
CHAPTER 1

Software Engineering of Embedded and
Real-Time Systems

Robert Oshana

Chapter Outline

Software engineering 1

Embedded systems 7
Embedded systems are reactive systems 9

Real-time systems 12
Types of real-time systems � soft and hard 12

Differences between real-time and time-shared systems 14

Examples of hard real-time 15

Based on signal sample, time to perform actions before next sample arrives 15

Hard real-time systems 15

Real-time event characteristics 17

Real-time event categories 17

Efficient execution and the execution environment 17

Efficiency overview 17

Resource management 18

Challenges in real-time system design 18
Response time 19

Recovering from failures 20

The embedded system software build process 21

Distributed and multi-processor architectures 23

Software for embedded systems 24
Super loop architecture 24

Power-save super loop 25

Window lift embedded design 26

Hardware abstraction layers (HAL) for embedded systems 27

Summary 30

Software engineering

Over the past ten years or so, the world of computing has moved from large, static, desk-

top machines to small, mobile, and embedded devices. The methods, techniques, and tools

1
Software Engineering for Embedded Systems.

DOI: http://dx.doi.org/10.1016/B978-0-12-415917-4.00001-3

© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415917-4.00001-3

for developing software systems that were successfully applied in the former scenario are

not as readily applicable in the latter. Software systems running on networks of mobile,

embedded devices must exhibit properties that are not always required of more traditional

systems:

• near-optimal performance

• robustness

• distribution

• dynamism

• mobility.

This book will examine the key properties of software systems in the embedded, resource-

constrained, mobile, and highly distributed world. We will assess the applicability of

mainstream software engineering methods and techniques (e.g., software design, component-

based development, software architecture, system integration and test) to this domain.

One of the differences in software engineering for embedded systems is the additional

knowledge the engineer has of electrical power and electronics; physical interfacing of

digital and analog electronics with the computer; and software design for embedded

systems and digital signal processors (DSP).

Over 95% of software systems are actually embedded. Consider the devices you use at

home on a daily basis;

• cell phone, iPod, microwave

• satellite receiver, cable box

• car engine control unit

• DVD player.

So what do we mean by software engineering for embedded systems? Let’s look at this in

the context of engineering in general. Engineering is defined as the application of scientific

principles and methods to the construction of useful structures and machines. This includes

disciplines such as:

• mechanical engineering

• civil engineering

• chemical engineering

• electrical engineering

• nuclear engineering

• aeronautical engineering.

Software engineering is a term that is 35 years old, originating at a NATO conference in

Garmisch, Germany, October 7�11, 1968. Computer science is the scientific basis and

many aspects have been made systematic in software engineering:

2 Chapter 1

• methods/methodologies/techniques

• languages

• tools

• processes.

We will explore all of these in this book.

The basic tenets of software engineering include:

• development of software systems whose size/complexity warrants team(s) of

engineers (or as David Parnas puts it, “multi-person construction of multi-version

software”);

• scope, which we will focus on the study of software process, development principles,

techniques, and notations;

• goal, in our case the production of quality software, delivered on time, within budget,

satisfying customers’ requirements and users’ needs.

With this come the ever-present difficulties of software engineering that still exist today:

• there are relatively few guiding scientific principles;

• there are few universally applicable methods;

• software engineering is as much managerial/psychological/sociological as it is

technological.

There difficulties exist because software engineering is a unique form of engineering:

• software is malleable;

• software construction is human-intensive;

• software is intangible;

• software problems are unprecedentedly complex;

• software directly depends upon the hardware;

• software solutions require unusual rigor;

• software has discontinuous operational nature.

Software engineering is not the same as software programming. Software programming

usually involves a single developer developing “toy” applications and involves a

relatively short lifespan. With programming, there is a single or few stakeholders and

the project is mostly one-of-a-kind systems built from scratch with minimal

maintenance.

Software engineering on the other hand involves teams of developers with multiple roles

building complex systems with an indefinite lifespan. There are numerous stakeholders,

families of systems, a heavy emphasis on reuse to amortize costs and a maintenance phase

that accounts for over 60% of overall development costs.

Software Engineering of Embedded and Real-Time Systems 3

There are economic and management aspects of software engineering. Software production

includes the development and maintenance (evolution) of the system. Maintenance costs are

the majority of all development costs. Quicker development is not always preferable. In

other words, higher up-front costs may defray downstream costs. Poorly designed and

implemented software is a critical cost factor. In this book we will focus on software

engineering of embedded systems, not programming embedded systems.

Embedded software development uses the same software development models as other

forms of software development, including the Waterfall model (Figure 1.1), the Spiral

model (Figure 1.2) and the Agile model (Figure 1.3). The benefits and limitations of each

of these models are well documented so we will review these here. We will, however,

spend more time later in this book on Agile development, as this approach is well suited to

the changing, dynamic nature of embedded systems.

Figure 1.1:
Waterfall software development model.

Determine objectives
alternatives, constraints

Plan next phases

Evaluate alternatives,
identity, resolve risks,
develop prototypes

Develop, verify
next-level product

Figure 1.2:
Spiral software development model.

4 Chapter 1

The key software development phases for embedded systems are briefly summarized below.

1. Problem definition: in this phase we determine exactly what the customer and user

want. This may include the development of a contract with the customer, depending

on what type of product is being developed. This goal of this phase is to specify

what the software product is to do. Difficulties include the client asking for the

wrong product, the client being computer/software illiterate, which limits the

effectiveness of this phase, and specifications that are ambiguous, inconsistent,

and incomplete.

2. Architecture/design: architecture is concerned with the selection of architectural

elements, their interactions, and the constraints on those elements and their interactions

necessary to provide a framework in which to satisfy the requirements and serve as a

basis for the design. Design is concerned with the modularization and detailed

interfaces of the design elements, their algorithms and procedures, and the data types

needed to support the architecture and to satisfy the requirements. During the

architecture and design phases, the system is decomposed into software modules with

interfaces. During design the software team develops module specifications (algorithms,

data types), maintains a record of design decisions and traceability, and specifies how

the software product is to do its tasks. The primary difficulties during this phase include

miscommunication between module designers and developing a design that may be

inconsistent, incomplete, ambiguous.

Feature Set Budget
Approval

Feature
Prioritization

Sprint
Customer

acceptance
and testing

Potential
shippable
product

Stand up meetings

Continuous
integration

Test driven
development

Figure 1.3:
Agile software development model.

Software Engineering of Embedded and Real-Time Systems 5

3. Implementation: during this phase the development team implements the modules and

components and verify that they meet their specifications. Modules are combined

according to the design. The implementation specifies how the software product does

its tasks. Some of the key difficulties include module interaction errors and the order of

integration that may influence quality and productivity.

More and more development of software for embedded systems is moving towards

component-based development. This type of development is generally applicable for

components of a reasonable size and reuse across systems, which is a growing trend in

embedded systems. Developers ensure these components are adaptable to varying

contexts and extend the idea beyond code to other development artifacts as well. This

approach changes the equation from “Integration, Then Deployment” to “Deployment,

Then Integration”.

There are different makes and models of software components:

• third-party software components

• plug-ins / add-ins

• frameworks

• open systems

• distributed object infrastructures

• compound documents

• legacy systems.

4. Verification and validation (V&V): there are several forms of V&V and there is a

dedicated chapter on this topic. One form is “analysis”. Analysis can be in the form

of static, scientific, formal verification, and informal reviews and walkthroughs.

Testing is a more dynamic form of V&V. This form of testing comes in the form of

white box (we have access to the code) and black box (no access to the source code).

Testing can be structural as well as behavioral. There are the standard issues of test

adequacy but we will defer this discussion to later when we dedicate a chapter to this

topic.

As we progress through this book, we will continue to focus on the foundational software

engineering principles (Figure 1.4);

• rigor and formality

• separation of concerns

• modularity and decomposition

• abstraction

• anticipation of change

• generality

• incrementality

• scalability

• compositionality

6 Chapter 1

• heterogeneity

• from principles to tools.

Embedded systems

So what is an embedded system? There are many answers to this question. Some define an

embedded system simply as “a computer whose end function is not to be a computer”. If

we follow this definition, then automobile anti-lock braking systems, digital cameras,

household appliances, and televisions are embedded systems because they contain

computers but aren’t intended to be computers. Conversely, the laptop computer I’m using

to write this chapter is not an embedded system because it contains a computer that is

intended to be a computer (see Bill Gatliff’s article “There’s no such thing as an Embedded

System” on embedded.com).

Jack Ganssle and Mike Barr, in their book Embedded Systems Dictionary, define an

embedded system as “A combination of computer hardware and software, and perhaps

additional mechanical or other parts, designed to perform a dedicated function. In some

cases, embedded systems are part of a larger system or product, as in the case of an

antilock braking system in a car”.

Tools

Methodologies

Methods and
techniques

Principles

Figure 1.4:
Software engineering principles.

Software Engineering of Embedded and Real-Time Systems 7

http://embedded.com

There are many definitions but in this book we will proceed as follows.

An embedded system is a specialized computer system that is usually integrated as part of a

larger system. An embedded system consists of a combination of hardware and software

components to form a computational engine that will perform a specific function. Unlike

desktop systems which are designed to perform a general function, embedded systems are

constrained in their application.

Embedded systems often perform in reactive and time-constrained environments. A rough

partitioning of an embedded system consists of the hardware which provides the

performance necessary for the application (and other system properties like security) and

the software which provides a majority of the features and flexibility in the system. A

typical embedded system is shown in Figure 1.5.

• Processor core: at the heart of the embedded system is the processor core(s). This can

range from a simple inexpensive 8-bit microcontroller to a more complex 32- or 64-bit

microprocessor or even multiple processors. The embedded designer must select the

most cost-sensitive device for the application that can meet all of the functional and

non-functional (timing) requirements.

• Analog I/O: D/A and A/D converters are used to get data from the environment and

back out to the environment. The embedded designer must understand the type of data

required from the environment, the accuracy requirements for that data, and the input/

output data rates in order to select the right converters for the application. The external

environment drives the reactive nature of the embedded system. Embedded systems

have to be at least fast enough to keep up with the environment. This is where the

analog information such as light or sound pressure or acceleration is sensed and input

into the embedded system.

Processor
cores

Application-
specific gates

Memory Analog I/O

S
en

so
rs

A
ct

ua
to

rs

Emulation and
diagnostics

Software/
Firmware

User interface
Power and

cooling

Figure 1.5:
Typical embedded system components.

8 Chapter 1

• Sensors and actuators: sensors are used to sense analog information from the

environment. Actuators are used to control the environment in some way.

• User interfaces: these interfaces may be as simple as a flashing LED or as complex as a

sophisticated cell phone or digital still camera interface.

• Application-specific gates: hardware acceleration such as ASIC or FPGA is used for

accelerating specific functions in the application that have high-performance

requirements. The embedded designer must be able to map or partition the application

appropriately using available accelerators to gain maximum application performance.

• Software: software is a significant part of embedded system development. Over the last

several years the amount of embedded software has grown faster than Moore’s law,

with the amount doubling approximately every 10 months. Embedded software is

usually optimized in some way (performance, memory, or power). More and more

embedded software is written in a high-level language such as C/C11, with some of

the more performance-critical pieces of code still written in assembly language.

• Memory is an important part of an embedded system and embedded applications can run

out of either RAM or ROM depending on the application. There are many types of volatile

and non-volatile memory used for embedded systems and we will talk more about this later.

• Emulation and diagnostics: many embedded systems are hard to see or get to. There

needs to be a way to interface to embedded systems to debug them. Diagnostic ports

such as a JTAG (Joint Test Action Group) are used to debug embedded systems. On-

chip emulation is used to provide visibility into the behavior of the application. These

emulation modules provide sophisticated visibility into the run-time behavior and

performance, in effect replacing external logic analyzer functions with on-board

diagnostic capability.

Embedded systems are reactive systems

A typical embedded system responds to the environment via sensors and controls the

environment using actuators (Figure 1.6). This imposes a requirement on embedded systems

to achieve performance consistent with that of the environment. This is why embedded

systems are often referred to as reactive systems. A reactive system must use a combination

of hardware and software to respond to events in the environment within defined

constraints. Complicating the matter is the fact that these external events can be periodic

and predictable or aperiodic and hard to predict. When scheduling events for processing in

an embedded system, both periodic and aperiodic events must be considered and

performance must be guaranteed for worst-case rates of execution.

An example of an embedded sensor system is a tire pressure monitoring system (TPMS).

This is a sensor chipset designed to enable a timely warning to the driver in the case of

under-inflated or over-inflated tires on cars, trucks or buses � even while in motion. These

Software Engineering of Embedded and Real-Time Systems 9

sensor systems are a full integration of a pressure sensor, an 8-bit microcontroller (MCU), a

radio-frequency (RF) transmitter and X- and Z-axis accelerometers in one package. A key to

this sensor technology is acceleration X and Z acquisition (Figure 1.7). The purpose of the

X and Z-axis g cells is to allow tire recognition using the appropriate embedded algorithms

that analyze the rotating signal caused by the Earth’s gravitational field. Motion will use

either the Z-axis g-cell to detect acceleration level or use the X-axis g-cell to detect a 61 g

signal caused by the Earth’s gravitational field.

There are several key characteristics of embedded systems;

a. Monitoring and reacting to the environment: embedded systems typically get input by

reading data from input sensors. There are many different types of sensors that monitor

various analog signals in the environment including temperature, sound pressure, and

vibration. This data is processed using embedded system algorithms. The results may be

displayed in some format to a user or simply used to control actuators (like deploying

the airbags and calling the police).

b. Controlling the environment: embedded systems may generate and transmit commands

that control actuators such as airbags, motors, etc.

Computer
(Decision making)Links to

other
systems

(Wireless,
network)

Sensors
(Energy conversion,
signal conditioning)

Actuation

(Power modulation)

Physical system

(Mechanical,
electrical, etc)

Human
machine
interface

(Human
factors)

Figure 1.6:
A model of sensors and actuators in embedded systems.

X Z

Figure 1.7:
X- and Z-axis sensing direction.

10 Chapter 1

c. Processing of information: embedded systems process the data collected from the

sensors in some meaningful way, such as data compression/decompression, side impact

detection, etc.

d. Application-specific: embedded systems are often designed for applications such as

airbag deployment, digital still cameras or cell phones. Embedded systems may

also be designed for processing control laws, finite-state machines, and signal-

processing algorithms. Embedded systems must also be able to detect and react

appropriately to faults in both the internal computing environment as well as the

surrounding systems.

e. Optimized for the application: embedded systems are all about performing the desired

computations with as few resources as possible in order to reduce cost, power, size, etc.

This means that embedded systems need to be optimized for the application. This

requires software as well as hardware optimization. Hardware needs to be able to

perform operations in as few gates as possible, and software must be optimized to

perform operations using the least cycles, memory, or power possible depending on the

application.

f. Resource constrained: embedded systems are optimized for the application, which

means that many of the precious resources of an embedded system, processor cycles,

memory, power, are in scarce supply in a relative sense in order to reduce cost, size,

weight, etc.

g. Real-time: embedded systems must react to the real-time changing nature of the

environment in which they operate; more on real-time systems below.

h. Multi-rate: embedded systems must be able to handle multiple rates of processing

requirements simultaneously, for example video processing at 30 frames per second

(30 Hz) and audio processing at 20 kHz rates.

Figure 1.8 shows a simple embedded system that demonstrates these key characteristics.

1. Monitor and control environment: the embedded system monitors the fluid flow sensor

in the environment and then controls the value (actuator) in that same environment.

2. Perform meaningful operations: the computation task would compute the desired

algorithms to control the value in a safe way.

3. Application-specific: this embedded system would be designed for this particular

application.

4. Optimized for application: the embedded system computation and algorithms would be

designed for this particular system.

5. Resource-constrained: the embedded system will execute on a small inexpensive

microcontroller with a small amount of memory and operating at lower power for cost

savings.

6. Real-time: this system has to be able to respond to the flow sensor in real time; any

delays in processing could lead to failure of the system.

Software Engineering of Embedded and Real-Time Systems 11

7. Multi-rate: there may be the need to respond to the flow sensor as well as a user

interface, so multiple input rates to the embedded system are possible.

Real-time systems

A real-time system is any information-processing activity or system which has to respond to

externally generated input stimuli within a finite and specified period. Real-time systems

must process information and produce a response within a specified time. Failure to do so

will risk severe consequences, including failure. In a system with a real-time constraint, it is

unacceptable to have the correct action or the correct answer after a certain deadline: the

result must be produced by the deadline or the system will degrade or fail completely.

Generally, real-time systems maintain a continuous timely interaction with its environment

(Figure 1.9).

Types of real-time systems � soft and hard

In real-time systems, the correctness of the computation depends not only upon its results

but also upon the time at which its outputs are generated. A real-time system must satisfy

response time constraints or suffer significant system consequences. If the consequences

consist of a degradation of performance, but not failure, the system is referred to as a soft

Interface

Input:
Flow sensor data

Output:
Valveangle

Computation

Time
Embedded system

Flow sensor

Valve

Figure 1.8:
Example embedded system.

12 Chapter 1

real-time system. If the consequences are system failure, the system is referred to as a

hard real-time system (e.g., an anti-lock braking system in an automobile). See

Figure 1.10.

We can also think of this in terms of the real-time interval, which is defined as how quickly

the system has to respond. In this context, the Windows operating system is soft real-time

because it is relatively slow and cannot handle shorter time constraints. In this case, the

system does not “fail” but is degraded.

The objective of an embedded system is to execute as fast as necessary in an asynchronous

world using the smallest amount of code and with the highest level of predictability. (Note:

predictability is the embedded world’s term for reliability.)

Figure 1.11 shows some examples of hard and soft real-time systems. As shown in this list

of examples, many embedded systems also have a criticality to the computation in the sense

that a failure to meet real-time deadlines can have disastrous consequences. For example

determining drivers’ intentions and driving conditions in real time (see Figure 1.12) is an

example of a hard real-time safety-critical application.

Environment

Inputs Outputs
Real-Time

system
(state)

Outputs: f (inputs, state)

Figure 1.9:
A real-time system reacts to inputs from the environment and produces outputs that

affect the environment.

Cost
Soft real time

Hard real time

Deadline Time

Figure 1.10:
A comparison between hard and soft real time.

Software Engineering of Embedded and Real-Time Systems 13

Differences between real-time and time-shared systems

Real-time systems are different from time shared systems in the three fundamental areas

(Table 1.1). These include:

• High degree of schedulability: timing requirements of the system must be satisfied at

high degrees of resource usage, and predictably fast response to urgent events;

• Worst case latency: ensuring the system still operates under worst case response time

to events;

System type Hard or soft real time?

Traffic light control

Automated teller machine

Controller for radiation
therapy machine

Car simulator for driver
training

Highway car counter

Missile control

Video games

Network chat

Hard RT – Critical

Soft RT – Non-Critical

Soft RT – Non-Critical

Soft RT – Non-Critical

Hard RT – Critical

Hard RT – Critical

Hard RT – Non Critical

Hard RT – Non Critical

Figure 1.11:
Examples of hard and soft real-time systems.

Gas

Brake

Speed

Smooth gear shifting control

Determine
drivers

intentions
and driving

conditions in
RT

Figure 1.12:
An automobile shift control system is an example of a hard real-time safety-critical system.

14 Chapter 1

• Stability under transient overload: when the system is overloaded by events and it is

impossible to meet all deadlines, the deadlines of selected critical tasks must still be

guaranteed.

Examples of hard real-time

Many embedded systems are real-time systems. As an example, assume that an analog

signal is to be processed digitally. The first question to consider is how often to sample or

measure the analog signal in order to represent that signal accurately in the digital domain.

The sample rate is the number of samples of an analog event (like sound) that are taken per

second to represent the event in the digital domain. Based on a signal-processing rule called

the Nyquist rule, the signal must be sampled at a rate at least equal to twice the highest

frequency that we wish to preserve. For example, if the signal contains important

components at 4 kHz, then the sampling frequency would need to be at least 8 kHz. The

sampling period would then be:

T 5 1=80005 125 microseconds5 0:000125 seconds

Based on signal sample, time to perform actions before next sample arrives

This tells us that, for this signal being sampled at this rate, we would have 0.000125

seconds to perform all the processing necessary before the next sample arrived. Samples are

arriving on a continuous basis and if the system falls behind in processing these samples,

the system will degrade. This is an example of a soft real-time embedded system.

Hard real-time systems

The collective timeliness of the hard real-time tasks is binary � i.e., either they all will

always meet their deadlines (in a correctly functioning system), or they will not (the system

is infeasible). In all hard real-time systems, collective timeliness is deterministic. This

determinism does not imply that the actual individual task completion times, or the task

execution ordering, are necessarily known in advance.

Table 1.1: Real-time systems are fundamentally different from time shared systems.

Characteristic Time-Shared Systems Real-Time Systems

System capacity High throughput Schedulability and the ability of system tasks to
meet all deadlines

Responsiveness Fast average response time Ensured worst case latency which is the worst-case
response time to events

Overload Fairness to all Stability; when the system is overloaded important
tasks must meet deadlines while others may be

starved

Software Engineering of Embedded and Real-Time Systems 15

A computing system being hard real-time says nothing about the magnitudes of the

deadlines. They may be microseconds or weeks. There is a bit of confusion with regard to

the usage of the term “hard real-time”. Some relate hard real-time to response time

magnitudes below some arbitrary threshold, such as 1 msec. This is not the case. Many of

these systems actually happen to be soft real-time. These systems would be more accurately

termed “real fast” or perhaps “real predictable”; but certainly not hard real-time.

The feasibility and costs (e.g., in terms of system resources) of hard real-time computing

depend on how well known a priori are the relevant future behavioral characteristics of the

tasks and execution environment. These task characteristics include:

• timeliness parameters, such as arrival periods or upper bounds

• deadlines

• worst case execution times

• ready and suspension times

• resource utilization profiles

• precedence and exclusion constraints

• relative importance, etc.

There are also important characteristics relating to the system itself, some of which include:

• system loading

• resource interactions

• queuing disciplines

• arbitration mechanisms

• service latencies

• interrupt priorities and timing

• caching.

Deterministic collective task timeliness in hard (and soft) real-time computing requires that

the future characteristics of the relevant tasks and execution environment be deterministic �
i.e., known absolutely in advance. The knowledge of these characteristics must then be used

to pre-allocate resources so that hard deadlines, such as motor control, will be met and soft

deadlines such as responding to a key press can be delayed.

A real-time system task and execution environment must be adjusted to enable a schedule

and resource allocation which meets all deadlines. Different algorithms or schedules

which meet all deadlines are evaluated with respect to other factors. In many real-time

computing applications getting the job done at the lowest cost is usually more important

than simply maximizing the processor utilization (if this was true, we would all still be

writing assembly language). Time to market, for example, may be more important than

maximizing utilization due to the cost of squeezing the last 5% of efficiency out of a

processor.

16 Chapter 1

Allocation for hard real-time computing has been performed using various techniques. Some

of these techniques involve conducting an off-line enumerative search for a static schedule

which will deterministically always meet all deadlines. Scheduling algorithms include the use

of priorities that are assigned to the various system tasks. These priorities can be assigned

either off-line by application programmers, or on-line by the application or operating system

software. The task priority assignments may either be static (fixed), as with rate monotonic

algorithms, or dynamic (changeable), as with the earliest-deadline-first algorithm.

Real-time event characteristics

Real-time event categories

Real-time events fall into one of the three categories: asynchronous, synchronous, or

isochronous.

• Asynchronous events are entirely unpredictable. An example of this is a cell phone call

arriving at a cellular base station. As far as the base station is concerned, the action of

making a phone call cannot be predicted.

• Synchronous events are predictable events and occur with precise regularity. For

example, the audio and video in a camcorder take place in synchronous fashion.

• Isochronous events occur with regularity within a given window of time. For example,

audio data in a networked multimedia application must appear within a window of time

when the corresponding video stream arrives. Isochronous is a sub-class of

asynchronous.

In many real-time systems, task and execution environment characteristics may be hard to

predict. This makes true hard real-time scheduling infeasible. In hard real-time computing,

deterministic satisfaction of the collective timeliness criterion is the driving requirement.

The necessary approach to meeting that requirement is static (i.e., a priori) scheduling of

deterministic task and execution environment characteristic cases. The requirement for

advance knowledge about each of the system tasks and their future execution environment

to enable off-line scheduling and resource allocation significantly restricts the applicability

of hard real-time computing.

Efficient execution and the execution environment

Efficiency overview

Real-time systems are time-critical and the efficiency of their implementation is more

important than in other systems. Efficiency can be categorized in terms of processor cycles,

memory, or power. This constraint may drive everything from the choice of processor to the

choice of the programming language. One of the main benefits of using a higher-level

Software Engineering of Embedded and Real-Time Systems 17

language is to allow the programmer to abstract away implementation details and

concentrate on solving the problem. This is not always true in the embedded-system world.

Some higher-level languages have instructions that can be an order of magnitude slower

than assembly language. However, higher-level languages can be used in real-time systems

effectively using the right techniques. We will be discussing much more about this topic in

the chapter on optimizing source code for DSPs.

Resource management

A system operates in real time as long as it completes the time-critical processes with

acceptable timeliness. “Acceptable timeliness” is defined as part of the behavioral or

“non-functional” requirements for the system. These requirements must be objectively

quantifiable and measureable (stating that the system must be “fast”, for example, is not

quantifiable). A system is said to be real-time if it contains some model of real-time

resource management (these resources must be explicitly managed for the purpose of

operating in real time). As mentioned earlier, resource management may be performed

statically off-line or dynamically on-line.

Real-time resource management comes at a cost. The degree to which a system is required

to operate in real time cannot necessarily be attained solely by hardware over-capacity

(e.g., high processor performance using a faster CPU).

There must exist some form of real-time resource management to be cost-effective. Systems

which must operate in real time consist of both real-time resource management and

hardware resource capacity. Systems which have interactions with physical devices may

require higher degrees of real-time resource management. One resource management

approach that is used is static and requires analysis of the system prior to it executing in its

environment. In a real-time system, physical time (as opposed to logical time) is necessary

for real-time resource management in order to relate events to the precise moments of

occurrence. Physical time is also important for action time constraints as well as measuring

costs incurred as processes progress to completion. Physical time can also be used for

logging history data.

All real-time systems make trade-offs of scheduling costs vs. performance in order to reach

an appropriate balance for attaining acceptable timeliness between the real-time portion of

the scheduling optimization rules and the off-line scheduling performance evaluation and

analysis.

Challenges in real-time system design

Designing real-time systems poses significant challenges to the designer. One of the

significant challenges comes from the fact that real-time systems must interact with the

18 Chapter 1

environment. The environment is complex and changing and these interactions can become

very complex. Many real-time systems don’t just interact with one, but many different

entities in the environment, with different characteristics and rates of interaction. A cell-

phone base station, for example, must be able to handle calls from literally thousands of

cell-phone subscribers at the same time. Each call may have different requirements for

processing and in different sequences of processing. All of this complexity must be

managed and coordinated.

Response time

Real-time systems must respond to external interactions in the environment within a

predetermined amount of time. Real-time systems must produce the correct result and

produce it in a timely way. The response time is as important as producing correct results.

Real-time systems must be engineered to meet these response times. Hardware and

software must be designed to support response time requirements for these systems.

Optimal partitioning of the system requirements into hardware and software is also

important.

Real-time systems must be architected to meet system response time requirements. Using

combinations of hardware and software components, engineering makes architecture

decisions such as interconnectivity of the system processors, system link speeds, processor

speeds, memory size, I/O bandwidth, etc. Key questions to be answered include:

• Is the architecture suitable? To meet the system response time requirements, the system

can be architected using one powerful processor or several smaller processors. Can the

application be partitioned among the several smaller processors without imposing large

communication bottlenecks throughout the system? If the designer decides to use one

powerful processor, will the system meet its power requirements? Sometimes a simpler

architecture may be the better approach � more complexity can lead to unnecessary

bottlenecks which cause response time issues.

• Are the processing elements powerful enough? A processing element with high

utilization (greater than 90%) will lead to unpredictable run-time behavior. At this

utilization level lower-priority tasks in the system may get starved. As a general rule,

real-time systems that are loaded at 90% take approximately twice as long to develop

due to the cycles of optimization and integration issues with the system at these

utilization rates. At 95% utilization, systems can take three times longer to develop due

to these same issues. Using multiple processors will help but the inter-processor

communication must be managed.

• Are the communication speeds adequate? Communication and I/O is a common

bottleneck in real-time embedded systems. Many response time problems come not

from the processor being overloaded but in latencies in getting data into and out of the

Software Engineering of Embedded and Real-Time Systems 19

system. In other cases, overloading a communication port (greater than 75%) can cause

unnecessary queuing in different system nodes and this causes delays in message-

passing throughout the rest of the system.

• Is the right scheduling system available? In real-time systems tasks that are processing

real-time events must take higher priority. But how do you schedule multiple tasks that

are all processing real-time events? There are several scheduling approaches available

and the engineer must design the scheduling algorithm to accommodate the system

priorities in order to meet all real-time deadlines. Because external events may occur at

any time, the scheduling system must be able to preempt currently running tasks to

allow higher-priority tasks to run. The scheduling system (or real-time operating

system) must not introduce a significant amount of overhead into the real-time system.

Recovering from failures

Real-time systems interact with the environment, which is inherently unreliable.

Therefore real-time systems must be able to detect and overcome failures in the

environment. Also, since real-time systems are also embedded into other systems and may

be hard to get at (such as a space craft or satellite) these systems must also be able to

detect and overcome internal failures as well (there is no “reset” button in easy reach of

the user!). Also since events in the environment are unpredictable, it is almost impossible

to test for every possible combination and sequence of events in the environment. This is

a characteristic of real-time software that makes it somewhat non-deterministic in the

sense that it is almost impossible in some real-time systems to predict the multiple paths

of execution based on the non-deterministic behavior of the environment. Examples of

internal and external failures that must be detected and managed by real-time systems

include:

• processor failures

• board failures

• link failures

• invalid behavior of external environment

• inter connectivity failure.

Many real-time systems are embedded systems with multiple inputs and outputs and

multiple events occurring independently. Separating these tasks simplifies programming,

but requires switching back and forth among the multiple tasks. This is referred to as multi-

tasking. Concurrency in embedded systems is the appearance of multiple tasks executing

simultaneously. For example, the three tasks listed in Figure 1.13 will execute on a single

embedded processor and the scheduling algorithm is responsible for defining the priority of

execution of these three tasks.

20 Chapter 1

The embedded system software build process

Another difference in embedded systems is the software system build process, as shown in

Figure 1.14.

Embedded system programming is not substantially different from ordinary programming.

The main difference is that each target hardware platform is unique. The process of

converting the source code representation of embedded software into an executable binary

image involves several distinct steps:

• compiling/assembling using an optimizing compiler;

• linking using a linker;

• relocating using a locator.

In the first step, each of the source files must be compiled or assembled into object

code. The job of a compiler is mainly to translate programs written in some human-

readable format into the equivalent set of opcodes for a particular processor. The use

of the cross compiler is one of the defining features of embedded software

development.

/* Monitor Room_Temperature */
do forever {

measure temperature;
if (temperature < temperature_setting)

start furnace_heater;
else if (temperature > temperature_setting + delta)

stop furnace_heater;

}

/* Monitor Time of Day */
do forever {

measure time_of_day;
if (7:00am)

setting = 72_degrees_F;
else if (10:00pm)

setting = 60_degrees_F;
}

/* Monitor Thermostat Keypad */
do forever {

check thermostat_keypad;
if (raise temperature)

setting++;
else if (lower temperature)

setting--;
}

Figure 1.13:
Multiple tasks execute simultaneously on embedded systems.

Software Engineering of Embedded and Real-Time Systems 21

In the second step all of the object files that result from the first step must be linked

together to produce a single object file, called the relocatable program. Finally, physical

memory addresses must be assigned to the relative offsets within the relocatable program

in a process called relocation. The tool that performs the conversion from relocatable to

Compiler Assembler

Object
files

Run time
libraries

linker

Executable image
file

Loader

System memory (RAM)

Boot process

Operating system

HOL
code

Assembly
code

Compiler Assembler

Object
files

Reentrant
libraries

linker

Executable image
file

Locator

Read only memory (Flash)

ROM Burner

HOL
code

Assembly
code

Real time
kernel

ROM image file

Read write memory (RAM)

b) Build process for embedded

a) Build process for desktop

Program
initialize

Figure 1.14:
Embedded system software build process is different from non-embedded system build process.

22 Chapter 1

executable binary image is called a locator. The result of the final step of the build

process is an absolute binary image that can be directly programmed into a ROM or

FLASH device.

We have covered several areas where embedded systems differ from other desktop-like

systems. Some other differences that make embedded systems unique are:

1. Energy efficiency (embedded systems, in general, consume minimum power for the

purpose).

2. Custom voltage/power requirements.

3. Security (need to be hacker-proof; for example a Femto base station needs IP Security

when sending phone calls over an internet backhaul).

4. Reliability (embedded systems need to work without failure for days, months, and

years).

5. Environment (embedded systems need to support a broad temperature range, sealed

from chemicals, and radiation tolerant).

6. Efficient interaction with user (fewer buttons, touchscreen, etc.).

7. Integrated with design in a HW/SW co-design approach.

The chapters in this book will touch on many of these topics as they relate to software

engineering for embedded systems.

Distributed and multi-processor architectures

Some real-time systems are becoming so complex that applications are executed on multi-

processor systems that are distributed across some communication system. This poses

challenges to the designer that relate to the partitioning of the application in a multi-

processor system. These systems will involve processing on several different nodes. One

node may be a DSP, another node a more general-purpose processor, some specialized

hardware processing elements, etc. This leads to several design challenges for the

engineering team:

• Initialization of the system: initializing a multi-processor system can be complicated. In

most multi-processor systems the software load file resides on the general-purpose

processing node. Nodes that are directly connected to the general purpose processor, for

example a DSP, will initialize first. After these nodes complete loading and

initialization, other nodes connected to them may then go through this same process

until the system completes initialization.

• Processor interfaces: when multiple processors must communicate with each other, care

must be taken to ensure that messages sent along interfaces between the processors are

well defined and consistent with the processing elements. Differences in message

protocol including endianness, byte ordering and other padding rules can complicate

Software Engineering of Embedded and Real-Time Systems 23

system integration, especially if there is a system requirement for backwards

compatibility.

• Load distribution: as mentioned earlier, multiple processors lead to the challenge of

distributing the application, and possibly developing the application to support efficient

partitioning of the application among the processing elements. Mistakes in partitioning

the application can lead to bottlenecks in the system and this degrades the full

capability of the system by overloading certain processing elements and leaving others

under-utilized. Application developers must design the application to be efficiently

partitioned across the processing elements.

• Centralized resource allocation and management: in a system of multiple processing

elements, there is still a common set of resources including peripherals, cross bar

switches, memory, etc., that must be managed. In some cases the operating system can

provide mechanisms such as semaphores to manage these shared resources. In other

cases there may be dedicated hardware to manage the resources. Either way, important

shared resources in the system must be managed in order to prevent more system

bottlenecks.

Software for embedded systems

This book will spend a considerable amount of time covering each phase of software

development for embedded systems. Software for embedded systems is also different from

other “run to completion” or other desktop software applications. So we will introduce the

concepts here and go into more detail in later chapters.

Super loop architecture

The most straightforward software architecture for embedded systems is “super loop

architecture”. This approach is used because when programming embedded systems, it is

frequently very important to meet the deadlines of the system, and to complete all the key

tasks of the system in a reasonable amount of time, and in the right order. Super loop

architecture is a common program architecture that is very useful in fulfilling these

requirements. This approach is a program structure composed of an infinite loop, with all

the tasks of the system contained in that loop structure. An example is shown in

Figure 1.15.

The initialization routines are completed before entering the super loop because the system

only needs to be initialized once. Once the infinite loop begins, the valves are not reset

because of the need to maintain persistent state in the embedded system.

The loop is a variant of “batch processing” control flow: read input, calculate some values,

write out values. Embedded systems software is not the only type of software which uses

24 Chapter 1

this kind of architecture. Computer games often use a similar loop. There the loop is called

(tight) (main) game loop. The steps that are followed in this type of gaming technology are:

Function Main_Game_Function()
{

Initialization();

Do_Forever

{

Game_AI();

Move_Objects();

Scoring();

Draw_Objects();

}

Cleanup();

}

Power-save super loop

The super loop discussed previously works fine unless the scheduling requirements are not

consistent with the loop execution time. For example, assume an embedded system with

average loop time of 1 ms, which needs to check a certain input only once per second. Does

it really make sense to continue looping the program every 1 ms? If we let the loop

continue to execute, the program will loop 1000 times before it needs to read the input

again; 999 loops of the program will effectively countdown to the next read. In situations

like this an expanded super loop can be used to build in a delay as shown in Figure 1.16.

Let’s assume a microcontroller that uses 20 mA of current in “normal mode”, but only

needs 5 mA of power in “low-power mode”. Assume using the example super loop above,

Function Main_Function()
{

Initialization();
Do_Forever
{

Check_Status_of_Task();
Perform_Calculations();
Output_Result();

}
}

Figure 1.15:
Template of a super loop architecture.

Software Engineering of Embedded and Real-Time Systems 25

which is in “low-power mode” 99.9% of the time (1 ms of calculations every second), and

is only in normal mode 0.1% of the time. An example of this is an LCD communication

protocol used in alphanumeric LCD modules. The components provide methods to wait for

a specified time. The foundation of waiting for a given time is to wait for a number of CPU

or bus cycles. As a result, the component implements the two methods Wait10Cycles() and

Wait100Cycles(). Both are implemented in assembly code as they are heavily CPU

dependent.

Window lift embedded design

Lets look at an example of a slightly more advanced software architecture. Figure 1.17

shows a simplified diagram of a window lift. In some countries, it is a requirement to have

Function Main_Function()
{

Initialization();
Do_Forever
{

Check_Status_of_Task();
Perform_Calculations();
Output_Result();
Delay_Before_Starting_Next_Loop();

}
}

Figure 1.16:
Template of a power-saving super loop architecture.

Door lock
mechanism Sensors

Unlock Lock Top Bottom

Up

Up/Close
Down/Open

Down

Stall

Unlock
Lock

M

ECU

Figure 1.17:
Example � window lift hardware design.

26 Chapter 1

mechanisms to detect fingers in window areas to prevent injury. In some cases, window

cranks are now outlawed for this reason. Adding a capability like this after the system has

already been deployed could result in difficult changes to the software. The two options

would be to add this event and task to the control loop or add a task.

When embedded software systems get complex, we need to move away from simple

looping structures and migrate to more complex tasking models. Figure 1.18 is an example

of what a tasking model would look like for the window lift example. As a general

guideline, when the control loop gets ugly then go to multitasking and when you have too

many tasks then go to Linux, Windows, or some other similar type of operating system.

We’ll cover all of these alternatives in more detail in later chapters.

Hardware abstraction layers (HAL) for embedded systems

Embedded system development is about programming at the hardware level. But hardware

abstraction layers are a way to provide an interface between hardware and software so

applications can be device independent. This is becoming more common in embedded

systems. Basically, embedded applications access hardware through the hardware

abstraction layer. The HAL encapsulates peripherals of a microcontroller and several API

implementations can be provided at different levels of abstraction. An example HAL for an

automotive application is shown in Figure 1.19.

OS: ECC1, Full-preemptive

Door lock Motor

B B

E

30 B 0

20

5 E 10

UnqMsg+Activate

UnqMsg+Event

Events

Event

Alarm Ev.

Alarm

Keyboard Door lock Sensors

Init
Task Controltask

Inputtask

Locktask
Motordrive

task

ISR
stallint

Figure 1.18:
Example � window lift software design.

Software Engineering of Embedded and Real-Time Systems 27

There are a few problems that a HAL attempts to address:

• Complexity of peripherals and processors: this is hard for a real-time operating system

(RTOS) to support out of the box; most RTOSes cover 20�30% of the peripherals out

of the box.

• Packaging of chip muxing function: how does the RTOS work as you move from

standard device to custom device?

• The RTOS is basically the lowest common denominator; a HAL can support the largest

number of processors. But some peripherals, such as an analog to digital converter

(ADC), require custom support (peripherals work in either DMA mode or direct mode,

and we need to support both).

The benefits of a HAL include:

• it allows easy migration between embedded processors;

• it leverages existing processor knowledge base;

• it creates code compliant with a defined programming interface such as a standard

application programming interface (API) such as a CAN driver source code, or an

extension to a standard API such as a higher protocol over SCI communication (such as

UDP), or even your own API.

As an example of this more advanced software architecture and a precursor to more

detailed material to follow later, consider the case of an automobile front light management

system as shown in Figure 1.20. In this system, what happens if software components are

running on different processors? Keep in mind that this automobile system must be a

CAN ADC Timers GPIO Special

Microcontroller device

CAN
driver

ADC driver Timer driver GPIO driver Special
driverLow Level Drivers

High Level Drivers Communication
Protocol encapsulation

Custom component
(e.g. UDP encapsulation)

Custom Drivers

ApplicationsApplication Layer

Modeling Layer Modeling in Matlab, etc

Figure 1.19:
Hardware abstraction layer.

28 Chapter 1

deterministic network environment. The CAN bus inside the car is not necessarily all the

same CPU.

As shown in Figure 1.21, we would like to minimize the changes to the software

architecture if we need to make a small change such as replacing a headlight type.

We want to be able to change the peripheral (like changing the headlight or offering

optional components like those shown in Figure 1.22) but not have to change

anything else.

Finally, embedded systems development flow follows a model similar to that shown in

Figure 1.23. Research is performed early in the process followed by a proof of concept and

hardware and software co-design and test. System integration follows this phase, where all

of the hardware and software components are integrated together. This leads to a prototype

system that is iterated until eventually a production system is deployed. We look into the

ECU-Hardware

DIO PWM SPAL

Standardized interface Standardized
interface

COM driver

Microcontroller abstraction

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface AUTOSAR

Interface

AUTOSAR
Interface

AUTOSAR RTE

HW independent
services

(e.g. State-
machines,

subscribing)

HW dependent
services

(NVRAM, Timer,
fault memory

etc.)

HW dependent services
(NVRAM, Timer,

fault memory
etc.)

ECU
absraction

ECU
absraction

set_current
(...) get_keyposition ()

set_dboard (type, mode)

S
ta

nd
ar

di
ze

d
in

te
rfa

ce

Operating
systems

Switch event Light request Front-Light manager

check_switch ()
switch_event

(event)
request_light
(type, mode)

request_light (type, mode)switch_event (event)
get_keyposition ()

set_light (type, mode)
set_dboard (type, mode)

set_light
(type, mode)

set_current (...)

Headlight
SW-Component

n
Application

software

B
as

ic
 s

of
tw

ar
e

(s
ta

nd
ar

di
ze

d)

Figure 1.20:
Use case example: front light management.

Software Engineering of Embedded and Real-Time Systems 29

details of this flow as we begin to dive deeper into the important phases of software

engineering for embedded systems.

Summary

Many of the items that we interface with or use on a daily basis contain an embedded

system. An embedded system is a system that is “hidden” inside the item we interface with.

Systems such as cell phones, answering machines, microwave ovens, VCRs, DVD players,

video game consoles, digital cameras, music synthesizers, and cars all contain embedded

processors. A late-model automobile can contain up to 80 embedded microprocessors.

These embedded processors keep us safe and comfortable by controlling such tasks as

antilock braking, climate control, engine control, audio system control, and airbag

deployment.

Figure 1.21:
Use case example: front light management.

30 Chapter 1

ECU-Hardware

DIO DIO SPAL

Standardized interface Standardized
interface

Microcontroller abstraction

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface AUTOSAR

Interface

AUTOSAR
Interface

AUTOSAR RTE

HW independent
services

(e.g. State-
machines,

subscribing)

HW dependent
services

(NVRAM, Timer,
fault memory

etc.)

HW dependent services
(NVRAM, Timer,

fault memory
etc.)

ECU
Absraction

ECU
Absraction

set_light (...)
get_keyposition ()

set_dboard (type, mode)

S
ta

nd
ar

di
ze

d
in

te
rfa

ce

Operating
systems

Switch event Light request Front-Light manager

check_switch ()
switch_event

(event)
request_light
(type, mode)

request_light (type, mode)switch_event (event)
get_keyposition ()

set_light (type, mode)
set_dboard (type, mode)

set_light
(type, mode)

set_light (...)

Xenon light
SW-Component

n
Application

software

B
as

ic
 s

of
tw

ar
e

(s
ta

nd
ar

di
ze

d)

Complex
device
driver

Figure 1.22:
Use case example: front light management.

Research
• Free
 evaluation
 tools
• Web or
 CD-ROM

Production

Prototype System integration
• Emulator

• Embedded
 starter kit

• Evaluation
 module

• Embedded
 workshop
• Inexpensive • More expensive

• Debugger
• Most expensive

Proof of
concept

H/W & S/W
system test

Figure 1.23:
Embedded system development flow.

Software Engineering of Embedded and Real-Time Systems 31

Embedded systems have the added burden of reacting quickly and efficiently to the external

“analog” environment. That may include responding to the push of a button, or a sensor to

trigger an air bag during a collision, or the arrival of a phone call on a cell phone. Simply

put, embedded systems have deadlines which can be hard or soft. Given the “hidden” nature

of embedded systems, they must also react to and handle unusual conditions without the

intervention of a human.

Programming embedded systems requires an entirely different approach from that used in

desktop or mainframe programming. Embedded systems must be able to respond to external

events in a very predictable and reliable way. Real-time programs must not only execute

correctly, they must execute on time. A late answer is a wrong answer. Because of this

requirement, we will be looking at issues such as concurrency, mutual exclusion, interrupts,

hardware control and processing, etc., later in the book because these topics become the

dominant considerations. Multitasking, for example, has proven to be a powerful paradigm

for building reliable and understandable real-time programs.

32 Chapter 1

	1 Software Engineering of Embedded and Real-Time Systems
	Software engineering
	Embedded systems
	Embedded systems are reactive systems

	Real-time systems
	Types of real-time systems – soft and hard
	Differences between real-time and time-shared systems

	Examples of hard real-time
	Based on signal sample, time to perform actions before next sample arrives
	Hard real-time systems

	Real-time event characteristics
	Real-time event categories

	Efficient execution and the execution environment
	Efficiency overview
	Resource management

	Challenges in real-time system design
	Response time
	Recovering from failures
	The embedded system software build process

	Distributed and multi-processor architectures
	Software for embedded systems
	Super loop architecture
	Power-save super loop
	Window lift embedded design

	Hardware abstraction layers (HAL) for embedded systems
	Summary

