
CHAPTER 7

Embedded Software Programming and
Implementation Guidelines

Mark Kraeling

Chapter Outline

Introduction 184
Principles of high-quality programming 185

Readability 185

Maintainability 185

Testability 186

What sets embedded apart from general programming 187

Starting the embedded software project 187
Hardware platform input 188

Project files / organization 189

Source files written locally 189

Source files from company libraries 189

Libraries from third parties 190

Libraries from compiler/linker toolset 190

Team programming guidelines 190

Syntax standard 192

Code white space 192

Tabs in source files 193

Alignment within source 193

Safety requirements in source code 194

Variable structure 195
Variable declarations 195

Global variables 195

File scope variables 197

Local variables 198

Data types 199

Definitions 201

Conditional compilation 201

#define 202

183
Software Engineering for Embedded Systems.

DOI: http://dx.doi.org/10.1016/B978-0-12-415917-4.00007-4

© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415917-4.00007-4

Introduction

For software programming and implementation guidelines, many things come to mind.

The first could be syntax-oriented; how the code looks and is written. The second could be

rules that programmers must follow, in order to keep the code “cleaner”. The ways that

software is written and how it is formatted can bring about heated arguments between

developers. This chapter is not written to provide a specific way of implementing software,

but instead focuses on recommendations � so that a determination can be made on whether

they are incorporated or not. There isn’t a single answer to how software is implemented,

because of the many factors involved.

The first factor is project size. Time and time again there are arguments around project

structure, use of global variables, and other factors. There are a lot of implementation

guidelines that are largely dependent on how large (in source lines of code, for instance) the

project is. Having 30 software engineers embark on an activity to use nothing but assembly

language, using cryptic variable names, all in the same 8-bit processor space doesn’t seem

fruitful. Take that same project, and have two software engineers working on it seems a

little more reasonable! Keeping project size in mind is important when reading over these

guidelines.

The second factor is programmers’ experience and background. Hopefully there is a degree

of freedom to tailor some of the implementation guidelines based on what the members of

the team can do well, and not so well. It’s quite possible that your team may be made up

of people who moved over from another project, or even another company/division. There

may be implementation guidelines and standards that that group is comfortable doing � and

provide benefit to the rest of the team. Don’t fall into the trap of believing “that is the way

it has always been done, keep doing it”. An assessment of the way programming and

implementation is being done is healthy � if it is done at the right time. Trying to change

course in the middle of a project delivery isn’t that time � at the beginning or in

between major releases may be more appropriate.

The third factor is future maintainability and project length. The shorter the duration of

the project, or if maintainability is not a key factor, then maybe a great deal of effort isn’t

put into project structure and commenting. Don’t misunderstand � having useful comments

in code is always good for reviewers and even to jog your own memory after a weekend!

But after reading some of the guidelines that are suggested here � temper some of them

if the project is one programmer putting together code for a project that lasts a month.

There are other factors as well, including safety-critical code development, software that is

being sold as software for others to use in their product, and industry regulations for your

product or market segment. All of these influence (or even can dictate) the implementation

of software for your product.

184 Chapter 7

Principles of high-quality programming

The implementation guidelines in this chapter are derived to drive higher-quality

programming on embedded systems. Embedded systems by their very nature are products

or systems where the computer processing portion isn’t necessarily evident to the user.

Because of this, end-customer quality assessment is not directly software, but could be the

performance characteristics of the system itself. In this way, quality can be measured in

a variety of different ways.

Readability

Readability in software programming can be defined by the ease with which the software

is read and understood. Readability of software can be somewhat objective. Programmers

who are “journeymen” and move from one project to another throughout their career

tend to have an easier time reading a variety of software code. However, making software

more readable helps in reviewing and maintaining it over the course of its life. Simplicity

in logic, conditional statements, and the structure of the code all help with readability.

The following is an example of a proper “C” code segment, that isn’t entirely readable:

// Check for stuff to proceed
if((!((Engine_Speed!50)jj(Vehicle_Speed!50))) jj
SecureTest!5FALSE){

// ABC. . .

}

With a little better readability, the same conditional can be written as:

// Check for secure testing to be running, or if vehicle is stopped
// along with the engine not running. Then we can execute,ABC.
if ((Secure_Test 5 5 TRUE) jj \

((Vehicle_Speed 5 5 0) && (Engine_Speed 5 5 0)))

{

// ABC. . .

}

Maintainability

Maintaining the code after it is written is a task that can become extremely difficult.

Often, the code just doesn’t make sense to others who look at it. This can lead to incorrect

interpretation, so even though a new feature goes into the code the existing code around

it breaks. Another thing that can happen is if someone besides the author comes into

Embedded Software Programming and Implementation Guidelines 185

the code to make a change; if he doesn’t understand the existing structure then another

“if” condition could get placed at the bottom of the code just to avoid making any changes

to the top part of the code.

Consider using descriptive comments in the code for the “intent” of what is being done.

Much later when the code is being updated, where the maintainer doesn’t have a solid

reference of the structure of the code, the comments can help clarify its overall purpose.

For example, a comment of “Reset timer because if we are here we have received a

properly formatted, CRC-checked, ping request message” is much better than “Set timer

to 10 seconds”.

Testability

One of the key components for writing good software components is writing software

with testability in mind. For unit testing, or debugging of code, it is important to be able to test

each executable line or test each path the software could take. Combining executable lines

within conditional statements is not a good idea. If an equate or math operation occurs within

an if evaluation, portions of it will not be testable. It is better to do that operation before the

evaluation. This allows a programmer to set up a unit test case or modify memory while

stepping through to allow a variety of options in choosing with path to take.

Consider the following code segment:

if (GetEngineSpeed().700)
{

// Execute All Speed Governor code

}

For high-level source code debugging, it would not be immediately clear what the engine

speed was while debugging. The tester could analyze the particular register being used for

the return value, but it certainly is not readily apparent. Re-writing the code to use a local

variable allows the variable to be placed into a watch window or other source analysis

window. The code could be re-written as follows:

current_engine_speed 5 GetEngineSpeed();
if (current_engine_speed.700)
{

// Execute All Speed Governor code

}

One argument for this could be program efficiency. This was certainly true years ago

when embedded compilers were not very efficient in taking high-level source code and

186 Chapter 7

translating it to machine instructions. Now, with compiler optimizers written to look for

optimizations through multiple passes through the code, most of these opportunities

have been taken care of.

What sets embedded apart from general programming

The easiest way to evaluate what sets embedded apart from general programming is to

look at the characteristics of an embedded programmer. The better embedded programmers

tend to have a good working knowledge of hardware. They also are very aware of resources

they have, where bottlenecks could be in their system, and the speed associated with the

various functions they need to perform.

There are varying definitions of what an embedded system is, but my favorite definition

is “a system where the presence of a processor is not readily apparent to the user”.

Because the processor itself is “hidden”, an embedded programmer concentrates on a set

of performance and system requirements to complete specific tasks. As such, the software

itself is just a part of the system, and the rest of the embedded platform around it is

important as well.

An embedded software programmer keeps the following items in mind:

1. Resources: every line of code and module that is written is scrutinized for the

processing time it takes to execute as well as the amount of other resources (such as

memory) that is being used. It becomes more difficult writing a tight embedded system

using dynamic allocation languages such as C11 and Java, versus programming

languages like C and assembly.

2. Hardware features: software is split between the hardware pieces of the embedded

system that can execute them more efficiently as opposed to separating software by a

software-only architecture. Interrupts, DMAs, and hardware coprocessors are key

components in software design.

3. Performance: an embedded programmer has a keen sense of what the hardware can and

cannot do. For processors that do not have floating-point units, mathematical equations

and calculations are done using fixed-point math. The programmer also focuses on

performing calculations that are native to the atomic size of the processor, so they shy

away from doing 32-bit calcuations on a 16-bit processor, for instance.

Starting the embedded software project

One of the easier things to do is actually starting an embedded project, as opposed to

inheriting a project that was written a long time ago. Starting a new project is typically an

exciting time and programmers are looking forward to starting something new. Promises to

Embedded Software Programming and Implementation Guidelines 187

not repeat previous evils are recited by the programmers. The software will be done

correctly the first time! Depending on how many projects exist or are being kicked off at

a particular company, this event may not happen very often.

It is also the easiest and best time to get organized and determine how the software team

should develop embedded software. No new source code has been written yet � though

there may be libraries or core modules that are going to be pulled into the software

baseline. This is the best time to determine how the project is going to be handled, and get

buy-in from all of the programmers that this will be the development cycle that will be

followed.

It is a lot more difficult to institute new standards or development practices in the

middle of a project. If faced with that situation, the best time to make any changes is after

some incremental delivery has been made. Changes to standards that try to take place

“weeks before software delivery” typically add more confusion and make things worse.

Unless there is total anarchy going on, and the project can afford to have everyone stop,

come together, and agree upon a new direction, wait until after a major release delivery

of some kind before making changes.

The following subsections discuss software items that are discussed and agreed upon as a

team (and written down!).

Hardware platform input

Although this particular chapter is dedicated to software programming and implementation

guidelines, it is worth mentioning that there should have already been an opportunity

to provide input to the hardware developers on software aspects. Items like hardware

interrupt request lines, and what they are tied to, to play a key role in the organization and

the performance of the embedded software. Also other resource input such as memory size,

on-chip vs. off-chip resources, processor being used, and other hardware I/O interfaces are

critical to embedded development.

Another key aspect is the debugging interface that the particular processor has. An interface

like JTAG may be perfect for hardware checking, but may not have all of the functionality

that is available for a software programmer. Many processors (like those based on ARMt

cores) have a JTAG interface but also have a software-centric type of debugging interface

using additional lines on the same chip. Bringing those out to a header for software

development boards makes debugging and insight into the operation of the software much

easier.

Because this chapter focuses on the software programming guidelines, there won’t be any

more particular discussion on this topic. But make sure that the connection with the

188 Chapter 7

hardware developers is made early, or it could be very difficult to follow software

implementation guidelines!

Project files/organization

There are three key components that go into project file organization. The first is any

dependencies that the project has on the configuration management system being used.

Some CM tools prefer directory structures to look a particular way, or make it so the tool can

interface better with existing systems. The second component is the compiler/debugger/linker

suite that is being used for the project. The directory structure for some of the files

(such as libraries) may need to be organized a particular way. The third is the project file

organization that the team prefers, or a file organization that is the same as other embedded

projects done by the same group or at the same company.

To make things easier for development, there should be a separation between the following

items listed here. The most common way to have these separated is by using subdirectories,

or separate folders depending on the development environment.

Source files written locally

This directory would contain all of the source files that have been written by your

development team. Depending on the number of modules being written or the size of the

overall code base, consider further subdividing this into more subdirectories and folders. For

multiple processor systems, it may make sense to separate by processor (such as “1” and “2”)

and then have another directory at the same level that contains files common to both.

An additional way to further subdivide a large source file directory is to subdivide it

by functionality. Maybe dividing into major feature groupings such as “display”, “serial

comm”, and “user IO” would make sense. The mark of a good project and directory

organization for your source files is the fact that your software falls into a particular

category easily without a lot of searching around for it or arguments on whether it belongs

one place or another.

Source files from company libraries

This directory would contain either the software or links to the general repository where

your company keeps libraries of source files useable by all projects. When doing links, it is

important that some sort of control be in place so that new files don’t just show up every

time the software is built. Version control needs to be kept tight, so there is no unexpected

change between the tested and released baseline. Links to a specific version of a file work

best. If the files must be physically copied into this directory with no links, it is very

important to remember (and have written down) exactly which version was copied. Periodic

checking back to the library should be done as well for newer updates or bug fix releases.

Embedded Software Programming and Implementation Guidelines 189

The same thing applies with this directory or folder � depending on the number of

files being used it may make sense to further break it down into subdirectories or subfolders

as well.

Libraries from third parties

There may be libraries that are used by third parties as well. It could also be source code �
maybe an operating system or network stack that has been provided for you. It is critically

important to have these files in a separate directory from the other source files!

Programmers need to know that these files probably shouldn’t just be changed, but there

could be a tie-off that needs to happen with the software provider. If these are mixed in

with the general population of the source files that are written by the software team, there

is a larger risk that these could be changed inadvertantly.

There are typically files that are provided by the third parties that are supposed to be

changed. These may include definitions or links to pieces in the embedded system.

For instance, one common entry is defining the number of tasks for an RTOS. Files that

are supposed to be changed should either go in their own subdirectory in this group, or be

pulled over into a folder in the source files that your group is writing. Then privileges like

“no modify / no write” could possibly be applied to the folder, to make sure that they

are not changed.

Libraries from compiler/linker toolset

There may be restrictions on where the libraries that the compiler and linker toolset

provider can be located. Typically, these can just be left alone. It needs to be agreed upon

by all of the developers which libraries are going to be used up front. The toolset company

may include a full C stdlib available for use, or other alternatives like a smaller “micro”

library that can be used instead. Tradeoffs between the various libraries should be done,

like whether the library allows re-entrant library use, the functionality that is available,

and the size of the library when linked in your embedded system.

There also may be options to remove libraries entirely from being used. A common

library that we often remove is the floating-point link library. So library functions like a

floating-point multiply (fmul) cannot be linked into the system. So if a programmer has

a link to this library, it won’t link and the mistake can be corrected.

Team programming guidelines

How a team agrees to program the system and the criteria they will use for evaluating other

programmers’ source code is important to decide up front. If a programmer holds to a

higher standard of software development, but it only becomes clear in the first code review

after that programmer has already designed and written the code, it is too late. The criteria

190 Chapter 7

for how a programmer can successfully pass a code review should be understood up front,

so time isn’t wasted re-writing and re-unit-testing code.

Guidelines could include a variety of rules or recommendations. The more the guidelines

are measureable, the more successful they will be. For example, if there is a guideline for

the programmer that “the code is not complex” as one of the criteria, it could be largely

subjective to a group of programmers. One may feel it is too complex, another may not.

This particular measurement could actually be measureable.

In this example, the group could decide to use a cyclomatic complexity measurement

to evaluate a software module. The software is run through a tool, and it produces a

complexity number for the module. Higher numbers represent more complex code

according to the formula, where lower ones are simpler. With a complexity formula

that measures the number of “edges” and “nodes” in your software program, the

simplest complexity represented by a value of “1” is a program that contains no “if”

or “for” conditions, and has a single entry and exit point. As the number of conditions

and flows goes up, the complexity goes up. So the evaluation criteria could change to

“the code is not complex, cyclomatic complexity ,5 18”. This way it is not

subjective.

What this is hinting at is a “checklist” of sorts that a programmer could use when writing

and preparing his software code for review. Having the list of accepted programming

guidelines up front that everyone follows makes expectations clear. The following are

examples of items that could be on a “Software Guidelines Checklist” that would be

evaluated for each module reviewed:

• Conformance to syntax standard

• Cyclomatic complexity calculation

• Number of source lines per function / per file

• Number of comments

• Ratio of number of source lines per number of comments

• Run through code formatter

• Comment and design document understandability / matches code

• Code under CM control / linked to “change request”

• No compiler warnings

• Rule exceptions properly documented (if warnings ignored or doesn’t match standard)

• #pragma directives documented clearly in source code

• Non-constant pointers to functions are not present

• All members of union or struct are fully specified

• Data representation (scale, bits, bit assignments) clearly documented

• Data defined and initialized before being used

• Loop bounds and terminations are correct

Embedded Software Programming and Implementation Guidelines 191

• Mathematical operations correct (no divide-by-zero, overflows)

• No deadlocks, priority inversions, re-entrant faults.

Syntax standard

There are a variety of ways that a coding syntax standard can look. A syntax standard

defines the way code is spaced, capitalized, and formatted when written into source

code. There is a lot of personal preference that can come into using a particular syntax

standard for the group. There may also be a mix of syntax rules that a group could

incorporate for a project where others are not mandatory, but recommended. This section

contains some ideas on how it could look. The most important thing is getting the

developers to agree on a given standard and sticking to it throughout. If the project is

reusing quite a bit of code, preference should be given to the standard that the existing

code uses.

This section has some ideas for how the syntax standard could be developed. There isn’t

a right or wrong � unless all the developers on a team are all doing something different.

This impacts the ability to review the code, or to be able to go in and easily make changes.

If the code is developed by all team members using the same syntax, it makes it much

easier to change and understand when reviewing.

A full coding syntax standard is available as an appendix in this book. A lot of iteration has

gone into this particular standard. The original author, Daniel Moone, specialized in

embedded software for control systems and medical devices throughout his career. Others

have picked it up and made various changes as well.

The following sections are just some of the syntax-oriented coding standard items that are

found in this standard.

Code white space

The following are examples on how various software lines could add white space to increase

the readability of the code itself. All of these examples are operationally equivalent � they

produce the same machine code. They are listed in order of increasing amounts of white

space:

int i;
for(i50;i,20;i11)
{

printf(“%02u”,i*2);

}
int i;
for (i50; i,20; i11)

192 Chapter 7

{

printf(“%02u”, i*2);

}
int i;
for (i 5 0; i,20; i11)
{

printf(“%02u”, i * 2);

}

The examples above concern themselves with the white space that is between the various

operators and numbers on a given line of source code. Numerous studies indicate that more

white space increases readability in software code. This would support using the third

example outlined above. However, if the increased amount of whitespace could cause the

software to wrap to the next line, then it is clearly too much white space because wrapping

is very unreadable.

Tabs in source files

Most syntax standards indicate that tab characters should not be used in source files when

writing code. This is because the tab character could be interpreted differently by source

editing tools, file viewers, or when it is printed. They are also not readily visible when

editing. Source code editors typically provide a way to substitute spaces with the tab

character. So while programming, when the tab key is hit, it automatically fills it the tab

with x number of spaces.

This brings about an important point. How many spaces should represent a tab key press

or a normal indent in source code? Most editors have a substitution for either “3” or “4”

spaces per tab. Either is fine � it will be based on some personal preference and also how

the rest of the code is formatted. Depending on the spacing that is used for other things,

like the “for” loop spacing above, the amount of indent space may align better with what is

chosen.

Alignment within source

How things are aligned in source code makes an impact on readability as well. Take into

consideration the following two operationally equivalent sections of code:

int incubator 5 RED_MAX; /* Setup for Red Zone */
char marker 5 ‘\0’; /* Marker code for zone */

int incubator 5 RED_MAX /* Setup for Red Zone */
char marker 5 ‘\0’; /* Marker code for zone */

Embedded Software Programming and Implementation Guidelines 193

White space is used on the second example, lining up the variable names, initialization

values, and comments on the same column for the code block.

The examples above were quick examples on how various code syntaxes with white space

could be done. Consistency and readability are key components for writing good embedded

software source code.

Safety requirements in source code

When writing safety-critical software, the implementation guidelines for software

source code change. Many considerations need to be made when developing

this code.

Is all of the code in your system safety-critical? If a system is safety-critical, it may not

actually rely on all of the code to be safety critical. The system itself needs to have fail-safe

operations in place so that things fail to the least permissive case as defined by the system

FMEA analysis. There may be operations like logging that are not required to be

safety-critical unto themselves, but they cannot cause the safety-critical code in the

system to act in an unsafe manner.

Documentation of safety-critical sections of code is important. Special care and

consideration should be made to mark these sections differently, or even have comments

that refer directly to the safety case or documentation that the code adheres to. Using all

capitals such as “SAFETY-CRITICAL CODE SECTION START” in a comment section

certainly alerts programmers who may come in to change code later or add new

requirements that they should tread lightly in these sections.

Development standards such as “MISRA C” (Motor Industry Software Reliability

Association) and “MISRA C11” can also help facilitate writing code that

operates in a safe manner. There are many users of the standard outside the

automotive and transportation industries, including medical and defense. There are

many tools that can check source code for MISRA compliance as well, and can be

included as part of the overall software build process. More information on the MISRA

standard can be found at http://www.misra.org.uk.

There may be special programming requirements for safety-critical sections of code.

There may be a separate development guideline list, which includes things like

performing a software FMEA on the safety-critical code section being implemented.

There also may be additional reviewers in the code review itself, such as representatives

from a safety team or a software engineer who specializes in safety-critical code

development.

194 Chapter 7

http://www.misra.org.uk

The following are additional factors or checklist items that could be considered as part

of safety-critical code development:

• Adherence and checking to a standard, such as MISRA C or C11

• Safety sections clearly marked to standard

• Data that is safety-critical is marked that way in the variable name

• All safety-critical variables are initialized to the least permissive state

• Any safety-critical data is clearly marked as stale and/or deleted after use

• Comparisons between safety-critical data are handled correctly

• All paths are covered when variables are used for path decision-making

• Checks are in place to make sure safety-critical code is executed on-time

• Periodic flash and RAM checks are done to check hardware correctness

• Safety-critical data is protected by regular CRC or data integrity checks

• “Voting” mechanisms between software and processors is done correctly

• Safety dependencies on functions (like watchdog timer) are checked periodically

for correct operation.

More details on safety-critical software development are outlined in Chapter 19,

Safety-critical software development.

Variable structure

Variable declarations

One of the key components for developing an embedded software system is determining

how the data in the system will be declared and used. In order to discuss each type of

variable declaration, it is probably best to break it down by type. The three primary types of

variables in a system are global variables, file-scope variables, and function-scope variables.

Global variables

Global variables are variables that are visible to any linked component of the system in a

single build. They could be declared at the top of a source file, but could also be present in

header files where the variable is declared in one spot, and then made available as an extern

to any other file that includes that header file. There certainly is an entire philosophy with

global variables � some programmers hate them and software leads can ban them.

There are differing opinions on the usage of global variables. Programmers can define a

correct and “right” way to use them, as long as they don’t help foster the creation of

unorganized (spaghetti) code. There are a couple of guidelines that could be used to allow

global variables into your system, as it will typically help increase the performance of the

system without using access functions to modify encapsulated local data.

Embedded Software Programming and Implementation Guidelines 195

The first is to declare the variable in a header file. Anyone who includes the header file

would then have access to the variable, but it also helps make sure that if the global

was declared as an unsigned integer then all of the extern references match. The header

file (ip.h) would look something like this:

#ifdef IP_C

#define EXT

#else

#define EXT extern

#endif

EXT uint16_t IP_Movement_En
EXT uint16_t IP_Direction_Ctrl
#undef EXT

The example above would need each of the source files to declare a definition of their

“filename_C” in order for the variable to be declared. The source file (ip.c) would look

like this:

#define IP_C
#include “ip.h”
#undef IP_C
#include . . . /* Rest of the include files needed by the source file */

By declaring the variable in a header file, the type will be correct and there will also

be a good start in who might be looking at this variable by seeing who is including the

header file. Using this type of method could also allow the team to dictate that no

global variables are declared in source files � they would only be declared in this

manner.

The second recommendation for using global variables is to always prefix the name with

the “owner” of the variable itself. In the example above, IP stands for “Input Processing”.

So any variable used with global scope of IP_xxx is a variable declared in the input

processing header. That helps by not having a bunch of random names floating around

for variables.

The third recommendation that would help make global variable usage easier links

nicely with the second recommendation above. After a global variable is declared in a

header file, the only program that could modify that variable would be an input

processing source file, such as “ip.c”. Other source files would have “read” access to

that variable, but not be allowed to change the value. Of course the compiler would

allow the programmer to change it � but if this was a rule the project team wanted to

use it would be easy to find in a code review. Any instance of a variable prefixed with

196 Chapter 7

the “ownership” shouldn’t be modified by another program. Consider the source lines

below in output processing (op.c):

if (IP_Movement_En 5 5 TRUE)
{

if ((IP_Direction_Ctrl 5 5 IP_FORWARD) jj

(IP_Direction_Ctrl 5 5 IP_REVERSE))

{

OP_Display_Movement 5 TRUE;

IP_Display_Shown 5 TRUE; /* Unacceptable. . . */

}

else

{

OP_Display_Movement 5 FALSE;

}

}

In the example above, we definitely do not want to be modifying an input processing

variable following the third recommendation. This hopefully would be easy to see during a

code inspection or review. Instead, consider having input processing figure this out by

looking at the variable OP_Display_Movement. If this cannot be done, then a function call

from here to an input processing function and having that function change

IP_Display_Shown could work. For debugging purposes, and to try and keep the code

organized, having a rule like this in place can make global variables a lot cleaner.

The final recommendation for global variables, in addition to showing “ownership” of the

variable by prefixing the source file indicator, is to capitalize each letter in the variable

name. This would be further indication that the variable is a global variable, and could be

getting read multiple places so changes to meaning, scaling, or size could have a ripple

effect throughout the system.

File scope variables

File scope variables are used to share data between multiple functions in a single source

file. They are definitely easier to use than global variables, because typically there is a

Embedded Software Programming and Implementation Guidelines 197

single owner in a particular source file, at least when it is initially written. File scope

variables make it easy to share data between functions, without having to pass them as

arguments between them on the stack.

A key recommendation is to keep the keyword “static” in front of each of the file scope

variable being declared. This keeps them from being used by other files, and keeps it local.

One particular issue with this is visibility into the map (or possibly even debugger) file.

For compilers, if a variable is declared in a file without visibility to other files, there isn’t a

need to put a reference to it for linking. Sometimes it is nice to be able to see that variable

during source line debugging or peeking at memory while the system is running.

In order to give that variable visibility during debugging, consider declaring the file scope

variables in the following way in a source file:

STATIC uint32_t IP_time_count;
STATIC uint16_t IP_direction_override;

This “STATIC” definition would then reside in one of the “master” header files in your

system. Further discussion of this type of header file is under Data Types on the next page.

When compiling the debugger version of your code, the programmer can define a keyword

“DEBUG” for those source files, and when it is time to release the code the keyword

“DEBUG” is not defined. This is particularly useful if there are special setup steps that need

to be done (like turning on a debug function on the microcontroller at initialization). With this

type of setup, the following lines would appear in the common header file:

#ifdef DEBUG PROBABLY WANT TO CHECK FOR NOT STATIC TOO, CHECK

#define STATIC

#else

#define STATIC static

#endif

Another recommendation for file scope variables is also use of capitalization and lower

case. Consider prefixing all of the file scope variables with the same “filename” or feature

set indicator on the front, and then make all of the other letters lower case. In this way,

it will be easy to discern between a global variable and a file scope variable.

Local variables

Local variables have the easiest recommendations of all types. The first recommendation is

to drop the prefix mentioned in the previous two sections, because it is clear that it is just

a variable for the function. Second, with the use of decent comments, the variable names

for local variables really do not need to be overly descriptive. In my opinion, it is all right

198 Chapter 7

to have variable names of n, i, j, etc., when using them to index arrays and loop variables.

Even a simple variable like “count” is OK � again if there are comments to let an observer

know what the function is trying to do.

The other type of local variable in a function is one with the keyword “static” in front of it.

These are used when a variable needs to retain the data through multiple calls of the

function, but it is not shared by any of the other functions in a file.

For local variables, consider keeping them as all lower case. In the case of a “static”

variable declared in a function, consider capitalizing the first character. In that way, when

looking through the function or maintaining it later, it is clear that the variable retains its

value. The following is an example of how function local variables could look:

static void ip_count_iterations(void)
{

uint16_t i, j, n;

static uint16_t Error_count_exec 5 0;

uint32_t *reference_ptr;

. . .

Data types

One of the key attributes for embedded systems is resource management. In the preceding

sections, the declarations that were made were using type definitions. In order to keep

an embedded system portable to other processors, and to keep resources in check, type

definitions could be used for the various data types. The following is a list of type

definitions that could be declared in a master header file, which would be included by

all source files.

Consider a file called “portable.h” which is included by the source files:

typedef unsigned char uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned long int uint32_t;
typedef signed char int8_t;
typedef signed short int int16_t;
typedef signed long int int32_t;

Because an “integer” size is dependent on the microcontroller architecture size, the

programmer can use the type definitions above and then only change this file if porting to

a different platform. Library templates could also be written using the type definitions

above, so that when they are pulled in and used on any platform they work correctly.

Embedded Software Programming and Implementation Guidelines 199

Another variation of the same concept above is to shorten the type definitions, to save

some white space when writing the source files. A variation of the definitions above

is shown below:

typedef unsigned char UINT8;
typedef unsigned short int UINT16;
typedef unsigned long int UINT32;
typedef signed char INT8;
typedef signed short int INT16;
typedef signed long int INT32;

Building on the same naming convention, when structures are declared consider adding

a suffix of “_t” to show it is a type definition. An example of a structure declaration

is shown below:

#define DIO_MEM_DATA_BLOCKS 64
typedef struct
{

UINT16 block_write_id;

UINT16 block_write_words;

UINT16 data[DIO_MEM_DATA_BLOCKS];

UINT16 block_read_id;

UINT16 startup_sync1;

UINT16 startup_sync2;

} DIO_Mem_Block_t;

Following the same convention, a union type definition is shown below:

typedef union
{

UINT16 value;

struct

{

UINT16 data:15;

UINT16 header_flag :1;

} bits;

} DIO_FIFO_Data;

200 Chapter 7

For the struct and union examples above, type definitions are used for the data sizes

as discussed above. Spacing and white space are really up to the programmers, but having

them maintained uniformly across all source files adds to the maintainability.

Another thing to notice is that the type definitions above are prefixed with “DIO_” and

then contain a mix of capital and lowercase letters. This is definitely a stylistic choice,

but one thought process is to have type definitions in header files be declared this way,

and then have file scope type definitions be all lower case, without the need for the prefix.

As discussed in Section 3.2, this can help a reviewer understand if the structure

is something that may be global in scope or just local.

Definitions

Conditional compilation

Another topic of developing embedded software is the use of conditional compiles in

the source code. Conditional compiles allow a compiler to dictate which code is compiled

and which code is skipped. There are many books written for software engineering that

suggest that conditional compiles should not be used in the code.

For hardware-oriented code that is written to work on multiple processors in a system,

there may be conditional compiles to specify “Processor A” vs. “Processor B”. For

software source code, if more than 15% of the source code has conditional compiles in it,

consideration should be given to splitting the code up, keeping the common code in one file

and separating the reason for the conditional compiles between two (or more) files. As the

5% 10% 15% 20% 25%

Percent of file conditionally compiled

M

R

Maintainability

Readability

Figure 7.1:
Conditional Compilation Graph.

Embedded Software Programming and Implementation Guidelines 201

number of conditional compiles increases the readability decreases. Files with minimal

conditional compiles are likely easier to maintain than a file that has been branched or

separated, but again as the number of conditional compiles increases past 15% the

maintainability drops as well. Consider the following graph for conditional compiles.

Consider the following source code section for a module written to run on two processors

specified as PROCA and PROCB. Depending on which makefile is selected, the compiler

defines one of these two values depending on the processor target.

frame_idle_usec 5 API_Get_Time();

#ifdef PROCA

/* Only send data when running on processor B */

ICH_Send_Data(ICH_DATA_CHK_SIZE, (uint32_t *)&frame_idle_usec);

#else
#ifdef PROCB

/* Nothing to send with processor B in this situation */

#else

/* Let’s make sure if we ever add a PROCC, that we get error */

DoNotLink();

#endif /* PROCA */
#endif /* PROCB */

There is one additional thing to note with the code above. In this example, we simply did

not just look for processor A and then do nothing if we weren’t processor A. There is an

else condition, so that if we ever run on a processor besides A or B a made-up function

“DoNotLink()” will be called, which will result in a compiler warning and a linker error

(the function doesn’t exist). In this way, if another processor is added in the future it will

force the software engineer to take a look at this code to see if a special case should be

added for this new processor. It is simply a defensive technique to catch the various

conditional compiles that may exist in the source code baseline.

#define

A commonly used symbolic constant or preprocessor macro in C or C11 coding is

implemented using the #define.

Symbolic constants allow the programmer to use a particular naming convention for values.

When used as a constant, it can allow better definition, as opposed to “magic numbers”

202 Chapter 7

that are placed throughout the code. It allows the programmer either to create a common

set of frequently used definitions in a single location, or to create more singular instances to

help code readability.

Consider the following code segment:

// Check for engine speed above 700 RPM
if (engine_speed.5600)
{

The code segment checks for a value of 5600. But where does this come from? The

following is a slightly more readable version of this code segment:

// Check for engine speed above 700 RPM
if (engine_speed.(700 * ENG_SPD_SCALE))
{

This is a little better as it uses a symbolic constant for the fixed-point scaling of engine

speed, which is used throughout the software code baseline. There certainly should not be

multiple definitions of this particular value, such as having ENGINE_SPEED_SCALE and

ENG_SPD_SCALE both used in the same code baseline. This can lead to confusion, or

incompatibility if only one of these scalar values is changed. The code segment above also

has “700” being used. What if there are other places in the code where this value is used?

What is this value? The following code segment is more maintainable and readable:

// Check for speed where we need to transition from low-speed to all-// speed governor
if (engine_speed.LSG_TO_ASG_TRANS_RPM)
{

A #define would be placed in a header file for engine speed for visibility to multiple files,

or in the header of this source file if it is only used in a file-scope scenario. The #define

would appear as:

// Transition from low-speed to all-speed governor in RPM
#define LSG_TO_ASG_TRANS_RPM (UINT16)(700 * ENG_SPD_SCALE)

This has the additional cast of UINT16 to make sure that the symbolic constant is a

fixed-point value so floating-point evaluations are not made in the code. This would be

important if the transition speed was defined as 700.5 RPM, or even if a value of 700.0 was

used as the transitional speed. Once floating-point values appear in the code, the compiler

tends to keep any comparisons or evaluation using floating-point operations.

Preprocessor macros allow the programmer to develop formulas commonly used throughout

the code and define them in a single location. Consider the following code segment:

Area1 5 3.14159 * radius1 * radius1;
Area2 5 3.14159 * (diameter2 / 2) * (diameter2 / 2);

Embedded Software Programming and Implementation Guidelines 203

The code listed above can be improved by creating a preprocessor macro that calculates

the circular area as opposed to listing it in the code. Another improvement is using a

symbolic constant for PI so that the code can use the same value throughout. That way if

additional decimal places are used, it can be changed in one location. The following could

be defined at the top of the source file, or in a common header file:

#define PI 3.14159
#define AREA_OF_CIRCLE(x) PI*(x)*(x)

The code could then use this preprocessor macro as follows:

Area1 5 AREA_OF_CIRCLE(radius1);
Area2 5 AREA_OF_CIRCLE(diameter2 / 2);

The code segments shown above could be used for a higher-end microcontroller that has

floating-point hardware, or for a processor where floating-point libraries are acceptable.

Another implementation could be in fixed-point, where tables would approximate PI values

so that native fixed-point code could speed up processing times.

204 Chapter 7

	7 Embedded Software Programming and Implementation Guidelines
	Introduction
	Principles of high-quality programming
	Readability
	Maintainability
	Testability

	What sets embedded apart from general programming

	Starting the embedded software project
	Hardware platform input
	Project files/organization
	Source files written locally
	Source files from company libraries
	Libraries from third parties
	Libraries from compiler/linker toolset

	Team programming guidelines
	Syntax standard
	Code white space
	Tabs in source files
	Alignment within source

	Safety requirements in source code

	Variable structure
	Variable declarations
	Global variables
	File scope variables
	Local variables

	Data types
	Definitions
	Conditional compilation
	#define

