
Cambridge Books Online

http://ebooks.cambridge.org/

Software Modeling and Design

UML, Use Cases, Patterns, and Software Architectures

Hassan Gomaa

Book DOI: http://dx.doi.org/10.1017/CBO9780511779183

Online ISBN: 9780511779183

Hardback ISBN: 9780521764148

Chapter

10 - Finite State Machines pp. 151-176

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge University Press



10

Finite State Machines

Finite state machines are used for modeling the control and sequencing view of a sys-
tem or object. Many systems, such as real-time systems, are highly state-dependent;
that is, their actions depend not only on their inputs but also on what has previously
happened in the system. Notations used to define finite state machines are the state
transition diagram, statechart, and state transition table. In highly state-dependent
systems, these notations can help greatly by providing insight into understanding
the complexity of these systems.

In the UML notation, a state transition diagram is referred to as a state machine
diagram. The UML state machine diagram notation is based on Harel’s statechart
notation (Harel 1988; Harel and Politi 1998). In this book, the terms statechart and
state machine diagram are used interchangeably. We refer to a traditional state tran-
sition diagram, which is not hierarchical, as a flat statechart and use the term hierar-
chical statechart to refer to the concept of hierarchical state decomposition. A brief
overview of the statechart notation is given in Chapter 2 (Section 2.6).

This chapter starts by considering the characteristics of flat statecharts and then
describes hierarchical statecharts. To show the benefits of hierarchical statecharts,
this chapter starts with the simplest form of flat statechart and gradually shows how
it can be improved upon to achieve the full modeling power of hierarchical state-
charts. Several examples are given throughout the chapter from two case studies,
the Automated Teller Machine and Microwave Oven finite state machines.

Section 10.1 describes events and states in finite state machines. Section 10.2
introduces the statechart examples. Section 10.3 describes events and guard condi-
tions, and Section 10.4 describes statechart actions. Section 10.5 describes hierar-
chical statecharts. Section 10.6 provides guidelines for developing statecharts. The
process of developing statecharts from use cases is then described in Section 10.7.

10.1 FINITE STATE MACHINES AND STATE TRANSITIONS

A finite state machine (also referred to as state machine) is a conceptual machine
with a finite number of states. The state machine can be in only one state at any
one time. A state transition is a change in state that is caused by an input event. In

151

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



152 Software Modeling

response to an input event, the finite state machine might transition to a different
state. Alternatively, the event might have no effect, in which case the finite state
machine remains in the same state. The next state depends on the current state, as
well as on the input event. Optionally, an output action might result from the state
transition.

Although a whole system can be modeled by means of a finite state machine,
in object-oriented analysis and design, a finite state machine is encapsulated inside
one object. In other words, the object is state-dependent and is always in one of the
states of the finite state machine. The object’s finite state machine is depicted by
means of a statechart. In an object-oriented model, the state-dependent view of a
system is defined by means of one or more finite state machines, in which each finite
state machine is encapsulated inside its own object. This section describes the basic
concepts of events and states before giving some examples of statecharts.

10.1.1 Events

An event is an occurrence at a point in time; it is also known as a discrete event,
discrete signal, or stimulus. An event is an atomic occurrence (not interruptible) and
conceptually has zero duration. Examples of events are Card Inserted, Pin Entered,
and Door Opened.

Events can depend on each other. For example, the event Card Inserted always
precedes Pin Entered for a given sequence of events. In this situation, the first event
(Card Inserted) causes a transition into the state (Waiting for PIN), whereas the next
event (Pin Entered) causes the transition out of that state; the precedence of the two
events is reflected in the state that connects them, as shown in Figure 10.1.

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted

PIN Entered

Valid PIN

Figure 10.1. Example of main sequence of statechart

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 153

An event can originate from an external source, such as Card Inserted (which is
the result of the user inserting the card into the card reader), or can be internally
generated by the system, such as Valid PIN.

10.1.2 States

A state represents a recognizable situation that exists over an interval of time.
Whereas an event occurs at a point in time, a finite state machine is in a given state
over an interval of time. The arrival of an event at the finite state machine usually
causes a transition from one state to another. Alternatively, an event can have a null
effect, in which case the finite state machine remains in the same state. In theory, a
state transition is meant to take zero time to occur. In practice, the time for a state
transition to occur is negligible compared to the time spent in the state.

Some states represent the state machine waiting for an event from the external
environment; for example, the state Waiting for PIN is the state in which the state
machine is waiting for the customer to enter the PIN, as shown in Figure 10.1. Other
states represent situations in which the state machine is waiting for a response from
another part of the system. For example, Validating PIN is the state in which the
customer PIN is being checked by the system; the next event will indicate whether
the validation succeeded or not.

The initial state of a state machine is the state that is entered when the state
machine is activated. For example, the initial state in the ATM statechart is the
Idle state, as identified in UML by the arc originating from the small black circle in
Figure 10.1.

10.2 EXAMPLES OF STATECHARTS

The use of flat statecharts is illustrated by means of two examples, an ATM state-
chart and a Microwave Oven statechart.

10.2.1 Example of ATM Statechart

Consider an example, shown in Figure 10.1, of a partial statechart for an automated
teller machine. The initial state of the ATM statechart is Idle. Consider the scenario
consisting of the customer inserting the card into the ATM, entering the PIN, and
then selecting cash withdrawal. When the Card Inserted event arrives, the ATM stat-
echart transitions from the Idle state to the Waiting for PIN state, during which time
the ATM is waiting for the customer to input the PIN. When the PIN Entered event
arrives, the ATM transitions to the Validating PIN state. In this state the bank system
determines whether the customer-entered PIN matches the stored PIN for this card,
and whether the ATM card has been reported lost or stolen. Assuming that the card
and PIN validation is successful (event Valid PIN), the ATM transitions into Waiting
for Customer Choice state.

It is possible to have more than one transition out of a state, with each transition
caused by a different event. Consider the alternative transitions that could result
from PIN validation. Figure 10.2 shows three possible state transitions out of the
Validating PIN state. If the two PIN numbers match, the ATM makes the Valid PIN

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



154 Software Modeling

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted

PIN Entered

Valid PIN

Confiscating

Invalid PIN

Third Invalid PIN,

Card Stolen, Card Expired

Figure 10.2. Example of alternative events on statechart

transition to the Waiting for Customer Choice state. If the PIN numbers do not match,
the ATM makes the Invalid PIN transition to re-enter the Waiting for PIN state and
prompts the customer to enter a different PIN number. If the customer-entered PIN
is invalid after the third attempt, the ATM makes the Third Invalid PIN transition
to the Confiscating state, which results in the card being confiscated. The ATM also
transitions to the same state if the ATM card is reported lost or stolen during card
validation, or if the card has expired.

In some cases, it is also possible for the same event to occur in different states and
have the same effect; an example is given in Figure 10.3. The customer may decide
to enter Cancel in any of the three states Waiting for PIN, Validating PIN, or Waiting
for Customer Choice, which results in the statechart entering the Ejecting state, the
ATM card being ejected, and the transaction terminated.

It is also possible for the same event to occur in a different state and have a dif-
ferent effect. For example, if the PIN Entered event arrives in Idle state, it is ignored.

Next consider the case in which, after successful PIN validation, the customer
decides to withdraw cash from the ATM, as shown in Figure 10.4. From the Waiting
for Customer Choice state, the customer makes a selection – for example, the cus-
tomer selects withdrawal. The statechart then receives a Withdrawal Selected event,
upon which the Processing Withdrawal state is entered. If the withdrawal is approved,
the statechart goes into the Dispensing state, where the cash is dispensed. When the
Cash Dispensed event arrives, the ATM transitions to the Printing state to print the
receipt. When the receipt is printed, the Ejecting state is entered. When the card has
been ejected, as indicated by the Card Ejected event, the Terminating state is entered.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 155

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted

PIN Entered

Valid PIN

Confiscating

Invalid PIN

Third Invalid PIN,

Card Stolen, Card Expired Ejecting

Cancel

Cancel

Cancel

Figure 10.3. Example of same event occurring in different states

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted

PIN Entered

Valid PIN

Ejecting

After (Elapsed Time)

Withdrawal Selected

Terminating

Printing

Dispensing
Processing 

Withdrawal
Withdrawal Approved

Cash Dispensed

Receipt Printed

Card Ejected

Figure 10.4. Example of complete ATM scenario: cash withdrawal scenario

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



156 Software Modeling

Cooking

Door Shut Door Open

Door Open
With Item

Door Shut 
With Item

Ready To Cook

Door Opened

Door Closed

Item Placed Item Removed

Door OpenedDoor Closed

Door Opened

Cooking Time Entered

Timer Expired

Start

Cooking Time Entered

Figure 10.5. Simplified statechart for Microwave Oven Control

From the Terminating state, a timer event causes a transition back to the Idle
state. The timer event is depicted by after (Elapsed Time), where Elapsed Time is the
time spent in the Terminating state (from entry into the state until exit from the state
caused by the timer event).

10.2.2 Example of Microwave Oven Statechart

As a second example of a statechart, consider a simplified version of the Microwave
Oven Control statechart, which is shown in Figure 10.5. The statechart shows the
different states for cooking food. The initial state is Door Shut. Consider a scenario
that starts when the user opens the door. As a result, the statechart transitions into
the Door Open state. The user then places an item in the oven, causing the statechart
to transition into the Door Open with Item state. When the user closes the door, the
statechart then transitions into the Door Shut with Item state. After the user inputs
the cooking time, the Ready to Cook state is entered. Next the user presses the Start
button, which causes the statechart to transition into the Cooking state. When the
timer expires, the statechart leaves the Cooking state and reenters the Door Shut with
Item state. If instead the door were opened during cooking, the statechart would
enter the Door Open with Item state.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 157

10.3 EVENTS AND GUARD CONDITIONS

It is possible to make a state transition conditional through the use of a guard con-
dition. This can be achieved by combining events and guard conditions in defining
a state transition. The notation used is Event [Condition]. A condition is a Boolean
expression with a value of True or False, which holds for some time. When the event
arrives, it causes a state transition, provided that the guard condition given in square
brackets is True. Conditions are optional.

In some cases, an event does not cause an immediate state transition, but its
impact needs to be remembered because it will affect a future state transition. The
fact that an event has occurred can be stored as a condition that can be checked
later.

Examples of guard conditions in Figure 10.6 are Zero Time and Time Remaining
in the microwave statechart. The two transitions out of the Door Open with Item
state are Door Closed [Zero Time] and Door Closed [Time Remaining]. Thus the tran-
sition taken depends on whether the user has previously entered the time or not
(or whether timer previously expired). If the condition Zero Time is true, the stat-
echart transitions to Door Shut with Item, waiting for the user to enter the time. If
the condition Time Remaining is true, the statechart transitions to the Ready to Cook
state.

Door Open

Door Open

with Item

Door Shut 

with Item

Ready To Cook

Item Placed Item Removed

Door OpenedDoor Closed [Zero Time]

Cooking Time Entered

Cooking Time Entered

Door Opened

Door Closed [Time Remaining]

Figure 10.6. Example of events and conditions

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



158 Software Modeling

10.4 ACTIONS

Associated with a state transition is an optional output action. An action is a com-
putation that executes as a result of a state transition. Whereas an event is the cause
of a state transition, an action is the effect of the transition. An action is triggered at
a state transition. It executes and then terminates itself. The action executes instan-
taneously at the state transition; thus conceptually an action is of zero duration.
In practice, the duration of an action is very small compared to the duration of a
state.

Actions can be depicted on state transitions, as described in Section 10.4.1. Cer-
tain actions can be depicted more concisely as being associated with the state rather
than with the transition into or out of the state. These are entry and exit actions.
Entry actions are triggered when the state is entered, as described in Section 10.4.2,
and exit actions are triggered on leaving the state, as described in Section 10.4.3.

10.4.1 Actions on State Transitions

A transition action is an action that is a result of a transition from one state to
another – it could also happen if the state transitions to itself. To depict a transition
action on a statechart, the state transition is labeled Event/Action or Event [Condi-
tion]/Action.

As an example of actions, consider the ATM statechart. When the Card Inserted
event arrives, the ATM statechart transitions from the Idle state to the Waiting for
PIN state (Figure 10.2). The action that takes place at the transition into this state is
Get PIN, which is a prompt the state machine outputs to the customer to enter the

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted / 

Get PIN

PIN Entered /

Validate PIN

Valid PIN / 

Display Menu

Figure 10.7. Example of actions in main sequence

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 159

PIN. This example is shown in Figure 10.7, which shows the partial statechart for
the ATM (originally shown in Figure 10.1) with the actions added. In the Waiting
for PIN state, the ATM is waiting for the customer to input the PIN. When the PIN
Entered event arrives, the ATM transitions to the Validating PIN state and the action
Validate PIN is executed. This state transition is labeled PIN entered / Validate PIN. In
the Validating PIN state, the system determines whether the customer-entered PIN
matches the stored PIN for this card, and whether the ATM card has been reported
lost or stolen. Assuming that the card and PIN validation is successful (event Valid
PIN), the ATM transitions into Waiting for Customer Choice state.

More than one action can be associated with a transition. Because the actions
all execute simultaneously, there must not be any interdependencies between the
actions. For example, it is not correct to have two simultaneous actions such as Com-
pute Change and Display Change. Because there is a sequential dependency between
the two actions, the change cannot be displayed before it has been computed. To
avoid this problem, introduce an intermediate state called Computing Change. The
Compute Change action is executed on entry to this state, and the Display Change
action is executed on exit from this state.

An example of a statechart with alternative actions is shown in Figure 10.8. Many
actions are possible as a result of PIN validation. If the PIN is valid, the statechart
transitions to the Waiting for Customer Choice state and the action is to display the
selection menu. If the PIN is invalid, the statechart transitions back to the Waiting
for PIN state and the action is the Invalid PIN Prompt. If the PIN is invalid for the
third time, or the card is stolen or has expired, then the statechart transitions to the
Confiscating state and the action is to confiscate the card. Another situation is that

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted / 

Get PIN

PIN Entered /

Validate PIN

Valid PIN / 

Display Menu

Confiscating

Invalid PIN / Invalid PIN Prompt

Third Invalid PIN,

Card Stolen, Card Expired / 

Confiscate

Figure 10.8. Example of alternative state transitions and actions

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



160 Software Modeling

Waiting for PIN

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted / 

Get PIN

PIN Entered /

Validate PIN

Valid PIN / 

Display Menu

Confiscating

Invalid PIN / Invalid PIN Prompt

Third Invalid PIN,

Card Stolen, Card Expired / 

Confiscate
Ejecting

Cancel / Eject

Cancel / Eject

Cancel / Eject

Figure 10.9. Example of same event and action on different state transitions

the same event can cause transitions out of several states, with the same action in
each case. An example of this is given in Figure 10.9. In any of the three states, Wait-
ing for PIN, Validating PIN, and Waiting for Customer Choice, the customer may decide
to enter Cancel, which results in the system ejecting the ATM card and entering
Ejecting state.

10.4.2 Entry Actions

An entry action is an instantaneous action that is performed on transition into the
state. An entry action is represented by the reserved word entry and is depicted
as entry/Action inside the state box. Whereas transition actions (actions explicitly
depicted on state transitions) can always be used, entry actions should only be used
in certain situations. The best time to use an entry action is when the following
occur:

■ There is more than one transition into a state.
■ The same action needs to be performed on every transition into this state.
■ The action is performed on entry into this state and not on exit from the previous

state.

In this situation, the action is only depicted once inside the state box, instead of on
each transition into the state. On the other hand, if an action is only performed on
some transitions into the state and not others, then the entry action should not be
used. Instead, transition actions should be used on the relevant state transitions.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 161

Entry / 

Start Cooking

Cooking

Door Shut with

Item

Ready to Cook

Minute Pressed/ 

Start Minute

Start / 

Start Timer

Cooking

Door Shut with 

Item

Ready to Cook

Minute Pressed / 

Start Cooking,

Start Minute

Start / 

Start Cooking,

Start Timer

(b)

(a)

Figure 10.10. Example of entry action: (a) Actions on state transitions (b) Entry actions.

An example of an entry action is given in Figure 10.10. In Figure 10.10a, actions
are shown on the state transitions. If the Start button is pressed (resulting in the
Start event) while the microwave oven is in the Ready to Cook state, the statechart
transitions to the Cooking state. There are two actions – Start Cooking and Start
Timer. On the other hand, if the user presses the Minute Plus button (to cook the
food for one minute) while in Door Shut with Item state, the statechart will also
transition to the Cooking state. In this case, however, the actions are Start Cooking
and Start Minute. Thus, in the two transitions into Cooking state, one action is the
same (Start Cooking) but the second is different. An alternative decision is to use
an entry action for Start Cooking as shown in Figure 10.10b. On entry into Cook-
ing state, the entry action Start Cooking is executed because this action is executed
on every transition into the state. However, the Start Timer action is shown as an
action on the state transition from Ready to Cook state into Cooking state. This is
because the Start Timer action is only executed on that specific transition into Cook-
ing state and not on the other transition. Thus, on the transition from Door Shut with
Item state into Cooking state, the transition action is Start Minute. Figures 10.10a
and 10.10b are semantically equivalent to each other but Figure 10.10b is more
concise.

10.4.3 Exit Actions

An exit action is an instantaneous action that is performed on transition out of
the state. An exit action is represented by the reserved word exit and is depicted

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



162 Software Modeling

Cooking

Door Open with 

Item

Door Shut with 

Item

Door Opened / 

Stop Cooking,

Stop Timer

Timer Expired / 

Stop Cooking

Exit /

Stop Cooking

Cooking

Door Open with 

Item

Door Shut with 

Item

Door Opened / 

Stop Timer

Timer Expired

(a)

(b)

Figure 10.11. Example of exit action. (a) Actions on state transitions. (b) Exit actions

as exit/Action inside the state box. Whereas transition actions (actions explicitly
depicted on state transitions) can always be used, exit actions should only be used
in certain situations. The best time to use an exit action is when the following
occur:

■ There is more than one transition out of a state.
■ The same action needs to be performed on every transition out of the state.
■ The action is performed on exit from this state and not on entry into the next

state.

In this situation, the action is only depicted once inside the state box, instead of on
each transition out of the state. On the other hand, if an action is only performed on
some transitions out of the state and not others, then the exit action should not be
used. Instead, transition actions should be used on the relevant state transitions.

An example of an exit action is given in Figure 10.11. In Figure 10.11a, actions
are shown on the state transitions out of Cooking state. Consider the action Stop
Cooking. If the timer expires, the microwave oven transitions from the Cooking state
to the Door Shut with Item state and the action Stop Cooking is executed (Figure
10.11a). If the door is opened, the oven transitions out of the Cooking state into Door
Open with Item state. In this transition, two actions are executed – Stop Cooking and
Stop Timer. Thus, in both transitions out of Cooking state (Figure 10.11a), the action
Stop Cooking is executed. However, when the door is opened and the transition is to
Door Open with Item state, there is an additional Stop Timer action. An alternative
design is shown in Figure 10.11b, in which an exit action Stop Cooking is depicted.
This means that whenever there is a transition out of Cooking state, the exit action
Stop Cooking is executed. In addition, in the transition to Door Open with Item state,
the transition action Stop Timer will also be executed. Having the Stop Cooking action

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 163

as an exit action instead of an action on the state transition is more concise, as shown
in Figure 10.11b. The alternative of having transition actions, as shown in Figure
10.11a, would require the Stop Cooking action to be explicitly depicted on each of the
state transitions out of the Cooking state. Figures 10.11a and 10.11b are semantically
equivalent to each other but Figure 10.11b is more concise.

10.5 HIERARCHICAL STATECHARTS

One of the potential problems of flat statecharts is the proliferation of states and
transitions, which makes the statechart very cluttered and difficult to read. A very
important way of simplifying statecharts and increasing their modeling power is to
introduce composite states, which are also known as superstates, and the hierarchical
decomposition of statecharts. With this approach, a composite state at one level of
a statechart is decomposed into two or more substates on a lower-level statechart.

The objective of hierarchical statecharts is to exploit the basic concepts and
visual advantages of state transition diagrams, while overcoming the disadvantages
of overly complex and cluttered diagrams, through hierarchical structuring. Note
that any hierarchical statechart can be mapped to a flat statechart, so for every hier-
archical statechart there is a semantically equivalent flat statechart.

10.5.1 Hierarchical State Decomposition

Statecharts can often be significantly simplified by the hierarchical decomposition of
states, in which a composite state is decomposed into two or more interconnected
sequential substates. This kind of decomposition is referred to as sequential state
decomposition. The notation for state decomposition also allows both the compos-
ite state and the substates to be shown on the same diagram or, alternatively, on
separate diagrams, depending on the complexity of the decomposition.

An example of hierarchical state decomposition is given in Figure 10.12a, where
the Processing Customer Input composite state consists of the Waiting for PIN, Val-
idating PIN, and Waiting for Customer Choice substates. (On the hierarchical stat-
echart, the composite state is shown as the outer rounded box, with the name of
the composite state shown at the top left of the box. The substates are shown as
inner rounded boxes.) When the system is in Processing Customer Input composite
state, it is in one (and only one) of the Waiting for PIN, Validating PIN, and Waiting
for Customer Choice substates. Because the substates are executed sequentially, this
kind of hierarchical state decomposition is referred to as resulting in a sequential
statechart.

10.5.2 Composite States

Composite states can be depicted in two ways on statecharts, as described next. A
composite state can be depicted with its internal substates, as shown for the Process-
ing Customer Input composite state in Figure 10.12a. Alternatively, a composite state
can be depicted as a black box without revealing its internal substates, as shown in
Figure 10.12b. It should be pointed out that when a composite state is decomposed
into substates, the transitions into and out of the composite state must be preserved.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



164 Software Modeling

Waiting for PIN

Entry / 

Display Welcome

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted / 

Get PIN

PIN Entered / 

Validate PIN

Valid PIN /

Display Menu

Processing 

Customer Input

Ejecting

Confiscating

Invalid PIN /

Invalid PIN Prompt Third Invalid PIN,

Card Stolen, Card Expired /

Confiscate

Cancel /

Eject

Entry / 

Display Welcome

Idle

Processing

Customer Input

Card Inserted / 

Get PIN

Ejecting

Confiscating

Third Invalid PIN,

Card Stolen, Card Expired /

Confiscate

Cancel /

Eject

(a)

(b)

Figure 10.12. Example of hierarchical statechart

Thus, there is one state transition into the Processing Customer Input composite state
and two transitions out of it, as shown in Figures 10.12a and 10.12b.

Each transition into the composite state Processing Customer Input is, in fact, a
transition into one (and only one) of the substates on the lower-level statechart.
Each individual transition out of the composite state has to actually originate from
one (and only one) of the substates on the lower-level statechart. Thus. the input
event Card Inserted causes a transition to the Waiting for PIN substate within the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 165

Processing Customer Input composite state, as shown in Figure 10.12a. The tran-
sition out of the Processing Customer Input composite state into the Confiscat-
ing state actually originates from the Validating PIN substate, as shown in Fig-
ure 10.12a. The case of the Cancel transition into Ejecting state is described in the
next section.

10.5.3 Aggregation of State Transitions

The hierarchical statechart notation also allows a transition out of every one of the
substates on a statechart to be aggregated into a transition out of the composite
state. Careful use of this feature can significantly reduce the number of state transi-
tions on a statechart.

Consider the following example in which aggregation of state transitions would
be useful. In the flat statechart shown in Figure 10.9, it is possible for the customer
to press the Cancel button on the ATM machine in any of the three states Waiting
for PIN, Validating PIN, and Waiting for Customer Choice. In each case, the Cancel event
transitions the ATM to Ejecting state. This is depicted by a Cancel arc leaving each
of these states and entering the Ejecting state.

This can be expressed more concisely on a hierarchical statechart. From each of
the three substates of the Processing Customer Input composite state, the input event
Cancel causes a transition to the Ejecting state. Because the Cancel event can take
place in any of the three Processing Customer Input substates, a Cancel transition
could be shown leaving each substate. However, it is more concise to show one
Cancel transition leaving the Processing Customer Input composite state, as shown in
Figure 10.12a. The transitions out of the substates are not shown (even though an
individual transition would actually originate from one of the substates). This kind
of state transition, in which the same event causes a transition out of several states
to another state, usually results in a plethora of arcs on flat statecharts and state
transition diagrams.

In contrast, because the Third Invalid event only occurs in Validating PIN state
(Figure 10.12a), it is shown leaving this substate only and not from the composite
state.

10.5.4 Orthogonal Statecharts

Another kind of hierarchical state decomposition is orthogonal state decomposition,
which is used to model different views of the same object’s state. With this approach,
a high-level state on one statechart is decomposed into two (or more) orthogonal
statecharts. The two orthogonal statecharts are shown separated by a dashed line.
When the higher-level statechart is in the composite state, it is simultaneously in
one of the substates on the first lower-level orthogonal statechart and in one of the
substates on the second lower-level orthogonal statechart.

Although orthogonal statecharts can be used to depict concurrent activity within
the object containing the statechart, it is better to use this kind of decomposition to
show different parts of the same object that are not concurrent. Designing objects
with only one thread of control is much simpler and is strongly recommended. When
true concurrency is required, use separate objects and define each object with its
own statechart.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



ATM Control

ATM Sequencing

ATM 

Sequencing 

Composite State

Closedown Request Condition

Closedown Not Requested

Closedown Was Requested

ClosedownStartup

Figure 10.13. Example of orthogonal statecharts in the ATM problem

166

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 167

The use of orthogonal statecharts to depict conditions can be seen in the ATM
example. This case is illustrated in Figure 10.13, where the statechart for the ATM
Machine, ATM Control, is now decomposed into two orthogonal statecharts, one for
ATM Sequencing and one for Closedown Request Condition. The two statecharts are
depicted on a high-level statechart, with a dashed line separating them. The ATM
Sequencing statechart is in fact the main statechart of the ATM, which depicts the
states the ATM goes through while processing a customer request.

Note that, at any one time, the ATM Control composite state is in one of the
substates of the ATM Sequencing statechart and one of the substates of the Closedown
Request Condition statechart. Closedown Request Condition is a simple statechart with
two states reflecting whether closedown has been requested or not, with Closedown
Not Requested as the initial state. The Closedown event causes a transition to the
state Closedown Was Requested, and the Startup event causes a transition back to
Closedown Not Requested. The ATM Control statechart is the union of the Closedown
Request Condition and the ATM Sequencing statecharts. The Closedown Was Requested
and Closedown Not Requested states of the Closedown Request Condition statechart
(see Figure 10.13) are the conditions checked on the ATM Sequencing statechart,
when the after (Elapsed Time) event is received in Terminating state (Figure 10.17).
Note that the Closed Down state is actually a state on the ATM Sequencing statechart.

10.6 GUIDELINES FOR DEVELOPING STATECHARTS

The following guidelines apply to developing either flat or hierarchical statecharts,
unless otherwise explicitly stated:

■ A state name must reflect an identifiable situation or an interval of time when
something is happening in the system. Thus, a state name is often an adjective
(e.g., Idle), a phrase with an adjective (e.g., ATM Idle), a gerund (e.g., Dispensing),
or a phrase with a gerund (e.g., Waiting for PIN). The state name should not
reflect an event or action such as ATM Dispenses or Dispense Cash, respectively.

■ On a given statechart, each state must have a unique name. It is usually ambigu-
ous to have two states with the same name. In theory, a substate within one
composite state could have the same name as a substate of a different composite
state; however, this is confusing and should therefore be avoided.

■ It must be possible to exit from every state. It is not necessary for a statechart to
have a terminating state, because the statechart might exist for the duration of
the system or object.

■ On a sequential statechart, the statechart is in only one state at a time. Two states
cannot be active simultaneously (e.g., Waiting for PIN and Dispensing). One state
must follow sequentially from the other.

■ Do not confuse events and actions. An event is the cause of the state transition,
and the action is the effect of the state transition.

■ An event happens at a moment in time. The event name indicates that something
has just happened (e.g., Card Inserted, Door Closed) or the result of an action such
as Valid PIN or Third Invalid.

■ An action is a command – for example, Dispense Cash, Start Cooking, Eject.
■ An action executes instantaneously. It is possible to have more than one

action associated with a state transition. All these actions conceptually execute
simultaneously; hence, no assumptions can be made about the order in which the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



168 Software Modeling

actions are executed. Consequently, no interdependencies must exist between
the actions. If a dependency does exist, it is necessary to introduce an intermedi-
ate state.

■ A condition is a Boolean value. If a state transition is labeled event [condition],
a state transition takes place only if, at the moment the event happens, the con-
dition is true. A condition is true for some interval of time. The state transition
Door Closed [Time Remaining] is only taken if there is a finite time remaining when
the door is closed. The state transition will not take place if there is no time left
when the door is closed.

■ Actions and conditions are optional. They should only be used when necessary.

10.7 DEVELOPING STATECHARTS FROM USE CASES

To develop a statechart from a use case, start with a typical scenario given by the use
case – that is, one particular path through the use case. Ideally, this scenario should
be the main sequence through the use case, involving the most usual sequence of
interactions between the actor(s) and the system. Now consider the sequence of
external events given in the scenario. Usually, an input event from the external
environment causes a transition to a new state, which is given a name correspond-
ing to what happens in that state. If an action is associated with the transition, the
action occurs in the transition from one state to the other. Actions are determined
by considering the response of the system to the input event, as given in the use case
description.

Initially, a flat statechart is developed that follows the event sequence given in
the main scenario. The states depicted on the statechart should all be externally
visible states – that is, the actor should be aware of each of these states. In fact,
the states represent consequences of actions taken by the actor, either directly or
indirectly. This is illustrated in the detailed example given in the next section.

To complete the statechart, determine all the possible external events that could
be input to the statechart. You do this by considering the description of alternative
paths given in the use case. Several alternatives describe the reaction of the system
to alternative inputs from the actor. Determine the effect of the arrival of these
events on each state of the initial statechart; in many cases, an event could not occur
in a given state or will have no impact. In other states, however, the arrival of an
event will cause a transition to an existing state or some new state that needs to be
added to the statechart. The actions resulting from each alternative state transition
also need to be considered. These actions should already be documented in the use
case description as the system reaction to an alternative input event.

In some applications, one statechart can participate in more than one use case.
In such situations, there will be one partial statechart for each use case. The partial
statecharts will need to be integrated to form a complete statechart. The implication
is that there is some precedence in the execution of (at least some of) the use cases
and their corresponding statecharts. To integrate two partial statecharts, it is neces-
sary to find one or more common states. A common state might be the last state of
one statechart and the first state of the next statechart. However, other situations
are possible. The integration approach is to integrate the partial statecharts at the
common state, in effect superimposing the common state of the second statechart

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 169

on top of the same state on the first statechart. This can be repeated as necessary,
depending on how many partial statecharts need to be integrated.

Given the complete flat statechart, the next step is to develop hierarchical state-
charts where possible. There are actually two main approaches to developing hier-
archical statecharts. The first approach is a top-down approach to determine major
high-level states, sometimes referred to as modes of operation. For example, in an
airplane control statechart, the modes might be Taking Off, In Flight, and Landing.
Within each mode, there are several states, some of which might in turn be com-
posite states. This approach is more likely to be used in complex real-time systems,
which are frequently highly state-dependent. The second approach is to first develop
a flat statechart and then identify states that can be aggregated into composite states,
as described in Section 10.8.4.

10.8 EXAMPLE OF DEVELOPING A STATECHART FROM A USE CASE

To illustrate how to develop a statechart from a use case, consider the ATM Control
statechart from the Banking System case study.

10.8.1 Develop Statechart for Each Use Case

The use cases for the Banking System are given in Chapter 21. In this example, we
will consider the use cases for Validate PIN and Withdraw Cash. Both use cases
describe the sequence of interactions between the actor – the ATM Customer – and
the system, in which PIN validation precedes withdrawing cash. For each use case,
a statechart is constructed as illustrated in Figures 10.14 and 10.15. Figure 10.14

Waiting for PIN

Entry / 

Display Welcome

Idle

Validating PIN

Waiting for 

Customer Choice

Card Inserted / 

Get PIN

PIN Entered / 

Validate PIN

Valid PIN /

Display Menu, 

Update Status

Figure 10.14. Statechart for ATM Control: Validate PIN use case

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



170 Software Modeling

Entry / 

Display Welcome

Idle

Waiting for 

Customer Choice

Processing 

Withdrawal
Dispensing

Printing

Ejecting

Terminating

Withdrawal Selected / 

Request Withdrawal, 

Display Wait

Withdrawal Approved /

Dispense Cash,

Update Status 

Cash Dispensed /

Print Receipt,

Display Cash Dispensed,

Confirm Cash Dispensed

Receipt Printed /

Eject

Card Ejected /

Display Ejected

After (Elapsed Time) [Closedown Not Requested]

Figure 10.15. Statechart for ATM Control: Withdraw Funds use case

shows the statechart for the main sequence of the Validate PIN use case depicting
the scenario in which the PIN is valid, as described in Section 10.4.1. This statechart
starts in Idle state and ends in Waiting for Customer Choice state.

Figure 10.15 shows the statechart for the Withdraw Funds use case correspond-
ing to the main scenario of the use case. This statechart starts in Waiting for Customer
Choice state. In the main scenario, withdrawal is selected (resulting in transition
into Processing Withdrawal state), withdrawal is approved (resulting in transition to
Dispensing state), cash is dispensed (resulting in transition to Printing state), a receipt
is printed (resulting in transition to Ejecting state), the card is ejected, transition into
Terminating state for a fixed period, and finally return to Idle state, when the period
elapses.

In this example, the states of the ATM statechart are all externally visible; that
is, the actor is aware of each of these states. In fact, the states depict consequences
of actions taken by the actor, either directly or indirectly.

10.8.2 Consider Alternative Sequences

After the first version of the statechart is completed, further refinements can be
made. To complete the statechart, it is necessary to consider the effect of each alter-
native sequence described in the Alternatives section of the use cases. Figure 10.9
shows the Validate PIN statechart with the alternative sequences added to the main
sequence, as described in Section 10.4.1. Figure 10.16 shows the Withdraw Funds
statechart with the alternative sequences added to the main sequence. Thus, in

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 171

Entry / 
Display Welcome

Idle

Waiting for 
Customer Choice

Processing
Withdrawal

Dispensing

Printing

Ejecting

Terminating

Withdrawal Selected / 
Request Withdrawal, 
Display Wait

Withdrawal Approved / 
Dispense Cash,
Update Status 

Cash Dispensed / 
Print Receipt,

Display Cash Dispensed,
Confirm Cash Dispensed

Receipt Printed / 
Eject

Card Ejected /
Display Ejected

After (Elapsed Time) [Closedown Not Requested]

Rejected / 
Eject

Entry / Display 
System Down

Closed Down

Insufficient Cash / 
Eject

Figure 10.16. Statechart for ATM Control: Withdraw Funds use case with alternatives

addition to the main sequence for the scenario in which cash is dispensed, there are
two additional scenarios: withdrawal transaction rejected (transition directly from
Processing Withdrawal state to Ejecting State) and insufficient cash in ATM (transi-
tion from Dispensing state to Closed Down State).

10.8.3 Develop Integrated Statechart

The integrated statechart consists of the integration of the use case–based state-
charts, after consideration of alternatives. Thus, the statecharts depicted in Figures
10.9 (Validate PIN use case with alternatives) and 10.16 (Withdraw Cash use case
with alternatives) are combined with the statecharts for the other use cases. This
statechart would represent the main sequence through each use case together with
the alternatives.

Figure 10.17 shows the integrated statechart from the Validate PIN and With-
draw Cash statecharts, with main and alternatives sequences. The main statechart
integration point is Waiting for Customer Choice state, the end state for Vali-
date PIN statechart, and the initial state for Withdraw Funds (and also Transfer
Funds and Query Account) statechart. However, other statechart integration points
are the Ejecting and Confiscating states for the alternative scenarios of Validate
PIN.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



172 Software Modeling

Cancel /

Eject

Entry / 

Display Welcome

Idle

Waiting for 

Customer Choice

Processing 

Withdrawal
Dispensing

Printing

Ejecting

Terminating

Withdrawal Selected / 

Request Withdrawal, 

Display Wait

Withdrawal Approved /

Dispense Cash,

Update Status 

Cash Dispensed /

Print Receipt,

Display Cash Dispensed,

Confirm Cash Dispensed

Receipt Printed /

Eject

Card Ejected /

Display Ejected

After (Elapsed Time)

[Closedown Not Requested]

Rejected /

Eject

Entry / Display 

System Down

Closed Down

Insufficient Cash /

Eject

Waiting for PIN

Validating PIN

PIN Entered /

Validate PIN

Invalid PIN /

Invalid PIN Prompt

Cancel/Eject

Valid PIN / 

Display Menu

Card Inserted / 

Get PIN

Confiscating

Card Stolen, 

Card Expired / 

Confiscate, 

Update Status

Cancel / Eject

Third Invalid PIN/

Confiscate

Cancel / Eject

Card Confiscated /

Display Confiscated

Figure 10.17. Statechart for ATM Control: integrated statechart for Validate PIN and Withdraw
Funds use case with alternatives

10.8.4 Develop Hierarchical Statechart

It is usually easier to initially develop a flat statechart. After enhancing the flat state-
chart by considering alternative events, look for ways to simplify the statechart by
developing a hierarchical statechart. Look for states that can be aggregated because
they constitute a natural composite state. In particular, look for situations in which
the aggregation of state transitions simplifies the statechart.

The hierarchical statechart for ATM Control is shown in Figures 10.18 through
10.21. Three states on Figure 10.18 are composite states: Processing Customer Input
(decomposed into three substates on Figure 10.19), Processing Transaction (decom-
posed into three substates on Figure 10.20), and Terminating Transaction (decom-
posed into five substates on Figure 10.21). Aggregation of state transitions is the
main reason for the Processing Customer Input composite state (Figure 10.18). In
particular, the Cancel event is aggregated into a transition out of the composite
state instead of the three substates. Aggregation of state transitions is also used for
the Processing Transaction composite state (Figure 10.19), with the Rejected event

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Entry / Display
Welcome

Idle

Processing 
Transaction

Processing 
Customer

Input

Entry / Display
System Down

Closed Down

Terminating 
TransactionCancel / Eject,

Display Cancel

Card Stolen, Card Expired / 

Third Invalid PIN / Confiscate

Confiscate, Update Status

Rejected / 
Eject,

Display Apology

Query Approved /
Print Receipt,
Update Status

Transfer Approved /
Print Receipt,
Update Status

Withdrawal Approved/ 
Dispense Cash,
Update Status

After(Elapsed Time)
[Closedown Not Requested]

After(Elapsed Time)
[Closedown Was Requested]

Insufficient Cash /
Eject,

Abort Cash
Dispensed

Withdrawal Selected/ 
Request Withdrawal,

Display Wait

Query Selected /
Request Query, Display Wait

Transfer Selected / 
Request Transfer,

Display Wait

Card Inserted / 
Get PIN

ClosedownStartup

Figure 10.18. Top-level statechart for ATM Control

Waiting for 

PIN

Validating PIN

Waiting for 

Customer

Choice

Entry / Display

Welcome

Idle

Ejecting

Confiscating

Processing Transaction

Processing

Customer

Input

Card Inserted /

Get PIN

Valid PIN/ 

Display Menu,

Update Status

PIN Entered/

Validate PIN

Cancel / Eject,

Display Cancel

Card Stolen, Card Expired /

Confiscate, Update Status

Withdrawal Selected/ 

Request Withdrawal,

Display Wait

Query Selected /

Request Query,

Display Wait

Transfer Selected / 

Request Transfer,

Display Wait

Invalid PIN/

Invalid PIN Prompt

Third Invalid PIN /

Confiscate

Figure 10.19. Statechart for ATM Control: Processing Customer Input composite state

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



174 Software Modeling

Processing Transaction

Withdrawal Selected / 

Request Withdrawal,

Display Wait

Query Selected /

Request Query,

Display Wait

Transfer Selected / 

Request Transfer,

Display Wait

Waiting for 

Customer

Choice

Processing 

Transfer

Processing 

Query

Processing 

Withdrawal

Ejecting

Rejected /

Eject,

Display Apology

Printing

Dispensing

Query Approved /

Print Receipt,

Update Status

Transfer Approved / 

Print Receipt, Update Status

Withdrawal Approved /

Dispense Cash,

Update Status

Figure 10.20. Statechart for ATM Control: Processing Transaction composite state

Processing 

Customer

Input

Processing 

Transaction

Ejecting

Confiscating

Cancel / Eject,

Display Cancel

Stolen Card, Expired Card /

Confiscate, Update Status

Rejected / Eject,

Display Apology

Printing

Query Approved /

Print Receipt,

Update Status

Transfer Approved / 

Print Receipt,

Update Status

Dispensing

Withdrawal Approved /

Dispense Cash,

Update Status

Terminating

Terminating Transaction

Entry / Display 

Welcome

Idle

Entry / Display 

System Down

Closed Down

Receipt Printed /

Eject

Card Ejected / 

Display Ejected

Cash Dispensed / 

Print Receipt,

Display Cash Dispensed,

Confirm Cash Dispensed

Card Confiscated / 

Display Confiscated

After(Elapsed Time)[Closedown Not Requested]

After(Elapsed Time)[Closedown Was Requested]

Insufficient

Cash /

Eject,

Abort

Cash

Dispensed

Third Invalid PIN / 

Confiscate

Figure 10.21. Statechart for ATM Control: Terminating Transaction composite state

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



Finite State Machines 175

aggregated from a transition out of each substate to a transition out of the composite
state. In the case of the Terminating Transaction composite state, it contains substates
that deal with finishing the transaction, such as dispensing cash, printing the receipt,
and ejecting the ATM card. It also has substates for canceling the transaction
and terminating the transaction. This statechart is described in more detail in
Section 21.6.

10.9 SUMMARY

This chapter described the characteristics of flat statecharts and hierarchical state-
charts. Guidelines for developing statecharts were given. The process of developing
a statechart from a use case was then described in detail. It is possible for a state-
chart to support several use cases, with each use case contributing to some subset
of the statechart. Such cases can also be addressed by considering the statechart in
conjunction with the object interaction model, in which a state-dependent control
object executes the statechart, as described in Chapter 11. Examples of statecharts
are also given in the Banking System and Automated Guided Vehicle System case
studies.

EXERCISES

Multiple-choice questions: For each ques-
tion, choose one of the answers.

1. What is a state in a state machine?
(a) A recognizable situation that exists

over an interval of time
(b) A condition that is True or False
(c) An input from the external envi-

ronment
(d) An output from the system

2. What is an event in a state machine?
(a) A discrete signal that causes a

change of state
(b) An input from the external envi-

ronment
(c) An input that is True or False
(d) The result of a state transition

3. What is an action in a state machine?
(a) An occurrence at a point in time
(b) A cause of a state transition
(c) An interval between two successive

events
(d) A computation that executes as a

result of a state transition
4. What is an entry action in a state

machine?
(a) An action that is performed when

the state is entered
(b) An action that is performed when

the state is left

(c) An action that starts executing
when the state is entered and com-
pletes executing when the state is
left

(d) An action that executes as a result
of a state transition

5. What is an exit action in a state
machine?
(a) An action that is performed when

the state is entered
(b) An action that is performed when

the state is left
(c) An action that starts executing

when the state is entered and com-
pletes executing when the state is
left

(d) An action that executes as a result
of a state transition

6. What is a condition used for in a state
machine?
(a) A conditional action
(b) A conditional state
(c) A conditional state transition
(d) A conditional event

7. What is a state transition into a compos-
ite state equivalent to?
(a) A transition into only one of the

substates
(b) A transition into each of the sub-

states

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016



176 Software Modeling

(c) A transition into none of the sub-
states

(d) A transition into any one of the
substates

8. What is a state transition out of a com-
posite state equivalent to?
(a) A transition out of only one of the

substates
(b) A transition out of each of the sub-

states
(c) A transition out of none of the sub-

states
(d) A transition out of any one of the

substates
9. How does a composite state relate to a

substate?
(a) A composite state is decomposed

into substates.

(b) Composite states are composed
into substates.

(c) A composite state transitions to a
substate.

(d) A substate transitions to a compos-
ite state.

10. If two actions are shown on a given
state transition, which of the following
is true?
(a) The two actions are dependent on

each other.
(b) The two actions are independent of

each other.
(c) One action provides an input to the

other action.
(d) The second action executes when

the first action completes execu-
tion.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Sat Mar 19 18:26:58 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511779183.012

Cambridge Books Online © Cambridge University Press, 2016


