
CHAPTER 3

Software Modeling for Embedded Systems
Shelley Gretlein

Chapter Outline

When and why should you model your embedded system? 59

Modeling 60

What is a modeling language? 65

Examples of modeling languages 66

The V diagram promise 69

So, why would you want to model your embedded

system? 72

When should you model your embedded system? 73
Mission- and safety-critical applications 73

Highly complex applications and systems 74

Operational complexity 78

Cost of defect versus when detected 79

Large development teams require modeling 80

Modeling is often the only choice 81

So � modeling is great, but aren’t all models wrong? 83

You have your prototype � now what? 86

Conclusion 89

Next steps � try it! 89
Closed-loop control with a DC motor 90

Learn more about prototyping with a downloadable kit 90

Designing applications with the NI Statechart Module 90

Design and simulate a brushed dc motor h-bridge circuit 90

Multi-domain physical modeling with open-source Modelica

models 91

References 91

When and why should you model your embedded system?

Creating a model for your embedded system provides a time- and cost-effective approach to

the development of simple or incredibly complex dynamic control systems, all based on a

59
Software Engineering for Embedded Systems.

DOI: http://dx.doi.org/10.1016/B978-0-12-415917-4.00003-7

© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415917-4.00003-7

single model maintained in a tightly integrated software suite. Throughout this chapter, you

will discover:

• By using modern modeling software tools you can design and perform initial validation

in off-line simulation.

• You can then use models to form the basis for all subsequent development stages.

• Modeling � combined with hardware prototyping � will reduce the risk of mistakes

and shorten the development cycle by performing verification and validation testing

throughout the development.

• Design evaluations and predictions can be made much more quickly and reliably with a

system model as a basis.

• This iterative approach results in improved designs, in terms of both performance and

reliability.

• The cost of resources is reduced, because of reusability of models between design teams,

design stages, and various projects and the reduced dependency on physical prototypes.

• Development errors and overhead can be reduced through the use of automatic code-

generation techniques.

These advantages translate to more accurate and robust control designs, shorter time to

market, and reduced design cost.

Modeling

Modeling is a broadly used term casually applied to disparate concepts ranging from

behavioral and structural models to more simulation-centric methodologies. The challenge

with broad terms or broad concepts of course is knowing when, where, and how they apply

to your own application.

What then is the appropriate definition of modeling as it pertains to embedded system

design?

Modeling, in its most abstract sense, is a methodology in which some representation is

created to describe and/or communicate an aspect of the system not easily, naturally or

sufficiently captured through system implementation. We will loosely refer to the domain

of modeling focused on describing actors or functions and entities, their states, inputs,

structure, and views of these over time as “architectural modeling”. We will refer to the

domain of modeling focused on simulating the behavior of any given system entity as

“simulation modeling”.

Figure 3.1 below shows the classic statechart diagram invented by David Harel of the

Weizmann Institute of Science in the 1980s. By adding hierarchy, concurrency, and

communication to state diagrams, Harel created a more expressive form of the state

60 Chapter 3

diagram. He invented the diagram while he helped design a complex avionics system,

presumably finding the existing tools for such a system lacking. In the 1990s, statecharts

were adopted as a behavioral diagram within the Unified Modeling Language (UML)

specification.

The classic state diagram consists of two main constructs: states and transitions. In

Figure 3.1, the state diagram describes a simple vending machine with five states and seven

transitions to illustrate how the machine operates. The machine starts in the “idle” state and

transitions to the “count coins” state when coins are inserted. The state diagram shows

additional states and transitions when the machine waits for a selection, dispenses a soda,

and gives change.

In addition to hierarchy and concurrency, statecharts have features that make them valuable

for complex embedded systems as shown in Figure 3.2. Statecharts have a concept of

history, allowing a superstate to “remember” which substate within it was previously active.

For example, consider a superstate that describes a machine that pours a substance and then

heats it. A halt event may pause the execution of the machine while it is pouring. When a

resume event occurs, the machine remembers to resume pouring.

Both of these diagram types provide expressions of overall system behavior while also

visually describing key states and behaviors within the overall system.

Default

Default

Dispense

Coin inserted
Not enough coins

Count coins

Enough coins

Reject coins

Default

Give change
Cancel

Cancel

Idle

Selected

No selection
Select soda

Figure 3.1:
The classic statechart diagram represents a behavioral diagram.

Software Modeling for Embedded Systems 61

Figure 3.3, by way of contrast, represents a simulation model for a FIFO element

within a system. A FIFO � or first in, first out � software element is a way to

organize and manipulate your data relative to time in terms of when you acquire it. In

the case above, the FIFO might be used to model communication between two

hardware devices via a bus. The FIFO definition provides a basic abstraction and

interfaces to the notion of a FIFO supplying basic read and write operations, FIFO

count and so on. Presumably, VHDL (VHSIC hardware description language) could be

re-used either in the actual system or for system modeling via a VHDL simulator.

Designers and implementers would agree on this interface definition and then provide

implementations to provide data that emulates expected data transmissions through the

FIFO over time.

It’s important to note that while the code snippet does not visually convey a tremendous

amount of architectural information about the system, it does represent a critical abstraction

of an element and its interface which then allows for both unit testing at the API boundary

Figure 3.2:
A statechart diagram which also present a concept of “history”.

62 Chapter 3

and building systems that switch between a simulatable instance of the FIFO and a

real-world bus with FIFO mechanics and constraints.

Ideally, both the architectural and simulation aspects of your modeling should deliver better

design insights, more reuse of design, test, and implementation artifacts, earlier and more

tight integration of the test and debug phases and more rapid iteration between design and

implementation.

Very importantly, simulation modeling enables earlier and in-parallel execution of

development phases, which is in stark contrast with traditional methodologies, particularly

waterfall approaches, which are by design highly sequential.

For engineering and design tasks, especially related to embedded systems, you typically use

some form of software modeling as the initial approach to roughing-in or framing your

overall application design. Software models vary greatly in terms of format, level of detail

and functionality � so much so that some embedded engineers do not realize they are even

modeling. Some software models are behavioral; some are simply visual aids for

understanding and architecting, while others are used more as frameworks for ensuring

consistency among similar applications or for facilitating communication among teams of

Figure 3.3:
Simple FIFO simulation entity.

Software Modeling for Embedded Systems 63

engineers. In essence, software modeling ranges from sketches on a whiteboard showing

functional elements and their relationships to far more complex and rigorous modeling

activities and frameworks like UML (Figure 3.4). Unified Modeling Language (UML) is an

object modeling and specification language most often used in software engineering-related

applications.

The challenge for the embedded system designer is to know what type and level of

modeling are most appropriate for their unique situation and the problem at hand. In effect,

it is about the age-old art of selecting the right tool for the right job. For large, complex,

multi-team efforts, formal specification of systems via UML may increase design

correctness and the efficiency of communication between teams. On the other hand, for a

single developer or small team working on a fairly simple embedded system, it may prove

to be overly heavyweight and generally a drag on team efficiency. The same trade-offs hold

true for simulation modeling. Whether a system needs simulation or not is highly dependent

on the nature of the embedded system itself and the nature of the real-world elements with

which the embedded system interacts.

For example, if the embedded system was a widely available and simple processor-based

system with simple digital control of a relay or switch, then developing simulation models

for the processor and relay would not really add much benefit beyond direct

implementation on the processor and a simple test harness to exercise the digital control.

On the other hand, if the embedded system included a field programmable gate array

(FPGA) and was controlling an expensive and complex real-world device, then it might

make sense to both simulate the control logic on the FPGA to avoid the time-intensive

FPGA synthesis as well as simulate the expensive real-world device to avoid damaging or

destroying it.

Figure 3.4:
Software modeling ranges from sketches on a whiteboard to far more complex and rigorous

activities, languages, and frameworks.

64 Chapter 3

What is a modeling language?

Modeling languages, like programming languages, are well-defined and standard language

grammars used to express structural and functional actors and their key relationships over

time. Different forms of modeling languages have evolved over time and for specific

domains. One key concept to keep in mind when evaluating modeling languages is the

specific domain for which the language is best suited. The University of California at

Berkeley has defined the term “model of computation” to capture the general idea of

domain-specific modeling languages, which defines the critical notion that modeling

languages provide the most productivity benefit to a designer when they cater specifically

to a given problem domain. This is both intuitive and true from observed practice, but

designers and modelers as we know, like programmers, can have a healthy bias for their

language preference even when it is ill-suited for the actual task at hand.

Modeling languages take many forms and are often either graphical or textual.

Graphical modeling languages use a diagram technique with named symbols that represent

concepts and lines that connect the symbols and represent relationships and various other

graphical notations to represent constraints.

Textual modeling languages typically use standardized keywords accompanied by

parameters to make computer-interpretable expressions.

There are several key aspects of modeling languages to evaluate; graphical versus textual;

documentation, simulation, or execution oriented, and focused on architectural-level content

or implementation-level content. Figure 3.5 captures these dimensions and overlays several

standard modeling techniques and approaches. UML and its subsequent diagrams dominate

the landscape of documentation and architectural-oriented modeling diagrams. The standard

implementation languages of C, C# and hundreds of other programming languages fit in the

implementation and execution-oriented cell represented in the diagram. One of the more

prominent hybrid or dual-purpose models are statecharts and their more prohibitive sibling

finite state machines (FSMs). These modeling languages are useful at capturing a higher-level

architectural view and are able to run in simulation with a high-fidelity and natural mapping

to native execution � or the ability to easily map the language to the compiler/execution

engine. Models like time-based simulation can specify algorithmic simulation, but then

require a code-generation step into one of the execution-dominant programming languages

like C, VHDL or G. The quality of the code generation, the naturalness with which the model

can map to execution, and the breadth of expressiveness of the model all dictate the quality of

the simulation-based approach. Dataflow modeling spans implementation simulations and

execution implementations. Most dataflow languages are very visual (typically graphical) and

also do an inherently good job at expressing the architecture of your design � certainly more

than traditional text-based modeling software packages.

Software Modeling for Embedded Systems 65

When delving into the simulation-oriented models as applied to a typical embedded control

application, it’s interesting to note key touch points in a particular implementation. These

points often serve as useful locations to define abstractions such that any one part of the

system can be swapped in and out between a simulated system element and a real system

element. Figure 3.6 shows a typical embedded control system pattern in which there is

some notion of a plant, real or simulated, a controller, real or simulated, and a supervisory

control system which can also be real or simulated. Between each of these main system

elements, you can identify critical communication paths (network and I/O) as key points to

abstract within a design. The discipline to do this well (documented, consistently) allows

you to switch between the real and simulated components as you refine your design.

In the rest of this chapter, we will be discussing how designing your embedded system with

well-defined structure, clear visualization of relationships between components, with well-

defined abstractions enables very productive and efficient embedded designs.

Examples of modeling languages

Moving out of the abstract view of modeling, we can see what it looks like in practice with

a few different software approaches. Below we use a PID control algorithm (a common

Documentation Simulation Execution

Im
pl

em
en

ta
tio

n
A

rc
hi

te
ct

ur
e

E
xp

re
ss

iv
en

es
s

Req Docs

Activity
diagrams

Time-based
simulator

Layer
diagrams

Object
diagrams

Class
diagrams

Use case
diagrams

Dataflow

FSMs

Statechart

C#

C VHDL

Figure 3.5:
There are several key aspects of modeling languages to evaluate; graphical versus textual;

documentation, simulation, or execution oriented, and focused on architectural-level content or
implementation-level content.

66 Chapter 3

algorithm used in control applications based on a generic feedback loop based on a

proportional-integral-derivative or PID controller) to help you see a documentation lens as

well as the varied visuals and implementation capabilities (Figures 3.7 to 3.12). As you

scan these code snippets, note the value and differences in creating those abstraction

boundaries � some are clear, some are non-existent.

Not all modeling languages are executable, and for those that are, the use of them doesn’t

necessarily mean that programmers are no longer required. On the contrary,

executable modeling languages are intended to amplify the productivity of skilled

NetworkSupervisory
system

Controller I/O Plant

Abstraction Abstraction Abstraction Abstraction

Figure 3.6:
A typical embedded control system pattern in which there is some notion of a plant, real or

simulated, a controller, real or simulated, and a supervisory control system which can also be real
or simulated.

P Kpe(t)

Setpoint
+

–

Error I

D

Ki

Kd

e(τ)dτ∫
1

0

de(t)
dt

ΣΣ Process Output

Figure 3.7:
Documentation of a PID control algorithm. A common algorithm used in control applications

based on a generic feedback loop based on a proportional-integral-derivative or PID controller �
represented in a graphical software view.

Software Modeling for Embedded Systems 67

programmers, so that they can address more challenging problems, such as distributed

systems and parallel computing.

Some modeling languages combine the characteristics of providing a high-level

architectural model as well as reasonable amounts of expressiveness and can also easily

previous_error = setpoint - process_feedback
integral = 0
start:

wait(dt)
error = setpoint - process_feedback
integral = integral + (error*dt)
derivative = (error - previous_error)/dt
output = (Kp*error) + (Ki*integral) + (Kd*derivative)
previous_error = error

goto start

Figure 3.8:
C code: textual, execution, implementation language.

Figure 3.9:
Time-based simulation: graphical, implementation, simulation tool.

68 Chapter 3

map to an implementation. Statecharts, specifically finite state machines, combine these

characteristics well. The ideal modeling language would express clearly architectural

aspects of code, be as expressive as fully open programming languages and map simply to

execution.

The V diagram promise

Let’s look at a common visual in the embedded space � Figure 3.13, which illustrates the

embedded control “V diagram”, is often used to describe an embedded modeling

development cycle. The V was originally developed to encapsulate the design process of

many different software applications. Several versions of this diagram can be found to

describe a variety of product design cycles. Figure 3.13 shows one example of such a

diagram representing the design cycle of embedded control applications common to

automotive, aerospace, and defense applications.

Figure 3.10:
Statechart: graphical, architectural and implementation tool.

Software Modeling for Embedded Systems 69

Figure 3.11:
Dataflow: graphical, architectural and implementation software.

Figure 3.12:
A zoomed-out view of the same dataflow diagram in Figure 3.11.

70 Chapter 3

In the V diagram, the general progression of the development stages in time is shown from

left to right. Note, however, that this is often an iterative process and the actual

development will not proceed linearly through these steps. The goal of rapid development is

to make this cycle as efficient as possible by minimizing the iterations required for a

design. If the x-axis of the diagram is thought of as time, the goal is to narrow the “V” as

much as possible by drawing the two legs of the diagram closer, thereby reducing

development time. The y-axis of this diagram can be thought of as the level at which the

system components are considered.

Early in development, overall system requirements must be considered. As the system is

divided into subsystems and components, we find very low-level processes, down to the

point of mapping implementation to hardware architectures.

Afterwards components are integrated and tested together until such time that the entire

system can enter final production testing. Therefore the top of the diagram represents the

high-level system view and the bottom of the diagram represents a very low-level

implementation and mapping view.

Traditionally, engineers involved with each stage of the process have observed strict

boundaries between the specification, design, coding, and testing activities, relying on

Figure 3.13:
The “V” diagram. Often used to describe an embedded software development process.

Software Modeling for Embedded Systems 71

design documents to provide the communication between each of the steps, and the tools

within the overall flow of the V did not directly facilitate sharing, leading to large

discontinuities in tooling and in design and test reuse and overall team collaboration.

So, why would you want to model your embedded system?

The “V” diagram process described suffers from a variety of drawbacks, including the

difficulty of keeping documentation updated because, typically, most organizations do not

have the discipline and/or tooling to synchronize documentation with design and

implementation as both are refined. Similar to the documentation “drift”, there is also often

drift between the design intent and actual implementation.

A well-integrated modeling approach can greatly reduce the drift between the system

documentation, design, tests, and actual implementation.

Modeling reduces this drift by “forcing” the design, test, and implementation teams to

design a model of the expected end system before it is built. This basic premise forces a

key distinguishing discipline that is often skipped by design teams in all domains, which is

a functioning model or simulation that is not the actual implementation. The model is thus

used to vet early design considerations, elaborate system requirements, and can facilitate

early development of tests that run against the nascent model. Most of these benefits could

be derived through carefully managed organizational discipline without a modeling software

approach, but practice has proven that very few teams have the discipline to use a model-

centric view and or tooling that facilitates it.

In addition to the key benefits listed above, for some class of embedded systems problems,

modeling approaches lead directly to additional efficiency and accuracy gains.

Efficiency can be defined in this sense as efficient time and/or efficiency in terms of cost.

As you will see in the “cost of getting it wrong” table, it is undeniably more cost and time

efficient to find design issues early in your embedded design cycle. Modeling, using the

right techniques and the right tools, will help teams find issues early. Modeling often saves

further development time by reducing the number of compiles and iterations on the final

embedded target since more time can be spent working through issues at the top of the V

rather than in final deployment to hardware. For example, if you’re designing an FPGA-

based embedded application, the synthesis and deployment can take hours or days per

iteration depending on the complexity of your design. By modeling the system properly

ahead of time, you directly reduce the required number of design/debug iterations saving

development time.

Modeling often results in a more accurate and more precise solution by increasing the rate

of iterating on different design options. By reducing the cycle time of tweaking the

72 Chapter 3

algorithm, teams are far more likely to experiment with many different combinations of

inputs, outputs and algorithm combinations. Another way that your system can be more

accurate is the built-in commonality it provides between the design and test teams in your

organization.

By designing a model of your embedded system, you have created a common tool that the

embedded designers can use to optimize the design and then the test team can turn around

and use to validate the design during testing. The model is versatile and applicable to both

teams � often enabling the convergence of design and test as expressed in the central idea

of the V diagram.

When should you model your embedded system?

Even though there are numerous general benefits to modeling, you shouldn’t always model

every embedded system. Certainly simple systems or prototypes don’t require this level of

formality. However, modeling is very useful, if not required, in the following systems:

• mission- and safety-critical applications

• highly complex applications and systems

• large development teams

• no other choice � when prototyping isn’t an option.

Mission- and safety-critical applications

Software as percentage of the overall system is growing rapidly in all embedded systems,

but particularly in mission-critical and safety-critical applications. The definition of

“mission critical” may vary depending upon whom you talk to, but generally speaking this

refers to any application whose failure could potentially cost large amounts of money, cause

injury or seriously damage the reputation of a company. For mission- and safety-critical

systems, software modeling, best practices in software engineering and formal industry

standards such as DO-254B all combine to facilitate and guarantee safe and reliable

embedded systems.

As we see more software content in embedded systems, governments and industry are

evolving the required provisions in the overall design process. Typically, these start with

formal requirements tracking with documented paper trails, clear correlation of the design

requirements to code and very clear correlation of tests validating each of the design

requirements. In the most idealistic sense, we seek a design tool and modeling language

that create correct-by-design solutions or provably correct systems, but in the absence

of these theoretically attainable systems, most ‘real’ embedded systems especially

Software Modeling for Embedded Systems 73

safety-critical can derive great benefit from the union of software engineering best practices

with software modeling approaches.

Highly complex applications and systems

Every embedded system report or embedded community survey speaks to the skyrocketing

complexity of our designs combined with shrinking timelines.

As an example to highlight the evolution of complexity in embedded design, the list below

shows a few facts about different hardware capabilities and software content in different

hardware and software systems:

• Apollo Guidance Computer (AGC) ,64 kilowords, 1.024 MHz

• 1960s jet fighterB50 thousand lines

• JSF B50 million lines

• F-22 Raptor uses 2.5 million lines while the F-35 uses 5.6 million lines

• 100 million lines of code in a modern vehicle (Figure 3.14).

Embedded control systems for the automotive space are good examples to examine as complex

and critical designs. Specifically, modern automotive powertrain control systems benefit from

modeling techniques as they must continue to evolve to satisfy requirements including

regulating exhaust emissions to meet increasingly stringent standards, providing improved fuel

economy to comply with corporate average fuel economy (CAFE) regulations, and meeting

customer demands for performance and comfort. These objectives are interrelated and often

Figure 3.14:
Modern embedded systems have grown exponentially in complexity.

74 Chapter 3

conflict. For example, lean-burn technology can reduce fuel consumption significantly, but it

also reduces the three-way catalytic conversion efficiency, causing additional air pollution.

Because of this complexity, modeling can be an efficient way to optimize your design.

Using software modeling for automotive designs, you can much more easily understand the

impact of the overall design while tweaking the numerous parameters. One automotive

design house in the United Kingdom � Visteon � had this challenge. They used software-

modeling techniques (Figure 3.15) to simulate multiple variables to validate complex

automotive engine designs in order to achieve the best fuel economy, engine performance,

and emission control. One project was to design a twin-independent variable camshaft-

timing engine where both the intake and exhaust camshafts are adjusted independently. The

variation is a function of throttle position and engine speed. Because the system offered a

large number of degrees of freedom for obtaining engine performance, they needed a

method to optimize the valve-timing parameters for the best fuel economy, engine

performance, and emission control while understanding and implementing the highly

complex real-time control algorithm that results from this design.

In order to manipulate this challenge, the embedded engineers chose a real-time control and

analysis approach for their design. The purpose of their control strategy was to provide the

Figure 3.15:
Using NI LabVIEW as a modeling tool, this automotive embedded design engineering team was

able to create interactive simulation for modeling their real-time control system.

Software Modeling for Embedded Systems 75

engine with torque reference tracking while minimizing brake-specific fuel consumption

and optimizing combustion stability. They chose to do their modeling and simulation with a

graphical system design tool that not only could perform the modeling and simulation, but

was also tightly integrated with the real-time hardware they needed for the prototype and

deployment of their design.

For the engine model, the main manipulated variables for the control system include mass

airflow into the intake manifold, and independent camshaft positioning of the inlet and exhaust

valve timing with respect to the crankshaft. The controlled outputs are the engine torque,

brake-specific fuel consumption, and the coefficient of variance of indicated mean effective

pressure. Other variables influencing the system such as engine speed and engine coolant

temperature are treated as external parameters and are used as scheduling variables for control.

Using the graphical modeling software, they were able to ensure the continuous time engine

model combined a static characteristic of the combustion process with differential equations

describing actuators and the intake manifold to obtain a dynamic model. The resulting

nonlinear engine model (Figure 3.16) with multiple input, multiple output (MIMO)

properties was analyzed by manipulating each input variable and exhibited strong cross-

interaction between inputs and outputs. A local model was developed for the control

application by linearizing the nonlinear model at fixed operating points.

An advanced optimal controller was designed using the LQR technique. The controller in

this design had two objectives � offset minimization and regulator action. These objectives

Figure 3.16:
A screenshot demonstrating the MIMO (multiple input, multiple output) control design approach

used in this design.

76 Chapter 3

were achieved by introducing integral action within the loop to remove steady-state errors

in the presence of disturbances. To define the performance index and to minimize the

output error and rate of change in the output, the gain was obtained using the modeling

software for the engine-state feedback and reference tracking using the optimal theory of

continuous time systems.

The local controller and linearized model were also built and simulated in their software. The

system tracked the engine torque with an accurate steady-state value corresponding to the set

point while simultaneously minimizing brake-specific fuel consumption and the coefficient of

variation in indicated mean effective pressure. To ensure online response tuning by visual

inspection, the Q and R tuning parameters were made available on the front panel, which

optimized the interactive simulation capabilities of the embedded application.

These embedded engineers chose to implement the structure of the model and controller in

discrete time so it could easily be transferred to computer hardware for final

implementation. The discrete controller can either be derived from the designed continuous

controller or designed directly in discrete time using the same LQR application. A local

model was developed for the control application by linearizing (Figure 3.17) the nonlinear

model at fixed operating points.

Figure 3.17:
Many control design and simulation software tools are designed for linear and nonlinear systems.

Software Modeling for Embedded Systems 77

Since their model was nonlinear, the optimal gain parameters that produce the desired

response at one operating point might not produce a satisfactory response at another

operating point. Therefore, gain scheduling can be applied using different sets of optimal

gain parameters for different regions of operation of the nonlinear model. The process of

gain tuning was streamlined using interactive adjustment of parameters through the

graphical user interface.

This automotive example demonstrates how valuable modeling and simulation can be in an

embedded application with many different design parameters. Without these powerful

software tools, this application could have easily taken twice as long to design and may

have never been able to result in such an optimal design.

Operational complexity

Complexity can also be in the form of operational complexity as in the case of Agworks,

Inc. (Ontario, Canada). They needed to develop an embedded control system capable of

automating a large soybean processing plant with multiple concurrent processes and provide

a software architecture that was both scalable and maintainable.

Developing and integrating a state-based application with so many concurrent processes

presented a unique challenge. Because much of their equipment is not directly viewable,

developers had to rely on development tools to aid in the integration and debugging of the

code. A statechart implementation was ideal for this application. During the design phase,

the abstraction provided by the NI LabVIEW Statechart Module made it much easier to

visualize how all the separate processes would work together (Figure 3.18). The

Figure 3.18:
The abstraction that the statechart software provided made it much easier to visualize how the

complex network of systems would work together.

78 Chapter 3

self-documenting nature of statechart diagrams also saved valuable time during the design

phase of the project.

As development progressed, extensive use of the statechart tool helped keep the code organized

and readable. When integration began, the utility for debugging the statecharts was crucial.

With highlight execution enabled, the developers were able to monitor many concurrent

processes very closely. They could tell exactly when a transition was triggered and exactly

which state it went into. This saved a great deal of time during the debugging process.

After several months of operation, Agworks needed some additional features. The upfront

software design, modeling and documentation made a very complex application much

easier to understand and much faster to learn. The statechart diagrams provided a clearer

overall picture of the embedded system. Not only was it clear, but the statechart in this

complex situation was also effective in explaining the architecture and self-documenting,

demonstrated by the fact that the new developer on the Agworks team was able to quickly

get up to speed with this large project and edit the application, adding capabilities to satisfy

the customer’s request.

For these types of complex applications, using the right software tool and modeling

approach can be beneficial in every step of the development life-cycle, and continue to

benefit you and your customers throughout the life-cycle of the product.

Cost of defect versus when detected

Ensuring you employ proper modeling and simulation techniques isn’t just about getting a

better design; it is also about cost savings and getting it right sooner. After an analysis [1]

of more than 60 software development projects at companies such as IBM, GTE, and TRW,

we can clearly see in Figure 3.19 that the cost of finding a problem early in the process is

far less expensive.

Modeling combined with software engineering best practices will help address most, if not

all, of the common pitfalls in poor embedded system design programming.

Development Phase Cost Ratio

Requirements

Design

Implementation

Development Testing

Acceptance Testing

Post Release

1

3 – 6x

10x

15 – 40x

30 – 70x

40 – 1000x

Figure 3.19:
The cost of a defect is significantly impacted by when the defect is found.

Software Modeling for Embedded Systems 79

Figure 3.20 is a simple way of viewing the software engineering process. It reflects what is

typically referred to as the waterfall method of development. While great in principle, most

software engineers accept that the waterfall method is impractical and that reality requires

significant overlap between these various phases. In other words, it’s almost impossible to

avoid changes to requirements later in development. The key is to have tools and practices

to mitigate the risks caused by these last-minute changes and to understand how these

changes will impact other aspects of your application. You can apply software engineering

and modeling techniques throughout this development.

Large development teams require modeling

Even though the modern trend is to create small, agile development teams, we know that

certain complex embedded projects require larger teams. Large teams suffer from a few

critical challenges:

• communication challenges

• geographic and language distribution

• tool differences.

Modeling can help address some of these issues.

First, and perhaps most impactful, modeling can facilitate clear communication among

different teams on one embedded project. Project requirements can only look to serve

as a project calibration device to a point, and then the engineers must get into the

actual application. If the team can design a useful system model, it is a dynamic,

accurate representation of the project that can ease cross-team communication.

Related to this, this type of project communication can easily span multiple speaking

languages as well as geographic locations. Instead of relying on either written

documentation that would need to be translated, an embedded model can be the consistent

Software Configuration Management

Requirements
Gathering

Application
Architecture

Debugging &
Testing

Development Deployment

The Software Engineering Process

Figure 3.20:
The software engineering process is independent of programming language but can be applied

throughout your embedded design practices.

80 Chapter 3

“voice” of the project. While physical prototypes are very capable of demonstrating the

concepts and goals of a project, they are limited to being in a single location.

When you have a large team you are also bound to have developers with differing tool

preferences. This means you need to keep your model in software that can be shared

between tools � something open and viewable by anyone on the team.

Just employing modeling of course doesn’t solve large development team issues; you still

must develop readable (and therefore maintainable) code, documenting your code,

employing source code control and change management, utilizing unit testing and getting as

much standardization and code reuse as possible.

Modeling is often the only choice

Sometimes you must model, you simply can’t prototype or iterate on your design. Have you

ever had a situation when you couldn’t prototype? Consider a project when perhaps the

embedded system doesn’t exist � when you are designing for hardware that is not yet

complete or ready like the latest chip, where you are designing to specifications instead of

silicon. This is a great example where modeling, simulation, emulation and later

prototyping is a valuable approach.

One example is at National Instruments (NI), where they were designing for unreleased

hardware. The embedded team needed to move a significant amount of their core product

designs to a new MPU1 FPGA1 I/O architecture before the integrated silicon was on the

market. They saw the value of this new technology early through confidential interactions

with the silicon vendor. This early access allowed them to plan for the new technology

upgrade in the embedded system. The engineers worked closely with the vendor throughout

the entire process � an important point if you are in a similar situation.

Throughout these discussions, the vendor did an excellent job of setting up a development

platform for the NI embedded team to use as an emulation of what the final architecture

would look like � including a fixed-personality FPGA that would represent or behave like

the final FPGA fabric in the eventual design. This development platform (Figure 3.21) was

a valuable board used for early prototyping, design, and test. However, it was certainly not

an exact stand-in for the final product. There were several subtle and a few substantial

differences. These discrepancies were well documented by the vendor so there were no

surprises, but the engineers needed to optimize for and understand the substantial

differences as they were developing, so there was still a bit of work to do.

The most important shortcoming of the given development board was the fact that instead of

a single, high-performance FPGA fabric like the final design, the engineers at NI were

designing for a system with multiple FPGAs, and the communication delay between silicon

Software Modeling for Embedded Systems 81

caused a significant performance degradation. The development board couldn’t replicate an

entire system running say at 40 MHz, but instead could only reach 10 MHz, making it

unusable for timing and testing accurate application performance. This is a good example

where all models, even physical emulation platforms, aren’t 100% accurate, but when you

understand the shortcomings, they are still very useful. To compensate for the shortcomings

of the model, the team chose to also include a software-based design in the development.

They first found off-the-shelf boards, which had similar CPU characteristics in terms of

performance and architectures (multicore ARM designs that were close to the final design),

that provided performance comparable to the final product as development platforms for more

performance-based designs and testing. This hybrid design approach was helpful in getting

them up and running and provided a closer system in terms of floating-point performance.

To accommodate the FPGA design aspects, the team designed a software-based environment

on the real-time CPU that allowed the deployment of FPGA code to a real-time target

and have it behave similarly in terms of timing to the final FPGA fabric that was then

cross-referenced with the slower, more accurate FPGA combination board from the vendor.

Of important note, the team specifically chose not to simulate the entire hardware platform

using cycle- or even instruction-accurate simulation tools. They deemed “stand-in”

hardware platforms with sufficiently similar characteristics as “good enough” and the most

efficient approach for development. The team was confident in this approach because they

knew once real silicon materialized that the final implementation could leverage the early

design and full test frameworks as developed on the hardware stand-ins.

If you find yourself in a similar situation, designing for a target that isn’t in the market yet,

you can approach your design in a similar fashion.

1. Work closely with your vendor to understand what features and capabilities the future

platform will have and understand the differences in performance and hardware

architecture.

2. Select an existing, off-the-shelf or similar platform for early design and development.

Figure 3.21:
Example of a silicon prototype board (courtesy of LogicBricks) versus a final hardware design

(NI CompactRIO courtesy of National Instruments).

82 Chapter 3

3. Once you run into the performance or feature limitations of that existing platform

(the areas where the new design will differ and add more value) then select a surrogate

hardware and software emulation platform for designing to those new, unreleased

capabilities. This step requires additional software work to create the simulated or

emulated environment.

Even with these well-planned steps, you note there will be differences, there will be

additional development once you get your final hardware device � but if you focus on

proper design techniques and clear abstraction boundaries, you can protect large portions of

your algorithms and focus on optimizing timing and specific I/O features once you get your

first prototypes up and running.

Related to the silicon being unreleased, perhaps you can’t prototype because of the size or

cost of the project. If you are creating a new control system for a new light rail system, you

can’t work on the prototypes until late in the game � and you certainly don’t want to

experiment on the real thing. These are situations where software models can be very

helpful.

So � modeling is great, but aren’t all models wrong?

“All models are wrong, some are just useful” is a phrase generally attributed to statistician

George Box [2]. Whether you are new to modeling or have been expertly designing

embedded systems for decades, this warning pertains to us all. No matter how carefully or

completely you might model a system; the model will always be less than the reality that is

actually modeled.

You may remember when Boeing’s 787 Dreamliner was introduced � this aerospace

innovation is one of the most exciting technology introductions in modern times

(Figure 3.22). The mid-sized, twin-engine jet airliner developed by Boeing Commercial

Airplanes is composed of 50% composite (carbon fiber), 20% aluminum, 15% titanium,

10% steel and 5% other but in terms of volume, the aircraft is 80% composite. Each

787 contains approximately 35 tons of carbon fiber reinforced plastic. What does this

have to do with modeling? Paolo Feraboli, an assistant professor at the University of

Washington School’s Automobili Lamborghini Advanced Composite Structures

Laboratory, was extensively involved in the Dreamliner design and had this to say

about modeling the 787: “Unlike homogeneous metals, multi-layered composites are

very difficult to simulate accurately on a computer. We don’t currently have the

knowledge and the computational power to do a prediction based on purely

mathematical models” [3]. New, innovative materials require modeling and prototyping

in order to be designed and tested.

Software Modeling for Embedded Systems 83

This doesn’t mean models are useless. If done well, you can use models to help in all of the

situations covered in this chapter. You just don’t only want to use models for your

embedded system design.

From the examples, you understand how useful models are and then we tell you they are all

wrong � what are you to do? You embrace another useful quote from author Jim Collins,

embrace “the genius of the and”. You must model your system and combine it with the

“real world”. Often the best way to combine your theories and requirements with the real

world is to create a prototype.

This approach � modeling, simulation and prototyping � is also critical in complex

mechatronics systems such as robotics. Fred Nikgohar, CEO of Robodynamics, points out

the value of the real world. Since building robots is about managing a multi-disciplinary

project, it involves not just software but mechanics, electronics, and integration. Nikgohar

believes “Integration is often the after-thought in building robots. It is that final step in the

design process where all the disciplines come together and create a robot greater than the

sum of its engineered parts. It is also the step where things that worked in isolation often

fail. And worse, troubleshooting becomes enormously more difficult because if the robot

Figure 3.22:
Boeing’s 787 Dreamliner was so innovative in terms of material, the embedded designers needed

to model and prototype to truly understand the behavior of the design.

84 Chapter 3

doesn’t behave as planned, you have to troubleshoot throughout the engineered chain . . .”.
He points out that the challenge in robotics is that a lot of ideas never come to fruition.

“The real world is . . . very real! Wires come loose, mechanical parts bend, even firmware

uploads fail sometimes. By sheer necessity to create robot engineering efficiencies, we have

developed testing plans, troubleshooting plans, and even simulation runs to make things go

further and smoother. But nothing has been more valuable than the actual experience of

building robots.” This applies to all of our embedded system design � nothing is more

valuable than experiencing your design with real-world constraints and real-world

situations. You must model and prototype to perfect your design.

To model and create a prototype, you need a hardware prototyping platform. Prototyping

platforms are typically composed primarily of commercial off-the-shelf components

configured to meet the I/O specifications of the system, and provide a quick, seamless way

to connect the control model with real-world I/O, making it easier to test and iterate the

design. As shown in Figure 3.23, the controller design is tested in a real-time environment

Figure 3.23:
The design V integrates simulated and real-world I/O to be most effective.

Software Modeling for Embedded Systems 85

and connected to actual hardware. This provides excellent verification and validation

feedback on the fidelity of the modeling effort and the resulting control design early in the

design flow. Further refinements to the controller and hardware designs and requirements

can be made prior to finishing the design of the production systems.

Beyond getting your system up and running before you have your final hardware, there are

other reasons you should focus on getting to your prototype quickly. If you’re in an

innovative space, prototypes allow you to fail early and inexpensively. Real innovation

always includes a risk of failure. Thomas Edison once joked, “We now know a thousand

ways not to build a light bulb”. By building a prototype, you can quickly weed out the

approaches that don’t work to focus on the ones that do.

Prototypes also help you to technically understand the problem. By developing a functional

prototype sooner rather than later, you are forced to address both the foreseen and the

unforeseen technical challenges of a device’s design. Then, you can apply those solutions to

a more elegant system design and model as you move to developing the final deployed

solution. Related to this, the prototype can also help resolve conflicts. The best engineers

have strong opinions about how a given feature should be implemented. Inevitably,

differences of opinion result in conflicts, and these conflicts can be difficult to resolve

because both sides have only opinions, experience, and conjecture to refer to as evidence.

By taking advantage of a prototyping platform, you can quickly conduct several different

implementations of the feature and benchmark the resulting performance to analyze the

trade-offs of each approach. This can save time, but it also ensures that you make the

correct design decisions.

Finally, prototypes can help you file patents more easily. Before 1880, all inventors had to

present working models or prototypes of their inventions to the patent office as part of the

patent application process. Today, the patent office uses the “first to invent rule”, which

grants a patent to the first inventor who conceives and reduces the technology or invention

to practice. Though no longer required, a prototype is still the best and safest way to

demonstrate “reduction to practice”.

You have your prototype � now what?

If you can demonstrate or, better yet, put a prototype into the customer’s hands and get real

feedback on the value of your innovation, the probability of business success greatly

increases. This is especially important when you are working in an extremely innovative

area where “proving it” means progressing in your project.

The Loccioni Group in Italy is one example of an innovative team that employs modeling,

simulation and iterative prototypes. Loccioni Group is considered a flag-bearer for Italian

innovation because of its reputation for developing custom technical solutions to ensure

86 Chapter 3

quality, comfort, and safety in many areas. They focus primarily on two industries:

automotive and electrical appliances.

Loccionio Group embraced “the genius of the and” in a recent embedded test system � the

Mexus project � for measuring and charting the flow rate of diesel engine nozzles

(Figure 3.24). This project originated from the need to measure the flow rate of diesel

engine nozzles with a detailed quantification of the fuel injected during a single injection.

The final product is an instrument used worldwide by injector manufacturers for end-of-line

production tests. The goal was to provide a low-cost embedded product with better

performance than any other instrument on the market.

Loccionio Group designed a reliable product capable of accurately determining the two

fundamental parameters characterizing injectors: the flow rate injected for each shot and the

chart of the instantaneous flow rate. The instrument provides the measurement of the fuel

quantity injected in each single shot event up to a maximum of 10 events per revolution

(also known as multi-injection). By simulating the engine operation at 3,000 rpm, the

Figure 3.24:
The injection chamber and its control system were modeled using modern graphical design tools.

Software Modeling for Embedded Systems 87

readout value injection for each revolution can be easily detected by the system, which

provides the quantity of each fuel injection in real time. The innovative aspect of this

project is the calculus algorithm used in the solution. The system acquires different analog

signals and processes them in real time, providing the user with reliable test results up to

the injector functioning rate of 50 instantaneous values per second. The system is also able

to determine how much fuel is dispensed in each injection. This information is significant

for injector characterization because emissions regulations are becoming more restrictive.

Consequently, it is important to provide manufacturers with more detailed information to

gain high-level combustion, reducing either fuel consumption or the quantity of pollutant

gas within the environment.

One critical element of the Mexus system is the injection chamber, the cylinder fitted with

control sensors and valves where the fuel is injected and the specific measurements are

performed. The injection chamber and its control system were modeled with graphical

design and simulation software. In this stage, simulations were also performed using the

same graphical system design environment. During prototyping, the same computer was

maintained through a data-acquisition board that performed functional characterization and

validation. This important development stage of the project highlighted the need for a more

refined chamber injection model. This was determined by using system identification

software as part of the same graphical system design tools, which made it possible to obtain

the transfer function of the injection chamber and consequently to design a suitable control

algorithm.

To enable a large-scale deployment, Loccionio Group needed a hardware device with

failure-free technology that was capable of operating around the clock, offered a compact

form factor, and was suitable for an industrial environment. They chose hardware that

helped them make a quick shift from prototyping to deployment as well as ensuring they

met the sampling rate requirements and the real-time, deterministic control of the process.

The Mexus final product guarantees the highest reliability in test operations. The accuracy

of the measurements is due to the introduction of innovative working methodologies that

ensure test compliance with the most restrictive regulations. By employing modeling,

simulation, prototyping and deployment techniques, Loccioni Group has provided the

automotive world with an innovative product that delivers excellent test standards.

Following similar recommendations for your design, you now have your prototype and your

embedded model, you can then optimize, refine and test the system. When all your

individual components and subsystems have been tested and validated, they are combined

and tested together to ensure that the original design requirements are met. In some cases,

parameters in your controller are finely tuned during this phase to meet original design

requirements. Although creating embedded models in your design process does not

completely eliminate the need for testing, it offers several opportunities to reduce the

88 Chapter 3

amount of test that will be required prior to the release of the production system.

Additionally, modeling design technology is currently evolving to aid in automating the

final testing process. Early tool-providers in this space automatically generate test vectors

and execute scripted sequences to verify both models and automatically generated code.

Soon, these capabilities will extend to physical tests, scripting test sequences, including

real-world I/O connections, needed to verify all behaviors of the control system.

Conclusion

Creating a model for your embedded system provides a time and cost-effective approach to

the development of simple or incredibly complex dynamic control systems, all based on a

single model maintained in a tightly integrated software suite. Using modern modeling

software tools you can design and perform initial validation in off-line simulation. These

models then form the basis for all subsequent development stages. As we have seen,

creating models for your embedded design provides numerous advantages over the

traditional design approach. Using this approach � combined with hardware prototyping �
you reduce the risk of mistakes and shorten the development cycle by performing

verification and validation testing throughout the development instead of only during the

final testing stage. Design evaluations and predictions can be made much more quickly and

reliably with a system model as a basis. This iterative approach results in improved designs,

in terms of both performance and reliability. The cost of resources is reduced, because of

the reusability of models between design teams, design stages, and various projects and the

reduced dependency on physical prototypes. Development errors and overhead can be

reduced through the use of automatic code-generation techniques. These advantages

translate to more accurate and robust control designs, shorter time to market, and reduced

design cost.

Next steps � try it!

As part of this book, you have access to a free trial of several modeling packages including

National Instruments LabVIEW and open-source Modelica. Here are a few embedded

tutorials and code snippets to get you up and running quickly with your next embedded

system design.

Download a 3-hour short course to learn how to use the control and modeling tools

described in this chapter.

National Instruments offers several tools for engineers and researchers to analyze and

simulate dynamic systems and design and deploy control systems. These tools help you

gain a better understanding of linear systems and control design concepts by facilitating a

hands-on, experiential learning environment that is flexible and interactive in nature.

Software Modeling for Embedded Systems 89

This 3-hour short course is designed as an instructor-led and self-study introduction to the

control design process. This includes modeling, designing a controller, simulating the

controller, and deploying a controller using LabVIEW, the Control Design Toolkit and the

Simulation Module. The course includes a presentation, manual, exercises, and solutions.

Closed-loop control with a DC motor

The concepts of control are essential for understanding natural and man-made systems.

Since control is a systems field, to get a full appreciation of control it is necessary to cover

both theory and applications. The skill base required in control includes modeling, control

design, simulation, implementation, tuning, and operation of a control system. This tutorial

shows how these concepts can be taught through use of a Quanser DC Motor plug-in board

for the NI LabVIEW Control Design and Simulation with LabVIEW MathScript RT

software. Traditionally, tuning a controller requires multiple iterations and trial and error to

perfect. However, LabVIEW allows you to tune your controller in real time and then move

directly into verification with a seamless integration with hardware.

Learn more about prototyping with a downloadable kit

The flexibility and productivity of NI tools have proven useful in getting a prototype

working quickly � from medical devices, to industrial machinery, to automated test

systems. The NI graphical system design platform, including NI LabVIEW and flexible off-

the-shelf hardware, provides one of the quickest paths to a working prototype for any

engineer, scientist, or academician. This resource kit contains a variety of online resources

for prototyping with NI tools.

Designing applications with the NI Statechart Module

With the NI LabVIEW Statechart Module, you can create statecharts in LabVIEW software

for developing event-based control and test systems. The statechart programming model

complements the LabVIEW models for data flow, textual math, dynamic system modeling,

and configuration-based development. You can choose the right model or combination of

models to develop your system based on your application requirements.

Design and simulate a brushed dc motor h-bridge circuit

With NI Multisim, you can implement the desktop simulation of your entire analog and

digital system before prototyping. Digital FPGA controller logic and closed-loop simulation

of transistor-level power electronics components are now possible using the Multisim/

LabVIEW cosimulation feature. This tutorial shows how you can use Multisim and

LabVIEW to develop the analog circuit design and digital control blocks of a brushed

90 Chapter 3

DC motor H-bridge circuit. In this article, learn how to use the electromechanical, power

electronics, and sensor feedback blocks to create a closed-loop control system. LabVIEW

FPGA IP core development and debugging are briefly described as well. Cosimulation

enables codesign of an entire system to ensure algorithms and code simulated for the FPGA

in LabVIEW are verified for performance with analog circuitry and can be directly

implemented in hardware with minimal changes. With the improved Multisim design

approach powered by simulation, you can obtain a more accurate understanding of

performance earlier in the design flow. The result of this is a reduction in prototype

iterations (up to three saved PCB turns) and accurate embedded code with fewer compiles

(saving as much as 4 hours per compile).

Multi-domain physical modeling with open-source Modelica models

Modelica is an open, object-oriented, equation-based language to conveniently model

complex physical systems containing, e.g., mechanical, electrical, electronic, hydraulic,

thermal, control, electric power or process-oriented subcomponents. In order for the

Modelica modeling language to solve actual problems, a modeling and simulation

environment is needed:

• to conveniently define a Modelica model with a graphical user interface (composition

diagram/schematic editor) such that the result of the graphical editing is a (internal)

textual description of the model in Modelica format;

• to translate the defined Modelica model into a form which can be efficiently simulated

in an appropriate simulation environment. This requires especially sophisticated

symbolic transformation techniques;

• to simulate the translated model with standard numerical integration methods and

visualize the result.

References

[1] Available from: http://www.irma-international.org/proceeding-paper/gathering-user-needs/32282/.

[2] Available from: http://www.wired.com/science/discoveries/magazine/16-07/pb_theory.

[3] Available from: http://www.carbonfibergear.com/is-the-carbon-fiber-787-dreamliner-safe-enough-to-fly/.

Software Modeling for Embedded Systems 91

http://www.irma-international.org/proceeding-paper/gathering-user-needs/32282/
http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
http://www.carbonfibergear.com/is-the-carbon-fiber-787-dreamliner-safe-enough-to-fly/

	3 Software Modeling for Embedded Systems
	When and why should you model your embedded system?
	Modeling
	What is a modeling language?
	Examples of modeling languages
	The V diagram promise
	So, why would you want to model your embedded system?
	When should you model your embedded system?
	Mission- and safety-critical applications
	Highly complex applications and systems

	Operational complexity
	Cost of defect versus when detected
	Large development teams require modeling
	Modeling is often the only choice
	So – modeling is great, but aren’t all models wrong?
	You have your prototype – now what?
	Conclusion
	Next steps – try it!
	Closed-loop control with a DC motor
	Learn more about prototyping with a downloadable kit
	Designing applications with the NI Statechart Module
	Design and simulate a brushed dc motor h-bridge circuit
	Multi-domain physical modeling with open-source Modelica models

	References

