

87Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE. DOI:
© 2014 Elsevier Inc. All rights reserved.2014

http://dx.doi.org/10.1016/B978-0-12-416619-6.00005-5

Modeling Software Applications 5

5.1 INTRODUCTION
Applications are the ultimate objective of the software development process, which transforms a rela-
tively general computing device into a specialized purpose-built machine. Hence, we show it at the
top element in our framework (Figure 5.1). However, as argued previously, in practice there is almost
always interplay between the elements in this framework, such that dependencies exist in both top-
down and bottom-up directions. This favors an iterative development process, as our understanding of
the ramifications of such dependencies gradually increases with experience.

In this chapter we describe ways in which MARTE can be used to enable more precise model-
ing of characteristic phenomena encountered in many real-time software applications but which are,
typically, not adequately served by general-purpose modeling languages, including UML. Section
5.2 lists and describes the domain-specific application characteristics explicitly targeted by MARTE.
These are then used as a basis for structuring the rest of the chapter. Section 5.3 examines the core
concepts and design principles behind the approach chosen for application modeling in MARTE and

CHAPTER

CHAPTER CONTENTS

5.1 Introduction ..87
5.2 Distinguishing characteristics of “real-time” applications ...88
5.3 Application modeling foundations ..90

5.3.1 Software resources ... 90
5.3.2 Software resource services .. 92

5.4 Dealing with concurrency ..93
5.4.1 Modeling concurrent tasks .. 94
5.4.2 Modeling synchronization mechanisms .. 103
5.4.3 Modeling task communications mechanisms .. 107

5.5 Dealing with timeliness ...111
5.5.1 Modeling clocks and timers via the implicit approach .. 111
5.5.2 Associating time with services and service invocations [Advanced] 113
5.5.3 Modeling cyclical behaviors .. 115

5.6 Dealing with asynchrony and hardware interfacing ...117
5.6.1 Modeling interrupt sources and interrupt handling .. 118
5.6.2 Modeling signal-based notifications ... 120

5.7 Dealing with resource limitations (Specifying platform requirements) ..121
5.8 Summary ..123
References ..123

http://dx.doi.org/10.1016/B978-0-12-416619-6.00005-5

88 CHAPTER 5 Modeling Software Applications

also provides some general methodological guidelines. Sections 5.4 through 5.6 cover the essential
aspects of application modeling, corresponding to traditional techniques used in real-time systems
development, dealing with issues of concurrency, timeliness, and the asynchrony. Section 5.7 briefly
introduces a MARTE-based method for tackling the problem of the interplay between real-time appli-
cations and platforms by making this dependence explicit. This approach is elaborated further in
Chapter 6.

For readers seeking a deeper view, most of the MARTE stereotypes and concepts discussed in
this chapter are specified in the Time Modeling section (clause 9) of the MARTE specification, the
Generic Resource Model (GRM) section (clause 10), the Software Resource Modeling (SRM) por-
tion of the Detailed Resource Modeling (DRM) section (clause 14.1), the High-Level Application
Modeling (HLAM) section (clause 13), and the Model Library appendix (Annex D).

5.2 Distinguishing characteristics of “real-time” applications
MARTE provides numerous concepts for modeling phenomena typically encountered in real-time
and embedded systems software applications. There is a widespread misconception that this is a very
narrow domain, dealing with highly specialized concerns such as microsecond response times, hard-
ware interfacing, efficient scheduling schemes, etc. However, as explained in Chapter 1, the scope
encompassed by MARTE is much broader than the terms “real-time” or “embedded” might first sug-
gest. It covers the full range of software-intensive systems that interact with and have an effect on the
physical world. These are so-called cyber-physical systems. Systems in this domain are character-
ized by some combination of the following idiosyncratic characteristics, which are less commonly
encountered in other types of software systems:

●	 Concurrency. Most real-time applications perform multiple temporally overlapping computations.
This is usually a direct consequence of the concurrency in the environment in which the
applications operate and which the systems are intended to influence in some way.1 An

Design
iterations

SOFTWARE APPLICATION

PLATFORM

DEPLOYMENT

FIGURE 5.1

The design of real-time software applications.

1 This distinguishes it from concurrency that is introduced purely for reasons of efficiency, such as the fine-grained algo-
rithm parallelization used in high-performance computing.

895.2 Distinguishing characteristics of “real-time” applications

unfortunate and well-known consequence of this parallelism is that the concurrent executions
can interfere with each other due to functional conflicts or contention for shared resources.
Unfortunately, since the human mind is not particularly adept at reasoning about concurrent
causal streams, concurrency adds significant complexity to the design of software applications
and is the source of many design and implementation errors. A number of common mechanisms,
such as concurrent tasks and mutual exclusion devices, have been devised over the years to help
designers cope with these issues. MARTE supports this by providing facilities for direct and
precise modeling of such mechanisms. This aspect is covered in Section 5.4.

●	 Timeliness. This is, of course, the most obvious and often most challenging characteristic of
real-time systems: the need to produce a timely response to a stimulus stemming from the
environment. Timeliness is often misinterpreted as implying the need to respond “as fast
as possible.” However, there are many situations where a response that is premature is as
inappropriate as a response that is late. (As someone once noted: “real-time does not necessarily
mean real fast.”) It simply means “on time,” whatever that signifies in a given application context
(e.g., a program for weather prediction might take hours to complete its calculations and yet
still be on time). Nevertheless, the principal challenge in most cases is to perform computations,
some of which can be quite complex, at a rate that allows the software to keep pace with its
environment. A particular requirement from the applications perspective is the ability to express
timing constraints, such as deadlines and end-to-end processing times. MARTE provides a rich
and highly customizable model of time as well as a catalog of different time-related mechanisms,
such as clocks and timers. In addition, it includes capabilities to precisely express temporal
constraints at different levels of abstraction. General methods for modeling time and time values
using MARTE were covered in Section 4.1. In this chapter, in Section 5.5, we describe how these
and other MARTE facilities can be used in the specific case of designing real-time applications.

●	 Asynchrony and interaction with physical components. In many real-time applications it is
not always possible to predict when the interactions between the software application and its
environment will occur. However, regardless of when they occur, the software has to be ready to
respond, often resulting in the creation of new concurrent execution streams. Situations in which
asynchronous events affect currently running execution streams requiring them to dynamically
adapt to the new circumstances can be particularly problematic. Standard UML provides a rich
set of modeling concepts and formalisms for representing asynchronous behavior. MARTE
supplements these with the ability to more precisely characterize the sources and nature of
asynchronous events and related mechanisms, such as interrupts and interrupts handlers. Like
concurrency, problems of asynchrony in real-time software are the result of interactions with
the physical world. Software interfaces to this world through various hardware devices and
communication channels (which are also kinds of hardware devices) that are accessible to its
computational machinery. Many of these devices are quite sophisticated and involve complex
interaction protocols. MARTE provides modeling features that allow precise specifications of
the interfaces between software and hardware including devices that differ from the general
input–output machinery. This includes devices that provide monitoring and control of continuous
phenomena, which present a unique challenge to the inherently discrete nature of software
programs. MARTE supports well-known methods for dealing with this type of system, such
as cyclical tasks whose execution rates are adjusted to the rate of change of the continuous

90 CHAPTER 5 Modeling Software Applications

phenomena they control. The topics of modeling asynchrony and interfacing to hardware using
MARTE are covered in Section 5.6.

●	 Resource limitations. In the real-time world it is often inappropriate to ignore the fact that
computation takes time, that it consumes energy, and that it requires adequate CPU speed,
memory capacity, and communications bandwidth (e.g., bus, network, web). For example, the
need to maximize battery life and to limit memory consumption are major design concerns in
the design of applications for modern mobile devices. Consequently, application designers need
a means for specifying these characteristics and associated limitations, which generally translate
into requirements for platform resources. Methods of dealing with resource limitations using
MARTE are introduced in Section 5.7 and discussed further in greater detail in Chapter 6, which
deals with platform modeling.

5.3 Application modeling foundations
The conceptual framework of MARTE is based on the general notions of time and resources intro-
duced in Chapter 4. For the specific task of modeling real-time applications, the core concept of a
resource is elaborated further through the notion of a software resource, which serves as a basis for a
variety of different manifestations required in application modeling. For example, the general concept
of a memory resource can be specialized into software-specific logical forms such as buffers, packets,
or messages. Similarly, a basic communications resource can be refined into logical concepts such as
channels and virtual circuits.

5.3.1 Software resources
A software resource is a logical concept that is obtained by viewing the base hardware resource
notion as something that is more purpose oriented at the application level. In MARTE, software
resources are represented by the SwResource stereotype, which is a refinement of the general
Resource stereotype (Figure 5.2). The core SwResource stereotype is refined further to represent
various specialized resource types, such as concurrent tasks, mutual exclusion devices, memory buff-
ers, communication channels, etc. Analogously, the general concept of a resource service described
in Section 4.3.3 and represented by the stereotype GrService, is refined via the concept of a soft-
ware access service (the SwAccessService stereotype). However, in practice this particular stereo-
type is used infrequently. Instead, services are usually modeled either via the denotational attributes
of SwResource, as explained in Section 5.3.2, or by using the Acquire and Release stereotypes
described in Section 4.3.3.

Software resources are typically created dynamically by some program. It is worth reminding our-
selves that, like all resources in MARTE, even software resources are ultimately constructed out of
hardware. For example, an operating system process acts as a kind of virtual processor with its own
CPU and memory, which, in the end, requires real physical processors and real physical memory.
However, this physical underpinning is hidden behind layers of software whose purpose is to provide
a more abstract or “logical”, view of the hardware. This not only provides a more convenient view of
the resource, but also enables portability of the application across different hardware platforms.

915.3 Application modeling foundations

The SwResource stereotype is intended as an abstract stereotype, which means that, like an
abstract class, it cannot be applied directly. Instead, one of its refinements has to be used, based on
what kind of element is being represented. However, all these refinements inherit the following com-
monly used attributes from their parent2:

●	 resMult is inherited from the general resource Resource stereotype, and specifies the multiplicity
of the resource being modeled. This can be used either to model the capacity of a resource (e.g., a
counting semaphore would have a capacity greater than 1) or to specify the number of resources
when the model element is used to represent a collection of resources.

●	 isActive, also inherited from the general concept, is used to denote resources capable of
autonomous behavior. This is used, for example, to model concurrent tasks.

●	 memorySizeFootprint is a denotational3 attribute that identifies which specific feature of
the underlying base model element contains information on the amount of memory required
or consumed by this software resource. It is useful when analyzing memory requirements of
applications. However, it is an optional attribute and can be omitted if not required.

●	 createServices, deleteServices, and initializeServices, are three denotational attributes of type
UML::BehavioralFeature, which are described in the next section. These too are optional. They
can be useful when analyzing execution scenarios. For example, the invocation of a create service
operation indicates that some entity is being created, which may be useful information for an
analysis tool, such as a model checker, which tracks the order in which resources are created and
destroyed. These features are discussed in more detail in Section 5.3.2 below.

resMult : Integer = 1
isActive : Boolean

«stereotype»
Resource

memorySizeFootprint : TypedElement [0..1]
createServices : BehavioralFeature [0..*]
deleteServices : BehavioralFeature [0..*]
initializeServices : BehavioralFeature [0..*]

«stereotype»
SwResource

FIGURE 5.2

The SwResource stereotype.

2 As per the convention adopted in this book, only the most commonly used subset of attributes is covered in the text and
shown in Figure 5.2. Readers interested in the complete specification should refer to the standard itself [2].
3 Recall that a denotational stereotype attribute is used to point to a feature (attribute or behavioral feature) in its underlying
base class and does not actually represent the feature itself (see Section 2.3.7).

92 CHAPTER 5 Modeling Software Applications

In general, the base software resource stereotype, SwResource, can be applied to the same kinds
of UML concepts as its parent Resource stereotype (see Section 4.2.2), depending on the nature of
the concept being modeled. In particular, this includes the following:

●	 Classifier — As might be expected, when a classifier such as a UML Class or Interface is tagged as
a software resource, the usual intent is to capture a type of resource. Recall from Section 2.4.2 that
types typically capture the features shared by instances of the type, but they do not specify the actual
values of these characteristics. Therefore, if we need to specify concrete values for resource attributes,
we have to do it using UML elements that represent instances in some way, as described below.

●	 InstanceSpecification, Lifeline, Property, or ConnectableElement — Each of these kinds
of model elements is used to represent an instance (i.e., usage) of a resource type in an object
diagram, an interaction diagram, an attribute in a classifier definition, a role in a collaboration, or
a part in a structured class decomposition.

5.3.2 Software resource services
For the general software resource concept, MARTE provides for explicit modeling of a common set
of services, using the following denotational attributes of the SwResource stereotype:

●	 One or more resource creation services (createServices), that is, services used to create instances
of a particular resource. Note that this type of service is often not defined as a feature of the
resource itself (since the resource instance may not yet exist) but as a feature of a corresponding
resource broker. The result of a successful invocation of a creation service is a new properly
initialized instance of the resource with a unique identity.

●	 One or more initialization services (initializeServices), used to jumpstart the execution of a newly
created software resource. In some systems this functionality is integrated with the creation service.

●	 One or more destruction services (deleteServices), which are used to terminate the associated
software resource and return whatever internal resources it used (e.g., memory, identifier) back to
the appropriate system resource pools.

As explained earlier, these modeling capabilities are used primarily for analyzing models represent-
ing systems in execution. For example, a memory leak analyzer will need to know the order in which
memory is being requested and released. To do that, it has to know which application model operations
acquire memory (i.e., creation services) and which ones release it (i.e., destruction services).

Consider the simple example in Figure 5.3. The class diagram in Figure 5.3a shows three classes.
One of these, MemoryManager, is stereotyped as a MemoryBroker, which is a particular kind of
MARTE SwResource. It represents a class whose instances are responsible for allocating heap mem-
ory to its clients. MemoryManager has two operations, new() and rel(), which are invoked to acquire and
release blocks of heap memory. To ensure that the special semantics of these functions are recog-
nizable (e.g., by a memory usage analysis program), the Acquire stereotype is applied to the new()
operation and the Release stereotype to the rel() operation (see Section 4.3.3 for a description of these
stereotypes). In this particular example, the Server class (an active object) performs some kind of spe-
cial function, the details of which are omitted, which requires the use of a 512 byte block of mem-
ory. Its operation is initiated by a start signal from an instance of the ServerMaster class and continues
until it is instructed to finish by a stop signal from the master. At that point, it releases the memory it
obtained earlier. A particular instantiation of this application is shown in the collaboration diagram

935.4 Dealing with concurrency

fragment in Figure 5.3b. Finally, the full interactions scenario just described is represented by the
sequence diagram in Figure 5.3c. Note that this model could be statically analyzed by an automatic
program or by a human inspector checking for memory leaks, by tracking the acquisition and release
of memory blocks.

A semantically equivalent alternative to using the createService and deleteService attributes
of MemoryBroker is to apply the Acquire and Release resource service stereotypes directly to
elements in the model that represent invocations of the new() and rel() operations, respectively. An
example of this approach is shown in Figure 5.18 in which the stereotypes are applied to execution
occurrence elements.

5.4 Dealing with concurrency
The standard and most widely supported solution for dealing with concurrency is multitasking,4
the capacity to execute multiple separate program streams (tasks) in parallel. It is common for such

4 We use this term in a general sense to cover not only simple shared-processor multitasking, but also multiprogramming
and distributed programming.

: Server

: ServerMaster

: MemoryManager

ServerMaster Server

«acquire» new (blkSize : Integer)
«release» rel (blkSize : Integer)

«memoryBroker»
MemoryManager

1..*1

0..*

0..1

sd Servicing

:ServiceMaster : Server : MemoryManager

start
new(512)

rel(512)
stop

(a)

(c)

(b)

FIGURE 5.3

Example showing the use of designated resource services.

94 CHAPTER 5 Modeling Software Applications

systems to share one or more physical processors as well as other resources, such as memory, com-
munications channels, and, possibly, other devices. This, of course, requires that the execution of
concurrent tasks be appropriately ordered (i.e., synchronized), to ensure that uncontrolled accesses to
shared resources do not lead the system into an invalid state. Furthermore, if some of the concurrent
tasks are cooperating in support of shared objectives, it is necessary to provide them with a means
to communicate with each other. To support these capabilities, a range of specialized mechanisms
and corresponding programming techniques have been developed. In MARTE, these mechanisms are
grouped into the following basic categories:

●	 Concurrent threads of execution. These are resources used to support concurrent program
executions. In this book, we use the generic terms “concurrent task” or “task” to refer to a unit of
concurrent execution.

●	 Synchronization (or, mutual exclusion) devices and related access control policies. These are
specialized resources that are used to manage the order in which shared resources are accessed by
concurrent tasks (i.e., task synchronization).

●	 Inter-task communications mechanisms. These mechanisms are used for passing information but,
in some cases, such as the rendezvous, they can also provide a synchronization function.

While UML has some support for representing concurrent tasks and inter-task communications,
these are usually not refined enough for most real-time software specifications and even less so for
any kind of qualitative or quantitative analysis. Hence, MARTE provides facilities that are built on
top of these basic UML capabilities. They are general enough to cover a wide spectrum of variants
of these basic mechanisms that occur in the real-time domain, and, if desired, they can be specialized
further by additional refinement profiles as described in Chapter 12.

5.4.1 Modeling concurrent tasks
The constant need for ever-faster program execution has resulted in the development of complex mul-
tiprocessor chips. However, a major dilemma at present is how to best exploit this capability, so that
the ability to represent and reason about concurrency in software has become paramount in many
application domains.

Concurrent execution is supported in a variety of ways in software. In some cases, it is built into
the programming language, as in Ada and Java, while in others (e.g., C/C+ +), support for concur-
rency is provided through specialized program libraries that may be supported by an underlying run-
time system, which is often part of the operating system. In a way, these two approaches reflect two
different viewpoints of the same system. For example, we can choose to view a program monitoring
changes in temperature of some system as a concurrent software application running within an oper-
ating system task, or as an operating system task running some temperature-monitoring application.
We refer to these two viewpoints as the application viewpoint and the platform viewpoint, respec-
tively. Although this may seem like an overly pedantic and not particularly meaningful distinction
akin to the “zebra conundrum,”5 the models corresponding to these two viewpoints are likely to be
quite different, as explained below. Fortunately, MARTE supports both perspectives. The platform

5 That is. are zebras black animals with white stripes, or white animals with black stripes?

955.4 Dealing with concurrency

viewpoint is particularly relevant if the application we are designing is software that is intended as a
platform for other software, such as an application framework or operating system.

5.4.1.1 Modeling of concurrent tasks from the application viewpoint
From an application designer’s perspective, we are rarely interested in explicitly representing things
like schedulers or other resources used by the underlying multitasking implementation. Instead, our
primary concern is to (1) identify those elements of the application model that represent concurrent
tasks and (2) specify application-meaningful data concerning their concurrency properties, such as
priority and deadlines.

The primary concept for representing concurrent tasks in MARTE is the relatively general
SwSchedulableResource stereotype. Hence, we use it to tag elements that represent tasks in the sys-
tem. It is derived indirectly from the even more general software resource concept (SwResource)
described in Section 5.3.1.6 By its nature, a schedulable resource is an active resource, which means
that it should only be applied to model elements that can represent active entities in the UML sense
(i.e., entities with their isActive attribute set to true7), such as active classes or instances of active
classes. An example of its usage is shown in the collaboration diagram fragment in Figure 5.4.

Note that the SwSchedulableResource stereotype is also used for the platform viewpoint, but the
stereotype attributes used for that viewpoint are mostly separate from those used in the application
viewpoint. The attributes that are meaningful primarily from an application viewpoint include:

●	 type8 — This is an optional attribute that is mostly used to specify certain real-time characteristics
of tasks for analysis purposes. It specifies the occurrence pattern for executions of this task and is
typed by the MARTE library type ArrivalPattern (see Appendix B.4).

●	 schedparams — This is an optional attribute for capturing any parameters, such as priority, which
are required for scheduling a task. It is typed by the MARTE library type, SchedParameters,

6 Actually, it is derived from an intervening stereotype SwConcurrentResource, which is a direct refinement of
SwResource. However, in line with the introductory nature of this text, we do not discuss SwConcurrentResource further
in this text.

«swSchedulableResource»
s: Server

«swSchedulableResource»
sm: ServerMaster

mm : MemoryManager

FIGURE 5.4

Example showing the use of the SwSchedulableResource stereotype to denote concurrent tasks.

7 MARTE does not enforce such a constraint, but the authors recommend it as standard practice.
8 This is a rather unfortunate choice of name for an attribute, since the term “type” usually has a different connotation in
computer science.

96 CHAPTER 5 Modeling Software Applications

which is a VSL “choice” type (see Appendix A.3.1.3) that supports a variety of standard
scheduling policies (see Section 5.4.1.3).

●	 periodElements — This is an optional denotational attribute, which is meaningful only for tasks
that execute periodically. It points to the attribute(s) of the underlying class that specify the period
length and, possibly, other characteristics.

●	 entryPoints — This is a denotational attribute pointing to a list of model elements that specify the
entry points of the resource. An entry point is usually either a UML operation, or a behavior that
represents a resource service. If this attribute is used, then the denoted model elements must be
typed by the EntryPoint stereotype (explained below).

●	 deadlineElements — This is an optional denotational attribute pointing to the attribute that
contains deadline data. Clearly, this is only useful for tasks where deadlines exist.

●	 priorityElements — This is another denotational optional attribute that is used in case of priority-
based multitasking systems.

●	 heapSizeElements — This is an optional denotational attribute that points to the underlying class
attribute that contains information about the size of memory heap required by this task.

●	 stackSizeElements — This is an optional attribute similar to the one above, except that it relates
to the stack space required by this task.

Figure 5.5 provides an example of a specification for a priority-based scheduling scheme for the
Server task from Figure 5.4, which requires 20 KB of heap and a 3 KB stack. It is a cyclical task with
a period of 20 milliseconds and a deadline equal to its period. Its priority level is 3.

This example also shows use of the EntryPoint stereotype for the start() and stop() operations,
which have been flagged as entry points via the entryPoints stereotype attribute. This stereotype has
two attributes:

●	 isReentrant — This is an optional Boolean attribute, which, if true, means that the entry point
operation is reentrant.

«entryPoint» start()
«entryPoint» stop()

priority : Integer = 3
period : NFP_Duration = (20, ms)
heap : NFP_DataSize = (20, KB)
stack : NFP_DataSize = (3, KB)
deadline : NFP_Duration = (20, ms)

«swSchedulableResource»
Server

{priorityElements = (priority),
periodElements = (period),
heapElements = (heap),
stackElements = (stack),

entryPoints = (start, stop),
deadlineElements = (deadline)}

FIGURE 5.5

Example of an application viewpoint model of a task.

975.4 Dealing with concurrency

●	 routine — This is a denotational attribute pointing to an operation that contains the actual code
of the entry point; this is almost always a pointer to the same operation that is tagged by the
EntryPoint stereotype, as illustrated by the example in Figure 5.10

Note that, in the application viewpoint, we are normally specifying resource requirements (i.e., the
required quality of service; QoS). In the platform viewpoint, on the other hand, we typically specify
the offered QoS.

A particular kind of concurrent task found in many operating systems is a process. In contrast
to a simple concurrent thread, which can share memory with other threads, upon creation a pro-
cess is allocated a dedicated address space. Furthermore, a process is often the creator and owner
of threads that share its address space. An example of how such an entity can be represented using
MARTE stereotypes is shown in Figure 5.6. In this example, ServerMaster represents a process
with its own address space indicated by the use of the MemoryPartition stereotype in addition to
the SwSchedulableResource stereotype. Whenever this process receives a service request (i.e., a
call to the serviceRequest() operation), it creates a new thread in its address space (an instance of
ServerThread) to handle the request concurrently.

If a more explicit representation of a process is desired, this can be achieved by defining a new
custom stereotype in situations such as this as illustrated in Figure 5.7.

5.4.1.2 Modeling of concurrent tasks from the platform viewpoint
Unlike the applications view, in this case we are generally less interested in the purpose of a task. For
instance, in the applications view in Figure 5.4, we distinguished between the ServerMaster and Server

serviceRequest(d:ReqData) : pid

«swSchedulableResource»
«memoryPartition»

ServerMaster

create(d:ReqData, client:pid)

«swSchedulableResource»
ServerThread0..*1

server

FIGURE 5.6

Modeling a process with its own address space and multiple threads (application viewpoint).

«stereotype»
SwSchedulableResource

«stereotype»
MemoryPartition

«stereotype»
Process

FIGURE 5.7

Extending MARTE with a custom Process stereotype.

98 CHAPTER 5 Modeling Software Applications

tasks, but in the platform view (e.g., an operating system designer’s view) all tasks tend to be viewed
uniformly as tasks, regardless of the application they are carrying. They are all simply treated as
instances of a common type (or types if there are multiple task types in the system), even though they
may individually have different application-specific values for their characteristics. Figure 5.8 illus-
trates one such common task type (Thread) that could realize either of the application tasks in Figure
5.5. This is a specification that might be encountered in a model of some operating system application.

Note that some of the same attributes used in the application view appear in this platform view as
well. These are, in fact, the multitasking attributes that the application cares about. However, this ren-
dering adds further attributes that are only relevant to the platform viewpoint:

●	 activateServices — This is an optional denotational attribute identifying the operations of the
underlying class that are used to start the initial execution of the task. Such a service is usually
invoked when the application task is created. In our example, this function is realized by the run()
operation, which might be invoked by the dispatcher component of the operating system.

●	 suspendServices — This optional denotational attribute points to operations that are used to
suspend the execution of a running task.

●	 resumeServices — This optional denotational attribute indicates the operations that reverse the
effects of the suspend services.

●	 terminateServices — This optional denotational attribute points to the operations used to
completely and finally cease execution of a running or suspended task.

run()
suspend()
resume()
end()

priority : Integer
period : NFP_Duration
heap : NFP_DataSize
stack : NFP_DataSize
deadline : NFP_Duration

«swSchedulableResource»
Thread

{priorityElements = (priority),
periodElements = (period),
heapElements = (heap),
stackElements = (stack),

deadlineElements = (deadline),
activateServices = (run),

suspendServices = (suspend),
resumeServices = (resume),
terminateServices = (end)}

FIGURE 5.8

A platform view of a concurrent task.

995.4 Dealing with concurrency

●	 timeSliceElements — This optional denotational attribute is used in case of time-slice-based
scheduling. It points to items that specify the characteristics (e.g., duration) of the time slice
allocated to this task.

The task execution model supported by this viewpoint is relatively simple and is represented
by the implied state machine diagram in Figure 5.9. Of course, more sophisticated models exist, in
which case it may be necessary to refine the SwSchedulableResource by adding additional service
types.

Since it is often useful to model such elements both ways and since they share many common
attributes, one useful pragmatic technique is to create a shared superclass for the two viewpoints as
shown in Figure 5.10. This approach takes advantage of the generalization–specialization mechanism
of UML to avoid duplication of definitions, while still maintaining separation between the two alter-
native viewpoints.

These different views of concurrent tasks occur either in different models or in different model
fragments. Since both views represent the same entity, it may be desired to unify them by indicating
that they are one and the same. This can be accomplished by using the MARTE Allocate stereotype

Created

Running Suspended

Terminating

activate

dispatch

suspend

Ready
resume

terminate

Activated

FIGURE 5.9

State machine model of a basic task dispatching procedure.

100 CHAPTER 5 Modeling Software Applications

as shown in Figure 5.11. More details on how to use this stereotype for this and other purposes are
provided in Chapter 7.

5.4.1.3 Modeling scheduling policies
Scheduling policies are algorithms for allocating CPU resources to concurrent tasks deployed on (i.e.,
allocated to) a processor (i.e., computing resource) or a shared pool of processors. A rich variety of
such policies has been developed over time for real-time systems, based on the nature of applications
[1]. For example, in order to ensure timely response to certain critical events, a number of systems
require priority-based scheduling schemes. Some of these even allow preemption, that is, the suspen-
sion of execution of lower-priority tasks by ones with higher priority. One concern with such policies
is to avoid “starvation” of lower-priority tasks by a persistent demand from higher priority tasks. In
general, the choice of scheduling policy depends on a number of factors, including first and fore-
most on the nature of the application and the relative importance of meeting its deadlines. Therefore,
choosing or defining a suitable scheduling policy for a given real-time system can be a very complex
problem. A number of schedulability analysis methods have been devised to assist with this problem,
some of which are directly supported by MARTE (see Chapter 10).

«entryPoint» {routine=start} start()
«entryPoint» {routine=stop} stop()

«swSchedulableResource»
Server

{entryPoints = (start, stop)}

priority : Integer
period : NFP_Duration
heap : NFP_DataSize
stack : NFP_DataSize
deadline : NFP_Duration

«swSchedulableResource»
ThreadBase

{priorityElements = (priority),
periodElements = (period),
heapElements = (heap),
stackElements = (stack),

deadlineElements = (deadline)}

run()
suspend()
resume()
end()

«swSchedulableResource»
Thread

{activateServices = (run),
suspendServices = (suspend),
resumeServices = (resume),
terminateServices = (end)}

FIGURE 5.10

A pragmatic approach to supporting both the application and platform viewpoints of tasks.

1015.4 Dealing with concurrency

Standard MARTE defines modeling of the following basic set of common scheduling policies9:

●	 Earliest deadline first (EDF) scheduling
●	 First-in first-out (FIFO) scheduling
●	 Fixed priority scheduling
●	 Least laxity first scheduling
●	 Round robin scheduling
●	 Time table-driven scheduling

If necessary, it is possible to extend this list with new custom policies.
In MARTE, the system-scheduling policy is specified as an attribute of the scheduler, a specially

designated model element that represents the system scheduler. The corresponding stereotype is
Scheduler. Since this is a refinement of the general Resource stereotype (see Section 4.2.2), it can
be applied to any model element that can represent a resource (e.g., a class, an object instance, or an
attribute of a class). Perhaps the simplest way to capture this in an application model is to define a
single object instance that represents the system scheduler and provide it with the necessary param-
eter values corresponding to the chosen scheduling policy (see Figure 5.14).

9 Details for most of these different scheduling policies can be found in the Burns and Wellings reference on real-time sys-
tems [1] as well as in the MARTE standard itself [2].

: OperatingSystem

«swSchedulableResource»
t1 : Thread

«swSchedulableResource»
t2 : Thread

: Application

«swSchedulableResource»
sm : ServerMaster

«swSchedulableResource»
s : Server

«allocate» «allocate»

FIGURE 5.11

Unifying the application and platform views of tasks.

102 CHAPTER 5 Modeling Software Applications

The Scheduler stereotype includes the following attributes:

●	 isPreemptible — A Boolean attribute that specifies whether the scheduler can preempt executing
tasks; clearly, this should be true only for scheduling schemes that support preemption.

●	 schedPolicy — An attribute that defines the scheduling policy. It is typed by the standard MARTE
library choice data type, SchedPolicyKind, which is an enumeration with the following literal
values:
●	 EarliestDeadlineFirst
●	 FIFO
●	 FixedPriority
●	 LeastLaxityFirst
●	 RoundRobin
●	 TimeTableDriven
●	 Undef (for cases where the policy is left undefined)
●	 Other (for cases where a custom policy is used)

The scheduling parameter values of individual tasks are defined via the schedparams attribute
of the SwSchedulableResource stereotype (see Section 5.4.1.1). As noted, this attribute is typed by
a “choice” type, SchedParameters, which means that it can be one of a predefined set of types. The
definition of this library type is provided in Figure 5.12.

The following scheduling parameter types are defined in the MARTE library:

●	 EDFParameters
●	 FixedPriorityParameters
●	 PeriodicServerParameters (a refinement of FixedPriorityParameters)
●	 PollingParameters (a refinement of FixedPriorityParameters)

The library definitions of the EDFParameters and FixedPriorityParameters data types are
given in Figure 5.13. Note that they have no shared attributes because the two scheduling policies
share nothing in common.

The detailed specifications and explanations of the remaining data types can be found in clause
10 of the MARTE specification [2]. Clearly, the choice of parameter type should match the chosen
system scheduling policy. Figure 5.14 shows an example with two model fragments: the left-hand
fragment depicts an object instance representing an EDF scheduler, while the right-hand fragment

edf : EDFParameters
fp : FixedPriorityparameters
polling : PollingParameters
server : PeriodicServerParameters
tableEntryKey : OpaqueExpression[0..*]

«dataType»
«choiceType»

SchedParameters

FIGURE 5.12

The standard MARTE library type SchedParameters.

1035.4 Dealing with concurrency

shows two task types in the same system, SensorTask and DisplayTask, with deadlines set at 5 and 50
milliseconds, respectively.

Note that, instead of using the EDFParameters type to specify the deadline, the deadlineElements
attribute of the SwSchedulableResource stereotype could have been used, as shown in Figure 5.5.

A similar approach can be used for the priority parameter for fixed priority policies by using the
SwSchedulableResource::priorityElements attribute instead. As a practical recommendation, if the
application-level element definition has the right scheduling-relevant attributes defined, then the approach
in Figure 5.15 should be used since it is slightly simpler and it avoids duplication of information.

5.4.2 Modeling synchronization mechanisms
To deal with concurrency conflicts to shared resources, MARTE provides two possibilities, targeting
different levels of abstraction:

●	 A detailed resource-based view, for cases where the specifics of the mutual exclusion mechanisms
need to be spelled out, or

deadline: NFP_Duration

«dataType»
«tupleType»

EDFParameters

priority: NFP_Integer

«dataType»
«tupleType»

FixedPriorityParameters

FIGURE 5.13

The standard MARTE library types EDFParameters and FixedPriorityParameters.

«scheduler»
sysScheduler :

{schedPolicy= EarliestDeadlineFirst,
isPreemptible= true}

«swSchedulableResource»
SensorTask

{schedparams::edf::deadline
= (5, ms)}

«swSchedulableResource»
DisplayTask

{schedparams::edf::deadline
= (50, ms)}

FIGURE 5.14

An EDF scheduler and two concurrent tasks with different deadlines.

stDeadline : NFP_Duration = (5, ms)

«swSchedulableResource»
SensorTask

{deadlineElements = {stDeadline}}

dtDeadline : NFP_Duration = (50, ms)

«swSchedulableResource»
DisplayTask

{deadlineElements = {dtDeadline}}

FIGURE 5.15

An alternative method for specifying the deadlines for SensorTask and DisplayTask in Figure 5.14.

104 CHAPTER 5 Modeling Software Applications

●	 A more abstract high-level representation where the mechanisms used to achieve mutual exclusion
are implicit

The detailed model is likely to be more useful for purposes such as analysis and code generation,
while the higher level view is better suited for more abstract architecture-level models.

5.4.2.1 A resource-based model of mutual exclusion
In this case, the devices (i.e., resources) used to achieve mutual exclusion are rendered explicitly. To
this end, the general Resource stereotype is refined in several steps to capture some general charac-
teristics of mutual exclusion mechanisms, culminating with the SwMutualExclusionResource ste-
reotype. This stereotype is still general enough to support a variety of mutual exclusion devices and
methods, as defined by the values of its key attributes:

●	 mechanism — Is an attribute that is used to define the specific type of mutual exclusion device
represented by the stereotype. A standard set of exclusion devices is defined through a predefined
enumeration type (MutualExclusionKind), which includes:
●	 BooleanSemaphore for the most primitive semaphores that allow only a single access to the

protected resource before they block
●	 CountSemaphore for counting semaphores that protect multiple identical resources (see the

discussion on the resMult attribute below)
●	 Mutex is quite similar to a Boolean semaphore, although there may be subtle differences

between them in some operating systems (such as the feature that a mutex can only be released
by the task that currently holds it)

●	 Other is a general catch-all for other types of mutual exclusion devices.
●	 resMult — Is inherited from Resource (see Section 4.2.2). In the case of mutual exclusion

resources, this attribute can be used to represent the maximum number of simultaneous concurrent
accesses that are allowed by the mutual exclusion resource before it blocks further requests (i.e.,
the number of identical shared resources it protects).

●	 waitingQueuePolicy — Is used to specify queuing discipline for handling incoming
acquire requests. Associated with this attribute is an extendable predefined enumeration type
(QueuePolicyKind) that specifies the standard valid choices: FIFO, LIFO, Priority, Undef,
and Other. Note that, in case of Priority queuing, it is possible to provide additional detail, as
described below.

●	 waitingQueueCapacity — Is an optional attribute that can be used for implementations where
there is a limit on the size of the waiting queue. Most implementations do not impose limits.

«acquire» p()
«release» v()

«swMutualExclusionResource»
SimpleSema

{mechanism = BooleanSemaphore}

FIGURE 5.16

Example showing modeling of a basic binary semaphore.

1055.4 Dealing with concurrency

●	 concurrentAccessProtocol — Is used to identify the specific protocol used by the mutual
exclusion resource. A predefined set of common protocols are provided through an enumeration
type (ConcurrentAcccesProtocolKind):
●	 PIP for priority inheritance protocols
●	 PCP for priority ceiling protocols; note that in this case, it is possible to specify the actual

priority ceiling value through the additional attribute ceiling (an integer)
●	 NoPreemption is for protocols that do not allow preemption by another task, regardless of

priority, until the resource is released
●	 Other
The use of this stereotype to model a basic binary semaphore class is shown in Figure 5.16.

Note the use of the general Acquire and Release stereotypes, described in Section 4.2.3, to identify
operations that are used to request access to the semaphore (p()) and to release the semaphore (v()),
respectively.

An example of a more complex mutex type device that uses a priority ceiling protocol is shown in
the collaboration diagram in Figure 5.17. The dbSem mutex serves to protect the database (db) shared
by the two concurrent tasks w1 and w2, both of which write to the database.

A corresponding sequence diagram is shown in Figure 5.18. Recall that the parallel operator (par)
in UML sequence diagrams represents all possible interleavings of the contained interaction frag-
ments. This means that, in some cases, there could be conflicting resource accesses requests when a
get() operation is invoked by one writer while the resource is busy serving the other. We capture this
possibility here by including a gap on the lifelines between the reception of the get() operation call by
the dbSem mutex and the actual start of operation execution.

«swSchedulableResource»
w1 : Writer

«swSchedulableResource»
w2 : Writer

«acquire» get ()
«release» rel ()

«swMutualExclusionResource»
dbSem : Mutex

{mechanism = Mutex,
waitingQueuePolicy = FIFO,

concurrentAccessProtocol = PCP,
ceiling = 4}

«sharedDataComResource»
db : DataBase

FIGURE 5.17

Collaboration diagram fragment showing use of a mutex for accessing a shared database.

106 CHAPTER 5 Modeling Software Applications

5.4.2.2 A higher-level model of mutual exclusion
An alternative to the above method of representing mutual exclusion is simply to declare an access
control policy on the device that needs to be protected. In this case, the mutual exclusion resource is
not modeled explicitly but only implied. This is done using the concept of a protected passive unit,
represented by the stereotype PpUnit. This stereotype includes an optional concPolicy attribute,
which can take on one of the following values:

●	 sequential — This means that there is no access control so that concurrency conflicts can occur.
●	 guarded — Involves mutual exclusion such that only a single concurrent access is allowed while

others are blocked until their turn comes.
●	 concurrent — Represents units that support multiple concurrent accesses with no blocking and

no possibility of conflicts.

«swSchedulable
Resource»
w1: Writer

«swMutualExclusion
Resource»

dbSem: Mutex
db: DataBase

«swSchedulable
Resource»
w2: Writer

par get()

«acquire»

write(d1)

«release»

rel()

«acquire»

«release»

get()

write(d2)

rel()

FIGURE 5.18

Sequence diagram corresponding to the collaboration shown in Figure 5.17.

1075.4 Dealing with concurrency

For example, for the system in Figure 5.17, a more abstract representation would omit the explicit
mutual exclusion device and simply model that database as a protected unit with a guarded concur-
rency policy, as shown in Figure 5.19.

5.4.3 Modeling task communications mechanisms
Synchronization deals with ordering of the execution of concurrent tasks, whereas communications
has to do with transfer of information between concurrent tasks, or inter-task communications.

Consider the model fragment in Figure 5.20a, showing the internal structure of a composite
class in which two parts are joined by a connector. The connector represents a communications link
through which the two can interact. But this communication can be realized in a number of different
ways, including shared memory, synchronous operation call, or asynchronous messaging. If we need
to be more precise about this point, we need to supply additional information as shown in Figure
5.20b. In this case, we are stating that the communication path represented by a connector is realized
by a communications resource shared by the two tasks, such as a shared memory space.

«swSchedulableResource»
w1 : Writer

«swSchedulableResource»
w2 : Writer

«sharedDataComResource»
«ppUnit»

db : DataBase

«ppUnit»
{concPolicy = guarded}

FIGURE 5.19

A more abstract model of the system in Figure 5.17 using the implicit mutual exclusion approach.

ReaderWriter

rdr : Reader wrtr : Writer

ReaderWriter

rdr : Reader wrtr : Writer

«sharedDataComResource»

(a) (b)

FIGURE 5.20

Parts communicating through a connector based on (a) an undefined mechanism and (b) via shared data
using the MARTE stereotype SharedDataComResource.

108 CHAPTER 5 Modeling Software Applications

Detailed information of this type is not only useful to application designers but also to code gen-
erators and model analyzers.

5.4.3.1 Modeling communications media
The basic MARTE concept here is the notion of a communications medium, which, as might be
expected, is represented as a special kind of resource. However, in addition to the standard set of base
classes extended by the general Resource stereotype (see Section 4.2.2), the CommunicationMedia
stereotype also extends the UML Connector concept (metaclass) as shown in Figure 5.21.

This general stereotype is refined to represent two basic communications of realizing communica-
tions in software:

●	 Shared data communications, via the SharedDataComResource stereotype
●	 Message-based communications, via the MessageComResource stereotype

From an applications viewpoint, we generally prefer to abstract away the implementation details
of these mechanisms, viewing them primarily from a client perspective as service providers. Thus, in
Figure 5.20, the communication service of the underlying operating system is not represented explic-
itly, but is merely implied by the connector “service” that it provides to applications (note that a sin-
gle service may realize many such connectors).

5.4.3.2 Modeling shared data communications
Shared data repositories that can be used to exchange information between software entities are iden-
tified by applying the SharedDataComResource stereotype. This stereotype has two attributes for
identifying appropriate access services:

●	 readServices — This is an optional denotational attribute that identifies one or more operations in
the underlying UML model element that is used to read data stored in the shared repository.

●	 writeServices — This is an optional denotational attribute that identifies one or more operations
in the underlying UML model element that is used to write data into the shared repository.

«stereotype»
Resource

«stereotype»
CommunicationMedia

«metaclass»
UML::Connector

FIGURE 5.21

The CommunicationMedia stereotype definition.17

17 Some details of the actual metamodel are omitted for clarity.

1095.4 Dealing with concurrency

Figure 5.22 shows an example of a UML class that represents such a communications facility.
Note that, in this particular case, it happens to be a protected shared data repository, which supports a
transaction-like mechanism through its trxStart() and trxCommit() operations.

5.4.3.3 Modeling message-based communications
Message-based communications involves placing information generated by the source element into a
message block, which is then delivered to the destination element or elements. What distinguishes this
mode of communications from shared data is that, at least conceptually, it involves movement of data
from one location to another. Messages can be used to convey either synchronous or asynchronous
communications. Note that this is not determined by the communications medium, but by the applica-
tion’s choice of UML communication primitives: asynchronous signals or synchronous operation calls.

For representing message-based communications media, MARTE provides the MessageCom
Resource stereotype. This stereotype includes the following major attributes:

●	 mechanism — This defines the type of communications supported by the medium. It is typed
by the predefined enumeration type MessageResourceKind, which defines the following literal
values:
●	 MessageQueue for representing mechanisms that store and forward messages; note that the

term “queue” here does not necessarily imply a first-in-first-out policy; other queuing policies
may also be covered by this option, as defined by the additional msgQueuePolicy attribute
(see below)

●	 Pipe for UNIX-like streaming data flows between sender and receiver(s)
●	 Blackboard for basic single-buffer communications (e.g., in support of synchronous

communications)
●	 Undef for cases where the type of messaging is left undefined
●	 Other for custom application-specific mechanisms

«acquire» trxStart()
«release» trxCommit()
readItem (x ; Integer) : Item
writeItem (x: Integer, i:Item)

- shared : Item[1024]

«sharedDataComResource»
«swMutualExclusionResource»

CommonArea

«sharedDataComResource»
{readService = (readItem),
writeServices = (writeItem)}

«swMutualExclusionResource»
{mechanism = Mutex}}

FIGURE 5.22

A class representing a protected shared data area.

110 CHAPTER 5 Modeling Software Applications

●	 messageQueuePolicy — This optional attribute defines the queuing policy in cases where the
mechanism attribute, described above, is set to the value MessageQueue. It can be one of the
following literal values:
●	 FIFO
●	 LIFO
●	 Priority
●	 Undef for cases where the policy is undefined
●	 Other for custom application-specific policies

●	 sendServices — Is an optional denotational attribute pointing to one or more operations that are
used by clients to create and dispatch messages.

●	 receiveServices — Is an optional denotational attribute pointing to one or more operations that a
client of the resource used to register that it is ready to receive messages.

Figure 5.23 provides an example of how a message-based communications medium can be mod-
eled. This particular application consists of a Blender task that takes inputs from two device manager
(DevMngr) tasks and merges them in some way. Communication between these tasks is achieved by
means of a priority-based asynchronous messaging approach. Messages are sent by invoking the send
operation of the underlying operating system and received by invoking the blocking accept operation.
The application programming interface (API) of the operating system messaging service is defined
by the OS_Msg_API interface. This interface is stereotyped as a message communication resource,
with the appropriate attribute settings. To indicate that the association between the two classes,
V2D, supports the OS_Msg_API interface, a realization relationship is drawn from the association to
the interface.10 Based on our assumption about the transitivity of classifier stereotype applications
to instances,11 all links that are typed by this association will also be based on the messaging model
defined by the interface.

AppPkgOS_APIs

send (id : Pid, prio : Integer, data : Msg)
accept (msg : Msg)

«messageComResource»
«interface»

OS_Msg_API
{mechansim = MessageQueue,
messageQueuePolicy = Priority,

sendServices = (send),
receiveServices = (accept)}

Blender DevMngr
21

V2D

«interface»
OS_Msg_API

«import»

FIGURE 5.23

Using the MessageComResource stereotype to define a message-based communications link.

10 For those who are uncomfortable with the idea that an association can “realize” an interface in UML, one option is to
define the association as an association class, which then realizes the interface. However, it is not really necessary, since
UML does allow a simple association to realize an interface (although the precise meaning of that is not defined).
11 See Section 2.4.2 describing this convention.

1115.5 Dealing with timeliness

5.5 Dealing with timeliness
The general aspects of how MARTE represents time and related mechanisms are described in detail
in Chapter 4. However, the focus there was mostly on the explicit clock reference approach, in which
time-related information was expressed with respect to an explicit reference clock. This approach
is intended primarily for modeling distributed systems, where multiple independent time references
might exist. In this chapter we deal with the more lightweight implicit clock reference approach,
which is based on a single, often implicit, clock, whose imperfections (drift, jitter, accuracy, etc.)
are deemed negligible. This is a common assumption in many real-time software applications. Since
there is no need to bother with reference clocks and their properties, this implicit approach is gener-
ally simpler to use than the alternative.

From an application modeling perspective, recall that the following are basic time-related capa-
bilities supported by MARTE for the implicit approach:

●	 Modeling timing mechanisms such as clocks and timers
●	 The ability to associate time with behavior, including the ability to specify timing constraints that

represent either timing requirements, such as deadlines, or timing properties of modeled elements,
such as execution durations

5.5.1 Modeling clocks and timers via the implicit approach
Timing devices in the implicit clock approach are based on the general resource model described in
Section 4.2. Specifically, two time-related resource stereotypes are provided:

●	 ClockResource — For representing clocks and clock instances
●	 TimerResource — For modeling interval timers12

As specializations (subclasses) of the general Resource stereotype, both of these can be applied
either to classifiers or to various model elements that represent instances of classes, such as attributes,
parts in structured classes, roles in collaborations, and lifelines in interactions.

Note that there is no explicit support for absolute (i.e.,” time of day”) timers. But, these can be
represented using the ClockResource stereotype, which can generate an asynchronous message at the
appropriate time. Figure 5.24 depicts a clock resource that issues a time message at noon.13

The TimerResource stereotype used for modeling interval timers has two generally useful
attributes:

●	 duration — This is used for specifying the duration of the timed interval, expressed as
NFP_Duration.

●	 isPeriodic — This is a Boolean attribute that, if true, indicates that this is a recurring timer.

Figure 5.25 shows an example of a class, PerTimer, which represents a periodic timer that sends
out a timer signal every 50 milliseconds.

12 There is also a stereotype, SwTimerResource, in MARTE, which is a refinement of TimerResource, which redefines
duration as a denotational attribute. However, TimerResource is better suited to the methods recommended in this text
because it supports more explicit expression of durations based on MARTE NFP types.
13 The procedure for associating values with event occurrences is described in detail in Section 4.2.6.

112 CHAPTER 5 Modeling Software Applications

Including an explicit entity that represents a timing mechanism such as a clock or timer, which
generates signals, is often a preferred alternative to the widespread modeling convention of represent-
ing these effects as messages to self, as depicted in Figure 5.26. The problem with this approach is
that it is not only technically inaccurate, but also does not provide a convenient means for specifying
timing information.

Figure 5.27 illustrates the use of TimerResource to represent a periodic timer that is created by
another task after which it sends a timer signal every 50 milliseconds back to its creator.

Note that in these examples the time message is not marked in any special way to signify that it
represents the occurrence of a timeout event. It is simply assumed that an asynchronous signal gener-
ated by a clock or timer resource represents a timeout.

«timerResource»
PerTimer

{duration = (50, ms),
isPeriodic = true} «signal» timer ()

«interface»
PerTimerOutput

«use»

FIGURE 5.25

A periodic timer.

:SensorReader

time

FIGURE 5.26

Common method of modeling effects of clocks and timers (not recommended).

«clockResource»
:AbsTimer

«swSchedulable
Resource»

: SensorReader

time
@t1

value="12:00:00"

FIGURE 5.24

Using the ClockResource stereotype to model an absolute time-of-day timer.

1135.5 Dealing with timeliness

A special provision exists in MARTE for representing watchdog timers, that is, timers that are
used to detect and prevent livelocks and deadlocks in software. In MARTE, watchdog timers are
modeled as a source of interrupts (which is how it they are implemented in most real-time operating
systems). The modeling of interrupts and related facilities is described later in Section 5.6.1.

5.5.2 Associating time with services and service invocations [Advanced]
It is often necessary to specify timing information, such as deadlines, when invoking services. Two
related stereotypes are used for this purpose: RtFeature and RtSpecification. A slightly simplified
specification of the definition of these stereotypes is given in Figure 5.28.

«swSchedulable
Resource»

: SensorReader

«timeResource»
: PerTimer

{isPeriodic=true,
duration= (50, ms)}

create

timer

loop

FIGURE 5.27

Modeling timers using TimerResource.

«stereotype»
RtFeature

«metaclass»
InvocationAction

«metaclass»
Message

«metaclass»
Comment

relDl : NFP_Duration
absDl : NFP_DateTime

«stereotype»
RtSpecification

[1..*]

/specification

«metaclass»
BehavioralFeature

FIGURE 5.28

The RtFeature and RtSpecification stereotype definitions (simplified).

114 CHAPTER 5 Modeling Software Applications

This is a rather unusual pair of stereotypes that are intended to be used jointly. The RtFeature
stereotype is applied to an invocation action such as an operation call or asynchronous signal send
(e.g., in an activity diagram) or a message in an interaction diagram representing such an action.
Alternatively, it can be applied to a behavioral feature, such as an operation or a reception declaration.
Its complementary stereotype, RtSpecification, is used to specify the deadline by which the response
must be received (i.e., required QoS). This can be specified using two optional and, usually, mutually
exclusive attributes:

●	 relDl — This specifies the relative deadline, starting from the instant the invocation was initiated.
●	 absDl — This specifies the absolute time of day (i.e., calendar time) when the response has to

arrive back at the invoker end.

What is unique about this arrangement is that the RtSpecification stereotype has to be attached to
a comment that is itself associated with the invocation action, message, or behavioral feature. Unless
the tool provides direct support for specifying it, this requires typically the following series of steps:

1. Identify the target invocation action (or behavioral feature) model element and add a new UML
Comment element to it (via the comment’s annotatedElement attribute).

2. Attach an RtSpecification stereotype to the newly created comment and enter the appropriate
values for its attributes (e.g., relDl).

3. Attach an RtFeature stereotype to the selected base model element (invocation action or
behavioral feature).

4. Set the specification attribute of the newly added RtFeature stereotype to point to the
RtSpecification stereotype created in step 2. Since this is a derived attribute, this should be done
automatically by the tool, in principle (but not necessarily in practice).

An example of the use of this pair of stereotypes is depicted in Figure 5.29. The message repre-
senting the call to the start() operation has an attached RtSpecification, requiring that the operation be
completed within 15 microseconds.

:MotorDriver
«swSchedulableResource»

: MotorAssembly

start()

«rtFeature» start()

«rtSpecification»
{relDl = (15, us)}

FIGURE 5.29

Use of the RtFeature and RtSpecification stereotypes.

1155.5 Dealing with timeliness

If the required deadline is to apply to all invocations of this feature, then the stereotype RtFeature
should be applied directly to the behavioral feature declaration as shown in Figure 5.30.

5.5.3 Modeling cyclical behaviors
Many real-time and embedded applications involve concurrent tasks that are executed cyclically with
fixed periods. In particular, this is a common method of dealing with continually changing phenom-
ena in the physical world, including analog (continuous) quantities. For example, to monitor the air
pressure in a tank, we would create a task that wakes up periodically and reads the value of an associ-
ated pressure sensor. The duration of the period between successive runs is dependent on the highest
possible rate of change of the associated physical phenomenon. Since different phenomena have dif-
ferent rates of change, different concurrent tasks will have different periods. Note that, in some cases,
different instances of a given type of concurrent task may have different periods specified. In those
situations, information about the duration of the period has to be specified on an instance rather than
on a type basis.

There are at least three basic design patterns for implementing these types of cyclical behaviors:

1. Through a simple application-level routine that is triggered by a clock interrupt, which then explicitly
invokes the appropriate behavioral routines in a predefined order (described in Section 5.5.3.1)

2. Using simple concurrent tasks that are awakened by periodic (cyclical) timers provided through a
system timing facility (Section 5.5.3.2)

3. Using cyclical concurrent tasks whose execution is controlled by a system scheduler (Section
5.5.3.3)

5.5.3.1 Cyclically executed routines
This method does not require any special concurrency management mechanisms such as threads and
schedulers, but simply a means for specifying the timing information. The basic TimerResource ste-
reotype, described in see Section 5.5.1, is usually adequate for this purpose. Two possible ways of
realizing this are illustrated in Figure 5.31 (other similar techniques are also possible).

In the first case (Figure 5.31a), the individual routines are modeled as operations of an overall
system, each cyclical routine tagged individually as a kind of timer resource with appropriate period
values specified. In the second case (Figure 5.31b), the routines are all specializations of a common
parent behavior class (Cyclical). Each specialization implements its specific function.14

«rtFeature» start()

MotorDriver

«rtSpecification»
{relDl = (15, us)}

FIGURE 5.30

An alternative use of the RtFeature and RtSpecification stereotypes.

14 Not shown in these diagrams is the behavior that invokes these routines.

116 CHAPTER 5 Modeling Software Applications

Of course, the elements tagged as TimerResources are not actually timers in the traditional sense.
Instead, the attributes of the stereotype are used to indicate that these are cyclical behaviors with speci-
fied periods. If this is a source of confusion, then it is recommended to create an alias by defining a new
specialization of the TimerResource stereotype with a more appropriate name as shown in Figure 5.32.

5.5.3.2 Using timers for cyclical tasks
This method involves the use of concurrent tasks (e.g., identified by the SwSchedulableResource
stereotype) and corresponding periodic timers as described in Section 5.5.1. Each task is awakened
by its corresponding timer (it is possible for tasks with the same period to share the same timer),
performs its function, and then yields control of the processor until it is activated again by the next
timeout signal. If the underlying system does not support recurrent (periodic) timers, then, as the last
action prior to yielding control, the tasks need to explicitly initiate a new timer that will generate the
next timeout signal. Because of queuing and scheduling delays incurred in dispatching of tasks, this
pattern is only suitable for soft real-time applications.

5.5.3.3 Cyclical scheduled tasks
This is perhaps the most widely used method of implementing time-triggered software systems and
it is directly supported by many custom and standard real-time operating systems. In this case, the

«timerResource» routine1() {duration= (50, ms), isPeriodic = true}
«timerResource» routine2() {duration= (50, ms), isPeriodic = true}
«timerResource» routine3() {duration= (100, ms), isPeriodic = true}
«timerResource» routine4() {duration= (100, ms), isPeriodic = true}
«timerResource» routine5() {duration= (200, ms), isPeriodic = true}
...

CyclicalSystem «timerResource»
Cyclical

{isPeriodic=true}

Routine1
{duration = (50, ms)

Routine2
{duration = (50, ms)

RoutineN
{duration = (200, ms)

. . .

(a) (b)

FIGURE 5.31

Two ways of modeling cyclically executed routines.

«stereotype»
TimerResource

«stereotype»
PeriodicRoutine
{isPeriodic=true}

FIGURE 5.32

Creating a specialized alias stereotype for cyclical routines.

1175.6 Dealing with asynchrony and hardware interfacing

responsibilities for timing and task scheduling are left to the system (see Section 5.4.1.3). All that is
needed at the application level is to specify the timing properties of the individual tasks, as shown in
the example in Figure 5.33.

Note that an approach similar to that used in Figure 5.31b can also be used here to take advantage
of any commonality that may exist between the concurrent tasks. Also, if there is concern with the
potentially confusing name of the TimerResource stereotype, an alias stereotype can be created as
illustrated in Figure 5.32.

5.6 Dealing with asynchrony and hardware interfacing
Asynchronous events are quite common in the environment of many real-time software systems and
are an unavoidable aspect of the physical world with which the software interacts. The difficulty they
create is that, though they occur at unpredictable times, they may need to be handled on a priority basis.
This can result in interruption and temporary suspension or even termination of ongoing activities.
Unfortunately, this typically requires complex “housekeeping” actions to be performed by the inter-
rupted applications, such as capturing and restoring the current state or releasing acquired resources.

At higher levels of abstraction, asynchronous events can be handled by discrete behavioral formal-
isms such as UML state machines, which were designed explicitly for capturing event-driven behav-
iors. However, for applications that are not explicitly based on this formalism as well as for cases
where there is need for a more detailed representation of the underlying mechanism, this approach is
either inadequate or inappropriate. For this reason, MARTE provides additional specialized facilities
for modeling various forms of asynchrony typically found in real-time systems. In this context, asyn-
chrony may be manifested in any of the following basic forms:

●	 Interrupts, raised by either hardware or software
●	 Alarms and signals, which are raised by software when some type of exceptional condition is

detected
●	 Asynchronous messages generated by concurrent tasks
●	 Timeout signals

The modeling of timeouts was described in Section 5.5.1 for the implicit clock reference
approach, and in Section 4.2.8, for the explicit clock reference approach. For basic asynchronous
messages generated by concurrent tasks, the standard UML Signal and Reception concepts can be
used, or, in case of interactions (e.g., sequence diagrams), the standard asynchronous message con-
struct can be used, as illustrated in Figure 5.34.

«swSchedulableResource»
«timerResource»

Task1
{duration = (50, ms), isPeriodic = true}

FIGURE 5.33

Using TimerResource to model cyclical concurrent tasks.

118 CHAPTER 5 Modeling Software Applications

5.6.1 Modeling interrupt sources and interrupt handling
MARTE explicitly supports the modeling of sources of interrupts via the InterruptResource ste-
reotype. This is a subtype of the more general SwResource stereotype described in Section 5.3.1. As
with all resources in MARTE, this stereotype can be used to tag various kinds of classifiers, object
instance specifications, connectable elements, lifelines, and properties. This stereotype is also useful
when modeling platforms (Chapter 6).

An example of how this stereotype can be used when modeling applications is shown in the class
model fragment in Figure 5.35. In this case, we distinguish between the actual device that generates
the interrupt, PressureOverloadDetector, and its software handler component, POHandler. (Although not
mandatory, note that both are rendered as active objects, to emphasize their asynchronous natures.)
The association between the handler and the actual device is achieved via the EntryPoint stereotype,
which is a specialization of the UML Abstraction concept. This stereotype has an optional additional
attribute, routine, which denotes the software operation that handles the interrupt (in this case, the
handleIRQ() operation of the handler). Finally, we show the asynchronous signal that is raised by the
interrupt handler, POdetected, via a standard UML uses relationship. Note that it is stereotyped with
the MARTE Alarm stereotype, which can be used (among other things), to explicitly represent inter-
rupt signals.

A simpler and more abstract representation of this same system involves abstracting away the
actual physical device that generates the interrupt, and implying its presence by denoting the handler
as the source of interrupts, as depicted in Figure 5.36.

In its full definition, InterruptResource has many different attributes, but the following are the
most useful for application modeling:

●	 kind — Identifies the type of interrupt, as defined by the literals of the MARTE InterruptKind
enumeration:
●	 HardwareInterrupt — For hardware generated interrupts
●	 ProcessorDetectedException — For representing a special kind of hardware interrupt

detected by the CPU, such as attempts to divide by zero, numerical overflows, etc.
●	 ProgrammedException — For software generated interrupts, such as breakpoints

:ServiceMaster : Server

start

stop

FIGURE 5.34

Using the standard UML asynchronous message construct to model asynchrony.

1195.6 Dealing with asynchrony and hardware interfacing

●	 activateServices — This is an optional denotational attribute pointing to a set of operations
that are used to attach an interrupt handler to a particular interrupt level (note, however, that the
concept of service activation is more general, so that this is merely a recommendation on how to
use this attribute).

●	 suspendServices — This is an optional denotational attribute pointing to a set of operations that
temporarily disable (i.e., mask out) interrupts from an interrupt resource.

●	 resumeServices — This is an optional denotational attribute pointing to a set of operations that
re-enable (i.e., unmask) a temporarily disabled interrupt resource.

The use of these attributes can be seen in Figure 5.37, which is an expanded version of the system
in Figure 5.36. Note the use of a generic interrupt handler interface in this case as a means of captur-
ing the common characteristics of all interrupt handlers.

A common source of interrupts in most real-time systems is the watchdog timer, a device
that needs to be reset before it expires, or the system raises a hard interrupt, which is usually inter-
preted as a signal to reset the system because it is assumed that either a deadlock or a livelock has
occurred. Watchdog timers can be modeled explicitly using the MARTE Alarm stereotype as shown
in Figure 5.38.

The Alarm stereotype is actually a specialization of the InterruptResource stereotype (which is
why it has a kind attribute), with two additional attributes:

●	 isWatchdog — Is a Boolean attribute that is set to true when representing a watchdog timer.
●	 timers — Is an optional denotational attribute that points to a model element representing a timer

(in this example, this attribute points to the WatchdogTimer class itself, which is also stereotyped as
a TimerResource, with a period of 100 milliseconds).

«interruptResource»
PressureOverloadDetector

{kind=HardwareInterrupt} «abstraction»
«entryPoint»

handler

«entryPoint»
{routine=(handleIRQ)}

«signal»
«alarm»

POdetected

«use»

handleIRQ()

«swSchedulableResource»
POHandler

{kind=HardwareInterrupt}

FIGURE 5.35

Modeling an interrupt source and corresponding handler.

handleIRQ()

«interruptResource»
POHandler

{kind=HardwareInterrupt}
«signal»
«alarm»

POdetected

«use»

FIGURE 5.36

Modeling an interrupt source and corresponding handler as a single unit.

120 CHAPTER 5 Modeling Software Applications

A signal is also defined, watchdogTimer, which is tagged with the Alarm stereotype to indicate that
this is the signal that is raised if the watchdog timer is not reset on time.15

5.6.2 Modeling signal-based notifications
A number of real-time operating systems provide a higher-level software-based asynchronous mecha-
nism for signaling the occurrence of asynchronous events. In a sense, it is the software equivalent
of an interrupt mechanism. MARTE provides two core stereotypes for modeling these types of
mechanisms:

●	 The Alarm stereotype, described in Section 5.6.1
●	 The NotificationResource stereotype and its related enumeration types

In contrast to the Alarm stereotype, which is used to represent interrupt-like mechanisms (in
fact, Alarm is a specialization of the InterruptResource stereotype), that simply generate signals
and dispatch them asynchronously to targeted concurrent tasks, NotificationResource provides a
synchronization facility for its client tasks. Specifically, a notification resource will detect the occur-
rence of particular type of asynchronous event and buffer it until a client task is ready to consume it.
Consequently, such occurrences will not be lost. Conversely, if an expected event has not yet occurred
when the client task is ready to receive it, the task will be suspended until the event does occur.

15 The use of this stereotype to represent both a resource and a signal that is generated by the resource is somewhat unusual,
since these are two semantically different concepts. It would have been more appropriate if a distinct “alarm signal” stereo-
type had been defined, since it is not quite right to treat a signal as a kind of resource.

attachHandler (irqId:Integer)
maskIRQ()
unmaskIRQ()
handleIRQ()

«interface»
«interruptResource»

InterruptHandler

handleIRQ()

«interruptResource»
POHandler

{kind=HardwareInterrupt}
«signal»
«alarm»

POdetected

«use»

«interruptResource»
{activateServices=(attachHandler),
suspendServices=(maskIRQ),,
resumeServices=(unmaskIRQ)}

FIGURE 5.37

A more detailed model of an interrupt resource with key operations identified.

1215.7 Dealing with resource limitations (specifying platform requirements)

The occurrence attribute of the NotificationResource stereotype defines how successive notifica-
tions are to be treated. This is an enumeration that provides the following possibilities:

●	 Memorized, which means that successive notification occurrences are maintained in a buffer until
processed.

●	 Bounded, which means that a previously unhandled occurrence is overwritten with the arrival of a
new one, but a count of unhandled ones is maintained.

●	 Memoryless, which means that no record is maintained of any previous unhandled event
occurrences.

The usual application of NotificationResource is to use it to tag a class that represents an asyn-
chronous event, as illustrated in Figure 5.39.

5.7 Dealing with resource limitations (Specifying platform requirements)
As explained in Section 5.2, real-time software design may have to account for resource limitations of
the underlying platform (memory, CPU speed, reliability, etc.). Of course, we would prefer to design
the application independently of any particular platform, not only to simplify design, but also to allow

resetWatchdog()

«alarm»
«timerResource»
WatchdogTimer

«alarm»
{kind=HardwareInterrupt,
isWatchdog=true,
timers=(WatchdogTimer)}

«timerResource»
{duration= (100, ms)
isPeriodic= true}

«signal»
«alarm»

watchdogTimer

«use»

FIGURE 5.38

Modeling a watchdog timer.

type : SignalEventKind

«notificationResource»
SignalEvent

{occurrenceKind = Memorized}
SIGABRT
SIGALRM
SIGBUS
SIGKILL

«enumeration»
SignalEventKind

FIGURE 5.39

An example of a notification resource.

122 CHAPTER 5 Modeling Software Applications

the application to be deployed on a variety of different platforms. This is the so-called principle of
platform independence. However, as mentioned earlier, platform independence should not be inter-
preted as platform ignorance, particularly in real-time and embedded software, since technological
limitations and idiosyncrasies can greatly affect design.

One way of supporting platform independence is to explicitly specify, in a platform-independent
way, the assumptions that a particular application has about the capabilities of the underlying platform.
This decouples the application from any specific type of platform, while still explicitly recognizing
potential technological and other physical constraints. For example, we may specify that our applica-
tion requires a processor with a speed rating of 5 MIPs and a memory capacity of 500 MB. This does
not constrain us to any particular platform, but identifies the range of possible acceptable platforms.

To support this pragmatic approach to platform-independent application design, we require the
ability for application models to include explicit specification of the qualities of service that the
underlying platform must support. This can be achieved in MARTE by expressing such requirements
as special kinds of constraints based on the NfpConstraint stereotype described in Section 3.6.

In case of software applications, kind should always be set to the literal value required.
Conversely, for platform models, the kind should normally be set to offered16 (Figure 5.40).

Figure 5.41 illustrates this method of specifying application resource requirements: the action DB,
which reads from some data base, is required to execute within 10 milliseconds from when it starts.
This information can then be used to select a platform with a CPU that has the appropriate perfor-
mance characteristics. Note that the NfpConstraint stereotype is applied to the TimedProcessing
stereotype rather than to the read action, because duration is an attribute of the TimedProcessing
stereotype.

This way of specifying application resource requirements (and their required qualities of service)
can be used for all kinds of platform-related application requirements. It has the advantage that the
kind attribute of the NfpConstraint clearly identifies which constraints represent platform require-
ments. Therefore, if used consistently throughout the application model, it can make it relatively easy

DEPLOYMENT
MODEL

SOFTWARE APPLICATION MODEL
(specifies required qualities of service)

PLATFORM MODEL
(specifies offered qualities of servies)

FIGURE 5.40

QoS specifications for applications and platforms.

16 Note that, in case of software platform models (e.g., an operating system model), both a required and an offered con-
straint may be used, since software platforms are simply applications that require their own platforms.

123

References

to spot and collect the full set of platform requirements of the application. However, in Section 6.5.4,
we describe a different method of specifying an application’s platform requirements.

5.8 SUMMARY
The design of real-time software is distinguished from other types of software primarily because it is
required to react appropriately to events in the real physical world. The difficulty lies not only in pro-
viding a timely response to such happenings but also coping with the immense diversity, concurrency,
and general unpredictability of that world. In this chapter, we have categorized the design challenges
that characterize most real-time systems as follows:

●	 Coping with concurrency
●	 The need for timely response
●	 Interacting with the physical world and its complexities through specialized hardware equipment
●	 Coping with resource limitations of the underlying platform

Over time, a number of standard solutions and design patterns have evolved for dealing with these
challenges, such as multitasking mechanisms, mutual exclusion mechanisms, interrupts, inter-task
communication facilities, and so on. In this chapter, we explained how the various MARTE concepts
and facilities allow direct and precise modeling of these solutions.

References
[1] Burns A, Wellings A. Real-time systems and programming languages (fourth edition): Ada 2005, real-time

java, and c/real-time POSIX, Addison Wesley Longman; 2009.
[2] Object Management Group, The, A UML profile for MARTE: Modeling and Analysis of Real-Time and

Embedded Systems, version 1.1, OMG document no. formal/2011-06-02; 2011.

DB:ReadDB

«nfpConstraint»
{kind = required,
specification = {{VSL} duration <= (10, ms)}}

«timedProcessing»
{duration}

FIGURE 5.41

Specifying the required worst-case value for a read operation using NFP_Constraint.

	5.8 Summary
	5.7 Dealing with resource limitations (Specifying platform requirements)
	5.6 Dealing with asynchrony and hardware interfacing
	5.6.1 Modeling interrupt sources and interrupt handling
	5.6.2 Modeling signal-based notifications

	5.5 Dealing with timeliness
	5.5.1 Modeling clocks and timers via the implicit approach
	5.5.2 Associating time with services and service invocations [Advanced]
	5.5.3 Modeling cyclical behaviors

	5.4 Dealing with concurrency
	5.4.1 Modeling concurrent tasks
	5.4.2 Modeling synchronization mechanisms
	5.4.3 Modeling task communications mechanisms

	5.3 Application modeling foundations
	5.3.1 Software resources
	5.3.2 Software resource services

	5.2 Distinguishing characteristics of “real-time” applications
	5.1 Introduction
	5 Modeling Software Applications
	5.1 Introduction
	5.2 Distinguishing characteristics of “real-time” applications
	5.3 Application modeling foundations
	5.3.1 Software resources
	5.3.2 Software resource services

	5.4 Dealing with concurrency
	5.4.1 Modeling concurrent tasks
	5.4.1.1 Modeling of concurrent tasks from the application viewpoint
	5.4.1.2 Modeling of concurrent tasks from the platform viewpoint
	5.4.1.3 Modeling scheduling policies

	5.4.2 Modeling synchronization mechanisms
	5.4.2.1 A resource-based model of mutual exclusion
	5.4.2.2 A higher-level model of mutual exclusion

	5.4.3 Modeling task communications mechanisms
	5.4.3.1 Modeling communications media
	5.4.3.2 Modeling shared data communications
	5.4.3.3 Modeling message-based communications

	5.5 Dealing with timeliness
	5.5.1 Modeling clocks and timers via the implicit approach
	5.5.2 Associating time with services and service invocations [Advanced]
	5.5.3 Modeling cyclical behaviors
	5.5.3.1 Cyclically executed routines
	5.5.3.2 Using timers for cyclical tasks
	5.5.3.3 Cyclical scheduled tasks

	5.6 Dealing with asynchrony and hardware interfacing
	5.6.1 Modeling interrupt sources and interrupt handling
	5.6.2 Modeling signal-based notifications

	5.7 Dealing with resource limitations (specifying platform requirements)
	5.8 Summary
	References

