more system

resources too. As a general guidelines use them wisely, and keep the critical sections

to a minimum.

Implementation with Enter/ExitCritical

As we want to be independent of an RTOS, we are using EnterCritical() and ExitCritcal()

to protect our critical sections:

void EVNT_SetEvent(EVNT_Handle event) {

EnterCritical();

SET_EVENT(event);

ExitCritical();

}
void EVNT_ClearEvent(EVNT_Handle event) {

EnterCritical();

CLR_EVENT(event);

ExitCritical();

}
bool EVNT_GetEvent(EVNT_Handle event) {

bool isSet;

EnterCritical();

isSet 5 GET_EVENT(event);

ExitCritical();

return isSet;

}

Event processing

We can now set, clear and check events. Typically we will set events in the interrupt

service routine, and our main program will handle them. So what we need is an easy way to

Real-Time Building Blocks: Events and Triggers 133

check whether there are any pending events from the main application loop. For this we are

going to implement the function EVNT_HandleEvent(). This function goes through the event

array and checks whether there are any events set. If there is an event set, it clears the event

and calls a callback.

void EVNT_HandleEvent(void (*callback)(EVNT_Handle)) {

/* Handle the one with the highest priority.

Zero is the event with the highest priority. */

uint8_t event;

EnterCritical();

/* do a test on every event: */

for (event50; event,EVNT_NOF_EVENTS; event11) {

if (GET_EVENT(event)) { /* event present? */

CLR_EVENT(event); /* clear event */

break; /* get out of loop */

}

}

ExitCritical();

if (event !5 EVNT_NOF_EVENTS) {

callback(event);

}

}

The method iterates through the array of event bits. For the first event bit set, it clears

the bit and breaks out of the loop. As it is accessing shared data, the routine needs to

protect the critical section. If an event has been found as set, it will call the provided

callback.

Integration

Now it is time to see how everything fits together. Below is an example where a keyboard

interrupt sets an event flag, which then is processed by the main application loop. In our

134 Chapter 5

example below, the main() routine sets an initial event itself, followed by an endless loop to

handle and process the events:

void main(void) {

EVNT_SetEvent(EVNT_INIT);

for(;;) {

EVNT_HandleEvent(APP_HandleEvent);

}

}

With EVNT_HandleEvent() we pass an additional callback function pointer APP_HandleEvent.

void APP_HandleEvent(EVNT_Handle event) {

switch(event) {

case EVNT_INIT:

/* write welcome message */

LCD_WriteString(“System startup. . .”);

case EVNT_SW1_PRESSED:

SND_Beep(300); /* beep for 300 ms */

/* changes desired temperature */

ChangeTemperature(1); /* increase temperature */

SendTemperature(); /* use transceiver */

break;

case EVNT_SW2_PRESSED:

SND_Beep(300); /* beep for 300 ms */

/* changes desired temperature */

ChangeTemperature(21); /* decrease temperature */

SendTemperature(); /* use transceiver */

break;

} /* switch */

}

Real-Time Building Blocks: Events and Triggers 135

What is missing is where we set the event. In our AC system an interrupt will be raised for

a key pressed. In our ISR we simply can set the event:

void interrupt KeyISR(void) {

ACK_KBI_INTERRUPT(); /* acknowledge interrupt */

if (Key1Pressed()) {

EVNT_SetEvent(EVNT_SW1_PRESSED);

} else if (Key2Pressed()) {

EVNT_SetEvent(EVNT_SW2_PRESSED);

}

}

With our Event module now we have a way to set flags which are processed

asynchronously in the main loop. It helps us to keep the interrupt service routines small

and efficient.

Triggers

So far we have the ability and infrastructure to flag an event and to process it in the main

loop. What is missing is a way to do something in a time-triggered fashion: for example to

blink an LED every second, or to turn on an LED 500 ms after a button has been pressed.

For this we are going to introduce the concept of a trigger. Triggers are sometimes also

used to denote a hardware functionality: for example a microcontroller hardware is set up to

trigger on a read or write access to halt the processor in order to implement what is also

known as watchpoint. We are using triggers here in a slightly different way. We want the

application to trigger at a given time in the future.

Blinking LED

A common thing used in embedded applications is blinking an LED with a given period.

For example you might want an LED blink every 500 ms to indicate that your application is

still running. Such a blinking LED is often called a heartbeat. An easy way to do this

would be to set up a periodic timer which is then triggered every 500 ms:

interrupt void Timer500 ms(void) {

LED_Neg(); /* toggle the LED */

}

136 Chapter 5

That works fine, but wastes a timer just blinking an LED. So it might be much better to

reuse one of your existing periodic timers to avoid this. For example, if you already have a

10 ms periodic tick timer, then you could reuse that timer to blink the LED:

interrupt void Timer10 ms(void) {

static uint8_t cnt 5 0;

/* blinking LED */

cnt11; /* increment counter */

if (cnt5 5500/10) { /* 500 ms reached */

LED_Neg(); /* toggle the LED */

cnt 5 0; /* restart counter */

}

/* other things to do every 10 ms follows here. . .*/

}

We are using a static local variable as a counter: Technically this is like a normal global

variable, but visible only inside the function where we have defined that cnt variable.

This solution is fine as it only adds a little overhead to our 10 ms interrupt routine. But we

need to keep in mind that adding more and more to our interrupt service routine will

increase latency for other things in the system.

While our approach sounds fine, it might get a little bit complicated, once you start to

extend it. Having a second LED blinking with another frequency? Flash an LED for 250 ms

after a button has been pressed? Or turn on a sounder for 500 ms? Things might get more

and more complicated with some additional if and else if in our interrupt routine. So we

need to have something implemented which is more versatile.

Design idea

First, it would be good to collect what we need:

• An infrastructure to do things in a periodic way.

• Suitable for “fire and forget”: you should be able to specify things like “do this in

850 ms” and it will take care of it.

• It should be suitable for rather small things, like blinking an LED. For more

heavyweight stuff, it would be better to use something different or even an RTOS.

• It should be lightweight: use few resources on the microcontroller.

Real-Time Building Blocks: Events and Triggers 137

• It is for only a few such things we want to do: around ten or a few more, but not

hundreds of things.

• It should be easy to use and to understand.

• It should be suitable both with and without using an RTOS.

Having this in mind, we could maybe base our design on the Timer10 ms() periodic

interrupt. This would give us a periodic interrupt and time base. The idea is that instead

of implementing things directly in the interrupt routine, we implement a “trigger” module

which maintains the jobs or “triggers” we want to perform. The application could add or

set such triggers, and the periodic timer interrupt routine simply would check whether there

is any pending “trigger” to execute.

What we need to keep in mind is the impact on the rest of our system: as we would when

executing via an interrupt, we need to be careful not to increase the latency for the rest of the

system. So again we need to do things as fast and as efficiently as possible. And we always

need to keep in mind that the “triggers” are executed in the context of an interrupt.

Tick timer

So the basic idea is to have a periodic tick timer which is fired say every 10 ms. This

would give us a time base: the tick counter. Then we could compare that tick counter

against the tick counter of the trigger we want to execute: if this matches, we execute that

trigger and continue with the rest of the ISR (Figure 5.6).

Start ISR

Increment
tick

counter

Trigger?

Finish ISR

Yes Execute
Trigger

no

Figure 5.6:
Tick timer ISR control flow.

138 Chapter 5

So it is now a good time to think about the interface. First, we want to keep track with the

number of ticks, so we define a method to count the ticks:

void TRG_IncTicks(void);

This method then would be called from our periodic timer interrupt:

interrupt void Timer10 ms(void) {

TRG_IncTicks(); /* inform about the new time */

/* other things to do every 10 ms follows here. . .*/

}

So the idea is that from the tick interrupt we call the TRG_IncTicks() function, and this would

check whether there are any triggers: if the time is up to do something, it would execute it.

One question remains: what should happen with the trigger once it has been executed?

Basically there are two options:

1. Keep the trigger so it triggers again. This is handy for periodic triggers like flashing the

LED: you set the trigger say to execute in 100 ms, it will trigger in 100 ms and then

again the next 100 ms.

2. Clear the trigger. This means that once it has been executed, it will not trigger again.

If the trigger is to be executed again, then it needs to be activated again.

In our approach we are using the clearing approach: it should make the implementation

simpler (we will see this later on), plus if the trigger needs to be re-installed, the

trigger could do this itself too.

Trigger interface

As we have a pretty good idea how things should work, we could come up with the

following interface:

/*!

* \brief Initializes the trigger module

*/

void TRG_Init(void);
/*!

* \brief Increments the tick counter,

* called from an interrupt service routine.

Real-Time Building Blocks: Events and Triggers 139

* Executes any pending triggers.

*/

void TRG_IncTicks(void);
/*!

* \brief sets a trigger to be executed.

*/

void TRG_SetTrigger(uint16_t ticktime, callbackType callback);

This is just an initial draft, and we need to refine it later on.

Trigger descriptor

With this, we could start defining the data structure needed. What we need is:

• the time when the trigger shall be executed; it makes sense to use the tick counter

as the entity as we measure the time with ticks;

• the information of what to execute: the usual way to implement this is to use a function

pointer;

• any optional arguments for the function pointer; to make it generic, we could use

a void data pointer to pass any kind of parameters.

typedef struct TriggerDesc {

uint16_t triggerTicks; /* time to trigger */

void (*callback)(void); /* callback function */

void *data; /* parameter for callback */

} TriggerDesc;

That already looks good, but is maybe not very generic. For example, we might use a 32-bit

trigger counter later on. Then using uint16_t for the triggerTicks is not a flexible solution.

Instead, we could come up with our own types so they can be changed easily later:

typedef void *TRG_CallBackDataPtr;
typedef void (*TRG_Callback)(TRG_CallBackDataPtr);
typedef uint16_t TRG_TriggerTime;
typedef struct TriggerDesc {

TRG_TriggerTime ticks;

140 Chapter 5

TRG_Callback callback;

TRG_CallBackDataPtr data;

} TriggerDesc;

Data allocation

We now have a descriptor for a single trigger. Now we have to decide how we want to

store the triggers. Basically there are several ways:

• dynamic: allocate the trigger descriptor on the heap using malloc() or something

similar;

• static: using a fixed array of descriptors.

Using a dynamic approach would allow a dynamic number of triggers. On the other hand

the performance impact of the allocation and de-allocation is a concern. Additionally

memory fragmentation and possible memory leaks are a concern.

The static approach is simple but is less flexible. But probably this is enough for our use

cases. So we are going to implement it as a static array.

Consequently, we need to know the number of triggers in advance to define our array.

For our application we want to implement the following three functions:

1. Blink an LED with a given frequency.

2. Turn off the LED (after a given time) that has been turned on by pressing a button.

3. Turn off the buzzer after a given time.

This could be implemented by using an enumeration type to identify the triggers:

typedef enum {

TRG_LED_BLINK, /*!, LED blinking */

TRG_BTNLED_OFF, /*!, Turn LED off */

TRG_BTNSND_OFF, /*!, Switch sounder off */

TRG_LAST /*!, Must be last! */

} TRG_TriggerKind;
static TRG_TriggerDesc TRG_Triggers[TRG_LAST];

/*!, trigger array */

Real-Time Building Blocks: Events and Triggers 141

SetTrigger

It is time to implement the code to set a trigger. What we need is the trigger to set,

specifying the time and what callback has to be called with the optional data. So this would

give us the following interface:

TRG_SetTrigger(TRG_TriggerKind kind, TRG_TriggerTime ticks,

TRG_Callback callback, TRG_CallBackDataPtr data);

The question is whether the parameter ticks should be relative to the current tick time or

absolute. I think it makes sense to use it as a relative time, as this is how triggers are used

in many cases:

• Turn the LED off for the next 30 ms.

• Disable buzzer in 60 ms.

• After button has been pressed, check status again in 100 ms.

Using a relative notion is natural for the above use cases. It would be different if you need

something like

• Sound an alarm at 6:35 pm.

• Turn off water irrigation at 3:00 am.

Assuming a 16-bit unsigned parameter and a 10 ms tick counter, this would still allow us to

specify a time of 65535�0.01 s5 655.35 s or about 11 minutes, which should suitable for

most systems.

The other question is whether the ticks counter in our data structure should be relative or

absolute. If we store the relative ticks parameter as well as relative ticks inside the

TRG_Triggers array, the implementation would look like this

void TRG_SetTrigger(TRG_TriggerKind kind,

TRG_TriggerTime ticks,

TRG_Callback callback,

TRG_CallBackDataPtr data)

{

TRG_Triggers[trigger].ticks 5 ticks; /* relative */

TRG_Triggers[trigger].callback 5 callback;

142 Chapter 5

TRG_Triggers[trigger].data 5 data;

}

If you store it as absolute, you would need to change it to

void TRG_SetTrigger(TRG_TriggerKind kind,

TRG_TriggerTime ticks,

TRG_Callback callback,

TRG_CallBackDataPtr data)

{

TRG_Triggers[trigger].ticks 5 TRG_CurrTicks1ticks;

TRG_Triggers[trigger].callback 5 callback;

TRG_Triggers[trigger].data 5 data;

}

That way we need to add the current tick counter to the parameter: doable, but comes

with some overhead. To keep things simple, we rather stick with using the relative tick

counter in the data structure. One thing we have missed so far: our implementation needs

to protect a critical section, as both the application code and interrupt code through

TRG_IncTick() will access the shared data.

void TRG_SetTrigger(TRG_TriggerKind kind,

TRG_TriggerTime ticks,

TRG_Callback callback,

TRG_CallBackDataPtr data)

{

EnterCritical();

TRG_Triggers[trigger].ticks 5 ticks;

TRG_Triggers[trigger].callback 5 callback;

TRG_Triggers[trigger].data 5 data;

ExitCritical();

}

Real-Time Building Blocks: Events and Triggers 143

And to make things prepared for future extensions and error handling, we extend our

interface and implementation to return an error code:

uint8_t TRG_SetTrigger(TRG_TriggerKind kind,

TRG_TriggerTime ticks,

TRG_Callback callback,

TRG_CallBackDataPtr data)

{

EnterCritical();

TRG_Triggers[trigger].ticks 5 ticks;

TRG_Triggers[trigger].callback 5 callback;

TRG_Triggers[trigger].data 5 data;

ExitCritical();

return ERR_OK;

}

IncTicks

Now we get to the implementation of TRG_IncTick(), which could look like this in

pseudocode:

void TRG_IncTick(void) {

Increment Tick Counter;

if HasTriggerForThisTickCount then

removeTrigger;

call callback with parameter;

end if

}

144 Chapter 5

First, we increment the tick counter by one. As we have implemented the data structure as

an array, we need to iterate through the array:

void TRG_IncTick(void) {

CurrentTickCounter11

for all elements in array

if ElementTickCount 5 5 CurrentTickCounter then

CallCallbackWithParameter

end if

end for

}

Then we check the condition HasTriggerForThisTickCount. Now we see another advantage

of using a relative tick counter in our data structure. If we had used an absolute tick

counter, then we could compare that value with the current tick counter. But what happens

if our application had just called TRG_SetTrigger with a zero tick count?

TRG_SetTrigger(TRG_BTNLED_OFF, 0, MyLEDOff, NULL);

As we increment the tick counter at the beginning of TRG_IncTick() we might miss that

trigger until our tick counter makes a wrap over. To catch this case, a solution would be to

postpone the counter increment to the end of TRG_IncTick().

As we are using a relative tick counter in our data structure, we could simply count

down the tick counter for each trigger. If the count is zero we call the callback.

Additionally, as we do not need to compare against the CurrentTickCounter, we can

have it removed:

void TRG_IncTick(void) {

for all Elements in array

ElementTickCount--

if ElementTickCount is 0 then

CallCallbackWithParameter

Real-Time Building Blocks: Events and Triggers 145

end if

end for

}

The only remaining problem we have is how to know whether a trigger is still active or not.

We could add an enabled flag to the data structure, but this would consume additional

memory. Instead, we find out from the callback function pointer: if it is NULL, we don’t

have to call it. With this in mind, we can finally come up with the following

implementation:

TRG_Callback callback;

TRG_CallBackDataPtr data;

TRG_TriggerKind i;

for(i5(TRG_TriggerKind)0;i,TRG_LAST;i11) {

if (TRG_Triggers[i].ticks!50) {

TRG_Triggers[i].ticks--;

}

if (TRG_Triggers[i].ticks5 50

&& TRG_Triggers[i].callback !5 NULL)

{

callback 5 TRG_Triggers[i].callback;

data 5 TRG_Triggers[i].data;

TRG_Triggers[i].callback 5 NULL;

callback(data);

}

} /* for */

}

This implementation iterates the array and decrements the tick counter. If the counter is

zero and a valid callback, it resets the function pointer and calls the callback with the

parameter. But two problems still remain: if the callback sets a trigger again for the relative

146 Chapter 5

time zero (at the current time), we might miss it. With following implementation we can

catch this case: we call a separate function as long there are callbacks:

static bool CheckCallbacks(void) {

TRG_TriggerKind i;

TRG_Callback callback;

TRG_CallBackDataPtr data;

bool calledCallBack 5 FALSE;

for(i5(TRG_TriggerKind)0;i,TRG_LAST;i11) {

if (TRG_Triggers[i].ticks 5 5 0

&& TRG_Triggers[i].callback !5 NULL)

{

callback 5 TRG_Triggers[i].callback;

data 5 TRG_Triggers[i].data;

TRG_Triggers[i].callback 5 NULL;

callback(data);

calledCallBack 5 TRUE;

}

} /* for */

return calledCallBack;

}
void TRG_IncTick(void) {

TRG_TriggerKind i;

for(i50;i,TRG_LAST;i11) {

if (TRG_Triggers[i].ticks!50) {

TRG_Triggers[i].ticks--;

}

} /* for */

Real-Time Building Blocks: Events and Triggers 147

while(CheckCallbacks()) {}

}

Making it reentrant

One thing is missing: in the case of nested interrupts and if other interrupts can set triggers,

you need to insert code for critical section protection as well. First we need to add

EnterCritical() and ExitCritical() in TRG_IncTick():

void TRG_IncTick(void) {

TRG_TriggerKind i;

EnterCritical();

for(i5(TRG_TriggerKind)0;i,TRG_LAST;i11) {

if (TRG_Triggers[i].ticks!50) {

TRG_Triggers[i].ticks--;

}

} /* for */

ExitCritical();

while(CheckCallbacks()) {}

}

What remains is to protect the data access with EnterCritical() and ExitCritical()

in CheckCallbacks():

static bool CheckCallbacks(void) {

TRG_TriggerKind i;

TRG_Callback callback;

TRG_CallBackDataPtr data;

bool calledCallBack 5 FALSE;

for(i5(TRG_TriggerKind)0;i,TRG_LAST;i11) {

EnterCritical();

if (TRG_Triggers[i].ticks 5 5 0

148 Chapter 5

&& TRG_Triggers[i].callback !5 NULL)

{

callback 5 TRG_Triggers[i].callback;

data 5 TRG_Triggers[i].data;

TRG_Triggers[i].callback 5 NULL;

ExitCritical();

callback(data);

calledCallBack 5 TRUE;

} else {

ExitCritical();

}

} /* for */

return calledCallBack;

}

Initialization

What is missing is the initialization of our trigger module.

void TRG_Init(void) {

TRG_TriggerKind i;

for(i5(TRG_TriggerKind)0;i,TRG_LAST;i11) {

TRG_Triggers[i].ticks 5 0;

TRG_Triggers[i].callback 5 NULL;

TRG_Triggers[i].data 5 NULL;

}

}

Alternatively TRG_Init() could also set up the periodic interrupt which calls TRG_IncTick().

In our application this will be implemented in a TMR_Init() function which is called as

part of our application startup.

Real-Time Building Blocks: Events and Triggers 149

Blink!

With this we are ready to use our triggers to blink the LED:

void main(void) {

TMR_Init(); /* initialize periodic tick timer */

TRG_Init(); /* initialize module */

EnableInterrupts();

/* install trigger to blink LED */

TRG_SetTrigger(TRG_LED_BLINK, 0, LED_HeartBeat, NULL);

for(;;) {} /* let the trigger do the work */

}

After initializing the hardware and software module, we set a trigger to blink

our LED. We set the next trigger to trigger immediately at the next tick interrupt.

LED_HeartBeat() is our callback. As we do not need an additional data parameter,

we pass NULL for it.

The LED_Heartbeat() function is implemented as:

static void LED_HeartBeat(void *p) {

(void)p; /* unused parameter */

LED1_Neg();

TRG_SetTrigger(TRG_LED_BLINK,

1000/TRG_TICKS_MS, LED_HeartBeat, NULL);

}

At the next tick timer interrupt, TRG_IncTick() will go through our trigger list. It will find

that TRG_LED_BLINK is due and will call our LED_HeartBeat() method. This will turn off the

LED and set the trigger again to be called in 1000 milliseconds.

But what if you want to blink different LEDs? Here you could use an additional parameter:

the parameter ledP tells the trigger which LED has to be used:

static void LED_Blink (void *ledP) {

if (*((uint8_t*)ledP)5 51) {

150 Chapter 5

LED1_Neg();

(*(uint8_t*)ledP)11;

} else if (*((uint8_t*)ledP)5 52) {

LED2_Neg();

(*(uint8_t*)ledP)51;

}

TRG_SetTrigger(TRG_LED_BLINK,

1000/TRG_TICKS_MS, LED_Blink, ledP);

}

We are passing a data pointer to our trigger. Special care needs to be taken that the data is

valid at all times. The following example will not work:

void foo(void) {

uint8_t led 5 1;

TRG_SetTrigger(TRG_LED_BLINK, 0, LED_Blink, &led);

}

Here the address of a local variable is passed, and the variable led is only available as long

as we stay in the function foo(). To solve this problem we can use a static local variable

instead:

void foo(void) {

static uint8_t led 5 1;

TRG_SetTrigger(TRG_LED_BLINK, 0, LED_Blink, &led);

}

Beep!

While our LED Heartbeat is a periodic trigger, we can use our infrastructure for

non-periodic triggers too. For this we are using a buzzer which we want to turn on for

a given time, and then it will be turned off automatically with a trigger.

static void Sounder(void *data) {

uint16_t duration 5 *((uint16_t*)data);

Real-Time Building Blocks: Events and Triggers 151

if (duration5 50) { /* off */

BUZZER_Off();

} else {

BUZZER_On();

((uint16_t)data) 5 0;

TRG_SetTrigger(TRG_SOUNDER, duration, Sounder, data);

}

}
void SND_Beep(uint16_t ms) {

static uint16_t time 5 ms/TRG_TICK_MS;

TRG_SetTrigger(TRG_SOUNDER, 0, Sounder, &time);

}

In our examples we used a static local variable to ensure that the memory address we pass

to the trigger is always valid. This increases the amount of RAM used. If we just want to

pass a value as a parameter, it would be possible to pass that value directly, instead of using

its address.

static void Sounder(void *data) {

/* sizeof(int)5 5sizeof(void*) */

uint16_t duration 5 (int)data;

if (duration5 50) { /* off */

BUZZER_Off(); /* stop sounder */

} else {

BUZZER_On(); /* start sounder */

TRG_SetTrigger(TRG_SOUNDER,

duration, Sounder, 0);

}

}
void foo(void) {

152 Chapter 5

Sounder((void*)200/TRG_TICK_MS);

}

With this we can come up with a simple Beep() function. Beep() accepts an argument for

how long the buzzer will be on. It simply enables the buzzer and sets up a trigger which

will turn it off using a trigger.

static void SoundOff(void *p) {

BUZZER_Off(); /* turn buzzer off */

}
void Beep(uint16_t ms) {

BUZZER_On(); /* turn buzzer on */

TRG_SetTrigger(TRG_BTNSND_OFF,

ms/TRG_TICKS_MS, SoundOff, 0);

}

Real-time aspects

With our triggers in place, it is worth looking at some real-time aspects of it. One thing

to consider is the frequency and period of the tick timer used for our trigger module.

As with the tick timer used in an RTOS, the tick timer used for the triggers define the

resolution: if you have a tick timer with a period of 100 ms, then you have triggers

with an accuracy of 100 ms as well. Everything will be synchronized at the tick

interrupt time.

The other thing to consider: our triggers are executed in the context of an interrupt service

routine. The interrupt service routine of the tick timer calls our trigger module, which then

will execute any pending trigger. With this in mind, you should:

• Keep the number of triggers as small as possible. The more triggers you have, the

longer it will take for the trigger module to go through the list. If you have many

triggers, but only a few active at a time, then consider for example a linked list.

• Whatever you do in a trigger, it should be something small that you would otherwise

do in an interrupt service routine; things like toggling a pin. It is not designed to do

complicated things which consume a lot of time as this would increase the interrupt

latency time. Instead consider just setting an event flag and do the heavy lifting outside

the interrupt service routine.

Real-Time Building Blocks: Events and Triggers 153

• As triggers are executed from an interrupt service routine, every shared code between

interrupt service routine and main application needs to be reentrant. If you have

shared data, you need to ensure with critical sections that things are properly guarded

against mutual access.

The core requirement for a real-time system is to produce the correct result at the correct

time. The events and triggers presented here help us to achieve this. The triggers help us

to do things at a given deadline or within the boundaries of a deadline. As the triggers

are executed from a periodic timer interrupt, that timer needs to be carefully configured to

meet the required timing. This includes the priority of the timer, but also the latency

introduced by our implementation.

The events help us to reduce the latency time in interrupt service routines. They can

improve the responsiveness and timeliness of the system, as they provide a way to postpone

things from an interrupt service routine if they can wait. If things are triggered by an

interrupt, we can delay things outside the actual interrupt routine, reducing the load on the

interrupt service routine. Still we need to ensure that the events are handled in a timely

fashion too.

Keeping this in mind, you should be able to apply both the events and the triggers module

successfully.

Summary and source code

In summary, we have implemented two modules: events and triggers.

Events allows the application to set flags which then can be handled later on in the main

program. This can greatly reduce the work load in interrupt service routines. Additionally

the events can be used for interprocess communication if an RTOS does not offer a similar

functionality.

Triggers can be used to have things done in a timely fashion: you can create periodic tasks

or you can do things one off.

The combination of events and triggers gives you important building blocks for real-time

systems.

The full source code of the events and triggers software is available from the link provided

in the book.

154 Chapter 5

	5 Real-Time Building Blocks: Events and Triggers
	Events and triggers
	Room temperature unit
	Event system
	Event handle
	Event methods
	Event data structure
	Reentrancy
	Disable and enable interrupts
	EnterCritical and ExitCritical
	Semaphores
	Implementation with Enter/ExitCritical

	Event processing
	Integration
	Triggers
	Blinking LED
	Design idea
	Tick timer
	Trigger interface
	Trigger descriptor
	Data allocation
	SetTrigger
	IncTicks
	Making it reentrant
	Initialization
	Blink!
	Beep!
	Real-time aspects
	Summary and source code

