
Cambridge Books Online

http://ebooks.cambridge.org/

Software Modeling and Design

UML, Use Cases, Patterns, and Software Architectures

Hassan Gomaa

Book DOI: http://dx.doi.org/10.1017/CBO9780511779183

Online ISBN: 9780511779183

Hardback ISBN: 9780521764148

Chapter

21 - Client/Server Software Architecture Case Study pp. 371-423

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge University Press

21

Client/Server Software Architecture
Case Study

Banking System

This chapter describes how the COMET/UML software modeling and design
method is applied to the design of a client/server software architecture (see Chapter
15): a Banking System. In addition, the design of the ATM Client is an example of
concurrent software design (see Chapter 18), and the design of the Banking Service
is an example of sequential object-oriented software design (see Chapter 14).

The problem description is given in Section 21.1. Section 21.2 describes the use
case model for the Banking System. Section 21.3 describes the static model, covering
static modeling of both the system context and entity classes. Section 21.4 describes
how to structure the system into objects. Section 21.5 describes dynamic model-
ing, in which interaction diagrams are developed for each of the use cases. Section
21.6 describes the ATM statechart. Sections 21.7 through 21.14 describe the design
model for the Banking System.

21.1 PROBLEM DESCRIPTION

A bank has several automated teller machines (ATMs) that are geographically dis-
tributed and connected via a wide area network to a central server. Each ATM
machine has a card reader, a cash dispenser, a keyboard/display, and a receipt
printer. By using the ATM machine, a customer can withdraw cash from either a
checking or savings account, query the balance of an account, or transfer funds from
one account to another. A transaction is initiated when a customer inserts an ATM
card into the card reader. Encoded on the magnetic strip on the back of the ATM
card are the card number, the start date, and the expiration date. Assuming the card
is recognized, the system validates the ATM card to determine that the expiration
date has not passed, that the user-entered personal identification number, or PIN,
matches the PIN maintained by the system, and that the card is not lost or stolen.
The customer is allowed three attempts to enter the correct PIN; the card is confis-
cated if the third attempt fails. Cards that have been reported lost or stolen are also
confiscated.

If the PIN is validated satisfactorily, the customer is prompted for a withdrawal,
query, or transfer transaction. Before a withdrawal transaction can be approved,

371

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

372 Case Studies

the system determines that sufficient funds exist in the requested account, that the
maximum daily limit will not be exceeded, and that there are sufficient funds at the
local cash dispenser. If the transaction is approved, the requested amount of cash is
dispensed, a receipt is printed that contains information about the transaction, and
the card is ejected. Before a transfer transaction can be approved, the system deter-
mines that the customer has at least two accounts and that there are sufficient funds
in the account to be debited. For approved query and transfer requests, a receipt
is printed and the card ejected. A customer may cancel a transaction at any time;
the transaction is terminated, and the card is ejected. Customer records, account
records, and debit card records are all maintained at the server.

An ATM operator may start up and close down the ATM to replenish the ATM
cash dispenser and for routine maintenance. It is assumed that functionality to open
and close accounts and to create, update, and delete customer and debit card records
is provided by an existing system and is not part of this problem.

21.2 USE CASE MODEL

The use cases are described in the use case model. There are two actors, namely,
the ATM Customer and the Operator, who are the users of the system. The customer
can withdraw funds from a checking or savings account, query the balance of the
account, and transfer funds from one account to another.

The customer interacts with the system via the ATM card reader and the key-
board. It is the customer who is the actor, not the card reader and keyboard; these
input devices provide the means for the customer to initiate the use case and res-
pond to prompts from the system. The printer and cash dispenser are output devices;
they are not actors, because it is the customer who benefits from the use cases.

The ATM operator can shut down the ATM, replenish the ATM cash dispenser,
and start the ATM. Because an actor represents a role played by a user, there can
be multiple customers and operators.

Consider the ATM operator use cases. One option is to have one operator use
case in which the operator shuts down the ATM, adds cash, and then starts up the
ATM. However, because it is possible to shut down the machine for a hardware
problem without adding cash, and to start up the machine after it goes down unex-
pectedly, it is more flexible to have three separate use cases instead of one. These
use cases are to Add Cash (in order to replenish the ATM cash locally), Startup, and
Shutdown, as shown in Figure 21.1.

Consider the use cases initiated by the ATM Customer. One possibility is to have
one use case for all customer interactions. However, there are three separate, quite
distinct transaction types for withdrawal, query, and transfer that can be initiated by
a customer.

We therefore start by considering three separate use cases: Withdraw Funds,
Query Account, and Transfer Funds, one for each transaction type. Consider the
Withdraw Funds use case. In this use case, the main sequence assumes a successful
cash withdrawal by the customer. This involves reading the ATM card, validating
the customer’s PIN, checking that the customer has enough funds in the requested
account, and then – providing the validation is successful – dispensing cash, printing
a receipt, and ejecting the card.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 373

Withdraw Funds

Query Account

Transfer Funds

Validate PIN

Add Cash

Startup

Shutdown

ATM
Customer

ATM Operator

«include»

«include»

«include»

Figure 21.1. Banking System use case model

However, by comparing the three use cases, it can be seen that the first part of
each use case – namely, reading the ATM card and validating the customer’s PIN –
is common to all three use cases. This common part of the three use cases is factored
out as an inclusion use case called Validate PIN.

The Withdraw Funds, Query Account, and Transfer Funds use cases can then each
be rewritten more concisely as concrete use cases that include the Validate PIN inclu-
sion use case. The relationship between the use cases is shown in Figure 21.1. The
concrete Withdraw Funds use case starts by including the description of the Vali-
date PIN inclusion use case and then continues with the Withdraw Funds description.
The concrete Transfer Funds use case also starts with the description of the Validate
PIN inclusion use case, but then continues with the Transfer Funds description. The
revised concrete Query Account use case is similarly organized. The inclusion use
case and concrete use cases are described next.

The main sequence of the Validate PIN use case deals with reading the ATM
card, validating the customer’s PIN and card. If validation is successful, the system
prompts the customer to select a transaction: withdrawal, query, or transfer. The
alternative branches deal with all the possible error conditions, such as the customer
enters the wrong PIN and must be re-prompted, or an ATM card is not recognized
or has been reported stolen, and so on. Because these can be described quite simply
in the alternative sequences, splitting them off into separate extension use cases is
not necessary.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

374 Case Studies

21.2.1 Validate PIN Use Case

Use case name: Validate PIN
Summary: System validates customer PIN
Actor: ATM Customer
Precondition: ATM is idle, displaying a Welcome message.
Main sequence:

1. Customer inserts the ATM card into the card reader.
2. If system recognizes the card, it reads the card number.
3. System prompts customer for PIN.
4. Customer enters PIN.
5. System checks the card’s expiration date and whether the card has

been reported as lost or stolen.
6. If card is valid, system then checks whether the user-entered PIN

matches the card PIN maintained by the system.
7. If PIN numbers match, system checks what accounts are accessible

with the ATM card.
8. System displays customer accounts and prompts customer for

transaction type: withdrawal, query, or transfer.
Alternative sequences:
Step 2: If the system does not recognize the card, the system ejects the
card.
Step 5: If the system determines that the card date has expired, the system
confiscates the card.
Step 5: If the system determines that the card has been reported lost or
stolen, the system confiscates the card.
Step 7: If the customer-entered PIN does not match the PIN number for
this card, the system re-prompts for the PIN.
Step 7: If the customer enters the incorrect PIN three times, the system
confiscates the card.
Steps 4–8: If the customer enters Cancel, the system cancels the transaction
and ejects the card.
Postcondition: Customer PIN has been validated.

21.2.2 Withdraw Funds Concrete Use Case

Use case name: Withdraw Funds
Summary: Customer withdraws a specific amount of funds from a valid
bank account.
Actor: ATM Customer
Dependency: Include Validate PIN use case.
Precondition: ATM is idle, displaying a Welcome message.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 375

Main sequence:
1. Include Validate PIN use case.
2. Customer selects Withdrawal, enters the amount, and selects the

account number.
3. System checks whether customer has enough funds in the account

and whether the daily limit will not be exceeded.
4. If all checks are successful, system authorizes dispensing of cash.
5. System dispenses the cash amount.
6. System prints a receipt showing transaction number, transaction type,

amount withdrawn, and account balance.
7. System ejects card.
8. System displays Welcome message.

Alternative sequences:
Step 3: If the system determines that the account number is invalid, then it
displays an error message and ejects the card.
Step 3: If the system determines that there are insufficient funds in the
customer’s account, then it displays an apology and ejects the card.
Step 3: If the system determines that the maximum allowable daily with-
drawal amount has been exceeded, it displays an apology and ejects the
card.
Step 5: If the ATM is out of funds, the system displays an apology, ejects
the card, and shuts down the ATM.
Postcondition: Customer funds have been withdrawn.

21.2.3 Query Account Concrete Use Case

Use case name: Query Account
Summary: Customer receives the balance of a valid bank account.
Actor: ATM Customer
Dependency: Include Validate PIN use case.
Precondition: ATM is idle, displaying a Welcome message.
Main sequence:

1. Include Validate PIN use case.
2. Customer selects Query, enters account number.
3. System reads account balance.
4. System prints a receipt that shows transaction number, transaction

type, and account balance.
5. System ejects card.
6. System displays Welcome message.

Alternative sequence:
Step 3: If the system determines that the account number is invalid, it dis-
plays an error message and ejects the card.
Postcondition: Customer account has been queried.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

376 Case Studies

21.2.4 Transfer Funds Concrete Use Case

Use case name: Transfer Funds
Summary: Customer transfers funds from one valid bank account to
another.
Actor: ATM Customer
Dependency: Include Validate PIN use case.
Precondition: ATM is idle, displaying a Welcome message.
Main sequence:

1. Include Validate PIN use case.
2. Customer selects Transfer and enters amount, from account, and to

account.
3. If the system determines the customer has enough

funds in the from account, it performs the transfer.
4. System prints a receipt that shows transaction number, transaction

type, amount transferred, and account balance.
5. System ejects card.
6. System displays Welcome message.

Alternative sequences:
Step 3: If the system determines that the from account number is invalid, it
displays an error message and ejects the card.
Step 3: If the system determines that the to account number is invalid, it
displays an error message and ejects the card.
Step 3: If the system determines that there are insufficient funds in the
customer’s from account, it displays an apology and ejects the card.
Postcondition: Customer funds have been transferred.

21.3 STATIC MODELING

This section begins by considering the problem domain and the system context, and
then continues with a discussion of static modeling of the entity classes. Refer also
to Chapter 7, which describes static modeling in detail with some examples from the
Banking System.

21.3.1 Static Modeling of the Problem Domain

The conceptual static model of the problem domain is given in the class diagram
depicted in Figure 21.2. A bank has several ATMs. Each ATM is modeled as a
composite class consisting of a Card Reader, a Cash Dispenser, a Receipt Printer, and
a keyboard/display through which the user interacts, the ATM Customer Keyboard
Display. The ATM Customer actor inserts the card into the Card Reader and responds
to system prompts though the ATM Customer Keyboard Display. The Cash Dispenser
dispenses cash to the ATM Customer actor. The Receipt Printer prints a receipt for the
ATM Customer actor. In addition, the Operator actor is a user whose job is to maintain
the ATM.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 377

Bank

1..*

1
Provides

service for

ATM
1 1

Maintains

ATMCustomer
KeypadDisplay CardReader CashDispenser ReceiptPrinter

1

1

Inserts
card into

1

1

Dispenses
cash to

1

1

Prints
receipt for

1 11 1

ATM
Customer

ATM Operator

1

1

Interacts
through

Figure 21.2. Conceptual static model for problem domain

21.3.2 Static Modeling of the System Context

The software system context class diagram, which uses the static modeling nota-
tion, is developed to show the external classes to which the Banking System, shown
as one aggregate class, has to interface. We develop the context class diagram by
considering the physical classes determined during static modeling of the problem
domain, as described in detail in Chapter 7.

From the total system perspective – that is, both hardware and software – the
ATM Customer and ATM Operator actors are external to the system, as shown in Figure
7.19. The ATM Operator interacts with the system via a keypad and display. The ATM
Customer actor interacts with the system via four I/O devices, which are the card
reader, cash dispenser, receipt printer, and ATM Customer keypad/display. From a
total hardware/software system perspective, these I/O devices are part of the system.
From a software perspective, the I/O devices are external to the software system. On
the software system context class diagram, the I/O devices are modeled as external
classes, as shown on Figure 21.3.

The four external classes used by the ATM Customer actor are the Card Reader,
the Cash Dispenser, the Receipt Printer, and the ATM Customer Keypad/Display; the
Operator interacts with the system via a keyboard/display. Both Customer Keypad/
Display and Operator are modeled as external users, as described in Chapter 7. There
is one instance of each of these external classes for each ATM. The software system
context class diagram for the Banking System (see Figure 21.3) depicts the software
system as one aggregate class that receives input from and provides output to the
external classes.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

378 Case Studies

«external I/O
device»

CardReader

«external output
device»

ReceiptPrinter

«external user»
ATMCustomer
KeypadDisplay

«external output
device»

CashDispenser

«software system»
Banking
System

«external user»
Operator

ATM
Customer

ATM Operator

1

1 1

1

1

1

1

1

1

1

1

1..*

Outputs
to

1
1..*

Outputs
to

1

1..*

Interacts
with

1

1..*

Outputs to

1..*1

Interacts
with

Inputs
to

Figure 21.3. Banking System software context class diagram

21.3.3 Static Modeling of the Entity Classes

The static model of the entity classes, referred to as the entity class model, is shown
in Figure 21.4. The attributes of each entity class are given in Figures 21.5, 21.6,
and 21.7.

Figure 21.4 shows the Bank entity class, which has a one-to-many relationship
with the Customer class and the Debit Card class. The Bank class is unusual in that it
will only have one instance; its attributes are the bank Name, bank Address, and bank
Id. The Customer has a many-to-many relationship with Account. Because there are
both checking accounts and savings accounts, which have some common attributes,
the Account class is specialized to be either a Checking Account or a Savings Account.
Thus, some attributes are common to all accounts, namely, the account Number,
account Type, and balance. Other attributes are specific to Checking Account (e.g.,
last Deposit Amount) and Savings Account (e.g., the accumulated interest).

An Account is modified by an ATM Transaction, which is specialized to depict the
different types of transactions as a Withdrawal Transaction, Query Transaction, Trans-
fer Transaction, or PIN Validation Transaction. The common attributes of a transaction
are in the superclass ATM Transaction and consist of transaction Id (which actually
consists of four concatenated attributes – bank Id, ATM Id, date, and time), transaction
Type, card Id, PIN, and status. Other attributes are specific to the particular type of
transaction. Thus, for the Withdrawal Transaction, the specific attributes maintained
by the subclass are account Number, amount, and balance. For a Transfer Transac-
tion, the attributes maintained by the subclass are from Account Number (checking
or savings), to Account Number (savings or checking), and amount.

There is also a Card Account association class. Association classes are needed
in cases in which the attributes are of the association, rather than of the classes
connected by the association. Thus, in the many-to-many association between Debit
Card and Account, the individual accounts that can be accessed by a given debit card
are attributes of the Card Account association class and not of either Debit Card or

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

«entity»
Bank

«entity»
Customer

«entity»
DebitCard

«entity»
Account

«entity»
ATMInfo

«entity»
ATMTransaction

«entity»
CardAccount

«entity»
Checking
Account

«entity»
Savings
Account

«entity»
Withdrawal
Transaction

«entity»
Query

Transaction

«entity»
Transfer

Transaction

«entity»
PINValidation
Transaction

1..*1

Provides service for

1..*

1
Provides service for

*

1

Identifies

1..*

1..*

Owns

0..1

1
Owns

1..*

1

Administers

1..**

Provides
Access to

0, 2 *Modifies

Figure 21.4. Conceptual static model for Banking System: entity classes

379

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

380 Case Studies

customerName: String
customerId: String
customerAddress: String

«entity»
Customer

lastDepositAmount: Real

«entity»
CheckingAccount

cardId: String
PIN: String
startDate: Date
expirationDate: Date
status: Integer
limit: Real
total: Real

«entity»
DebitCard

interest: Real

«entity»
SavingsAccountAccount

accountNumber: String
accountType: String
balance: Real

Bank

bankName: String
bankAddress: String
bankId: Real

«entity»

«entity»

Figure 21.5. Conceptual static model for Banking System: class attributes

startDate: Date
expirationDate: Date

«entity»
PINValidationTransaction

«entity»
ATMTransaction

bankId: String
ATMId: String
date: Date
time: Time
transactionType: String
cardId: String
PIN: String
status: Integer

«entity»
WithdrawalTransaction

accountNumber: String
amount: Real
balance: Real

«entity»
QueryTransaction

accountNumber: String
balance: Real
lastDepositAmount: Real

«entity»
TransferTransaction

fromAccountNumber: String
toAccountNumber: String
amount: Real

Figure 21.6. Conceptual static model for Banking System: class attributes (continued)

cashAvailable: Integer
fives: Integer
tens: Integer
twenties: Integer

«entity»
ATMCash

cardId: String
startDate: Date
expirationDate: Date

«entity»
ATMCard

CardAccount

cardId: String
accountNumber: String
accountType: String

ATMInfo

bankId: String
ATMId: String
ATMLocation: String
ATMAddress: String

«entity» «entity»

Figure 21.7. Conceptual static model for Banking System: class attributes (continued)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 381

Account. The attributes of Card Account are Card Id, account Number, and account
Type.

Entity classes are also required to model other information described in Sec-
tion 21.2. These include ATM Card, which represents the information read off the
magnetic strip on the plastic card. ATM Cash holds the amount of cash maintained
at an ATM, in five-, ten-, and twenty-dollar bills. The Receipt holds information
about a transaction, and because it holds similar information to the Transaction class
described earlier, a separate entity class is unnecessary.

21.4 OBJECT STRUCTURING

We next consider structuring the system into objects in preparation for defining
the dynamic model. The object structuring criteria help determine the objects in
the system. After the objects and classes have been determined, a communication
diagram or sequence diagram is developed for each use case to show the objects that
participate in the use case and the dynamic sequence of interactions between them.

21.4.1 Client/Server Subsystem Structuring

Because the Banking System is a client/server application, some of the objects are
part of the ATM client and some objects are part of the banking service, so we start
by identifying subsystems, which are aggregate or composite objects. In client/server
systems, the subsystems are often easily identifiable. Thus, in the Banking System,
there is a client subsystem called ATM Client Subsystem, of which one instance is
located at each ATM machine. There is also a service subsystem, the Banking Ser-
vice Subsystem, of which there is one instance (Figure 21.8). This is an example of
geographical subsystem structuring, in which the geographical distribution of the

«software system»
BankingSystem

«external user»
Operator1

1

«subsystem»
«client»

ATMClient
Subsystem

11..*

Requests service from «service»
«subsystem»

BankingService
Subsystem

«external user»
ATMCustomer
KeypadDisplay

1

1

«external output
device»

CashDispenser

1

1

«external I/O
device»

CardReader

11

«external output
device»

ReceiptPrinter

1

1

Figure 21.8. Banking System: major subsystems

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

382 Case Studies

«external I/O
device»

CardReader

«external output
device»

ReceiptPrinter

«external user»
ATMCustomer
KeypadDisplay

«external output
device»

CashDispenser

«software system»
BankingSystem

«external user»
Operator

ATM
Customer

ATM
Operator

1

1

1
1

1

1

1

1

1

1

11

Inputs to

11
Outputs to

11

Interacts
with

11

Outputs to

11

Interacts
with

«output»
CashDispenser

Interface

«user interaction»
Customer
Interaction

«output»
ReceiptPrinter

Interface

«input/output»
CardReader

Interface

«user interaction»
Operator

Interaction

Outputs to

Figure 21.9. Banking System external classes and boundary classes

system is given in the problem description. Both subsystems are depicted as aggre-
gate classes, with a one-to-many association between the Banking Service Subsystem
and the ATM Client Subsystem. All the external classes interface to and communicate
with the ATM Client Subsystem.

21.4.2 ATM Client Object and Class Structuring: Boundary Objects

The next step is to determine the software objects and classes at the ATM Client. First,
consider the boundary objects and classes. The boundary classes are determined
from the software system context diagram, as shown in Figure 21.9, which shows the
Banking System as an aggregate class.

We design one boundary class for each external class. The device I/O classes
are the Card Reader Interface, through which ATM cards are read, the Cash Dis-
penser Interface, which dispenses cash, and the Receipt Printer Interface, which prints
receipts. There is also Customer Interaction, which is the user interaction class that
interacts with the customer via the keyboard/display, displaying textual messages,
prompting the customer, and receiving the customer’s inputs. The Operator Inter-
action class is a user interaction class that interacts with the ATM operator, who
replenishes the ATM machine with cash. There is one instance of each of these
boundary classes for each ATM.

21.4.3 ATM Client Object and Class Structuring: Objects Participating
in Use Cases

Next, consider the individual use cases and determine the objects that participate
in them. First, consider the Validate PIN inclusion use case, which describes the cus-
tomer inserting the ATM Card into the card reader, the system prompting for the
PIN, and the system checking whether the customer-entered PIN matches the PIN
maintained by the system for that ATM card number. From this use case, we first

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 383

determine the need for the Card Reader Interface object to read the ATM card. The
information read off the ATM card needs to be stored, so we identify the need for
an entity object to store the ATM Card information. The Customer Interaction object
is used for interacting with the customer via the keyboard/display, in this case to
prompt for the PIN. The information to be sent to the Banking Service Subsystem for
PIN validation is stored in an ATM Transaction. For PIN validation, the transaction
information needs to contain the PIN number and the ATM Card number. To con-
trol the sequence in which actions at the ATM take place, we identify the need for
a control object, ATM Control.

Next consider the objects in the Withdraw Funds use case, which is entered if
the PIN is valid and the customer selects withdrawal. In this use case, the cus-
tomer enters the amount to be withdrawn and the account to be debited, the sys-
tem checks whether the withdrawal should be authorized, and if positive, dispenses
the cash, prints the receipt, and ejects the card. For this use case, additional objects
are needed. The information about the customer withdrawal, including the account
number and withdrawal amount, needs to be stored in the ATM Transaction object.
To dispense the cash, a Cash Dispenser Interface object is needed. We also need to
maintain the amount of cash in the ATM, so we identify the need for an entity
object called ATM Cash, which is decremented every time there is a cash withdrawal.
Finally, we need a Receipt Printer Interface object to print the receipt. As before, the
ATM Control object controls the sequencing of the use case.

Inspecting the other use cases reveals that one additional object is needed,
namely, the Operator Interaction object, which participates in all use cases initiated
by the Operator actor. The Operator Interaction object needs to send startup and shut-
down events to ATM Control, because operator maintenance and ATM customer
activities are mutually exclusive.

Given the preceding analysis, Figure 21.10 shows the classes in the ATM Client
Subsystem, which is depicted as an aggregate class. In addition to the three device

«client»

«subsystem»

ATMClient

«output»

CashDispenser

Interface

«user interaction»

Customer

Interaction

«output»

ReceiptPrinter

Interface

«I/O»

CardReader

Interface «user

interaction»

Operator

Interaction

«state dependent

control»

ATMControl

«entity»

ATMTransaction

«entity»

ATMCard

«entity»

ATMCash

Figure 21.10. ATM Client subsystem classes

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

384 Case Studies

I/O classes and two user interaction classes depicted in Figure 21.9, there are also
three entity classes and one state-dependent control class.

21.4.4 Object Structuring in Service Subsystem

Several entity objects are bank-wide and need to be accessible from any ATM. Con-
sequently, these objects must be stored in the Banking Service subsystem at the
server. These objects include Customer objects that hold information about bank
customers, Account objects (both checking and saving) that hold information about
individual bank accounts, and Debit Card objects that hold information about all the
debit cards maintained at the bank. The classes from which these objects are instan-
tiated all appear on the static model of the entity classes depicted in Figure 21.4.

In the Banking Service Subsystem, the entity classes are Customer, the Account
superclass, Checking Account and Savings Account subclasses, and Debit Card. There
is also the ATM Transaction object, which migrates from the client to the server. The
client sends the transaction request to the Banking Service, which sends a response to
the client. The transaction is also stored at the server as an entity object in the form
of a Transaction Log, so that a transaction history is maintained. The transient data
sent as part of the ATM Transaction message might differ from the persistent trans-
action data; for example, transaction status is known at the end of the transaction
but not during it.

Business logic objects are also needed at the server to define the business-specific
application logic for processing client requests. In particular, each ATM transac-
tion type needs a transaction manager to specify the business rules for handling the
transaction. The business logic objects are the PIN Validation Transaction Manager,
the Withdrawal Transaction Manager, the Query Transaction Manager, and the Transfer
Transaction Manager. For example, the business rules maintained by the Withdrawal
Transaction Manager are that (1) the account must always have a balance greater or
equal to zero after each withdrawal, and that (2) there is a maximum amount that
can be withdrawn each day, which is given by the attribute limit in the entity class
Debit Card.

21.5 DYNAMIC MODELING

The dynamic model depicts the interaction among the objects that participate in
each use case. The starting point for developing the dynamic model is the use cases
and the objects determined during object structuring. The sequence of interobject
message communication to satisfy the needs of a use case is depicted on either a
sequence diagram or a communication diagram. Usually one or the other of the
diagrams suffices. In this example, both diagrams are developed for the client sub-
system to allow a comparison of the two approaches.

Because the Banking System is a client/server system, the decision was made
earlier to structure the system into client and service subsystems, as shown in Figure
21.8. The communication diagrams are structured for client and service subsystems.

The communication diagrams depicted in Figures 21.11 and 21.16 are for the
realizations of the Validate PIN and Withdraw Funds use cases on the ATM client.
Communication diagrams are also needed to realize the Transfer Funds and Query

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 385

Account use cases on the ATM client, as well as for the use cases initiated by the
operator.

The Validate PIN and Withdraw Funds communication diagrams for the ATM
client are state-dependent. The state-dependent parts of the interactions are defined
by the ATM Control object, which executes the ATM statechart. The state-dependent
dynamic analysis approach is used to determine how the objects interact with each
other. Statecharts are shown for the two use cases in Figures 21.13 and 21.18, respec-
tively. The dynamic analysis for these two client-side use cases is described in Sec-
tions 21.5.1 and 21.5.3, respectively.

The Banking Service processes transactions from multiple ATMs in the order it
receives them. The processing of each transaction is self-contained; thus, the bank-
ing service part of the use cases is not state-dependent. Consequently, a stateless
dynamic analysis is needed for these use cases. The communication diagrams for
the server side Validate PIN and Withdraw Funds use cases are given in Figures 21.14
and 21.19. The dynamic analysis for these two server-side use cases is given in Sec-
tions 21.5.2 and 21.5.4, respectively.

Consider how the objects interact with each other. A detailed example is given
for the Validate PIN and Withdraw Funds use cases. On the client side, both commu-
nication diagram and sequence diagrams are shown. The same message sequence
numbering and message sequence description applies to both the sequence diagram
and the communication diagram.

21.5.1 Message Sequence Description for Client-Side Validate PIN
Interaction Diagram

The client-side Validate PIN interaction diagram starts with the customer inserting
the ATM card into the card reader. The message sequence number starts at 1,
which is the first external event initiated by the actor. Subsequent numbering in
sequence, representing the messages arriving at software objects in the system, is
1.1, 1.2, 1.3 and ends with 1.4, the system’s response displayed to the actor. The
next input from the actor is the external event numbered 2, followed by the internal
events 2.1, 2.2, and so on. The following message sequence description corresponds
to the communication diagram shown in Figure 21.11 and the sequence diagram in
Figure 21.12.

Because the Validate PIN interaction diagram is state-dependent, it is also neces-
sary to consider the ATM statechart, which is executed by the ATM Control object.
In particular, the interaction between the statechart (shown in Figure 21.13) and
ATM Control (depicted on the communication diagram) needs to be considered. The
following message sequence description also addresses the states and transitions on
the statechart that correspond to the events on the communication diagram in Fig-
ure 21.11 and the events on the sequence diagram in Figure 21.12. The message
sequence description is as follows:

1: The ATM Customer actor inserts the ATM card into the Card Reader. The
Card Reader Interface object reads the card input.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

386 Case Studies

«user interaction»
: Customer
Interaction

«I/O»
: CardReader

Interface

«state dependent
control»

: ATMContro l

«entity»
: ATMTransaction

«entity»
: ATMCard

«external I/O
device»

: CardReader

«subsystem»
: BankingService

1.2: Card Inserted

2.5: PIN Entered
(PIN Validation Transaction)

1.1: Card Id,
Start Date,
Expiration Date

2.2: Card Id,
Start Date,
Expiration Date

2.1: Card
Request

2.3: Card Id, PIN,
Start Date, Expiration Date

2.8a: Update
Status (PIN Valid)

2.7 [Valid]:
Valid PIN
(Account #s)

2.6: Validate PIN
(PIN Validation Transaction)

1.3: Get PIN,
2.8: Display Menu
(Account #s)

1: Card
Reader
Input

2: PIN Input

1.4: PIN Prompt,
2.9: Selection Menu

«client»
«subsystem»
: ATMClient

«external user»
: ATMCustomer
KeypadDisplay

2.4: PIN Validation Transaction

PIN Validation Transaction = {transactionId, transactionType, cardId, PIN, starDate, expirationDate}

Figure 21.11. Communication diagram: ATM client Validate PIN use case

1.1: The Card Reader Interface object sends the card input data, containing
Card Id, Start Date, Expiration Date to the entity object ATM Card.

1.2: Card Reader Interface sends the Card Inserted message to ATM Control.
The equivalent Card Inserted event causes the ATM Control statechart to
transition from Idle state (the initial state) to Waiting for PIN state. The
output event associated with this transition is Get PIN.

1.3: ATM Control sends the Get PIN message to Customer Interaction.
1.4: Customer Interaction displays the PIN Prompt to the ATM Customer

actor.
2: ATM Customer inputs the PIN number to the Customer Interaction object.
2.1: Customer Interaction requests card data from ATM Card.
2.2: ATM Card provides the card data to the Customer Interaction.
2.3: Customer Interaction sends Card Id, PIN, Start Date, Expiration Date, to

the ATM Transaction entity object.
2.4: ATM Transaction entity object sends the PIN Validation Transaction to

Customer Interaction.
2.5: Customer Interaction sends the PIN Entered (PIN Validation Transaction)

message to ATM Control. The PIN Entered event causes the ATM Control
statechart to transition from Waiting for PIN state to Validating PIN state.
The output event associated with this transition is Validate PIN.

2.6: ATM control sends a Validate PIN (PIN Validation Transaction) request to
the Banking Service.

2.7: Banking Service validates the PIN and sends a Valid PIN response to ATM
Control. As a result of this event, ATM Control transitions to Waiting for

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

«I/O»
: CardReader

Interface

«entity»
: ATMCard

«state dependent
control»

: ATMControl

«user interaction»
: Customer
Interaction

«entity»
: ATMTransaction

«subsystem»
: BankingService

1: Card Reader Input

1.1: Card Id, Start Date, Expiration Date

1.2: Card Inserted
1.3: Get PIN

1.4: PIN Prompt

2: PIN Input

2.1: Card Request

2.2: Card Id, Start Date, Expiration Date

2.3: Card Id, PIN, Start Date, Expiration Date

2.5: PIN Entered (PIN ValidationT ransaction)

2.6: Validate PIN (PIN Validation Transaction)

2.7 [Valid]: Valid PIN (Account #s)

2.8: Display Menu (Account #s)

2.8a: Update Status (PIN Valid)

2.9: Selection Menu

«external I/O
device»

: CardReader

«external
user»
: ATM

Customer
Keypad
Display

2.4: PIN Validation Transaction

Figure 21.12. Sequence diagram: ATM client Validate PIN use case

387

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

388 Case Studies

Waiting for PIN

Entry /

Display Welcome

Idle

Validating PIN

Waiting for

Customer Choice

1.2: Card Inserted /

1.3: Get PIN

2.5: PIN Entered /

2.6: Validate PIN

2.7 [Valid]: Valid PIN /

2.8: Display Menu,

2.8a: Update Status

Figure 21.13. Statechart for ATM Control: Validate PIN use case

Customer Choice state. The output events for this transition are Display
Menu and Update Status, which correspond to the output messages sent
by ATM Control.

2.8: ATM Control sends the Display Menu message to Customer Interaction.
2.8a: ATM Control sends an Update Status message to the ATM Transaction.
2.9: Customer Interaction displays a menu showing the Withdraw, Query,

and Transfer options to the ATM Customer.

The dynamic modeling of the alternative scenarios, corresponding to the alter-
native sequences through the Validate PIN use case, is described in Chapter 11. The
alternative scenarios are depicted on interaction diagrams and statecharts.

21.5.2 Message Sequence Description for Server-Side Validate PIN
Interaction Diagram

Consider the interaction diagram for the server side Validate PIN inclusion use case.
To validate the PIN at the server, the Debit card entity object, which contains all
the information pertinent to all debit cards that belong to the bank, needs to be
accessed. If PIN validation is successful, the Card Account entity object needs to be
accessed to retrieve the account numbers of the accounts that can be accessed by
this debit card.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 389

«client»
«subsystem»
: ATMClient

«business logic»
: PINValidation

TransactionManager

«entity»
: DebitCard

«entity»
: CardAccount

V1: Validate PIN
(PIN ValidationTransaction)

V7: Valid PIN
(Account #s)

V2: Validat e
(Card Id, PIN)

V3: Valid PI N

V4: Read
(Card Id) V5: Account #s

«service»
«subsystem»

: BankingService

«entity»
: TransactionLog

V6: Log
Transaction

Figure 21.14. Communication diagram: Banking Service Validate PIN use case

In addition, each transaction has a business logic object that encapsulates the
business application logic to manage the execution of the transaction. The business
logic object receives the transaction request from the ATM Control object at the client
and then interacts with the entity objects to determine what response to return to
ATM Control. For example, the business logic object for the PIN Validation transac-
tion is the PIN Validation Transaction Manager.

The following message sequence description for the server side Validate PIN
interaction diagram corresponds to the communication diagram shown in Fig-
ure 21.14 and the sequence diagram shown in Figure 21.15.

«business logic»
: PINValidation

TransactionManager

«subsystem»
: ATMClient

«entity»
: DebitCard

«entity»
: CardAccount

V1: Validate PIN
(PIN Validation Transaction)

V2: Validate
(Card Id, PIN)

V3: Valid PIN

V4: Read (Card Id)

V5: Account #s

V7: Valid PIN
(Account #s)

«entity»
: TransactionLog

V6: Log Transaction

Figure 21.15. Sequence diagram: Banking Service Validate PIN use case

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

390 Case Studies

V1: ATM Client sends the incoming Validate PIN request to the PIN Validation
Transaction Manager. The PIN Validation Transaction Manager contains the
business logic to determine whether the customer-entered PIN matches
the PIN stored in the Banking Service database.

V2: PIN Validation Transaction Manager sends a Validate (Card Id, PIN)
message to the Debit Card entity object, requesting it to validate this cus-
tomer’s debit card, given the card Id and customer-entered PIN.

V3: Debit Card checks that customer-entered PIN matches the Debit Card
record PIN, that card Status is okay (not reported missing or stolen), and
that Expiration Date has not passed. If card passes all checks, Debit Card
sends PIN Validation Transaction Manager a Valid PIN response.

V4: If validation is positive, PIN Validation Transaction Manager sends a mes-
sage to the Card Account entity object requesting it to return the account
numbers that may be accessed for this card Id.

V5: Card Account responds with the valid account numbers.
V6: PIN Validation Transaction Manager logs the transaction with the Trans-

action Log.
V7: PIN Validation Transaction Manager sends a Valid PIN response to the

ATM Client. If the PIN validation checks are satisfactory, the account
numbers are also sent.

21.5.3 Message Sequence Description for Client-Side Withdraw
Funds Interaction Diagram

The message sequence description for the client-side Withdraw Funds interaction
diagram addresses the messages on the communication diagram (Figure 21.16) and
the sequence diagram (Figure 21.17). It also describes the relevant states and transi-
tions on the ATM statechart (Figure 21.18). The message numbering is a continua-
tion of that described for the client-side Validate PIN interaction diagram in Section
21.5.1.

3: ATM Customer actor inputs Withdrawal selection to Customer Interaction,
together with the account number for checking or savings account and
withdrawal amount.

3.1: Customer Interaction sends the customer selection to ATM Transaction.
3.2: ATM Transaction responds to Customer Interaction with the Withdrawal

Transaction details. Withdrawal Transaction contains transaction Id, trans-
action Type, card Id, PIN, account number, and amount.

3.3: Customer Interaction sends the Withdrawal Selected (Withdrawal Trans-
action) request to ATM Control. ATM Control transitions to Processing
Withdrawal state. Two output events are associated with this transition,
Request Withdrawal and Display Wait.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

«user
interaction»
: Customer
Interface

«I/O»
: CardReader

Interface

«state
dependent

control»
: ATMControl

«entity»
: ATM

Transaction

«external I/O
device»

: CardReader

«service»
«subsystem»

: BankingService

3.18: Card Ejected

3.3: Withdrawal Selected
(Withdrawal Transaction)

3.1: Withdraw,
Account #, Amount

3.6a: Update
Status
(Amount, Balance)

3.5: Withdrawal Approved
(Amount, Balance)

3.4: Request Withdrawal
(Withdrawal Transaction),
3.11b: Confirm Cash Dispensed

3.4a: Display Wait,
3.11a: Display Cash
Dispensed,
3.19: Display Ejected

3.17: Card
Reader
Output

3: Withdraw,
Account #,
Amount

3.4a.1: Wait
Prompt,
3.11a.1: Cash
Dispensed
Prompt,
3.20: Card Ejected
Prompt

«client»
«subsystem»
: ATMClient

«output»
: CashDispenser

Interface

«output»
: ReceiptPrinter

Interface

«entity»
: ATMCash

«external
output

device»
: Cash

Dispenser

«external output
device»

: ReceiptPrinter

3.16: Eject

3.2: Withdrawal Transaction

3.6: Dispense Cash
(Amount)

3.10: Cash
Dispensed

3.7: Withdraw
(Amount)

3.8: Cash
Response

3.9: Dispenser
Output

3.14: Printer
Output

3.11: Print
Receipt

3.12: Transaction
Request

3.13: Transaction
Data

3.15: Receipt
Printed

«external
user»
: ATM

Customer
Keypad
Display

Withdrawal Transaction = {transactionId, transactionType, cardId, PIN, account#, amount}

Figure 21.16. Communication diagram: ATM client Withdraw Funds use case

391

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

«I/O»
: Card
Reader

Interface

«state
dependent

control»
: ATMControl

«user
interaction»
: Customer
Interface

«entity»
: ATM

Transaction

«subsystem»
: Banking

Service

«output»
: CashDispenser

Interface

«output»
: ReceiptPrinter

Interface

«entity»
: ATMCash

3: Withdraw, Account #, Amount 3.1: Withdraw,
Account #, Amount

3.2: Withdrawa l
Transaction

3.3: Withdrawal
Selected
(Withdrawal Transaction)

3.4: Request Withdrawal (Withdrawal Transaction)

3.4a: Display Wai t

3.4a.1: Wait Promp t

3.5: Withdrawal Approved (Amount, Balance)

3.6: Dispense Cash (Amount)

3.6a: Update Status (Amount, Balance)
3.7: Withdraw (Amount)

3.8: Cash Response

3.9: Dispenser Output

3.10: Cash Dispensed

3.11: Print Receipt

3.11a: Display Cash
Dispensed

3.11b: Confirm Cash Dispensed

3.12: Transaction Request

3.13: Transaction Data

3.11a.1: Cash Dispensed Prompt

3.16: Eject

3.14: Printer
Output

3.15: Receipt Printed

3.17: Card Reader Output

3.18: Card Ejected

3.19: Display Ejected

3.20: Card Ejected Prompt

«external
I/O device»

: Card
Reader

«external
output

device»
: Cash

Dispenser

«external
output

device»
: Receipt
Printer

«external
user»
: ATM

Customer
Keypad
Display

Figure 21.17. Sequence diagram: ATM client Withdraw Funds use case

392

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 393

Entry /

Display Welcome

Idle

Waiting for

Customer Choice

Processing

Withdrawal
Dispensing

Printing

Ejecting

Terminating

3.3: Withdrawal Selected /

3.4: Request Withdrawal,

3.4a: Display Wait

3.5: Withdrawal Approved /

3.6: Dispense Cash,

3.6a: Update Status

3.10: Cash Dispensed /

3.11: Print Receipt,

3.11a: Display Cash Dispensed,

3.11b: Confirm Cash Dispensed

3.15: Receipt Printed /

3.16: Eject

3.18: Card Ejected /

3.19: Display Ejected

After (Elapsed Time) [Closedown not Requested]

Figure 21.18. Statechart for ATM Control: Withdraw Funds use case

3.4: ATM Control sends a Request Withdrawal transaction containing the
Withdrawal Transaction to the Banking Service.

3.4a: ATM Control sends a Display Wait message to Customer Interaction.
3.4a.1: Customer Interaction displays the Wait Prompt to the ATM Customer.
3.5: Banking Service sends a Withdrawal Approved (Amount, Balance)

response to ATM Control. This event causes ATM Control to transition to
Dispensing state. The output events are Dispense Cash and Update Status.

3.6: ATM Control sends a Dispense Cash (Amount) message to Cash Dispenser
Interface.

3.6a: ATM Control sends an Update Status (Amount, Balance) message to ATM
Transaction.

3.7: Cash Dispenser Interface sends the Withdraw (Amount) to ATM Cash.
3.8: ATM Cash sends a positive Cash Response to the Cash Dispenser Interface,

identifying the number of bills of each denomination to be dispensed.
3.9: Cash Dispenser Interface sends the Dispenser Output command to the

Cash Dispenser external output device to dispense cash to the customer.
3.10: Cash Dispenser Interface sends the Cash Dispensed message to ATM Con-

trol. The equivalent Cash Dispensed event causes ATM Control to transition
to Printing state. The three output events associated with this transition
are Print Receipt, Display Cash Dispensed, and Confirm Cash Dispensed.

3.11: ATM Control sends Print Receipt message to Receipt Printer Interface.
3.11a: ATM Control sends Customer Interaction the Display Cash Dispensed

message.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

394 Case Studies

3.11a.1: Customer Interaction displays Cash Dispensed prompt to ATM Cus-
tomer.

3.11b: ATM Control sends a Confirm Cash Dispensed message to the Banking
Service.

3.12: Receipt Printer Interface requests transaction data from ATM Transac-
tion.

3.13: ATM Transaction sends the transaction data to the Receipt Printer Inter-
face.

3.14: Receipt Printer Interface sends the Printer Output to the Receipt Printer
external output device.

3.15: Receipt Printer Interface sends the Receipt Printed message to ATM
Control. As a result, ATM Control transitions to Ejecting state. The output
event is Eject.

3.16: ATM Control sends the Eject message to Card Reader Interface.
3.17: Card Reader Interface sends the Card Reader Output to the Card Reader

external I/O device.
3.18: Card Reader Interface sends the Card Ejected message to ATM Control.

ATM Control transitions to Terminated state. The output event is Display
Ejected.

3.19: ATM Control sends the Display Ejected message to the Customer Inter-
action.

3.20: Customer Interaction displays the Card Ejected prompt to the ATM Cus-
tomer.

21.5.4 Message Sequence Description for Server-Side Withdraw
Funds Interaction Diagram

The business logic object that participates in the server-side Withdraw Funds use case
is the Withdrawal Transaction Manager, which encapsulates the logic for determining
whether the customer is allowed to withdraw funds from the selected account. The
other business logic objects that participate in the server use cases are the Transfer
Transaction Manager, which encapsulates the logic for determining whether the cus-
tomer can transfer funds from one account to another, and the Query Transaction
Manager. The latter is sufficiently simple that a separate business logic object is not
strictly necessary; the functionality could be handled by the read operation of the
Account object. However, to be consistent with the other business logic objects, it is
kept as a separate object.

A detailed analysis is given for the server-side Withdraw Funds use case. A similar
approach is needed for the server-side Transfer Funds and server-side Query Account
use cases. The following message sequence description corresponds to the commu-
nication diagram shown in Figure 21.19 for the server-side Withdraw Funds use case
and sequence shown in Figure 21.20.

W1: ATM Client sends the Request Withdrawal request to the Withdrawal
Transaction Manager, which contains the business logic for determin-
ing whether a withdrawal can be allowed. The incoming withdrawal

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 395

«client
«subsystem»
: ATMClient

«business logic»
: Withdrawal

TransactionManager

«entity»
: DebitCard

«entity»
: Account

W1: Request Withdrawal
(Withdrawal Transaction)

W8: Withdrawal Approved
(Amount, Balance)

W2: Check
Daily Limit
(Card Id, Amount),
W6: Update
Daily Total
(Card Id, Amount)

W3: Daily Limit Response

W4: Debit
(Account#, Amount)

W5: Withdrawal
Approved
(Amount, Balance)

«service»
«subsystem»
: BankingService

«entity»
: Transaction

Log

W7: Log Transaction

Figure 21.19. Communication diagram: Banking Service Withdraw Funds
use case

transaction consists of transaction Id, transaction Type, card Id, PIN,
account Number, and amount.

W2: Withdrawal Transaction Manager sends a Check Daily Limit (Card Id,
Amount) message to Debit Card, with the card Id and amount requested.
Debit Card checks whether the daily limit for cash withdrawal has been

«subsystem»
: ATMClient

«business logic»
: Withdrawal
Transaction

Manager

«entity»
: Account

«entity»
: DebitCard

«entity»
: Transaction

Log

W1: Request Withdrawal
(Withdrawal Transaction)

W2: Check Daily Limit
(Card Id, Amount)

W3: Status

W4: Debit (Account#, Amount)

W5: Withdrawal Approved (Amount, Balance)

W6: Update Daily Total
(Card Id, Amount)

W7: Log TransactionW8: Withdrawal Approved
(Amount, Balance)

Figure 21.20. Sequence diagram: Banking Service Withdraw Funds use case

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

396 Case Studies

exceeded for this card Id. Debit Card determines if: Total Withdrawn
Today + Amount Requested ≤ Daily Limit

W3: Debit Card responds to Withdrawal Transaction Manager with a positive
or negative Daily Limit Response.

W4: If the response is positive, Withdrawal Transaction Manager sends a
message to Account (which is an instance of either Checking Account or
Savings Account), requesting it to debit the customer’s account if there
are sufficient funds in the account. Account determines whether there
are sufficient funds in the account:

Account Balance – Amount Requested ≥ 0

If there are sufficient funds, Account decrements the balance by the
Amount Requested.

W5: Account responds to Withdrawal Transaction Manager with either With-
drawal Approved (Amount, Balance) or Withdrawal Denied.

W6: If the account was debited satisfactorily, the Withdrawal Transaction
Manager sends an Update Daily Total (Card Id, Amount) to Debit Card so it
increments the total withdrawn today by the amount requested.

W7: Withdrawal Transaction Manager logs the transaction with the Transac-
tion Log.

W8: Withdrawal Transaction Manager returns Withdrawal Approved
(Amount, Balance) or Withdrawal Denied to the ATM Client.

21.6 ATM STATECHART

Because there is one control object, ATM Control, a statechart needs to be defined
for it. Partial statecharts are shown corresponding to the Validate PIN and Withdraw
Funds use cases in Figures 21.14 and 21.18, respectively. It is necessary to develop
similar statecharts for the other use cases, and to develop states and transitions for
the alternative paths of the use cases, which in this application address error situ-
ations. Flat statecharts are used initially for the use cases. Integration of the stat-
echarts for the individual use cases and design of the hierarchical ATM Control
statechart are described in Chapter 10. One of the advantages of a hierarchical stat-
echart is that it can be presented in stages, as is shown for the ATM statechart in
Figures 21.21 through 21.24. The event sequence numbers shown on these figures
correspond to the object interactions previously described.

Five states are shown on the top-level statechart in Figure 21.21: Closed Down
(which is the initial state), Idle, and three composite states, Processing Customer
Input, Processing Transaction, and Terminating Transaction. Each composite state
is decomposed into its own statechart, as shown on Figures 21.22, 21.23, and 21.24,
respectively.

At system initialization time, given by the event Startup, the ATM transitions
from the initial Closed Down state to Idle state. The event Display Welcome is triggered
on entry into Idle state. In Idle state, the ATM is waiting for a customer-initiated
event.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 397

Entry / Display
Welcome

Idle

Processing
Transaction

Processing
Customer

Input

Entry / Display
System Down

Closed Down

Terminating
TransactionCancel / Eject,

Display Cancel

Card Stolen, Card Expired/
Confiscate, Update Status

Rejected /
Eject,

Display Apology

Query Approved /
Print Receipt,
Update Status

Transfer Approved /
Print Receipt,
Update Status

 Withdrawal Approved /
 Dispense Cash,
 Update Status

After(Elapsed Time)
[Closedown Not Requested]

After(Elapsed Time)
[Closedown Was Requested]

Insufficient /
Cash Eject,
Abort Cash
Dispensed

 Withdrawal Selected /
 Request Withdrawal,

 Display Wait

Query Selected /
Request Query, Display Wait

Transfer Selected /
Request Transfer,

Display Wait

Card Inserted /
 Get PIN

ClosedownStartup

Third Invalid PIN / Confiscate

Figure 21.21. Top-level statechart for ATM Control

21.6.1 Processing Customer Input Composite State

The Processing Customer Input composite state (Figure 21.22) is decomposed into
three substates – Waiting for PIN, Validating PIN, and Waiting for Customer Choice:

1. Waiting for PIN. This substate is entered from Idle state when the customer
inserts the card in the ATM, resulting in the Card Inserted event. In this state,
the ATM waits for the customer to enter the PIN.

2. Validating PIN. This substate is entered when the customer enters the PIN.
In this substate, the Banking Service validates the PIN.

3. Waiting for Customer Choice. This substate is entered as a result of a Valid PIN
event, indicating a valid PIN was entered. In this state, the customer enters a
selection: Withdraw, Transfer, or Query.

The statechart is developed by considering the different states of the ATM as the
customer actor proceeds through each of the use cases, starting with the Validate PIN
use case. When a customer inserts an ATM card, the event Card Inserted causes the
ATM to transition to the Waiting for PIN substate of the Processing Customer Input
composite state (see Figure 21.22a). During this time, the ATM is waiting for the
customer to input the PIN. The output event, Get PIN, results in a display prompt

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

398 Case Studies

Waiting for
PIN

Validating PIN

Waiting for
Customer

Choice

Entry / Display
Welcome

Idle

Ejecting

Confiscating

Processing Transactio

(a)

n

Processing
Customer
Input

Card Inserted /
Get PIN

Valid PIN /
Display Menu,

 Update Status

PIN Entered/
Validate PIN

Cancel / Eject,
Display Cancel

Card Stolen, Card Expired /
Confiscate, Update Status

 Withdrawal Selected /
Request Withdrawal,

Display Wait

Query Selected /
Request Query,

Display Wait

Transfer Selected /
Request Transfer,

Display Wait

Invalid PIN /
Invalid PIN Prompt

Third Invalid PIN /
Confiscate

Waiting for
PIN

Validating PIN
and Card

Validating
PIN

PIN Entered/
Validate PIN

Checking PIN
Status

Waiting for
Customer

Choice

Confiscating

 Valid PIN /
Display Menu,

Update Status

Card Stolen, Card Expired /
Confiscate, Update Status

Invalid PIN/
Update Status

Invalid PIN/
Invalid PIN Prompt

Third Invalid PIN /
Confiscate

(b)

Figure 21.22. Statechart for ATM Control: Processing Customer Input composite state

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 399

to the customer. When the customer enters the PIN number, the PIN Entered event
causes a transition to the Validating PIN substate, during which the Banking Service
determines whether the customer-entered PIN matches the PIN stored by the Bank-
ing System for this particular card. There are three possible state transitions out
of the Validating PIN state. If the two PIN numbers match, the Valid PIN transition
is taken to the Waiting for Customer Choice state. If the PIN numbers do not match,
the Invalid PIN transition is taken to re-enter the Waiting for PIN state and allow
the customer to enter a different PIN number. If the customer-entered PIN is still
invalid after the third attempt, the Third Invalid transition is taken to the Confiscating
substate of the Terminating Transaction composite state.

The Validating PIN substate is itself a composite state consisting of two substates:
Validating PIN and Card as well as Checking PIN Status (see Figure 21.22b). In the first
substate, the card Id (read off card) and PIN (entered by customer) combination are
validated by comparing them with the card Id/PIN combination stored in the Card
Account entity object. In addition, the card Id is checked to ensure that the card is
not lost or stolen. If the validation is successful, the ATM transitions to Waiting for
Customer Choice. If the card is lost or stolen, the ATM transitions to Confiscating
state. However, if the PIN is invalid, an additional check needs to be made to deter-
mine whether this is the third time that the PIN is incorrect. It is better to store the
Invalid PIN count at the client rather than the server, because this is a local ATM
concern. An invalid PIN count is therefore stored in ATM Transaction. This count is
updated and checked after each invalid PIN response from the server – if the count
is less than three, then the ATM transitions back to Waiting for PIN. If the count is
Third Invalid PIN, then the ATM transitions to Confiscating state.

The customer can also press the Cancel button on the ATM machine in any of
the three Processing Customer Input substates. The Cancel event transitions the ATM
to the Ejecting substate of the Terminating Transaction composite state. Because the
Cancel event can occur in any of the three substates of the Processing Customer Input
composite state, it is more concise to show the Cancel transition leaving the compos-
ite state.

21.6.2 Processing Transaction Composite State

The Processing Transaction composite state (Figure 21.23) is also decomposed into
three substates, one for each transaction: Processing Withdrawal, Processing Transfer,

Processing Transaction

Withdrawal Selected /
 Request Withdrawal,

Display Wait

Query Selected /
Request Query,

Display Wait

Transfer Selected /
Request Transfer,

Display Wait

Waiting for
Customer

Choice

Processing
Transfer

Processing
Query

Processing
Withdrawal

Ejecting

Rejected /
Eject,

Display Apology

Printing

Dispensing

Query Approved /
Print Receipt,
Update Status

Transfer Approved /
Print Receipt, Update Status

Withdrawal Approved /
Dispense Cash,

Update Status

Figure 21.23. Statechart for ATM: Processing Transaction composite state

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

400 Case Studies

Processing
Customer

Input

Processing
Transaction

Ejecting

Confiscating

Cancel / Eject,
Display Cancel

Stolen Card, Expired Card /
Confiscate, Update Status

Rejected / Eject,
Display Apology

Printing
Query Approved /

Print Receipt,
Update Status

Transfer Approved /
Print Receipt,
Update Status

Dispensing

Withdrawal Approved /
Dispense Cash,
Update Status

Terminating

Terminating Transaction

Entry / Display
Welcome

Idle

Entry / Display
System Down

Closed Down

Receipt Printed /
Eject

Card Ejected /
Display Ejected

Cash Dispensed /
Print Receipt,
Display Cash Dispensed,
Confirm Cash Dispensed

Card Confiscated /
Display Confiscated

After(Elapsed Time)[Closedown Not Requested]

After(Elapsed Time)[Closedown Was Requested]

Insufficient
Cash /
Eject,
Abort
Cash

Dispensed

Third Invalid PIN /
Confiscate

Figure 21.24. Statechart for ATM Control: Terminating Transaction composite state

and Processing Query. Depending on the customer’s selection – for example, with-
drawal – the appropriate substate within Processing Transaction – for example, Pro-
cessing Withdrawal – is entered, during which the customer’s request is processed.

From Waiting for Customer Choice state, the customer may select Withdraw,
Query, or Transfer and enter the appropriate substate within the Processing
Transaction composite state (see Figure 21.23) – for example, Processing Withdrawal.
When a Withdrawal transaction is completed, the event Withdrawal Approved is
issued if the customer has enough funds, and the Dispensing substate of the Ter-
minating Transaction composite state is entered (Figure 21.24). Alternatively, if the
customer has insufficient funds or has exceeded the daily withdrawal limit, a Rejected
event is issued.

21.6.3 Terminating Transaction Composite State

The Terminating Transaction composite state (see Figure 21.24) has substates for
Dispensing, Printing, Ejecting, Confiscating, and Terminating.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 401

The actions associated with the transition to Dispensing state are to Dispense Cash
and Update Status. After the Cash Dispensed event has taken place, the ATM tran-
sitions to Printing state to print the receipt. The action Print Receipt is executed at
the transition. When the receipt is printed, the state Ejecting is entered and the Eject
action is executed. When the card has been ejected (event Card Ejected), the Termi-
nating state is entered.

For the Query and Transfer transactions, the sequence of states following
approval of the transaction is similar, except that no cash is dispensed, as can be
seen on the ATM statecharts.

21.7 DESIGN OF BANKING SYSTEM

Next, the analysis model of the Banking System is mapped to a design model. The
steps in this process are as follows:

1. Integrate the communication model. Develop integrated communication dia-
grams.

2. Structure the Banking System into subsystems. Define the interfaces of the
subsystems.

3. For each subsystem, structure the system into concurrent tasks.
4. For each subsystem, design the information hiding classes.
5. Develop the detailed software design.

21.8 INTEGRATING THE COMMUNICATION MODEL

Because the Banking System is a client/server system (Section 21.4), a decision was
made earlier to structure the system into client and service subsystems, as shown in
Figure 21.8. The communication diagrams are also structured for client and service
subsystems.

The communication diagrams for the client-side Validate PIN and Withdraw Funds
use cases are depicted in Figures 21.11 and 21.16. Communication diagrams are also
needed for the client-side Transfer Funds and Query Account use cases, as well as for
the use cases initiated by the operator. The integrated communication diagram for
the ATM Client Subsystem (Figure 21.25) is the result of the merger of all these use
case–based communication diagrams, as described in Chapter 13. To be complete,
the integration must consist of communication scenarios for the main and alterna-
tive sequences through each use case.

Some objects participate in all the client-side communications, such as ATM Con-
trol, but others participate in as few as one, such as the Cash Dispenser Interface.
Some of the messages depicted on the integrated communication diagram are aggre-
gate messages, such as Customer Events and Display Prompts. The integrated diagram
must also include messages from all the alternative sequences, as described in Chap-
ter 13. Thus, the Confiscate and Card Confiscated messages originate from alternative
sequences in which the customer transaction is unsuccessful. Similarly, the aggre-
gate Display Prompts messages include messages dealing with incorrect PIN entry,
insufficient cash in the customer account, and so on.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

«external I/O
device»

: CardReader

«I/O»
: CardReader

Interface

«entity»
: ATMCard

«user
interaction»
: Customer
Interaction

«state dependent
control»

: ATMControl

«entity»
: ATM

Transaction

«service»
«subsystem»

: BankingService

«output»
: Receipt
Printer

Interface

«external output
device»
: Receipt
Printer

«entity»
: ATMCash

«user
interaction»
: Operator
Interaction

«output»
: Cash

Dispenser
Interface

«external
output device»

: Cash
Dispenser

«client»
«subsystem»
: ATMClient

Bank
Responses

ATM
Transactions

Card Inserted,
Card Ejected,
Card Confiscated

Eject,
Confiscate

Dispense Cash
(Cash details)

Cash
Dispensed

Start Up,
Closedown

Cash
Added

Cash
Response

Dispenser
Output

Operator
Information

Printer
Output

Receipt
Printed

Print
Receipt

Transaction
Data

Operator
Input

Transaction
Request

Transaction
Details

Customer Info.,
Customer Selection

Display
Prompts

Update
Transaction
Status
(Cash details),
Update
PIN Status

Customer
Events
(Transaction
details)

Card
Request

Card
Data

Card
Input
Data

Card
Reader
Output

Card
Reader
Input

Customer
Input

Display
Information

Cash
Withdrawal
Amount

«external user»
: ATMCustomer
KeypadDisplay

«external user»
: Operator

Figure 21.25. Integrated communication diagram for ATM client subsystem

402

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 403

Log

«coordinator»
: BankTransaction

Coordinator

«business logic»
: Transfer

Transaction
Manager

«business logic»
: Query

Transaction
Manager

«business logic»
: Withdrawal
Transaction

Manager

«business logic»
: PINValidation

Transaction
Manager

«database wrapper»
: Checking
Account

«database
wrapper»

: TransactionLog

«database
wrapper»
: Savings
Account

«database
wrapper»

: DebitCard

«database
wrapper»

: Card
Account

ATM
Transactions

Bank
Responses

Transfer
Transaction

Transfer
Response

Query
Transaction

Withdraw,
Confirm,
Abort

Query
Response

Withdraw
Response

PIN Validation
Request

PIN
Validation
Response

Read
Account
Numbers

Validate

Card
Data

Check,
Update

Daily
Limit
Response

Account
Data

Debit,
Credit,
Read

Account
Data

Read

Debit,
Credit,
Read

Account
Data

Log
Log

Log

Debit,
Credit,
Read

Debit,
Credit,
Read

Account
Data

Account
Data Account

Data

Read

«service»
«subsystem»
: BankingService

«client»
«subsystem»
: ATMClient

Figure 21.26. Integrated communication diagram for Banking Service subsystem

Now consider the Banking Service Subsystem. Figures 21.14 and 21.19 are the
communication diagrams for the server-side Validate PIN and Withdraw Funds use
cases. Additional communication diagrams are needed for the server-side Transfer
Funds and Query Account use cases. The integrated communication diagram for the
Banking Service Subsystem is shown in Figure 21.26. For each transaction, there is a
transaction manager object that encapsulates the business logic for the transaction.
These are the PIN Validation Transaction Manager, Withdrawal Transaction Manager,
Query Transaction Manager, and Transfer Transaction Manager objects. In addition,
it is decided at design time that there is a need for a coordinator object, the Bank
Transaction Coordinator, which receives client requests and delegates them to the
appropriate transaction manager, as described in Chapter 15.

21.9 STRUCTURING THE SYSTEM INTO SUBSYSTEMS

In the case of the Banking System, the step of structuring the system into subsystems
is straightforward. The Banking System is a classic client/server architecture that
is based around the multiple client/single service architectural pattern. There are
two subsystems, the multiple instances of the ATM Client Subsystem and the Banking
Service Subsystem, as initially depicted in Figure 21.8. The two subsystems might
also be depicted on a high-level communication diagram, as shown in Figure 21.27.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

404 Case Studies

«client»
«subsystem»
: ATMClient

«service»
«subsystem»

: BankingService

«external I/O
device»

: CardReader

«external output
device»

: ReceiptPrinter

«external output
device»

: CardDispenser

«software system»
: BankingSystem

cardReaderOutputcardReaderInput

customerInput

display
Information

operator
Input

operator
Information

printer
Output

dispenser
Output

ATM Transactions

Bank Responses

«external user»
: Operator

«external user»
: ATMCustomer
KeypadDisplay

Figure 21.27. Subsystem design: high-level communication diagram for
Banking System

Figure 21.27 is an analysis-level communication diagram showing the two sub-
systems and simple messages passed between them. The ATM Client Subsystem
sends ATM Transactions to the Banking Service Subsystem, which responds with Bank
Responses. ATM Transactions is an aggregate message consisting of the PIN Valida-
tion, Withdraw, Query, Transfer, Confirm, and Abort messages. The Bank Responses
are responses to these messages.

The next step is to consider the distributed nature of the application and define
the distributed message interfaces. Because this is a client/server subsystem, there
are multiple instances of the client subsystem and one instance of the service subsys-
tem. Each subsystem instance executes on its own node. In the design model, each of
these subsystems is a concurrent subsystem, consisting of at least one task. The mes-
sage interface is synchronous message communication with reply. Each ATM client
sends a message to the Banking Service and then waits for a response. Because the
Banking Service can receive messages from several ATM clients, a message queue
can build up at the Banking Service, which processes incoming messages on a FIFO
basis. The design model communication diagram is depicted in Figure 21.28.

The next step is to structure each subsystem into concurrent tasks. In the fol-
lowing sections, the design of the ATM Client Subsystem and then the design of the
Banking Service Subsystem are considered.

21.10 DESIGN OF ATM CLIENT SUBSYSTEM

To determine the tasks in a system, it is necessary to understand how the objects in
the application interact with each other. This is best depicted on the analysis model
communication diagram, which shows the sequence of messages passed between
objects in support of a given use case. For the ATM Client Subsystem, consider the
communication diagrams for the Client Validate PIN and Client Withdraw Funds use
cases in addition to the integrated communication diagram for this subsystem. The

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 405

«external I/O
device»

: CardReader

«external output
device»

: ReceiptPrinter

«external output
device»

: CardDispenser

cardReaderOutputcardReaderInput

customer
Input

display
Information

operator
Input

operator
Information

printer
Output

dispenser
Output

ATMTransaction

bankResponse

«client»
«subsystem»
: ATMClient

«service»
«subsystem»

: BankingService

«external user»
: Operator

«external user»
: ATMCustomer
KeypadDisplay

«software system»
: BankingSystem

Figure 21.28. Subsystem interfaces: high-level concurrent communication
diagram for Banking System

task design described in this section leads to the concurrent communication diagram
shown in Figure 21.29.

21.10.1 Design the ATM Subsystem Concurrent Task Architecture

Consider the communication diagram supporting the Validate PIN use case (see Fig-
ure 21.11). The first object to participate in the communication is the Card Reader
Interface object, which is an I/O object that interfaces to the real-world card reader.
The characteristics of the Card Reader external I/O device are that it is an event
driven I/O device that generates an interrupt when some input is available. The Card
Reader Interface object is structured as an event driven I/O task, as shown in Figure
21.29. Initially, the task is dormant. It is activated by an interrupt, reads the card
reader input, and converts it into an internal format. It then writes the contents of
the card to the ATM Card entity object. ATM Card is a passive object and thus does
not need a separate thread of control. It is further categorized as a data abstraction
object.

The Card Reader Interface task then sends a Card Inserted message to ATM Con-
trol, which is a state-dependent control object that executes the ATM Control stat-
echart. ATM Control is structured as a demand driven state-dependent control task
because it needs to have a separate thread of control to allow it to react to incoming
messages from a variety of sources. Initially, it is idle until it is activated on demand
by the arrival of a control request message. On receiving the Card Inserted message,
ATM Control executes the statechart and transitions to Waiting for PIN substate (see
Figures 21.21 and 21.22). The action associated with the state transition is to send
a Get PIN message to Customer Interaction, which is a user interaction object that
interacts with the user, providing outputs to the display and receiving inputs from
the keypad. Customer Interaction is structured as an event driven user interaction
task with its own separate thread of control. It prompts the customer for the PIN,

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

«event driven»
«external I/O

device»
: CardReader

«data
abstraction»
: ATMCard

«data
abstraction»

: ATM
Transaction

«passive»
«output device»

: Receipt
Printer

«data
abstraction»
: ATMCash

«passive»
«output device»

: Cash
Dispenser

Bank
Responses

ATM
Transactions

Card Inserted,
Card Ejected,
Card Confiscated

Eject,
Confiscate

Start Up,
Closedown

Cash
Added

Cash
Response

Dispenser
Output

Operator
Information

Dispense Cash
(Cash Amount)

Operator
Input

Transaction
Details

Customer Info,
Customer Selection

Display
Prompts

Update
Transaction
Status
(Amount, Balance),
Update
PIN Status

Customer
Events
(Transaction
details)

Card
Request

Card
Data

Card
Input
Data

Card
Reader
Output

Card
Reader
Input

Customer
Input

Display
Information

«event driven»
«user

interaction»
: Customer
Interaction

«demand»
«state dependent

control»
: ATMControl

«event driven»
«I/O»

: CardReader
Interface

«event driven»
«user

interaction»
: Operator
Interaction

Cash
Withdrawal
Amount

«service»
«subsystem»

: BankingService

«client»
«subsystem»
: ATMClient

«external user»
: Operator

«event driven»
«external user»
: ATMCustomer
KeypadDisplay

«demand»
«output»

: CashDispenser
Interface

«demand»
«output»

: ReceiptPrinter
Interface

Receipt
Printed

Print
Receipt

Transaction
Data

Transaction
Request

Printer
Output

Figure 21.29. Task architecture: initial concurrent communication diagram for ATM client subsystem

406

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 407

receives the PIN, reads the card information from ATM Card, and then writes the
card and PIN information to ATM Transaction, which is also a passive data abstrac-
tion object. Because the ATM Card and ATM Transaction data abstraction objects are
each accessed by more than one task, they are both placed outside any task.

Next, consider the communication diagram supporting the Withdraw Funds use
case, which has many of the same objects as the Validate PIN communication dia-
gram. The additional objects are Receipt Printer Interface, Cash Dispenser Interface,
and ATM Cash.

The external Cash Dispenser is a passive output device, so it does not need an
event driven output task. Instead, the Cash Dispenser Interface object is structured as
a demand driven output task, which is activated on demand by message arrival from
ATM Control. Similarly, the Receipt Printer Interface object is structured as a demand
driven output task, which is activated by message arrival from the ATM Control task.

The Operator Interaction user interaction object (see Figure 21.24), which partic-
ipates in the three operator-initiated use cases, is also mapped to an event driven
user interaction task (see Figure 21.29). The ATM Cash entity object is a passive data
abstraction object and thus does not need a separate thread of control, which is
accessed by both the Cash Dispenser Interface and Operator Interaction tasks.

To summarize, there is one event driven I/O task, Card Reader Interface, one
demand driven state-dependent control task, ATM Control, two demand driven out-
put tasks, Cash Dispenser Interface and Receipt Printer Interface, and two event driven
user interaction tasks, Customer Interaction and Operator Interaction. There are three
passive entity objects, ATM Card, ATM Transaction, and ATM Cash, which are all cate-
gorized further as data abstraction objects.

21.10.2 Define the ATM Subsystem Task Interfaces

To determine the task interfaces, it is necessary to analyze the way the objects
(active or passive) interact with each other. First, consider the interaction of the
tasks just determined with the passive data abstraction objects. In each case, the
task calls an operation provided by the passive object. This has to be a synchronous
call, because the operation executes in the thread of control of the task. Similarly,
all other operations of the data abstraction objects are invoked as synchronous calls.
Because each of these passive objects is invoked by more than one task, it is nec-
essary for the operations to synchronize the access to the data. The operations pro-
vided by these passive objects are described in the next section.

Next consider the message interaction between the tasks. Consider the interface
between the Card Reader Interface and ATM Control tasks. It is desirable for Card
Reader Interface task to be able to send a message to ATM Control and not have to
wait for it to be accepted. For this to be the case, an asynchronous message interface
is needed, as shown in Figure 21.30. This means that there is also a message interface
in the opposite direction because ATM Control sends Eject and Confiscate messages to
the Card Reader Interface task. This is designed as a synchronous message interface
without reply because, after sending a message to ATM Control, the Card Reader Inter-
face waits for an Eject or Confiscate return message. This means that ATM Control can
send a synchronous message and not have to wait for Card Reader Interface to accept
the message. The latter task’s responses are asynchronous, providing the greatest
flexibility in the interface between the Card Reader Interface and ATM Control tasks.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

withdrawCash
(in cashAmount,
out fivesToDispense,
out tensToDispense,
out twentiesToDispense)

«event driven»
«external I/O

device»
: CardReader

«data
abstraction»
: ATMCard

«demand»
«external

output device»
: Receipt
Printer

«data
abstraction»
: ATMCash

«demand»
«external

output
device»
: Cash

Dispenser

bank
Response

ATM
Transaction

cardInserted,
cardEjected,
cardConfiscated

eject,
confiscate

startUp,
closedown

addCash
(in fivesAdded,
in tensAdded,
in twentiesAdded)

dispenser
Output

operator
Information

printer
Output

operator
InputupdateCustomerInfo

(cardData, PIN),
updateCustomerSelection
(in selection,
out transactionDetails)

display
Prompts

update
Transaction
Status
(amount, balance),
updatePINStatus
(inout status),

customer
Event
(transaction
Details)

read
(out
cardId,
out
startDate,
out
expiration
Date)

write
(cardId,
startDate,
expiration
Date)

card
Reader
Output

card
Reader
Input

Customer
Input

Display
Information

«event driven»
«user

interaction»
: Customer
Interaction

«demand»
«state

dependent
control»

: ATMControl

«event driven»
«I/O»

: CardReader
Interface

«event driven»
«user

interaction»
: Operator
Interaction

«service»
«subsystem»

: BankingService

«client»
«subsystem»
: ATMClient

«external
user»

: Operator

«event driven»
«external user»
: ATMCustomer
KeypadDisplay

«demand»
«output»

: CashDispenser
Interface

«demand»
«output»

: ReceiptPrinter
Interface

«data
abstraction»

: ATM
Transaction

dispense
(cashAmount)

read(out transaction
Data)

print
(receiptInfo)

Figure 21.30. Task architecture: revised concurrent communication diagram for ATM client subsystem

408

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 409

Consider the interface between Customer Interaction and ATM Control. Should it
be asynchronous or synchronous? First, consider a synchronous with response sce-
nario. Customer Interaction sends a Withdrawal request to ATM Control, which then
sends the transaction to the Banking Service. After receiving the Server’s response,
ATM Control sends a display prompt to Customer Interaction. In the meantime, it
is not possible for Customer Interaction to have any interaction with the customer,
because it is suspended, waiting for the response from the ATM Control. This is unde-
sirable from the customer’s viewpoint. Consider, instead, an asynchronous inter-
face, as shown in Figure 21.30. With this approach, Customer Interaction sends the
Withdrawal request to ATM Control and does not wait for a response. In this case,
Customer Interaction can respond to customer inputs such as a Cancel request before
a response is received from the server. Customer Interaction receives responses from
ATM Control as a separate asynchronous message interface. Customer Interaction is
designed to be capable of receiving inputs from either the customer or ATM Control.
It processes whichever input comes first.

The Operator Interaction task’s interface is also asynchronous. The operator
actor’s requests are independent of the customer’s requests, so messages from the
customer and the operator could arrive in any order at ATM Control. To allow for
this, ATM Control receives all incoming messages on a message queue and processes
them on a FIFO basis.

The two output tasks, Cash Dispenser Interface and Receipt Printer Interface, are
activated by messages arriving from ATM Control on demand. In each case, the out-
put task is idle prior to the arrival of the message, so a synchronous interface is
acceptable because it will not hold up ATM Control. In Figure 21.30, the concur-
rent communication diagram is updated to show the task interfaces.

21.10.3 Design the ATM Client Information Hiding Classes

The objects and classes for the Banking System are initially determined in the
analysis model. Further categorization of passive classes is possible during design;
for example, entity classes are categorized further as data abstraction classes or
database wrapper classes. During class design, the class interfaces are designed, as
described in Chapter 14. To determine the class interfaces, it is necessary to consider
how the objects on the communication diagrams interact with each other.

First, consider the design of the entity classes in the ATM Client Subsystem.
Because there is no database in the ATM Client Subsystem, all the entity classes
encapsulate their own data and are therefore categorized further as data abstrac-
tion classes. The ATM Client Subsystem has three data abstraction classes: ATM
Card, ATM Transaction, and ATM Cash. The attributes of data abstraction classes are
determined during the conceptual static modeling of the entity classes, as described
in Section 21.3. The operations of these classes are determined by analyzing the way
they are used on the communication diagrams.

The designs of the ATM Cash and ATM Card classes are described in Chapter 14.
For the ATM Transaction class, the attributes are also determined from the static
model, but its operations are determined from the way it is accessed by other objects,
as given on the communication diagrams. The operations are update Customer Infor-
mation, update Customer Selection, update PIN Status, update Transaction Status, and

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

410 Case Studies

read. The first two operations are invoked by the Customer Interaction task. The next
two operations are invoked by the ATM Control task. The read operation is invoked
by the Receipt Printer Interface task prior to printing the receipt.

There is one state-machine class, namely, ATM State Machine, which is internal
to the ATM Control task and encapsulates the ATM statechart, which is implemented
as a state transition table. The operations are process Event and current State, which
are standard operations for a state-machine class.

The design of the classes is shown in more detail in Figure 21.31, which shows
the attributes and operations of the classes.

21.11 DESIGN OF BANKING SERVICE SUBSYSTEM

Because the bank server holds the centralized database for the Banking System,
we start the design of the Banking Service Subsystem by considering some impor-
tant design decisions concerning the static model. The conceptual static model of
the entity classes (see Figures 21.4–21.7) contains several entity classes that actually
reside at the bank server. A design decision is made that the entity classes at the
server, which were originally depicted in the static model of the problem domain
(see Figure 21.4), are to be stored as relational tables in a relational database. Thus,
during design we determine that the entity classes at the server do not actually
encapsulate any data but rather encapsulate the interface to the relational database
and are actually database wrapper classes. The design of the database wrapper
classes and the mapping of the entity class model to the relational database are
described later in this section.

21.11.1 Design the Banking Service Subsystem Concurrent
Task Architecture

Now consider the Banking Service Subsystem design. A decision is made to use a
sequential service. As long as the throughput of the server is fast enough, this is
not a problem. In a sequential service, the service is designed as one task; thus, it is
designed as one program with one thread of control. Each transaction is received on
a FIFO message queue and is processed to completion before the next transaction
is started.

The Banking Service Subsystem is designed as one sequential service task, which
is activated on demand. Inside the task are the coordinator object (the Bank Trans-
action Coordinator), the business logic objects (PIN Validation Transaction Manager,
Withdrawal Transaction Manager, Query Transaction Manager, and Transfer Transac-
tion Manager), and the entity classes, now categorized further as database wrapper
classes. The initial task design for the service subsystem, consisting of one task, is
shown in Figure 21.32.

The Bank Transaction Coordinator task receives the incoming transaction mes-
sages and replies with the bank responses. It delegates the transaction processing
to the transaction managers, which in turn access the database wrapper objects.
All communication internal to the Banking Service Subsystem is synchronous, corre-
sponding to operation calls, as described next.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

+ addCash (in fivesAdded, in tensAdded, in twentiesAdded)
+ withdrawCash (in cashAmount, out fivesToDispense, out
tensToDispense, out twentiesToDispense)

- cashAvailable: Integer = 0
- fives: Integer = 0
- tens: Integer = 0
- twenties: Integer = 0

«data abstraction»
ATMCash

+ write (in cardId, in startDate, in expirationDate)
+ read (out cardId, out startDate, out expirationDate)

- cardNumber: String
- startDate: Date
- expirationDate: Date

«data abstraction»
ATMCard

+ updateCustomerInfo (cardData, PIN)
+ createTransaction ()

+ updateCustomerSelection (in selection, out
transactionData)
+ updatePINStatus (inout status)
+ updateTransactionStatus (amount, balance)
+ read (out transactionData)

- transactionId: String
- cardId: String
- PIN: String
- date: Date
- time: Time
- amount: Real
- balance: Real
- PINCount: Integer
- status: Integer

«data abstraction»
ATMTransaction

+ processEvent (in event, out action)
+ currentState () : state

«state machine»
ATMStateMachine

Figure 21.31. ATM client information hiding classes

411

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

«service»
«subsystem»
: BankingService

«coordinator»
: BankTransaction

Coordinator

«business logic»
: Transfer

Transaction
Manager

«business logic»
: Query

Transaction
Manager

«business logic»
: Withdrawal
Transaction

Manager

«business logic»
: PINValidation

Transaction
Manager

«database wrapper»
: Checking
Account

«database
wrapper»

: TransactionLog

«database
wrapper»
: Savings
Account

«database
wrapper»

: DebitCard

«database
wrapper»

: Card
Account

«client»
«subsystem»
: ATMClient

ATM
Transaction

bank
Response

Transfer
Transaction

Transfer
Response

Query
Transaction

Withdraw,
Confirm,
Abort

Query
Response

Withdraw
Response

PIN Validation
Request

PIN
Validation
Response

Read
Account
Numbers

Validate

Card
Data

Check,
Update

Daily
Limit
Response

Account
Data

Debit,
Credit,
Read

Account
Data

Read

Debit,
Credit,
Read

Account
Data

Log
Log

Log

Debit,
Credit,
Read

Debit,
Credit,
Read

Account
Data

Account
Data

Account
Data

Read
Log

Figure 21.32. Initial concurrent communication diagram for Banking Service subsystem

412

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 413

«database wrapper»

Account {abstract}

+ readBalance (accountNumber) : Rea l
+ credit (accountNumber, amount){abstract}
+ debit (accountNumber, amount){abstract}
+ open (accountNumber)
+ close (accountNumber)

«database wrapper»

CheckingAccount

+ credit (accountNumber, amount)
+ readLastDepositAmount

(accountNumber) : Real

«database wrapper»

SavingsAccount

+ debit (accountNumber, account)
+ clearDebitCount (accountNumber)
+ addInterest (accountNumber,

interestRate)
+ readCumulativeInterest

(accountNumber) : Real

«database wrapper»

DebitCard

+ create (cardID)
+ validate (in cardID, in PIN, out status)
+ updatePIN (cardID, PIN)
+ checkDailyLimit (cardID, amount)
+ updateDailyTotal (cardID, amount)
+ updateExpirationDate (cardID,

expirationDate)
+ updateCardStatus (cardID, status)
+ updateDailyLimit (cardID, newLimit)
+ clearTotal (cardID)
+ read (in cardID, out PIN,

out expirationDate, out status,
out limit, out total)

+ delete (cardID)

+ read (out transaction)
+ log (in transaction)

«database wrapper»

TransactionLog

+ read (in cardID, out accountNumber)
+ update (in cardID, in accountNumber)

«database wrapper»

CardAccount

Figure 21.33. Banking Service database wrapper classes

21.11.2 Design the Banking Service Information Hiding Classes

Chapter 15 describes the design of database wrapper classes as well as the mapping
of analysis model entity classes to design model database wrapper classes and rela-
tional tables (flat files) for a relational database. At the Banking Service, the database
wrapper classes are Account, Checking Account, Savings Account, Debit Card, Card
Account, and Transaction Log, as shown in Figure 21.33. Each of these classes encap-
sulates an interface to a database relation. Because a relational database consists
of flat files and does not support class hierarchies, from a database perspective, the
Account generalization/specialization hierarchy is flattened so that the attributes of
the Account superclass are assigned to the Checking Account and Savings Account
relations (as described in Chapter 15). However, in the Banking Service class design
of the database wrappers, the Account generalization/specialization hierarchy is pre-
served so that the Checking Account and Savings Account database wrapper classes
inherit generalized operations from the abstract Account superclass.

There are also four business logic classes whose interfaces need to be designed.
These are the PIN Validation Transaction Manager, the Withdrawal Transaction

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

414 Case Studies

«business logic»

TransferTransactionManager

+ initialize ()

+ transfer (in fromAccountNumber,

in toAccountNumber, in amount,

out t_response)

«business logic»

PinValidationTransactionManager

+ initialize ()

+ validatePIN (in cardID, in PIN,

out v_response)

«business logic»

QueryTransactionManager

+ initialize ()

+ query (in accountNumber,

out q_response)

«business logic»

WithdrawalTransactionManager

+ initialize ()

+ withdraw (in accountNumber, in amount,

out w_response)

+ confirm (accountNumber, amount)

+ abort (accountNumber, amount)

Figure 21.34. Banking Service business logic classes

Manager, the Query Transaction Manager, and the Transfer Transaction Manager, as
shown in Figure 21.34. Each transaction manager handles an atomic transaction.
For example, the Withdrawal Transaction Manager provides a withdraw operation,
which is called to handle a customer request to withdraw funds, as well as two other
operations. The confirm operation is called when an ATM Client confirms that the
cash was dispensed to the client. The abort operation is called when an ATM Client
aborts the transaction, for example, because the cash dispenser failed to dispense
the cash or the customer cancelled the transaction.

21.11.3 Design the Banking Service Interfaces

The Banking Service is a sequential service subsystem with one thread of control. In
particular, the design of the Banking Service task needs to be considered at this stage.
The task is a composite task composed of passive objects. The Bank Transaction
Coordinator receives incoming transactions and delegates them to the business logic
objects, namely, the PIN Validation Transaction Manager, the Withdrawal Transaction
Manager, the Query Transaction Manager, and the Transfer Transaction Manager.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 415

The Bank Transaction Coordinator actually receives the messages FIFO from the
ATM Clients. For each message, it determines the type of the transaction and then
delegates the transaction processing to the appropriate transaction manager. Each
transaction is processed to completion, with the response returned to the Bank Trans-
action Coordinator, which in turn sends the response to the appropriate ATM Client.
The Bank Transaction Coordinator then processes the next transaction message.

Figure 21.32 shows the initial design of the Banking Service Subsystem In the ini-
tial concurrent communication diagram for the Banking Service, all interfaces are
simple messages. Figure 21.35 shows the final version of the Banking Service Sub-
system concurrent communication diagram. Communication between the multiple
instances of the ATM Client and the Banking Service is synchronous with reply. All
internal interaction within the Banking Service is between passive objects; hence,
all internal interfaces are defined in terms of operation calls (depicted by using the
synchronous message notation).

21.12 RELATIONAL DATABASE DESIGN

This section describes the logical design of the bank’s relational database, starting
from the conceptual entity class model described in Section 21.3.3 and depicted in
Figures 21.4 through 21.7. All the entity classes depicted on the class diagram (Fig-
ure 21.4) reside on the bank server. The data held by these entity classes need to
be persistent and therefore need to be stored in a database. As described in Section
21.12, the entity classes are designed as database wrapper classes, whereas the con-
tents of the entity classes (as defined by the attributes of the entity classes) need to
be stored in relational tables in the database. In the following description, primary
keys are underlined and foreign keys are shown in italics: (underline = primary key,
italic = foreign key).

The guidelines for designing a relational database from a static model are
described in Section 15.5. Consider the entity classes in Figure 21.4. Each of the
Bank, ATM Info, Customer, and Debit Card entity classes is mapped to a relational
table. In each case, an attribute that uniquely locates a row of the respective table is
made the primary key, such as the primary key customerId for the Customer table.
Foreign keys are chosen to allow navigation between the tables.

For the Account generalization/specialization hierarchy, the decision is made to
flatten the hierarchy by replicating the attributes of the superclass in the subclass
tables Checking Account and Savings Account. Although account type (savings
or checking) is an attribute of the Account classes, it is assumed that the account
type can be determined from the Account Number; therefore, the primary key for
both Checking Account and Savings Account tables is accountNumber. The asso-
ciation class Card Account (explicitly depicted in Figure 21.4) is designed as an
association table, which represents the many-many relationship between Card and
Account. Customer Account is also designed as an association table, representing
the many-many relationship between Customer and Account. Even though a Cus-
tomer Account association class is not explicitly modeled in the static mode (it is not
needed by the ATM transactions), it is necessary in the relational database.

For the ATM Transaction generalization/specialization hierarchy, the same
decision is made to flatten the hierarchy and only provide relational tables for the
transaction subclasses. The primary key for an ATM transaction is the transaction

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

log
(in transaction)

«service»
«subsystem»
: BankingService «coordinator»

: BankTransaction
Coordinator

«business logic»
: Transfer

Transaction
Manager

«business logic»
: Query

Transaction
Manager

«business logic»
: Withdrawal
Transaction

Manager

«business logic»
: PINValidation

Transaction
Manager

«database
wrapper»
: Checking
Account

«database
wrapper»

: TransactionLog

«database
wrapper»
: Savings
Account

«database
wrapper»

: DebitCard

«database
wrapper»

: Card
Account

«client»
«subsystem»
: ATMClient

ATM
Transaction

bank
Response

transfer(in fromAccount#,
in toAccount#, in amount,
out t_response)

query(in account#,
out q_response)

withdraw(in account#,
in amount, out w_response),
confirm(account#, amount),
abort(account#, amount)

validatePIN(in cardId, in PIN, out v_response)

read(in cardId,
out account#)

validate(in cardID,
in PIN,
out status)

checkDailyLimit
(cardId, amount),
updateDailyTotal
(cardId, amount)

debit(account#,
amount),
credit(account#,
amount),
readBalance

readBalance,
read
Cumulative
Interest

debit(account#,
amount),
credit(account#,
amount),
readBalance

log
(in transaction)

log
(in
transaction)

log
(in transaction)

debit(account#,
amount),
credit(account#,
amount),
readBalance

debit(account#,
amount),
credit(account#,
amount),
readBalance

readBalance,
readLast
Deposit
Amount

Figure 21.35. Revised concurrent communication diagram for Banking Service subsystem

416

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 417

Id, which consists of a concatenated key: bankId, ATMId, date, time. bankId
and ATMId are also foreign keys because they allow navigation to the Bank and
ATMInfo tables. ATMInfo has a concatenated primary key consisting of bankId,
ATMId, with bankId also a foreign key. The attributes date and time provide a time
stamp to uniquely identify a transaction.

Bank (bankName, bankAddress, bankId)
Customer (customerName, customer Id, customerAddress)
Debit Card (cardId, PIN, startDate, expirationDate, status, limit, total,

customerId)
Checking Account (accountNumber, accountType, balance,

lastDepositAmount)
Savings Account (accountNumber, accountType, balance, interest)
Card Account (cardId, accountNumber)
Customer Account (customerId, accountNumber)
ATM Info (bankId, ATMId, ATMLocation, ATMAddress)
Withdrawal Transaction (bankId, ATMId, date, time, transactionType, cardId,

PIN, accountNumber, amount, balance)
Query Transaction (bankId, ATMId, date, time, transactionType, cardId, PIN,

accountNumber, balance)
Transfer Transaction (bankId, ATMId, date, time, transactionType, cardId, PIN,

fromAccountNumber, toAccountNumber, amount)
PIN Validation Transaction (bankId, ATMId, date, time, transactionType,

cardId, PIN, startDate, expirationDate)

21.13 DEPLOYMENT OF BANKING SYSTEM

Because this is a client/server system, there are multiple instances of the client sub-
system and one instance of the service subsystem. Each subsystem instance executes
on its own node, as depicted in the deployment diagram in Figure 21.36. Thus, each
instance of the ATM Client executes on an ATM node, and the one instance of the
Banking Service executes on the server node.

: ATMClient
{1 node per ATM}

«wide area network»

: BankingService
{1 server node}

: ATMClient
{1 node per ATM}

: ATMClient
{1 node per ATM}

Figure 21.36. Deployment diagram for Banking System

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

«service»
«subsystem»
: BankingService

«client»
«subsystem»
: ATMClient

ATM
Transaction

query
Response

transfer(in fromAccount#,
in toAccount#, in amount)

query(in account#)

withdraw(in account#,
in amount),
confirm(account#, amount) ,
abort(account#, amount)

validatePIN(in cardId, in PIN)

«demand»
«coordinator»

: BankTransaction
Coordinator

«demand»
«business logic»

: Transfer
Transaction

Manager

«demand»
«business logic»

: Query
Transaction

Manager

«demand»
«business logic»

: Withdrawal
Transaction

Manager

«demand»
«business logic»
: PINValidation

Transaction
Manager

transfer
Response

withdrawal
Response validation

Response

Figure 21.37. Alternative design for Banking Service: concurrent service design for Banking System

418

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 419

21.14 ALTERNATIVE DESIGN CONSIDERATIONS

An alternative design decision is to design the Banking Service as a concurrent ser-
vice, in which the Bank Transaction Coordinator and each of the business logic objects
are designed as separate demand driven tasks that are activated on demand. With
this concurrent service design, the Bank Transaction Coordinator delegates a trans-
action to a business logic object and then immediately accepts the next transaction;
thus, multiple transactions would be processed concurrently at the server. This solu-
tion should be adopted if the sequential service design is inadequate for handling the
transaction load. For more information on the design of concurrent services, refer
to Chapter 15.

21.15 DETAILED DESIGN

The detailed design of the Banking System is described in terms of the task event
sequencing logic. Examples of task behavior specifications for the Card Reader Inter-
face and ATM Control tasks in the ATM Client Subsystem and for the Banking Service
task in the Banking Service Subsystem are given in Chapter 18. This section describes
the event sequencing logic for these tasks.

21.15.1 Example of Event Sequencing Logic for Card Reader
Interface Task

The Card Reader Interface task (see Figure 21.30) is awakened by a card reader exter-
nal event, reads the ATM card input, writes the card contents to the ATM Card object,
sends a cardInserted message to the ATM Control, and then waits for a message. If the
message sent by the ATM Controller is eject, the card is ejected, and if it is confiscate,
the card is confiscated. The passive data abstraction object, ATM Card, is outside the
task and is used to store the contents of the card.

All message communication in the Banking System is through calls to the operat-
ing system. Thus, the message queue, ATMControlMessageQ, between the Card Reader
Interface task (producer) and ATM Control (consumer) is provided by the operat-
ing system, as is the synchronous communication between ATM Control and the Card
Reader Interface task (see Figure 21.32). A synchronous message from ATM Control
is received in a message buffer called cardReaderMessageBuffer.

Initialize card reader;
loop
-- Wait for external interrupt from card reader
wait (cardReaderEvent);
Read card data held on card’s magnetic strip;
if card is recognized
then -- Write card data to ATM Card object;

ATMCard.write (cardID, startDate, expirationDate);
-- send card Inserted message to ATM Control;
send (ATMControlMessageQ, cardInserted);
-- Wait for message from ATM Control;

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

420 Case Studies

receive (cardReaderMessageBuffer, message);
if message = eject
then

Eject card;
-- Send card Ejected message to ATM Control;
send (ATMControlMessageQ, cardEjected);

elseif message = confiscate
then
Confiscate card;
-- Send card Confiscated message to ATM Control;
send (ATMControlMessageQ, cardConfiscated);

else error condition;
end if;

else -- card was not recognized so eject;
Eject card;

end if;
end loop;

21.15.2 Example of Event Sequencing Logic for ATM Control Task

The ATM Control task is at the heart of the ATM Client subsystem (see Figure 21.30)
and interacts with several tasks. ATM Control has an input message queue called ATM-
ControlMessageQ, from which it receives messages from its three producers – Card
Reader Interface, Customer Interaction, and Operator Interaction. ATM Control sends
messages to several tasks. It sends synchronous messages without reply to the Card
Reader Interface. It sends synchronous messages with reply to the Cash Dispenser
Interface and Receipt Printer Interface tasks. It sends asynchronous messages to the
Customer Interaction task on the promptMessageQueue message queue. It sends syn-
chronous messages with reply to the Banking Service.

Because it is state-dependent, the ATM Control task does not process incom-
ing events but rather the state-dependent actions as given by the statechart. The
implementation of the statechart is encapsulated in the ATM State Machine state-
machine object, which is nested inside ATM Control. Given the new event, the process
Event operation returns the action(s) to be performed. Most events are received on
the ATM Control input message queue, although there are three exceptions to this.
Because the communication with the Banking Service is synchronous, the response is
received as the output parameter of the send message. Because of the synchronous
communication with the Cash Dispenser Interface and the Receipt Printer Interface
tasks, the dispense Cash and print Receipt actions are synchronous messages with
reply, which return whether the respective dispensing and printing actions were suc-
cessful.

When an event is generated internally as a result of a response to a synchronous
message, the variable newEvent is set to the value of this event and the Boolean
variable outstandingEvent is set to True. Examples of such internal events are with-
drawalResponse (several synchronous bank responses are possible, as described in
the next section in the event sequencing logic for the Banking Service) or cash

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 421

Dispensed. The event sequencing logic is given below, which describes most of the
actions executed by ATM Control. After the execution of each action case, the next
execution step is a transfer to the end of the pseudocode case block (for brevity,
the transfer is not explicitly shown below). The pseudocode for the ATM Control task
follows:

loop
-- Messages from all senders are received on Message Queue
Receive (ATMControlMessageQ, message);
-- Extract the event name and any message parameters
-- Given the incoming event, lookup state transition table;
-- change state if required; return action to be performed;
newEvent = message.event
outstandingEvent = true;

while outstandingEvent do
ATMStateMachine.processEvent (in newEvent, out action);
outstandingEvent = false;
-- Execute action(s) as given on ATM Control statechart

case action of
Get PIN: -- Prompt for PIN;

send (promptMessageQueue, displayPINPrompt);
Validate PIN: --Validate customer entered PIN at Banking Service;

send (Banking Service, in validatePIN, out
validationResponse);

newEvent = validationResponse; outstandingEvent = true;
Display Menu: -- Display selection menu to customer;

send (promptMessageQueue,displayMenu);
ATMTransaction.updatePINStatus (valid);

Invalid PIN Action: -- Display Invalid PIN prompt;
send (promptMessageQueue, displayInvalidPINPrompt);
ATMTransaction.updatePINStatus (invalid);

Request Withdrawal: -- Send withdraw request to Banking
Service;

send (promptMessageQueue, displayWait);
send (Banking Service, in withdrawalRequest, out

withdrawalResponse);
newEvent = withdrawalResponse; outstandingEvent = true;

Request Query: -- Send query request to Banking Service;
send (promptMessageQueue, displayWait);
send (Banking Service, in queryRequest, out queryResponse);
newEvent = queryResponse; outstandingEvent = true;

Request Transfer: -- Send transfer request to Banking Service;
send (promptMessageQueue, displayWait);
send (Banking Service, in transferRequest, out

transferResponse);
newEvent = transferResponse; outstandingEvent = true;

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

422 Case Studies

Dispense: -- Dispense cash and update transaction status;
ATMTransaction.updateTransactionStatus (withdrawalOK);
send (cashDispenserInterface, in cashAmount, out dispenseStatus);

newEvent = cashDispensed; outstandingEvent = true;
Print: -- Print receipt and send confirmation to Banking

Service;
send (promptMessageQueue, displayCashDispensed);
send (Banking Service, in confirmRequest);
send (receiptPrinterInterface, in receiptInfo, out

printStatus);
newEvent = receiptPrinted; outstandingEvent = true;

Eject: -- Eject ATM card;
send (cardReaderInterface, eject);

Confiscate: -- Confiscate ATM card;
send (cardReaderMessageBuffer, confiscate);
ATMTransaction.updatePINStatus (status);

Display Ejected: -- Display Card Ejected prompt;
send (promptMessageQueue, displayEjected);

Display Confiscated: -- Display Card Confiscated prompt;
send (promptMessageQueue, displayConfiscated);

. . .
end case;

end while;
end loop;

21.15.3 Example of Event Sequencing Logic for Banking Service Task

The Banking Service receives messages from all the ATM Clients (see Figure 21.36).
Although the communication is synchronous with reply, a message queue can build
up at the Banking Service as it receives messages from multiple ATM clients. In this
sequential solution, the Banking Service is a sequential service task, which processes
each request to completion before starting the next.

loop
receive (ATMClientMessageQ, message) from Banking Service Message Queue;
Extract message name and message parameters from message;
case Message of
Validate PIN:

-- Check that ATM Card is valid and that PIN entered by
-- customer matches PIN maintained by Server;
PINValidationTransactionManager.ValidatePIN

(in CardId, in PIN, out validationResponse);
-- If successful, validation Response is valid and return
-- Account Numbers accessible by this debit card;

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

Client/Server Software Architecture Case Study 423

-- otherwise validation Response is invalid,
-- third Invalid, or stolen;
reply (ATMClient, validationResponse);

Withdrawal:
-- Check that daily limit has not been exceeded and that
-- customer has enough funds in account to satisfy request.
-- If all checks are successful, then debit account.
WithdrawalTransactionManager.withdraw

(in AccountNumber, in Amount, out withdrawalResponse);
-- If approved, then withdrawal Response is
-- {successful, amount, currentBalance};
-- otherwise withdrawalResponse is {unsuccessful};
reply (client, withdrawalResponse);

Query:
-- Read account balance
queryTransactionManager.query
(in accountNumber, out queryresponse);
-- Query Response = Current Balance and either Last Deposit
-- Amount (checking account) or Interest (savings acount);
reply (client, queryResponse);

Transfer:
-- Check that customer has enough funds in From Account to
-- satisfy request. If approved, then debit From Account
-- and credit To Account;
transferTransactionManager.transfer (in fromAccount#,

in toAccount#, in amount, out transferResponse);
-- If approved, then transfer Response is
-- {successful, amount, Current Balance of From Account};
-- otherwise Transfer Response is {unsuccessful};
reply (client, transferResponse);

Confirm:
-- Confirm withdrawal transaction was completed successfully
withdrawalTransactionManager.confirm (in accountNumber, in amount);

Abort:
-- Abort withdrawal transaction
withdrawalTransactionManager.abort (in accountNumber, in amount);

end case;
end loop;

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 17:21:23 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.023

Cambridge Books Online © Cambridge University Press, 2016

