
Cambridge Books Online

http://ebooks.cambridge.org/

Software Modeling and Design

UML, Use Cases, Patterns, and Software Architectures

Hassan Gomaa

Book DOI: http://dx.doi.org/10.1017/CBO9780511779183

Online ISBN: 9780511779183

Hardback ISBN: 9780521764148

Chapter

8 - Object and Class Structuring pp. 115-131

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge University Press

8

Object and Class Structuring

After defining the use cases and developing a static model of the problem domain,
the next step is to determine the software objects in the system. At this stage,
the emphasis is on software objects that model real-world objects in the problem
domain.

Software objects are determined from the use cases and from the static model
of the problem domain. This chapter provides guidelines on how to determine the
objects in the system. Object structuring criteria are provided, and the objects are
categorized by using stereotypes. The emphasis is on problem domain objects to be
found in the real world and not on solution domain objects, which are determined
at design time.

The static modeling described in Chapter 7 was used to determine the exter-
nal classes, which were then depicted on a software system context class diagram.
These external classes are used to help determine the software boundary classes,
which are the software classes that interface to and communicate with the external
environment. The entity classes and their relationships were also determined dur-
ing static modeling. In this chapter, the objects and classes needed in the software
system are determined and categorized. In particular, the focus is on the additional
software objects and classes that were not determined during the static modeling of
the problem domain.

The static relationship between classes is considered in the static model, as
described in the previous chapter, and the dynamic relationship between the objects
is considered in the dynamic model, as described in Chapters 9, 10, and 11.

Section 8.1 gives an overview of object and class structuring, and Section 8.2
describes modeling application classes and objects. Section 8.3 presents an overview
of object and class structuring categories. Section 8.4 describes external classes
(first introduced in Chapter 7) and their relationship to software boundary classes,
whereas Section 8.5 describes the different kinds of boundary classes and objects.
Section 8.6 describes entity classes and objects, which were first introduced in
Chapter 7. Section 8.7 describes the different kinds of control classes and objects.
Section 8.8 describes application logic classes and objects.

115

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

116 Software Modeling

8.1 OBJECT AND CLASS STRUCTURING CRITERIA

There is no one unique way to decompose a system into objects, because the deci-
sions made are based on the judgment of the analyst and the characteristics of the
problem. Whether objects are in the same class or in a different class depends on
the nature of the problem. For example, in an automobile catalog, cars, vans, and
trucks might all be objects of the same class. For a vehicle manufacturer, however,
cars, vans, and trucks might all be objects of different classes. The reason for this
might be that for an automobile catalog, the same type of information is needed
for each vehicle, whereas for the vehicle manufacturer, more detailed information
is needed, which is different for the different types of vehicles.

Object and class structuring criteria are provided to assist the designer in struc-
turing a system into objects. The approach used for identifying objects is to look
for real-world objects in the problem domain and then design corresponding soft-
ware objects that model the real world. After the objects have been identified, the
interactions among objects are depicted in the dynamic model on communication
diagrams or sequence diagrams, as described in Chapters 9 and 11.

8.2 MODELING APPLICATION CLASSES AND OBJECTS

Section 7.9 described static modeling of entity classes, which benefit most from
static modeling in the analysis phase because they are information-intensive. Entity
classes, however, are only one kind of software class within the system. Before
dynamic modeling can be undertaken, as described in Chapters 9, 10, and 11, it is
necessary to determine what software classes and objects are needed to realize each
use case. Identification of software objects and classes can be greatly assisted by
applying object and class structuring criteria, which provide guidance on structuring
an application into objects. This approach categorizes software classes and objects
by the roles they play in the application.

In this step, classes are categorized in order to group together classes with simi-
lar characteristics. Figure 8.1 shows the categorization of application classes. Stereo-
types (see Section 7.7) are used to distinguish among the various kinds of application

«proxy»«device
I/O»

«user
interaction»

«application class»

«boundary» «entity» «control»
«application

logic»

«input/
output»

«output»«input»

«coordinator»
«state dependent

control»«timer» «algorithm»«business
logic»

«service»

Figure 8.1. Classification of application classes by stereotype

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

Object and Class Structuring 117

classes. Because an object is an instance of a class, an object has the same stereotype
as the class from which it is instantiated. Thus, the categorization described in this
section applies equally to classes and objects.

In Figure 8.1, each box represents a different category of application class, and
the relationships between them are inheritance relationships. Therefore, an appli-
cation class is classified as an entity class, a boundary class, a control class, or an
application logic class. These stereotypes are classified further, as shown in Figure
8.1 and described here.

This classification process is analogous to classifying books in a library, with
major classes such as fiction and nonfiction, and further classification of fiction into
classics, mysteries, adventure, and so on, and nonfiction into biography, autobiogra-
phy, travel, cooking, history, and other categories. It is also analogous to the taxon-
omy of the animal kingdom, which is divided into major categories (mammal, bird,
fish, reptile, and so on) that are further divided into subclasses (e.g., cat, dog, and
monkey are subclasses of mammal).

8.3 OBJECT AND CLASS STRUCTURING CATEGORIES

Objects and classes are categorized according to the roles they play in the applica-
tion. There are four main object and class structuring categories, as shown in Figure
8.1: boundary objects, entity objects, control objects, and application logic objects.
Most applications will have objects from each of the four categories. However, dif-
ferent types of applications will have a greater number of classes in one or other
category. Thus, information-intensive systems will have several entity classes, which
is why static modeling is so vital for these systems. On the other hand, real-time sys-
tems are likely to have several device I/O boundary classes to interface to the various
sensors and actuators. They are also likely to have complex state-dependent control
classes because these systems are highly state-dependent. These object structuring
categories are summarized in the following list and described in detail in Sections
8.4 through 8.7.

The four main object and class structuring categories (Figure 8.1) are as
follows:

1. Entity object. A software object, in many cases persistent, which encapsulates
information and provides access to the information it stores. In some case, an
entity object could be accessed via a service object.

2. Boundary object. Software object that interfaces to and communicates with
the external environment. Boundary objects are further categorized as:
� User interaction object. Software object that interacts with and interfaces

to a human user.
� Proxy object. Software object that interfaces to and communicates with an

external system or subsystem.
� Device I/O boundary object. Software object that receives input from

and/or outputs to a hardware I/O device.
3. Control object. Software object that provides the overall coordination for

a collection of objects. Control objects may be coordinator objects, state-
dependent control objects, or timer objects.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

118 Software Modeling

4. Application logic object. Software object that contains the details of the
application logic. Needed when it is desirable to hide the application logic
separately from the data being manipulated because it is considered likely
that the application logic could change independently of the data. For infor-
mation systems, application logic objects are usually business logic objects,
whereas for real-time, scientific, or engineering applications, they are usually
algorithm objects. Another category is service objects, which provide services
for client objects, typically in service-oriented architectures and applications.

In most cases, what category an object fits into is usually obvious. However, in
some cases, it is possible for an object to satisfy more than one of the aforemen-
tioned criteria. For example, an object could have characteristics of both an entity
object, in that it encapsulates some data, and an algorithm object, in that it executes
a significant algorithm. In such cases, allocate the object to the category it seems to
fit best. Note that it is more important to determine all the objects in the system than
to be unduly concerned about how to categorize a few borderline cases.

For each object structuring criterion, there is an object behavioral pattern, which
describes how the object interacts with its neighboring objects. It is useful to under-
stand the object’s typical pattern of behavior, because when this category of object
is used in an application, it is likely to interact with the same kinds of neighboring
objects in a similar way. Each behavioral pattern is depicted on a UML communi-
cation diagram.

8.4 EXTERNAL CLASSES AND SOFTWARE BOUNDARY CLASSES

As described in Section 7.8, external classes are classes that are outside the software
system and that interface to the system. Boundary classes are classes inside the sys-
tem that interface to and communicate with the external classes. To help determine
the boundary classes in the system, it is necessary to consider the external classes to
which they are connected.

Identifying the external classes that communicate with and interface to the
system helps identify some of the classes in the system itself, namely, the boundary
classes. Each of the external classes communicates with a boundary class in the
system. There is usually a one-to-one association between the external class (assum-
ing it has been identified correctly) and the internal boundary class with which it
communicates. External classes interface to software boundary classes as follows:

■ An external user class interfaces to and interacts with a user interaction class.
■ An external system class interfaces to and communicates with a proxy class.
■ An external device class provides input to and/or receives output from a device

I/O boundary class. Continuing with this classification:
� An external input device class provides input to an input class.
� An external output device class receives output from an output class.
� An external I/O device class provides input to and receives output from an I/O

class.
■ An external timer class signals to a software timer class.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

Object and Class Structuring 119

An external device class represents an I/O device type. An external I/O device
object represents a specific I/O device, that is, an instance of the device type. In
the next section, we consider the internal objects that interface to and communicate
with the external objects.

8.5 BOUNDARY CLASSES AND OBJECTS

This section describes the characteristics of the three different kinds of boundary
objects: user interaction objects, proxy objects, and device I/O boundary objects. In
each case, an example is given of a boundary class, followed by an example of a
behavioral pattern in which an instance of the boundary class, that is, a boundary
object, communicates with neighboring objects in a typical interaction sequence.

8.5.1 User Interaction Objects

A user interaction object communicates directly with the human user, receiving
input from the user and providing output to the user via standard I/O devices such as
the keyboard, visual display, and mouse. Depending on the user interface technol-
ogy, the user interface could be very simple (such as a command line interface) or
it could be more complex (such as a graphical user interface [GUI] object). A user
interaction object may be a composite object composed of several simpler user inter-
action objects. This means that the user interacts with the system via several user
interaction objects. Such objects are depicted with the «user interaction» stereotype.

An example of a simple user interaction class called Operator Interaction is
depicted in Figure 8.2a. An instance of this class is the Operator Interaction object
(see Figure 8.2b), which is depicted in a typical behavioral pattern for user inter-
action objects. The object accepts operator commands from the operator actor;
requests sensor data from an entity object, Sensor Data Repository; and displays
the data it receives to the operator. More complex user interaction objects are
also possible. For example, the Operator Interaction object could be a composite
user interaction object composed of several simpler user interaction objects. This
would allow the operator to receive dynamic updates of workstation status in one
window, receive dynamic updates of alarm status in another window, and conduct
an interactive dialog with the system in a third window. Each window is composed
of several GUI widgets, such as menus, buttons, and simpler windows.

«user interaction»
Operator

Interaction

«user interaction»
: Operator
Interaction

«entity»
: SensorData
Repository

: Operator

1: Operator
Command

4: Display
Data

2: Sensor
Request

a)

b)

3: Sensor Data

Figure 8.2. Example of user interaction class and object

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

120 Software Modeling

«proxy»
Pick&Place

Robot
Proxy

«proxy»
: Pick&Place

Robot
Proxy

«external
system»

: External
Pick&Place

Robot

1: Pick & Place
Robot Command

2: Pick & Place
Robot Response

Software object Real-world
external system

System boundary

(Note: the dashed line for the system boundary is for illustrative purpose only and
does not conform to the UML notation.)

a)

b)

Figure 8.3. Example of proxy class and object

8.5.2 Proxy Objects

A proxy object interfaces to and communicates with an external system. The proxy
object is the local representative of the external system and hides the details of
“how” to communicate with the external system.

An example of a proxy class is a Pick & Place Robot Proxy class. An example of
a behavioral pattern for a proxy object is given in Figure 8.3, which depicts a Pick
& Place Robot Proxy object that interfaces to and communicates with the External
Pick & Place Robot. The Pick & Place Robot Proxy object sends pick and place robot
commands to the External Pick & Place Robot. The real-world robot responds to the
commands.

Each proxy object hides the details of how to interface to and communicate with
the particular external system. A proxy object is more likely to communicate by
means of messages to an external, computer-controlled system, such as the robot
in the preceding example, rather than through sensors and actuator, as is the case
with device I/O boundary objects. However, these issues are not addressed until the
design phase.

8.5.3 Device I/O Boundary Objects

A device I/O boundary object provides the software interface to a hardware I/O
device. Device I/O boundary objects are needed for nonstandard application-
specific I/O devices, which are more prevalent in real-time systems, although they
are often needed in other systems as well. Standard I/O devices are typically han-
dled by the operating system, so special-purpose device I/O boundary objects do not
need to be developed as part of the application.

A physical object in the application domain is a real-world object that has some
physical characteristics – for example, it can be seen and touched. For every real-
world physical object that is relevant to the problem, there should be a corre-
sponding software object in the system. In the Automated Guided Vehicle System,
for example, the vehicle motor and arm are relevant real-world physical objects,

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

Object and Class Structuring 121

«external input
device»

aReal-World
Temperature

Sensor

«input»
aTemperature

Sensor
Interface

1: Temperature
Sensor Input

Hardware / software boundary

Real-world
hardware object

Software object

«input»
Temperature

Sensor
Interface

(Note: the dashed line for the hardware/software boundary is for illustrative purpose
only and does not conform to the UML notation.)

a)

b)

Figure 8.4. Example of input class and object

because they interact with the software system. On the other hand, the vehicle chas-
sis and wheels are not relevant real-world objects, because they do not interact with
the software system. In the software system, the relevant real-world physical objects
are modeled by means of software objects, such as the vehicle motor and arm soft-
ware objects.

Real-world physical objects usually interface to the system via sensors and actu-
ators. These real-world objects provide inputs to the system via sensors or receive
outputs from the system via actuators. Thus, to the software system, the real-world
objects are actually I/O devices that provide inputs to and receive outputs from
the system. Because the real-world objects correspond to I/O devices, the software
objects that interface to them are referred to as device I/O boundary objects.

For example, in the Automated Guided Vehicle System, the station arrival indi-
cator is a real-world object that has a sensor (input devices) that provides inputs to
the system. The motor and arm are real-world objects that are controlled by means
of actuators (output devices) that receive outputs from the system.

An input object is a device I/O boundary object that receives input from an
external input device. Figure 8.4 shows an example of an input class Temperature
Sensor Interface and an instance of this class, an input object, on a communication
diagram. An input object, a Temperature Sensor Interface object, receives tempera-
ture sensor input from an external real-world hardware object, a Real-World Temper-
ature Sensor input device. Figure 8.4 also shows the hardware/software boundary, as
well as the stereotypes for the hardware «external input device» and the software
«input» objects. Thus, the input object provides the software system interface to the
external hardware input device.

An output object is a device I/O boundary object that sends output to an external
output device. Figure 8.5 shows an example of an output class called Red Light Inter-
face, as well as an instance of this class, the Red Light Interface object, which sends
outputs to an external real-world object, the Red Light Actuator external output
device. The Red Light Interface software object sends On and Off Light commands
to the hardware Red Light Actuator. Figure 8.5 also shows the hardware/software
boundary.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

122 Software Modeling

«output»
: RedLight
Interface

«external output
device»

: RedLight
Actuator

1: Light Command

Hardware / software boundary

Real-world
hardware object

Software object

«output»
RedLight
Interface

(Note: the dashed line for the hardware/software boundary is for illustrative purpose
only and does not conform to the UML notation.)

a)

b)

Figure 8.5. Example of output class and object

A hardware I/O device can also be a device that both sends inputs to the sys-
tem and receives outputs from the system. The corresponding software class is an
I/O class, and a software object that is instantiated from this class is an I/O object.
An input/output (I/O) object is a device I/O boundary object that receives input
from and sends output to an external I/O device. This is the case with the ATM Card
Reader Interface class shown in Figure 8.6a and its instance, the ATM Card Reader
Interface object (see Figure 8.6b), which receives ATM card input from the external
I/O device, the ATM Card Reader. In addition, ATM Card Reader Interface sends eject
and confiscate output commands to the card reader.

In some applications, there are many real-world objects of the same type. These
are modeled by means of one device I/O object for each real-world object, in which
all the objects are instances of the same class. For example, the Factory Automation
System, which controls many automated guided vehicles, has many vehicle motors
of the same type and many robotic arms of the same type. There is one instance
of the Motor Interface class and one instance of the Arm Interface class for each
automated guided vehicle.

«external input/
output device»

: ATMCard
Reader

«input/output»
: ATMCardReader

Interface

1: Card Reader
Input

Hardware / software boundary

Real-world
hardware object

Software object

2: Card Reader
Output

«input/output»
ATMCardReader

Interface

(Note: the dashed line for the hardware/software boundary is for illustrative purpose
only and does not conform to the UML notation.)

a)

b)

Figure 8.6. Example of I/O class and object

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

Object and Class Structuring 123

«external I/O
device»

CardReader

«external output
device»

ReceiptPrinter

«external user»
ATMCustomer
KeypadDisplay

«external output
device»

CashDispenser

«software system»
BankingSystem

«external user»
Operator

ATM
Customer

ATM
Operator

1

1

1
1

1

1

1

1

1

1

11

Inputs to

11
Outputs to

11

Interacts
with

11

Outputs to

11

Interacts
with

«output»
CashDispenser

Interface

«user interaction»
Customer
Interaction

«output»
ReceiptPrinter

Interface

«input/output»
CardReader

Interface

«user interaction»
Operator

Interaction

Outputs to

Figure 8.7. Banking System external classes and boundary classes

8.5.4 Depicting External Classes and Boundary Classes

Chapter 7 discussed how to determine the scope of the system and how to develop
a software system context class diagram, which shows all the external classes that
interface to and communicate with the system. It is useful to expand this diagram to
show the boundary classes that communicate with the external classes. The bound-
ary classes are software classes inside the system that are at the boundary between
the system and the external environment. The system is shown as an aggregate class,
and the boundary classes, which are part of the system, are shown inside the aggre-
gate class. Each external class, which is external to the system, has a one-to-one asso-
ciation with a boundary class. Thus, starting with the external classes, as depicted on
the software system context class diagram, helps determine the boundary classes.

Starting with the software system context class diagram for the Banking System,
we determine that each external class communicates with a boundary class (Fig-
ure 8.7). The software system is depicted as an aggregate class, which contains the
boundary classes that interface to the external classes. In this application, there are
three device I/O boundary classes and two user interaction classes. The device I/O
boundary classes are the Card Reader Interface, through which ATM cards are read,
the Cash Dispenser Interface, which dispenses cash, and the Receipt Printer Interface,
which prints receipts. The Customer Interaction class is a user interaction class, which
displays textual messages and prompts to the customer and receives the customer’s
inputs. The Operator Interaction class provides the user interface to the ATM opera-
tor, who replenishes the ATM machine with cash. There is one instance of each of
these boundary classes for each ATM.

8.6 ENTITY CLASSES AND OBJECTS

An entity object is a software object that stores information. Entity objects are
instances of entity classes, whose attributes and relationships with other entity
classes are determined during static modeling, as described in Chapter 7. Entity
objects store data and provide limited access to that data via the operations they
provide. In some cases, an entity object might need to access other entity objects in
order to update the information it encapsulates.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

124 Software Modeling

accountNumber: Integer
balance: Real

«entity»
Account «entity»

anAccount

Figure 8.8. Example of entity class and object

In many information system applications, the information encapsulated by entity
objects is stored in a file or database. In these cases, the entity object is persistent,
meaning that the information it contains is preserved when the system is shut down
and then later powered up. In some applications, such as real-time systems, entity
objects are often stored in main memory. These issues are addressed during the
design phase, as described in Chapter 14.

An example of an entity class from the banking application is the Account class
(Figure 8.8). The stereotype «entity» is shown to clearly identify what kind of class
it is. Instances of the Account class are entity objects (as shown in Figure 8.8), which
are also identified by the stereotype «entity». The attributes of Account are account
Number and balance. The object an Account is a persistent (long-living) object that
is accessed by several objects that realize various use cases. These use cases include
customer use cases for account withdrawals, inquiries, and transfers at various ATM
machines, as well as human teller use cases to open and close the account and to
credit and debit the account. The account is also accessed by objects that realize a
use case that prepares and prints monthly statements for customers.

An example of an entity class from a sensor monitoring example is the Sen-
sor Data class (Figure 8.9). This class stores information about analog sensors. The
attributes are sensor Name, sensor Value, upper Limit, lower Limit, and alarm Status.
An example of an instance of this class is the temperature Sensor Data object.

8.7 CONTROL CLASSES AND OBJECTS

A control object provides the overall coordination of the objects that realize a use
case. Simple use cases do not need control objects. However, in a more complex
use case, a control object is usually needed. A control object is analogous to the
conductor of an orchestra, who orchestrates (controls) the behavior of the other
objects that participate in the use case, notifying each object when and what it should
perform. Depending on the characteristics of the use case, the control object may
be state-dependent. There are several kinds of control objects, which are described
in the sections that follow.

sensorName: String
sensorValue: Real
upperLimit: Real
lowerLimit: Real
alarmStatus: Boolean

«entity»
SensorData «entity»

temperature
SensorData

Figure 8.9. Example of entity class and object

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

Object and Class Structuring 125

«coordinator»
: BankCoordinator

«business logic»
: Transfer

Transaction
Manager

«business logic»
: Query

Transaction
Manager

«business logic»
: Withdrawal
Transaction

Manager

«business logic»
: PINValidation

Transaction
Manager

1, 2, 3, 4:
ATM
Transaction

1.3, 2.3, 3.3, 4.3:
Bank
Response

4.1: Transfer
Transaction

4.2: Transfer
Response

3.1: Query
Transaction

2.1:
Withdraw
Request

3.2: Query
Response

2.2: Withdraw
Response

1.1: PIN Validation
Request

1.2: PIN
Validation
Response

«subsystem»
: ATMClient

«coordinator»
BankCoordinator

a)

b)

Figure 8.10. Example of coordinator class and object

8.7.1 Coordinator Objects

A coordinator object is an overall decision-making object that determines the over-
all sequencing for a collection of related objects. A coordinator object is often
required to provide the overall sequencing for execution of a use case. It makes
the overall decisions and decides when, and in what order, other objects partici-
pate in the use case. A coordinator object makes its decision based on the input
it receives and is not state-dependent. Thus, an action initiated by a coordinator
object depends only on the information contained in the incoming message and not
on what previously happened in the system.

An example of a coordinator class is the Bank Coordinator, which is depicted in
Figure 8.10a. The instance of this class, the Bank Coordinator object receives ATM
transactions from a client ATM. Depending on the transaction type, the Bank Coor-
dinator directs the transaction to the appropriate transaction-processing object to
execute the transaction. In the Banking System, these are a Withdrawal Transaction
Manager object, a Transfer Transaction Manager object, a Query Transaction Manager
object, or a PIN Validation Transaction Manager object (see Figure 8.10b).

Another kind of coordinator is a coordinator object in a service-oriented appli-
cation, which coordinates the interaction between a user interaction object and one
or more service objects. An example of this is described in Section 8.8.3.

8.7.2 State-Dependent Control Objects

A state-dependent control object is a control object whose behavior varies in each
of its states. A finite state machine is used to define a state-dependent control object
and is depicted by using a statechart. Statecharts, which were originally conceived by
Harel (1988, 1998), can be either flat (nonhierarchical) or hierarchical, as described

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

126 Software Modeling

«state dependent
control»

: ATMControl

«output»
: ReceiptPrinter

Interface

«output»
: CashDispenser

Interface

3: Print Receipt

4: Receipt Printed

1: Dispense Cash

2: Cash Dispensed

«state dependent
control»

ATMControl

a)

b)

Figure 8.11. Example of state-dependent control class and object

in Chapter 10. This section gives only a brief overview of state-dependent control
objects, which are described in much more detail in Chapters 10 and 11.

A state-dependent control object receives incoming events that cause state tran-
sitions and generates output events that control other objects. The output event gen-
erated by a state-dependent control object depends not only on the input received
by the object but also on the current state of the object. An example of a state-
dependent control object is the ATM Control object (Figure 8.11), which is defined by
means of the ATM Control statechart. In the example, ATM Control is shown control-
ling two other output boundary objects, Receipt Printer Interface and Cash Dispenser
Interface.

In a control system, there are usually one or more state-dependent control
objects. It is also possible to have multiple state-dependent control objects of the
same type. Each object executes an instance of the same finite state machine
(depicted as a statechart), although each object is likely to be in a different state. An
example of this is the Banking System, which has several ATMs, where each ATM
has an instance of the state-dependent control class, ATM Control, which is also shown
in Figure 8.11. Each ATM Control object executes its own instance of the ATM Control
statechart and keeps track of the state of the local ATM. Another example is from
the Automated Guided Vehicle System, in which the control and sequencing of the
vehicle is modeled by means of a state-dependent control object, Vehicle Control,
and defined by means of a statechart. Consequently, each vehicle has a vehicle
control object. More information about state-dependent control objects is given in
Chapter 11.

8.7.3 Timer Objects

A timer object is a control object that is activated by an external timer – for example,
a real-time clock or operating system clock. The timer object either performs some
action itself or activates another object to perform the desired action.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

Object and Class Structuring 127

«external timer»
: DigitalClock

«timer»
: ReportTimer

1: Timer Event

«entity»
: WeeklyReport

2: Prepare

«timer»
ReportTimer

a)

b)

Figure 8.12. Example of a timer class and object

An example of a timer class, Report Timer, is given in Figure 8.12. An instance
of this class, the timer object Report Timer, is activated by a timer event from an
external timer, the Digital Clock. The timer object then sends a Prepare message to
the Weekly Report object.

8.8 APPLICATION LOGIC CLASSES AND OBJECTS

This section describes the three kinds of application logic objects, namely, business
logic objects, algorithm objects, and service objects. As with control objects, appli-
cation logic objects are more likely to be considered when the dynamic model, not
the initial conceptual static model, is being developed.

8.8.1 Business Logic Objects

A business logic object defines the business-specific application logic for processing
a client request. The goal is to encapsulate (hide) business rules that could change
independently of each other into separate business logic objects. Another goal is to
separate the business rules from the entity data that they operate on, because the
business rules can change independently of the entity data. Usually a business logic
object accesses various entity objects during its execution.

Business logic objects are only needed in certain situations. Sometimes, there is
a choice between encapsulating the business logic in a separate business logic object
or, if the business logic is sufficiently simple, having it as an operation of an entity
object. The guideline is that if the business rule can be executed only by accessing
two or more entity objects, there should be a separate business logic object. On the
other hand, if accessing one entity object is sufficient to execute the business rule, it
could be provided by an operation of that object.

An example of a business logic class is the Withdrawal Transaction Manager class,
which is shown in Figure 8.13. An instance of this class, the Withdrawal Transaction
Manager business logic object, services withdrawal requests from ATM customers.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

128 Software Modeling

«coordinator»
: BankCoordinator

«business logic»
: Withdrawal

TransactionManager

«entity»
: DebitCard

«entity»
: Account

1: Withdrawal Request
(Card Id, Account#, Amount)

8: Withdrawal Response
(Amount, Balance)

2: Check
Daily Limit
(Card Id, Amount),
6: Update
Daily Total
(Card Id, Amount)

3: Daily Limit
Response

4: Debit
(Account#, Amount)

5: Balance

«entity»
: Transaction

Log

7: Log Transaction

«business logic»
Withdrawal

TransactionManager

a)

b)

Figure 8.13. Example of business logic class and object

It encapsulates the business rules for processing an ATM withdrawal request. For
example, the first business rule is that the customer must have a minimum balance
of $50 after the withdrawal takes place; the second business rule is that the cus-
tomer is not allowed to withdraw more than $250 per day with a debit card. The
Withdrawal Transaction Manager object accesses an Account object to determine if
the first business rule will be satisfied. It accesses the Debit Card object, which main-
tains a running total of the amount withdrawn by an ATM customer on this day, to
determine if the second business rule will be satisfied. If either business rule is not
satisfied, the withdrawal request is rejected.

A business logic object usually has to interact with entity objects in order to
execute its business rules. In this way, it resembles a coordinator object. However,
unlike a coordinator object, whose main responsibility is to supervise other objects,
the prime responsibility of a business logic object is to encapsulate and execute the
business rules.

8.8.2 Algorithm Objects

An algorithm object encapsulates an algorithm used in the problem domain. This
kind of object is more prevalent in real-time, scientific, and engineering domains.
Algorithm objects are used when there is a substantial algorithm used in the prob-
lem domain that can change independently of the other objects. Simple algorithms

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

Object and Class Structuring 129

«algorithm»
: Cruiser

«entity»
: Cruising

Speed

«entity»
: Current

Speed

«output»
: ElectricMotor

Interface

3: Cruising Speed Value2: Read

«state dependent
control»

: CruiseControl

1: Enable
Maintain Speed

4: Read

5: Current Speed Value

7: Motor Value
6: Speed
Adjustment

«algorithm»
Cruiser

a)

b)

Figure 8.14. Example of algorithm class and object

are usually operations of an entity object that operate on the data encapsulated in
the entity. In many scientific and engineering domains, algorithms are refined iter-
atively because they are improved independently of the data they manipulate (e.g.,
for improved performance or accuracy).

An example from a Train Control System is the Cruiser algorithm class. An
instance of this class, the Cruiser object, calculates what adjustments to the speed
should be made by comparing the current speed of the train with the desired cruis-
ing speed (Figure 8.14). The algorithm is complex because it must provide gradual
accelerations or decelerations of the train when they are needed, so as to have min-
imal effect on the passengers.

An algorithm object frequently encapsulates data it needs for computing its algo-
rithm. These data may be initialization data, intermediate result data, or threshold
data, such as maximum or minimum values.

An algorithm object frequently has to interact with other objects in order to
execute its algorithm (e.g., Cruiser). In this way, it resembles a coordinator object.
Unlike a coordinator object, however, whose main responsibility is to supervise
other objects, the prime responsibility of an algorithm object is to encapsulate and
execute the algorithm.

8.8.3 Service Objects

A service object is an object that provides a service for other objects. They are
usually provided in service-oriented architectures and applications, as described in
Chapter 16. Client objects can request a service from the service object, which the
service object will respond to. A service object never initiates a request; however,
in response to a service request it might seek the assistance of other service objects.
Service objects play an important role in service-oriented architectures, although

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

130 Software Modeling

6: Catalog Output

1: Customer Input

«user interaction»
: CustomerInteraction

«coordinator»
aCustomerCoordinator

2: Catalog Request

5: Catalog Info

«service»
: CatalogService

3: Catalog Request 4: Catalog Info

aCustomer

«service»
CatalogService

a)

b)

Figure 8.15. Example of service class and object

they are used in other architectures as well, such as client/server architectures and
component-based software architectures. A service object might encapsulate the
data it needs to service client requests or access another entity object(s) that encap-
sulate the data.

An example of a service class is the Catalog Service class given in Figure 8.15a. An
example of executing an instance of this class, the Catalog Service object, is shown
in Figure 8.15b. The Catalog Service object provides support for viewing various cat-
alog items from the supplier’s catalog and selecting items from the catalog. The
Customer Coordinator assists the Customer Interaction object in finding a supplier cat-
alog, provided by the Catalog Service object, and making selections from the catalog.
In addition to service classes and objects, coordinator classes and objects are also
frequently used in service-oriented architectures and applications, as described in
Chapter 16.

8.9 SUMMARY

This chapter described how to determine the software objects and classes in the sys-
tem. Object and class structuring criteria were provided, and the objects and classes
were categorized by using stereotypes. The emphasis is on problem domain objects
and classes, which are to be found in the real world, and not on solution domain
objects, which are determined at design time. The object and structuring criteria
are usually applied to each use case in turn during dynamic interaction modeling,
as described in Chapters 9 and 11, to determine the objects that participate in each
use case. The sequence of interaction among the objects is then determined. Sub-
system structuring criteria are described in Chapter 13. The design of the operations
provided by each class is described in Chapter 14.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is a boundary object?
(a) An external object

(b) An object that stores data
(c) An object that communicates with

an external object
(d) An object that controls other

objects
2. What is a control object?

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

Object and Class Structuring 131

(a) An object that depends on other
objects

(b) An object that communicates with
an external object

(c) An object that controls other
objects

(d) An object that is controlled by
other objects

3. What is a state-dependent control ob-
ject?
(a) An object that depends on a state

machine
(b) An object that communicates with

a state machine
(c) An object that controls a state

machine
(d) An object that executes a state

machine
4. What is a coordinator object?

(a) A manager object
(b) An object that makes decisions

based on a state machine
(c) A decision-making object
(d) An object that decides which entity

object to interact with
5. How would you determine a boundary

class from the context diagram?
(a) By looking at it
(b) By selecting the external classes on

the context diagram
(c) By determining the software clas-

ses that communicate with the
external classes

(d) By drawing the boundary between
the hardware and software clas-
ses

6. What is a timer object?
(a) An external clock

(b) An internal clock
(c) An object that is awakened by an

external timer
(d) An object that interacts with a

clock
7. What do class structuring criteria help

with?
(a) Structuring an application into

classes
(b) Defining the attributes of a class
(c) Defining the associations of a class
(d) Defining the operations of a class

8. What is the classification process for
application classes analogous to?
(a) Categorizing books in a library
(b) Deciding how many copies of a

book are needed
(c) Finding the classrooms in a school
(d) Identifying what labs the school

has
9. What is the purpose of a stereotype in

class structuring?
(a) To label a class according to its

class structuring criterion
(b) To identify the objects that belong

to the same class
(c) To distinguish between external

objects and software objects
(d) To identify the association bet-

ween two classes
10. What is a business logic object?

(a) An object used in business applica-
tions

(b) An object that defines business-
specific application logic

(c) The internal logic of an object
(d) A business object that determines

whether a client request is logical

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:27:17 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.010

Cambridge Books Online © Cambridge University Press, 2016

