

MCS BASIC-52

Versions 1 & 1.1

OPERATING AND
REFERENCE MANUAL

intel

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, Genius, i, I,
ICE, iCEL, iCS, iDBP, iDlS, 121CE, iLBX, im~ iMDDX, iMMX, Insite, Intel, intel,
intelBOS, Intelevision, inteligent Identifier, inteligent Programming, Intellec,
Intellink, iOSP, iPDS, iPSC, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library
Manager, MAP-NET, MCS, Megachassis, MICROMAINFRAME, MULTIBUS,
MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP,
PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX,
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, UPI,
and VLSiCEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPI
and a numerical suffix, 4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDS~ is a registered
trademark of Mohawk Data Sciences Corporation.

~MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

INTEL CORPORATION 1986

intel

CHAPTER 1
 Introduction
 1.1 Introduction to MCS BASIC-52 . 1
 1.2 Getting Started . 2
 1.3 Getting Started-What Happens After Reset . 2
 1.4 Definition of Terms . 4
 1.5 What's the difference between Version 1.0 and Version 1.1 9

CHAPTER 2
 Description of Commands
 2.1 RUN . 13
 2.2 CONT . 14
 2.3 LIST . 15
 2.4 LIST# . 16
 2.5 LlST@ . 17
 2.6 NEW . 18
 2.7 NULL . 19

CHAPTER 3
 Description of EPROM File Commands
 3.1 RAM and ROM . 21
 3.2 XFER . 22
 3.3 PROG . 23
 3.4 PROG1 and PROG2 . 24
 3.5 FPROG, FPROG1 and FPROG2 . 25
 3.6 PROG3, PROG4, FPROG3, and FPROG4 (Version 1.1 only) 26
 3.7 PROG5, PROG6, FPROG5, and FPROG6 (Version 1.1 only) 27

CHAPTER 4
 Description of Statements
 4.1 BAUD . 28
 4.2 CALL . 29
 4.3 CLEAR . 30
 4.4 CLEARS and CLEARI . 31
 4.5 CLOCK1 and CLOCK0 . 32
 4.6 DATA-READ-RESTORE . 33
 4.7 DIM . 35
 4.8 DO-UNTIL . 36
 4.9 DO-WHILE . 37
 4.10 END . 38
 4.11 FOR-TO-STEP-NEXT . 39
 4.12 GOSUB-RETURN . 41
 4.13 GOTO . 43
 4.14 ON GOTO-ON GOSUB . 44
 4.15 IF-THEN-ELSE . 45
 4.16 INPUT . 47
 4.17 LET . 49
 4.18 ONERR . 50
 4.19 ONEXT1 . 51
 4.20 ONTIME . 52
 4.21 PRINT . 54
 4.22 PRINT# . 57
 4.23 PH0., PH1., PH0. #, PH1. # . 58
 4.24 PRlNT@, PHO.@, PH1.@ (Version 1.1 Only) . 59
 4.25 PUSH . 60

intel

CHAPTER 4
 Description of Statements
 4.26 POP . 61
 4.27 PWM . 62
 4.28 REM . 63

 4.29 RETI . 64
 4.30 STOP . 65
 4.31 STRING . 66
 4.32 UI1 AND UI0 . 67
 4.33 UO1 and UO0 . 68
 4.34 IDLE (Version 1.1 only) . 69
 4.35 RROM (Version 1.1 only) . 70
 4.36 LD@ and ST@ (Version 1.1 only) . 71
 4.37 PGM (Version 1.1 only) . 72

CHAPTER 5
 Description of Arithmetic/Logical Operators and Expressions
 5.1 Dual Operand (DYADIC) Operators . 74
 5.2 Unary Operators . 76
 5.2.1 General Purpose . 76
 5.2.2 Log Functions . 78
 5.2.3 Trig Functions . 78
 5.3 Understanding Precedence of Operators . 80
 5.4 How Relational Expressions Work . 81

CHAPTER 6
 Description of String Operators
 6.1 What are Strings? . 82
 6.2 The ASC Operator . 83
 6.3 The CHR Operator . 85

CHAPTER 7
 Special Operators
 7.1 Special Function Operators . 86
 7.2 Examples of Manipulating Special Function Operators 94
 7.3 System Control Values . 95

CHAPTER 8
 Error Messages, Bells, Whistles, and Anomalies
 8.1 Error Messages . 96
 8.2 Disabling Control-C . 100
 8.3 Implementing "Fake DMA" . 101
 8.4 Run Trap Option (Version 1.1 only) . 102
 8.5 Anomalies . 103

CHAPTER 9
 Assembly Language Linkage
 9.1 Overview . 104
 9.2 General Purpose Routines . 106
 9.3 Unary Operators . 113
 9.4 Special Operators . 115
 9.5 Dual Operand Operators . 118
 9.6 Added Link Routines to Version 1.1 . 122
 9.7 Interrupts . 129
 9.8 I/O Resource Allocation . 131

intel

CHAPTER 10
 System Configuration
 10.1 Memory/Hardware Configuration . 132
 10.2 EPROM Programming Configuration/Timing . 135
 10.3 Serial Port Implementation . 136

CHAPTER 11
 Reset Options (Version 1.1 only) . 145

CHAPTER 12
 Command/Statement Extensions (Version 1.1 only) . 153

CHAPTER 13
 Mapping User Code Memory (Version 1.1 only) . 159

APPENDIX A
 1.1 Memory Usage (Version 1.0 and Version 1.1) . 162
 1.2 Using the PWM Statement . 170
 1.3 Baud Rates and Crystals . 174
 1.4 Quick Reference . 176
 1.5 Instruction Set Summary . 183
 1.6 Floating Point Format . 184
 1.7 Storage Allocation . 185
 1.8 Format of an MCS BASIC-52 program . 188
 1.9 Answers to a Few Questions . 190
 1.10 Pin-out List . 192
 1.11 8052AH Special Function Registers . 193
 1.12 References . 199

APPENDIX B
 Instruction Set Summary . 200

INDEX . 213

intel

CHAPTER 1
Introduction

1.1 INTRODUCTION TO MCS BASIC-52

Welcome to MCS BASIC-52. This program functions as a BASIC interpreter occupying 8K of ROM in
INTEL's 8052AH microcontroller. MCS BASIC-52 provides most of the features of "standard"
BASICS, plus many additional features that apply to control environments and to the architecture of the
8052AH.

The design goal of MCS BASIC-52 was to develop a software program that would make it easy for a
hardware/software designer to interact with the 8052 device; but, at the same time not limit the designer
to the slow and sometimes awkward constructs of BASIC. This program is not a "toy" like many of the
so called TINY BASICS. It is a powerful software tool that can significantly reduce the design time of
many projects. MCS BASIC-52 is ideal for so called imbedded systems, where terminals are not
attached to system, but the system controls and manipulates equipment and data.

MCS BASIC-52 offers many unique hardware and software features, including the ability to store and
execute the user program out of an EPROM, the ability to process interrupts within the constructs of a
BASIC program, plus an accurate real time clock. In addition, the arithmetic routines and l/O routines
contained in MCS BASIC-52 can be accessed with assembly language CALL routines. This feature can
be used to eliminate the need for the user to write these sometimes difficult and tedious programs.

All of the above are covered in this document. This is NOT a "How to Write Basic programs" manual.
Many excellent texts on this subject have been produced. Your local computer store can recommend
many such texts.

The descriptions of many of the statements in this manual involve rather detailed discussions that relate
to interfacing MCS BASIC-52 to assembly language programs. If the user is not interested in using
assembly language with MCS BASIC-52 these discussions may be ignored. If you are only interested in
programming the MCS BASIC-52 device in BASIC, you can treat all statements the same way they
would be in any standard BASIC interpreter.

In reading this manual, you will find that some information may he repeated two or three times. This is
not an accident. Years of experience have proven that one of the most frustrating experiences one
encounters with manuals is trying to find a particular piece of information that the reader knows is in
the manual, but can't remember where.

- 1 -

intel

1.2 GETTING STARTED

If you are like most engineers, technicians, hobbyists and humans, and don't like to read manuals, this
section is for you. The purpose of this section is to get you off on the right foot. If you are in the High
Anxiety Mode and just want to see if the darn chip works, wire the device in the minimum hardware
configuration as suggested in the Hardware Configuration chapter of this manual, apply power, and
watch what happens. NOTHING! That's because after power is applied to the MCS BASIC-52 device,
the program initializes the 8052AH hardware and goes into an AUTO-BAUD search routine. You must
touch the space bar on the serial input device in order to get MCS BASIC-52 to SIGN ON. The
message that will appear is *MCS-51 BASIC Vx.x*. If a space character is not the first character sent to
the MCS BASIC-51 device after reset, you can spend a lot of time trying to figure out what went
wrong. So do yourself a favor, read this section and touch the space bar before you call your local Intel
Field Applications Engineer. We received a number of questions asking how the AUTO-BAUD search
routine worked. As a result this routine is listed in Chapter 11 of this manual.

1.3 WHAT HAPPENS AFTER RESET?

After RESET, MCS BASIC-52:

1) Clears the INTERNAL 8052AH memory

2) Initializes the internal registers and pointers

3) Tests, clears, and sizes the EXTERNAL memory

BASIC then assigns the top of EXTERNAL RANDOM ACCESS MEMORY to the SYSTEM
CONTROL VALUE MTOP and uses this number as the random number seed. BASIC assigns the
default crystal value, 11.0592 Mhz, to the SYSTEM CONTROL VALUE-XTAL and uses this default
value to calculate all time dependent functions, such as the EPROM programming timer and the
interrupt driven REAL TIME CLOCK. Finally. BASIC checks external memory location 8000H to see
if the baud rate information is stored. If the baud rate is stored, MCS BASIC-52 initializes the baud rate
generator (the 8052AH's SPECIAL FUNCTION REGISTER -- T2CON) with this information and
signs on. If it isn't stored, BASIC interrogates the serial port input and waits for a space character to be
typed. This sounds like a lot, but on the 8052AH, it doesn't take much time.

- 2 -

intel

1.3 WHAT HAPPENS AFTER RESET?

MCS BASIC-52 initializes the 8052AH's Special Function Registers, TMOD, TCON, and T2CON with
the following values:

TCON - 244 (0F4H)

TMOD - 16 (10H)

T2CON - 52 (34H)

After Reset the console device should display the following:

MCS-51(tm) BASIC Vx.x
READY

To see if everything is OK after Reset, type the following:

>PRINT XTAL, TMOD, TCON, T2CON
(BASIC should respond)
11059200 16 244 52

If it does, everything is working properly. If it does not make sure that the external memory, the serial
port, and the oscillator are connected and working. Hardware debug begins here.

In the Appendix of this manual is a QUICK REFERENCE GUIDE. It provides a short description of all
of the COMMANDS and STATEMENTS implemented in MCS BASIC-52 You might want to use this
section to gain a quick understanding, of the MCS BASIC-52 software package. Those of you who are
familiar with the BASIC language will notice that most of the STATEMENTS and COMMANDS used
in MCS BASIC-52 are "standard," so getting started should not be a problem.

- 3 -

intel

1.4 DEFINITION OF TERMS:

COMMANDS:

MCS BASIC-52 operates in two modes, the COMMAND or direct mode and the interpreter or RUN
mode. MCS BASIC-52 Commands can only be entered when the processor is in the COMMAND or
direct mode. MCS BASIC-52 takes immediate action after a command has been entered. This document
will use the terms RUN MODE and COMMAND MODE to refer to the two different modes of
operation.

STATEMENTS:

A BASIC program is comprised of statements. Every statement begins with a line number, followed by
the statement body, and terminated with a Carriage Return (cr), or a colon (:) in the case of multiple
statements per line. Some statements can be executed in the COMMAND MODE, others cannot. The
DESCRIPTION OF STATEMENTS section of this manual describes whether a statement can be
executed in the COMMAND mode or only in the RUN mode.

There are three general types of statements in MCS BASIC-52: ASSIGNMENTS, INPUT/OUTPUT,
and CONTROL. The DESCRIPTION OF STATEMENT section of this manual explains what type is
associated with each statement.

• EVERY line in a program must have a statement line number ranging between 0 and 65535

inclusive.

• Statement numbers are used by BASIC to order the program statements sequentially.

• In any program, a statement number can be used only once.

• Statements need not be entered in numerical order, because BASIC will automatically order them

in ascending order.

• A statement may contain no more than 72 characters in Version 1.0 and no more than 79 in Version

1.1.

• Blanks (spaces) are ignored by BASIC and BASIC automatically inserts blanks during LIST.

• More than one statement can be put on a line, if separated by a colon (:), but only one statement

number is allowed per line.

FORMAT STATEMENTS:

Format Statements may only be used within the PRINT STATEMENT. The format statements include
TAB([expr]), SPC([exprl], USING(special symbols), and CR (carriage return with no line feed). Details
of the format statements are provided in the description of the PRINT STATEMENT section of this
manual.

- 4 -

intel

1.4 DEFINITION OF TERMS

DATA FORMAT:

The range of numbers that can be represented in MCS BASIC-52 is:

 = 1E-127 to +-.99999999E+127.

There are eight digits of significance in MCS BASIC-52. Numbers are internally rounded to fit this
precision. Numbers may be entered and displayed in four formats: integer, decimal, hexadecimal, and
exponential.
EXAMPLE: 129, 34.98, 0A6EH, 1.23456E + 3

INTEGERS:

In MCS BASIC-52, integers are numbers that ranges from 0 to 65535 or 0FFFFH. All integers can be
entered in either decimal or hexadecimal format and all hexadecimal numbers must begin with a valid
digit (e.g. the number A000H must be entered 0A000H). When an operator, such as .AND. requires an
integer, MCS BASIC-52 will truncate the fraction portion of number so it will fit the integer format. All
line numbers used by MCS BASIC-52 are integers. This document will refer to integers and line
numbers, respectively in the following manner:

[integer] -- [In num]

NOTE -- Throughout this document the brackets [] are used only to indicate an integer, constant, etc.
They are NOT entered when typing the actual number or variable.

CONSTANTS:

A constant is a real number that ranges from +- 1E - 127 to +- .99999999E + 127. A constant, of course,
can be an integer. This document will refer to constants in the following manner:

 [const]

OPERATORS:

An operator performs a pre-defined operation on variables and/or constants. Operators require either
one
or two operands. Typical two operand or dyadic operators include ADD (+), SUBTRACT (-), MUL-
TIPLY (*), and DIVIDE (/). Operators that require only one operand are often referred to as UNARY
OPERATORS. Some typical UNARY OPERATORS are SIN, COS, and ABS.

 - 5 -

intel

1.4 DEFINITION OF TERMS

VARIABLES:

In Version 1.0 of MCS BASIC-52 a variable could be defined as either a letter, (i.e. A, X, I), a letter
followed by a number, (i.e. Q1, T7, L3), a letter followed by a ONE DIMENSIONED expression, (i.e.
J(4), G(A+6), I(10*SIN(X))), or a letter followed by a number followed by a ONE DIMENSIONED
expression (i.e. A1(8), P7(DBY(9)), W8(A+B). In Version 1.1 variables can be defined in the same
manner as in Version 1.0, however variables may also contain up to 8 letters or numbers including the
underline character. This permits the user to use a more descriptive name for a given variable.
Examples of valid variables in Version 1.1 of MCS BASIC-52 are as follows:

FRED VOLTAGE1 I – 11 ARRAY(ELE_1)

When using the expanded variable names available in Version 1.1 of MCS BASIC-52 it is important to
note that 1) It takes longer for MCS BASIC-52 to process these expanded variable names and 2) The
user may not use any keyword as part of a variable name (i.e. the variables TABLE and DIET could not
be used because TAB and IE are reserved words). BAD SYNTAX ERRORS will be generated if the
user attempts to define a variable that contains a reserved word.

Variables that include a ONE DIMENSIONED expression [expr] are often referred to as
DIMENSIONED or ARRAYED variables. Variables that only involve a letter or a letter and a number
are called SCALAR variables. The details concerning DIMENSIONED variables are covered in the
description of the STATEMENT ROUTINE DIM. This document will refer to VARIABLES as:

[var].

MCS BASIC-5 allocates variables in a "static" manner. That means each time a variable is used,
BASIC allocates a portion of memory (8 bytes) specifically for that variable. This memory cannot be
de-allocated on a variable by variable basis. That means if you execute a statement like Q = 3, later on
you cannot tell BASIC that the variable Q no longer exists so, please "free up" the 8 bytes of memory
that belong to Q. Sorry. it doesn't work this way. The only way the user can clear the memory that is
allocated to variables is to execute a CLEAR STATEMENT. This Statement "frees" all memory
allocated to variables.

IMPORTANT NOTE:

Relative to a dimensioned variable, it takes MCS BASIC-52 a lot less time to find a scalar variable.
That's because there is no expression to evaluate in a scalar variable. So, if you want to make a program
run as fast as possible, use dimensioned variables only when you have to. Use scalars for intermediate
variables, then assign the final result to a dimensioned variable.

EXPRESSIONS:

An expression is a logical mathematical formula that involves OPERATORS (both unary and dyadic),
CONSTANTS, and VARIABLES. Expressions can be simple or quite complex, i.e. 12*EXP(A)/100,
H(I)+55, or (SIN(A)*SIN(A)+COS(A)*COS(A))/2. A "stand alone" variable [var] or constant [const] is
also considered an EXPRESSION. This document will refer to EXPRESSIONS as:

[expr] . - 6 -

intel

1.4 DEFINITION OF TERMS

RELATIONAL EXPRESSIONS:

Relational expressions involve the operators EQUAL (=), NOT EQUAL (<>), GREATER THAN (>),
LESS THAN (<), GREATER THAN OR EQUAL TO (>=) and LESS THAN OR EQUAL TO (<=).
They are used in control statements to "test" a condition (i.e. IF A < 100 THEN . . .). Relational
expressions ALWAYS REQUIRE TWO OPERANDS. This document will refer to RELATIONAL
EXPRESSIONS as:

[rel expr].

SPECIAL FUNCTION OPERATORS:

Virtually all of the special function registers on the 8052AH can be accessed by using the special
function operators. The exceptions are PORTS 0, 2 and 3 and non-I/O associated registers such as
ACC, B, and PSW. Other SPECIAL FUNCTION OPERATORS are XTAL and TIME. Details of the
SPECIAL FUNCTION OPERATORS are covered in the section SPECIAL FUNCTION
OPERATORS.

SYSTEM CONTROL VALUES:

The system control values include the following: LEN (which returns the length of the program), FREE
(which designates how many bytes of RAM are not used that are allocated to BASIC), and MTOP
(which is the last memory location that is assigned to BASIC). Details of the system control values are
covered in the section SYSTEM CONTROL VALUES.

 - 7 -

intel

1.4 DEFINITION OF TERMS

STACK STRUCTURE:

MCS BASIC-52 reserves the first 512 bytes of EXTERNAL DATA MEMORY to implement two
"soft-
ware" stacks. These are the control stack and the arithmetic stack or ARGUMENT STACK.
Understanding how the stacks work in MCS BASIC-52 is NOT NECESSARY if the user wishes only
to program in BASIC. However, understanding the stack structure is necessary if the user wishes to link
MCS BASIC-52 to ASSEMBLY language routines. The details of how to link to assembly language are
covered in the ASSEMBLY LANGUAGE LINKAGE section of this manual.

CONTROL STACK -- The control stack occupies locations 96 (60H) through 254 (0FEH) in external
ram memory. This memory is used to store all information associated with loop control (i.e. DO-
WHILE,
DO-UNTIL, and FOR-NEXT) and basic subroutines (GOSUB). The stack is initialized to 254 (OFEH)
and "grows down."

ARGUMENT STACK -- The ARGUMENT STACK occupies locations 301 (12DH) through 510
(1FEH) in external ram memory. This stack stores all constants that MCS BASIC-52 is currently using.
Operations such as ADD, SUBTRACT, MULTIPLY, and DIVIDE always operate on the first two
numbers on the ARGUMENT STACK and return the result to the ARGUMENT STACK. The
argument stack is initialized to 510 (1FEH) and "grows down" as more values are placed on the
ARGUMENT STACK. Each floating point number placed on the ARGUMENT STACK requires 6
BYTES of storage.

INTERNAL STACK -- The stack pointer on the 8052AH (SPECIAL FUNCTION REGISTER, SP) is
initialized to 77 (4DH). The 8052AH's stack pointer "grows up" as values are placed on the stack. In
MCS BASIC-52 the user has the option of placing the 8052AH's STACK POINTER anywhere (above
location 77) in internal memory. The details of how to do this are covered in the ASSEMBLY
LANGUAGE LINKAGE section of this manual.

LINE EDITOR:

MCS BASIC-52 contains a minimum level line editor. Once a line is entered the user may not change
the line without re-typing the line. However, it is possible to delete characters while a line is in the
process of being entered. This is done by entering a RUBOUT or DELETE character (7FH). The
RUBOUT character will cause the last character entered to be erased from the text input buffer.
Additionally, a control-D will cause the entire line to be erased. In Version 1.1 of MCS BASIC-52,
Control-Q (X-ON) and Control S (X-OFF) recognition have been added to the serial port. The user is
cautioned not to accidentally type a Control-S when entering information because the MCS BASIC-52
will no longer respond to the console device. Control-Q is used to bring the console device back to life
after Control-S is typed.

NOTE -- In this document a carriage return is indicated by the symbol (cr). The carriage return is the
RETURN key on most keyboards.

 - 8 -

intel

1.5 WHAT'S THE DIFFERENCE BETWEEN V1.0 AND V1.1

Thanks to feedback from many of the users of MCS BASIC-52, a number of changes and additions
have been made to Version 1.1. All of these changes and additions were made to enhance the usefulness
of the
product and yet retain 100% compatibility, well almost 100% compatibility with the original version.
To make things simple, all of the changes will be mentioned here and a reference will be provided as to
where the reader of this manual may obtain more information about the change or addition.

The only change that has been made to V1.1 that is not compatible with V1.0 is with the
IF_THEN_ELSE STATEMENT when used with multiple statements per line. In V1.0, the following
two examples would function in the same manner.

EXAMPLE 1:

 10 IF A=B THEN C=A : A=A/2 : GOTO 100
 20 PRINT A

EXAMPLE 2:

 10 IF A=B THEN C=A
 12 A=A/2
 14 GOTO 100
 20 PRINT A

They function in the same manner because V1.0 treats the delimiter (:) exactly the same as a carriage
return (cr) in every case. However, V1.1 executes the remainder of the line if and only if the test A = B
proves to be true. This means in EXAMPLE 1 IF A did equal B, V1.1 would then set C=A, then set A =
A/2, then execute line 100. IF A did not equal B, V1.1 would then PRINT A and ignore the statements
C=A: A=A/2: GOTO 100. V1.1 will execute EXAMPLE 2 exactly the same way as V1.0. This same
logical interpretation holds true for the ELSE statement as well. This example dictates a simple rule for
maintaining IF_THEN_ELSE compatibility between the two versions. IF THE DELIMITER (:) IS
NOT USED IN AN IF_THEN_ELSE STATEMENT, V1.0 AND V1.1 WILL TREAT THE
STATEMENTS IN THE SAME MANNER!!

This change was made because most users of MCS BASIC-52 felt that the V1.1 interpretation of this
statement was more useful because fewer GOTO statements need be employed in a typical program.

Additionally, V1.1 accepts inputs in either lower or upper case, whereas V1.0 converted lower case to
upper case. V1.1 will however, convert keywords from lower case to upper case during the LlSTing of
a program. Finally, MCS BASIC-52 V1.1 runs between 2% and 10% faster than V1.0. Typically, this
should not cause any problems.

As far as the user is concerned, these are the only changes that may affect the operation of a typical
program. Now, on to the additions.

- 9 -

intel

1.5 WHAT'S THE DIFFERENCE BETWEEN V1.0 AND V1.1

ADDITIONS TO MCS BASIC-52 V1.1:

• X-ON (control Q) and X-OFF (control S) have been added. These permit the user to "stop" (control

S) and start (control Q) the display of characters during a LIST or PRINT. This feature also permits
synchronization with external l/O (input/output) devices. The X-OFF (control S) functions on a line
by line basis, not on a character by character basis.

• Five new statements have been added. These include IDLE, LD@, ST@, PGM, and RROM.

Details of these statements are listed under the DESCRIPTION OF STATEMENTS section of this
manual.

• Six new RESET options have been provided. They permit the user to assign the top of memory

(MTOP) during reset, and allow the user to write specific RESET programs in assembly language.
Additionally, they provide an option where the memory WILL NOT be cleared during RESET.
More information on the specific RESET OPTIONS is detailed in the DESCRIPTIONS OF
EPROM FILE COMMANDS under PROGI, PROG2, PROG3, PROG4, PROG5, and PROG6
COMMANDS and in Chapter 11 of this manual.

• The Timing of the EPROM programming algorithm has been significantly relaxed between the

various strobes required for the EPROM programming function. This relaxed timing permits the
user to program devices such as the 8751H and the 8748/9 using the EPROM programming
capabilities of the MCS BASIC-52 device. Details of the timing changes are in Chapter 10 of this
manual.

• During EPROM programming, the INT0/DMA REQUEST pin of the MCS BASIC-52 device is

treated as a ready input pin. This allows for a simple direct connection to EEPROM devices such as
the 2817A. For normal EPROM programming, INT0 must be kept high or the programming hangs
up. Details concerning the use of EEPROMS with the MCS BASIC-52 device are provided in
Chapter 10 of this manual.

• A RUN TRAP option has been provided. This option traps the MCS BASIC-52 interpreter in the

program RUN mode and will not permit the user to exit this mode. Details of this option are
covered in Chapter 8.4 of this manual.

• A user STATEMENT/COMMAND expansion option has been provided. This permits the user to

easily add new or custom STATEMENTS and COMMANDS to MCS BASIC-52. Details of this
option are covered in Chapter 12 of this manual.

 - 10 -

intel

1.5 WHAT'S THE DIFFERENCE BETWEEN V1.0 AND V1.1

ADDITIONS TO MCS BASIC-52 V1.1:

• A number of new assembly language user OP BYTES have been added. These permit the user to

make better use of the STATEMENT/COMMAND expansion option previously described. Details
of these new OP BYTES are presented in Chapter 9.6 of this manual.

• The length of the input buffer has been increased from 72 characters to 79 characters and the

ERROR: LINE TOO LONG has been eliminated. Instead, when the cursor reaches the 79th
position a bell character will be echoed every time the user attempts to enter another character.

• A new variation on the PRINT (including PH0. and PH1.) and LIST statements have been added.

This new option is evoked with an @ character (EXAMPLE: PRINT@ or LIST@ and permits the
user to write specific output drivers for these statements and commands. When the @ PRINT or
LIST is evoked, MCS BASIC-52 CALLS external code memory location 403CH. The user must
put the specific output driver in this location. More details of this option is in Description of
Statements section of this manual.

• The control stack has been made more "forgiving." This means that the user can execute a GOSUB

to a subroutine that contains a FOR-NEXT loop and return from the subroutine without completing
the FOR-NEXT loop. Version 1.0 would yield a C-STACK ERROR under these circumstances, V
1.1 yields no error.

• The question mark character ? is interpreted as a PRINT statement (EXAMPLE: (PRINT 10+20 is

the same as ? 10+20). The symbols P. remains a shorthand notation for PRINT just as in V1.0.

• The FOR-NEXT statement can be executed in the direct mode. This lets the user write short

routines in the DIRECT MODE to, for example, display a region of memory (EXAMPLE: FOR I =
200H to 210H: PH0. XBY(I): NEXT I)

• Variables can be up to 8 characters in length, however, only the first character, the last character,

and the total number of characters are of significance. This lets the user better describe variables
that are used in a program. Chapter 1.4 details the limitations on the expanded variables in Version
1.1 .

 - 11 -

intel

1.5 WHAT'S THE DIFFERENCE BETWEEN V1.0 AND V1.1

ADDITIONS TO MCS BASIC-52 V1.1:

• The CALL statement vectors to locations 4100H through 41FFH if the CALL integer is between 0

and 7FH inclusive. This means that CALL 0 will vector to location 4100H, CALL 1 to location
4102H, CALL 2 to location 4104H, etc. This permits the user to easily generate assembly language
CALL tables by using simple integers with the CALL statement. Anyway, CALL 0 through CALL
1FFFH was not too useful because these numbers vectored into the MCS BASIC-52 ROM.

• The error message anomaly for an invalid line number on a GOTO or GOSUB STATEMENT has

been eliminated on V1.1 of MCS BASIC-52. The correct line number is now processed and
displayed by the error processor.

• The FOR-TO-{STEP}-NEXT statement can be executed in the COMMAND MODE in version 1.1

of MCS BASIC-52. Additionally, the NEXT statement does not require a variable in version 1.1.
Details of these features are covered in the Description of Statements section of this manual.

• The REM statement can be executed in the COMMAND MODE. If the user is employing some

type of UPLOAD/DOWNLOAD routine with a computer, this lets the user insert REM statements,
without line numbers in the text and not download them to the MCS BASIC-52 device. This helps
to conserve memory.

• Version 1.1 is also a little less "crashable" than version 1.0. This is due to a more extensive "type

checking" on control transfer routines (i.e. GOTO, GOSUB).

- 12 -

intel

CHAPTER 2
Description of Commands

2.1 DESCRIPTION OF COMMANDS

COMMAND: RUN(cr)

ACTION TAKEN:

After RUN(cr) is typed all variables are set equal to zero, all BASIC evoked interrupts are cleared and
program execution begins with the first line number of the selected program. The RUN command and
the GOTO statement are the only way the user can place the MCS BASIC-52 interpreter into the RUN
mode from the COMMAND mode. Program execution may be terminated at any time by typing a
control-C on the console device.

VARIATIONS:

Unlike some Basic interpreters that allow a line number to follow the RUN command (i.e., RUN 100),
MCS BASIC-52 does not permit such a variation on the RUN command. Execution always begins with
the first line number. To obtain the same functionality as the RUN[ln num] command, use the GOTO[ln
num] statement in the direct mode. SEE STATEMENT GOTO.

EXAMPLE:

 >10 FOR I=1 TO 3
 >20 PRINT
 >30 NEXT
 >RUN

 1
 2
 3

 READY
 >

- 13 -

intel

2.2 DESCRIPTION OF COMMANDS:

COMMAND: CONT(cr)

ACTION TAKEN:

If a program is stopped by typing a control-C on the console device or by execution of a STOP
statement, you can resume execution of the program by typing CONT(cr). Between the stopping and the
re-starting of the program you may display the values of variables or change the values of variables.
However, you may NOT CONTinue if the program is modified during the STOP or after an error.

VARIATIONS:

None.

EXAMPLE:

 >10 FOR I=1 TO 10000
 >20 PRINT I
 >30 NEXT I
 >RUN

 1
 2
 3
 4
 5 - (TYPE CONTROL-C ON CONSOLE)

 STOP - IN LINE 20

 READY
 >PRINT I
 6

 >I=10

 >CONT

 10
 11
 12

- 14 -

intel

2.3 DESCRIPTION OF COMMANDS:

COMMAND: LlST(cr)

ACTION TAKEN:

The LlST(cr) command prints the program to the console device. Note that the list command "formats"
the program in an easy to read manner. Spaces are inserted after the line number and before and after
statements. This feature is designed to aid in the debugging of MCS BASIC-52 programs. The "listing"
of a program may be terminated at anytime by typing a control-C on the console device.

VARIATIONS:

Two variations of the LIST COMMAND are possible with MCS BASIC-52. They are:

LIST [ln num] (cr) and

LIST [ln num] -- [ln num] (cr)

The first variation causes the program to be printed from the designated line number (integer) to the end
of the program. The second variation causes the program to be printed from the first line number
(integer) to the second line number (integer). NOTE -- the two line numbers MUST BE SEPARATED
BY A DASH - .

EXAMPLE:

 READY
 >LIST
 10 PRINT "LOOP PROGRAM"
 20 FOR I=1 TO 3
 30 PRINT I
 40 NEXT I
 50 END

 READY
 >LIST 30
 30 PRINT I
 40 NEXT I
 50 END

 READY
 >LIST 20-40
 20 FOR I=1 TO 3
 30 PRINT I
 40 NEXT I

- 15 -

intel

2.4 DESCRIPTION OF COMMANDS

COMMAND: LlST#(cr)

ACTION TAKEN:

The LlST#(cr) command prints the program to the LIST device. The BAUD rate to this device must be
initialized by the STATEMENT -- BAUD[expr]. All comments that apply to the LIST command apply
to the LIST# command. The LlST#(cr) command is included to permit the user to make "hard copies"
of a program. The output to the list device is on P1.7 of the MCS BASIC-52 device.

- 16 -

intel

2.5 DESCRIPTION OF COMMANDS

COMMAND: LlST@(cr) (VERSION 1.1 ONLY)

ACTION TAKEN:

The LIST@ command does the same thing as the LIST command except that the output is directed to a
user defined output driver. This command assumes that the user has placed an assembly language
output routine in external code memory location 403CH. To enable the @ driver routine the user must
SET BIT 27H (39D) in the internal memory of the MCS BASIC-52 device. BIT 27H (39D) is BIT 7 of
internal memory location 24H (36D). This BIT can be set by the BASIC statement
DBY(24H)=DBY(24H).OR. 80H or by a user supplied assembly language routine. If the user evokes
the @ driver routine and this bit is not set, the output will be directed to the console driver. The only
reason this BIT must be set to enable the @ driver is that it adds a certain degree of protection from
accidentally typing LIST@ when no assembly language routine exist. The philosophy here is that if the
user sets the bit, the user provides the driver or else!!!

When MCS BASIC-52 calls the user output driver routine at location 403CH, the byte to output is in
the accumulator and R5 of register bank 0 (RB0). The user may modify the accumulator (A) and the
data pointer (DPTR) in the assembly language output routine, but cannot modify any of the registers in
RB0. This is intended to make it real easy for the user to implement a parallel or serial output driver
without having to do a PUSH or a POP.

- 17 -

intel

2.6 DESCRIPTION OF COMMANDS

COMMAND: NEW(cr)

ACTION TAKEN:

When NEW(cr) is entered, MCS BASIC-52 deletes the program that is currently stored in RAM
memory. In addition, all variables are set equal to ZERO, all strings and all BASIC evoked interrupts
are cleared. The REAL TIME CLOCK, string allocation, and the internal stack pointer value (location
3EH) are NOT effected. In general, NEW (cr) is used simply to erase a program and all variables.

- 18 -

intel

2.7 DESCRIPTION OF COMMANDS

COMMAND: NULL [integer](cr)

ACTION TAKEN:

The NULL[integer] (cr) command determines how many NULL characters (00H) MCS BASIC-52 will
output after a carriage return. After initialization NULL = 0. The NULL command was more important
back in the days when a "pure" mechanical printer was the most common I/0 device. Most modern
printers contain some kind of RAM buffer that virtually eliminates the need to output NULL characters
after a carriage return. NOTE -- the NULL count used by MCS BASIC-52 is stored in internal RAM
location 21 (15H). The NULL value can be changed dynamically in a program by using a DBY(21) =
[expr] statement. The [expr] can be any value between 0 and 255 (0FFH) inclusive.

VARIATIONS:

None.

- 19 -

intel

CHAPTER 3
Description of EPROM File Commands

DESCRIPTION OF EPROM FILE COMMANDS

One of the unique and powerful features of MCS BASIC-52 is that it has the ability to execute and
SAVE programs in an EPROM. MCS BASIC-52 actually generates all of the timing signals needed to
program most EPROM devices. Saving programs in EPROMS is a much more attractive and
RELIABLE alternative relative to cassette tape, especially in control and/or noisy environments.

The hardware needed to permit MCS BASIC-52 to program an EPROM device is minimal, typically
only one NAND gate, three or four transistors, and a few resistors are all that is required. Details of the
hardware requirements are in the EPROM PROGRAMMING section of this manual.

MCS BASIC-52 can save more than one program in an EPROM. In fact, it can save as many programs
as the size of the EPROM memory permits. The programs are stored sequentially in the EPROM and
any program can be retrieved and executed. This sequential storing of programs is referred to as the
EPROM FILE. The following commands permit the user to generate and manipulate the EPROM FILE.

- 20 -

intel

3.1 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: RAM(cr) and ROM [integer] (cr)

ACTION TAKEN:

These two commands tell the MCS BASIC-52 interpreter whether to select the current program (the
current program is the one that will be displayed during a LIST command and executed when RUN is
typed) out of RAM or EPROM. The RAM address is assumed to be 512 (200H) and the EPROM
address begins at 32784 (8010H).

RAM

When RAM(cr) is entered MCS BASIC-52 selects the current program from RAM MEMORY. This is
usually considered the "normal" mode of operation and is the mode that most users interact with the
command interpreter.

ROM

When ROM [integer] (cr) is entered MCS BASIC-52 selects the current program out of EPROM
memory. If no integer is typed after the ROM command (i.e. ROM (cr)) MCS BASIC-52 defaults to
ROM 1. Since the programs are stored sequentially in EPROM the integer following the ROM
command selects which program the user wants to run or list. If you attempt to select a program that
does not exist (i.e. you type in ROM 8 and only 6 programs are stored in the EPROM) the message
ERROR: PROM MODE will be displayed.

MCS BASIC-52 does not transfer the program from EPROM to RAM when the ROM mode is selected.
So, you cannot EDIT a program in the ROM mode. If you attempt to edit a program in the ROM mode,
by typing in a line number, the message ERROR: PROM MODE will be displayed. The following
command to be described, XFER, permits one to transfer a program from EPROM to RAM for editing
purposes.

Since the ROM command does NOT transfer a program to RAM, it is possible to have different
programs in ROM and RAM simultaneously. The user can "flip" back and forth between the two modes
at any time. Another added benefit of NOT transferring a program to RAM is that all of the RAM
memory can be used for variable storage if the PROGRAM is stored in EPROM. The SYSTEM
CONTROL VALUES --MTOP and FREE always refer to RAM not EPROM.

VARIATIONS:

None.

- 21 -

intel

3.2 DESCRIPTION OF EPROM FILE COMMANDS

COMMAND: XFER(cr)

ACTION TAKEN:

The XFER (transfer) command transfers the current selected program in EPROM to RAM and then
selects the RAM mode. If XFER is typed while MCS BASIC-52 is in the RAM mode, the program
stored in RAM is transferred back into RAM and the RAM mode is selected. The net result is that
nothing happens except that a few milli-seconds of CPU time is used to do a wasted move. After the
XFER command is executed, the user may edit the program in the same manner any RAM program
may be edited.

VARIATIONS:

None.

- 22 -

intel

3.3 DESCRIPTION OF EPROM FILE COMMANDS

COMMAND: PROG(cr)

ACTION TAKEN:

The PROG COMMAND programs the resident EPROM with the current selected program. The current
selected program may reside in either RAM or EPROM. This command assumes that the hardware is
configured in the manner described in the EPROM PROGRAMMING section of this manual.

After PROG (cr) is typed, MCS BASIC-52 displays the number in the EPROM FILE the program will
occupy.

EXAMPLE:

 >LIST
 10 FOR I=1 TO 10
 20 PRINT I
 30 NEXT I

 READY
 >PROG
 12

 READY
 >ROM 12

 READY
 >LIST
 10 FOR I=1 TO 10
 20 PRINT I
 30 NEXT I

 READY
 >

In this example, the program just placed in the EPROM is the 12th program stored.

VARIATIONS:

None.

- 23 -

intel

3.4 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: PROG1(cr) and PROG2(cr)

ACTION TAKEN:

PROG1

Normally, after power is applied to the MCS BASIC-52 device, the user MUST type a "space"
character to initialize the 8052AH's serial port. As a convenience, MCS BASIC-52 contains a PROG1
COMMAND. What this command does is program the resident EPROM with the BAUD RATE
information. So, the next time the MCS BASIC-52 device is "powered up," i.e. RESET, the chip will
read this information and initialize the serial port with the stored baud rate. The "sign-on" message will
be sent to the console immediately after the MCS BASIC-52 device completes its reset sequence. The
"space" character no longer needs to be typed. Of course, if the BAUD rate on the console device is
changed a new EPROM must be programmed to make MCS BASIC-52 compatible with the new
console.

PROG2

The PROG2 command does everything the PROG1 command does, but instead of "signing-on" and
entering the COMMAND MODE, the MCS BASIC-52 device immediately begins executing the first
program stored in the resident EPROM.

THIS IS AN IMPORTANT FEATURE !!

By using the PROG2 command it is possible to RUN a program from a RESET condition and NEVER
connect the MCS BASIC-52 chip to a console. In essence, saving PROG2 information is equivalent to
typing a ROM 1, RUN command sequence. This is ideal for control applications, where it is not always
possible to have a terminal present. In addition. this feature permits the user to write a special
initialization sequence in BASIC or ASSEMBLY LANGUAGE and generate a custom "sign-on"
message for specific applications.

- 24 -

intel

3.5 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: FPROG(cr), FPROG1(cr), AND FPROG2(cr)

ACTION TAKEN:

FPROG(cr), FPROG1(cr), and FPROG2(cr) do exactly the same thing as PROG(cr), PROG1(cr), and
PROG2(cr) respectively, except that the algorithm used to perform the programming function is the
INTEL "INTELLIGENT" fast programming algorithm. The user MUST provide a way to increase VCC
to the EPROM to 6 volts.

- 25 -

intel

3.6 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: PROG3(cr). PROG4(cr), FPROG3(cr), FPROG4(cr) (VERSION 1.1 ONLY)

ACTION TAKEN:

PROG3

The PROG3 COMMAND functions the same way as the PROG1 COMMAND previously described,
except that PROG3 also saves the system control value, MTOP, when it is evoked. During a RESET or
power-up sequence MCS BASIC-52 will only clear the external data memory up to the MTOP value
that was saved when the PROG3 COMMAND was evoked. This permits the user to "protect" regions of
memory from being cleared during a RESET or power-up condition. In typical use, the PROG3
COMMAND assumes that the user is saving some critical information in some type of battery-backed-
up or non-volatile memory and does not want this information to be destroyed during a RESET or
power-up sequence.

PROG4

The PROG4 COMMAND is a combination of the PROG2 and PROG3 COMMAND. PROG4 saves the
same information as PROG3, but also executes the first program stored in the EPROM after a RESET
or power-up condition.

FPROG3 and FPROG4

The FPROG3 and FPROG4 commands save the same information as the PROG3 and PROG4
commands respectively, except that the INTELIigent(tm) algorithm is used to program the EPROM.

VARIATIONS:

None.

- 26 -

intel

3.7 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: PROG5(cr), PROG6(cr), FPROG5(cr), FPROG6(cr) (VERSION 1.1 ONLY)

ACTlON TAKEN:

PROG5 & FPROG5

The PROG5 command saves both the baud rate information and the MTOP information, just like the
PROG3 command previously described. However, during a RESET or power-up condition the MCS
BASIC-52 device examines external data memory location 5FH (95 decimal). If the user has placed the
value 0A5H (165 decimal) in this location, the MCS BASIC-52 device will not clear the external
memory during a RESET or power-up condition. This permits the user to "save" programs in external
memory, providing some type of battery back-up scheme has been employed.

Normally, when using the PROG5 command to establish the RESET or power-up condition, the MCS
BASIC-52 device will enter the command mode after RESET or power-up. However, if the user wishes
to execute the program stored in external memory, the character 34H (52 decimal) needs to be placed in
external memory location 5EH (94 decimal). Placing a 34H in location 5EH causes MCS BASIC-52 to
enter the "RUN TRAP MODE." Details of this mode are presented in chapter 8 of this manual.

PROG6 & FPROG6

Does the same thing as PROG5, but CALLS external program memory location 4039H during a
RESET or power-up sequence. This option also requires the user to put the character 0A5H in external
memory location 5FH to insure that external RAM will not be cleared during RESET or power-up. The
user must put an assembly language initialization routine in external code memory location 4039H or
else this RESET mode will crash. When the user returns from the customized assembly language
RESET routine, three options exist:

OPTION 1 FOR PROG6

If the CARRY BIT is CLEARED (CARRY = 0) upon return from the user RESET routine MCS
BASIC-52 will enter the auto-baud rate determining routine. The user must then type a space character
(20H) on the terminal to complete the RESET routine and produce a RESET message on the terminal.

OPTION 2 FOR PROG6

If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is CLEARED (ACC. 0 =
0) MCS BASIC-52 will produce the standard sign-on message upon return from the user supplied
RESET routine. The baud rate will be the one that was saved when the PROG6 option was used.

OPTION 3 FOR PROG6

If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is SET (ACC. 0 = 1),
MCS BASIC-52 will execute the first program stored by the user in EPROM (starting address of the
program is 8010H) upon return from the user supplied RESET routine.

- 27 -

intel

CHAPTER 4
Description of Statements

4.1 DESCRIPTION OF STATEMENTS

STATEMENT: BAUD [expr]

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

The BAUD [expr] statement is used to set the baud rate for the software line printer port resident on the
MCS BASIC-52 device. In order for this STATEMENT to properly calculate the baud rate, the crystal
(special function operator -- XTAL) must be correctly assigned (e.g. XTAL = 9000000). MCS BASIC-
52 assumes a crystal value of 11.0592 MHz if no XTAL value is assigned. The software line printer
port is P1.7 on the 8052AH device. The main purpose of the software line printer port is to let the user
make a "hard copy" of program listings and/or data. The COMMAND LIST# and the STATEMENT
PRINT# direct outputs to the software line printer port. If the BAUD [expr] STATEMENT is not
executed before a LIST# or PRINT# command/statement is entered, the output to the software line
printer port will be at about 1 BAUD and it will take A LONG TIME to output something. You may
even think that BASIC has crashed, but it hasn't. It's just outputting at a VERY SLOW rate. So be sure
to assign a BAUD rate to the software printer port BEFORE using LIST# or PRINT#. The maximum
baud rate that can be assigned by the BAUD statement depends on the crystal. In general, 4800 is a
reasonable maximum baud- rate. however the user may want to experiment with different rates. The
software serial transmits 8 data bits, 1 start bit, and two stop bits. No parity is transmitted.

EXAMPLE:

 BAUD 1200

Will cause the line printer port to output data at 1200 BAUD.

VARIATIONS:

None.

- 28 -

intel

4.2 DESCRIPTION OF STATEMENTS

STATEMENT: CALL [integer]

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

The CALL [integer] STATEMENT is used to call an assembly language program. The integer
following CALL is the address where the user must provide the assembly language routine. To return to
BASIC the user must execute an assembly language RET instruction. Examples of how to use the
CALL [integer] instruction are given in the ASSEMBLY LANGUAGE LINKAGE section of this
manual.

EXAMPLE:

 CALL 9000H

Will cause the 8052AH to execute the assembly language program beginning at location 9000H (i.e. the
program counter will be loaded with 9000H).

VARIATIONS: (VERSION 1.1 ONLY)

If the integer following the CALL statement is between 0 and 127 (7FH), Version 1.1 of MCS BASIC-
52 will multiply the user integer by two, then add 4100H and vector to that location. This means that
CALL 0 will call location 4100H, CALL 1 will call 4102H, CALL 2 -- 4104H and so on. This permits
the user to generate a simple table of assembly language routines without having to enter 4 digit hex
integers after the CALL statement from the user supplied RESET routine.

 - 29 -

intel

4.3 DESCRIPTION OF STATEMENTS

STATEMENT: CLEAR

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

The CLEAR STATEMENT sets all variables equal to 0 and resets all BASIC evoked interrupts and
stacks. This means that after the CLEAR statement is executed an ONEX1 or ONTIME statement must
be executed before MCS BASIC-52 will acknowledge interrupts. ERROR trapping via the ONERR
statement will also not occur until an ONERR[integer] STATEMENT is executed. The CLEAR
STATEMENT does not affect the real time clock that is enabled by the CLOCK1 STATEMENT.
CLEAR also does not reset the memory that has been allocated for STRINGS, so it is NOT necessary to
enter the STRING [expr], [expr] STATEMENT to re-allocate memory for strings after the CLEAR
STATEMENT is executed. In general, CLEAR is simply used to "erase" all variables.

VARIATIONS:

None.

- 30 -

intel

4.4 DESCRIPTION OF STATEMENTS

STATEMENTS: CLEARI (clear interrupts)

 CLEARS (clear stacks)

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

CLEARI

The CLEARI STATEMENT clears all of the BASIC evoked interrupts. Specifically, the ONTIME and
ONEX1 interrupts are DISABLED after the CLEARI STATEMENT is executed. This is accomplished
by clearing bits 2 and 3 of the 8052AH's special function register, IE and by clearing the status bits that
determine whether MCS BASIC-52 or the user is controlling these interrupts. The real time clock which
is enabled by the CLOCK1 STATEMENT is not affected by CLEARI. This statement can be used to
selectively DISABLE interrupts during specific sections of the users BASIC program. The ONTIME
and/ or ONEX1 STATEMENTS MUST BE EXECUTED AGAIN before the specific interrupts will be
enabled.

CLEARS

The CLEARS statement RESETS all of MCS BASlC-52's STACKS. The CONTROL and
ARGUMENT STACKS are reset to their initialization value, 254 (0FEH) and 510 (1FEH) respectively.
The INTERNAL STACK (the 8052AH's STACK POINTER, SPECIAL FUNCTION REGISTER-SP)
is loaded with the value that is in INTERNAL RAM location 62 (3EH). This statement can be used to
"purge" the stack should an error occur in a subroutine. In addition, this statement can be used to
provide a "special" exit from a FOR-NEXT, DO-WHILE, or DO-UNTIL loop.

EXAMPLE OF CLEARS:

 >10 PRINT "MULTIPLICATION TEST. YOU HAVE 5 SECONDS"
 >20 FOR I = 2 TO 9
 >30 N = INT(RND*10) : A - N*I
 >40 PRINT "WHAT IS ",N,"*",I,"?": CLOCK1
 >50 TIME = O : ONTIME 5,200 : INPUT R : IF R <> A THEN 100
 >60 PRINT "THAT'S RIGHT" TIME=0 : NEXT I
 >70 PRINT "YOU DID IT. GOOD JOB" : END
 >100 PRINT "WRONG - TRY AGAIN" : GOTO 50
 >200 REM WASTE CONTROL STACK, TOO MUCH TIME
 >210 CLEARS : PRINT "YOU TOOK TOO LONG" : GOTO 10

NOTE: When the CLEARS and CLEARI STATEMENTS are LISTED they will appear as CLEAR S
and CLEAR I respectively. Don't be alarmed, that is the way it's supposed to work.

- 31 -

intel

4.5 DESCRIPTION OF STATEMENTS

STATEMENTS: CLOCK1 and CLOCK0

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

CLOCK1

The CLOCK1 STATEMENT enables the REAL TIME CLOCK feature resident on the MCS BASIC-
52 device. The special function operator TIME is incremented once every 5 milliseconds after the
CLOCK1 STATEMENT has been executed. The CLOCK1 STATEMENT uses TIMER/COUNTER 0
in the 13-bit mode to generate an interrupt once every 5 milliseconds. Because of this, the special
function operator TIME has a resolution of 5 milliseconds.

MCS BASIC-52 automatically calculates the proper reload value for TIMER/COUNTER 0 after the
crystal value has been assigned (i.e. XTAL=value). If no crystal value is assigned, MCS BASIC-52
assumes a value of 11.0592 MHz. The special function operator TIME counts from 0 to 65535.995
seconds. After reaching a count of 65535.995 seconds TIME overflows back to a count of zero.
Because the CLOCK1 STATEMENT uses the interrupts associated with TIMER/COUNTER 0 (the
CLOCK1 statement sets bits 7 and 2 in the 8052AH's special function register, IE) the user may not use
this interrupt in an assembly language routine if the CLOCK1 STATEMENT is executed in BASIC.
The interrupts associated with the CLOCK1 STATEMENT cause MCS BASIC-52 programs to run at
about 99.6% of normal speed. That means that the interrupt handling for the REAL TIME CLOCK
feature only consumes about .4% of the total CPU time. This very small interrupt overhead is attributed
to the very fast and effective interrupt handling of the 8052AH device.

CLOCK0

The CLOCK0 (zero) STATEMENT disables or "turns off" the REAL TIME CLOCK feature. This
statement clears bit 2 in the 8052AH's special function register, IE. After CLOCK0 is executed, the
special function operator TIME will no longer increment. The CLOCK0 STATEMENT also returns
control of the interrupts associated with TIMER COUNTER 0 back to the user, so this interrupt may be
handled at the assembly language level. CLOCK0 is the only MCS BASIC-52 statement that can
disable the REAL TIME CLOCK. CLEAR and CLEARI will NOT disable the REAL TIME CLOCK.

VARIATIONS:

None.

- 32 -

intel

4.6 DESCRIPTION OF STATEMENTS

STATEMENTS: DATA -- READ -- RESTORE

MODE: RUN

TYPE: ASSIGNMENT

DATA

DATA specifies expressions that may be retrieved by a READ STATEMENT. If multiple expressions
per line are used, they MUST be separated by a comma.

READ

READ retrieves the expressions that are specified in the DATA STATEMENT and assigns the value of
the expression to the variable in the READ STATEMENT. The READ STATEMENT MUST
ALWAYS be followed by one or more variables. If more than one variable follows a READ
STATEMENT, they MUST be separated by a comma.

RESTORE

RESTORE "resets" the internal read pointer back to the beginning of the data so that it may be read
again.

EXAMPLE:

 >10 FOR I=1 TO 3
 >20 READ A,B
 >30 RRINT A,B
 >40 NEXT I
 >50 RESTORE
 >60 READ A,B
 >70 PRINT A,B
 >80 DATA 10,20,10/2,20/2,SIN(PI),COS(PI)
 >RUN

 10 2O
 5 10
 0 -1
 10 20

VARIATIONS:

None.

- 33 -

intel

4.6 DESCRIPTION OF STATEMENTS

Explanation of previous example:

Every time a READ STATEMENT is encountered the next consecutive expression in the DATA
STATEMENT is evaluated and assigned to the variable in the READ STATEMENT. DATA
STATEMENTS may be placed anywhere within a program, they will NOT be executed nor will they
cause an error. DATA STATEMENTS are considered to be chained together and appear to be one BIG
DATA STATEMENT. If at anytime all the DATA has been read and another READ STATEMENT is
executed then the program is terminated and the message ERROR: NO DATA IN LINE XX is printed
to the console device.

- 34 -

intel

4.7 DESCRIPTION OF STATEMENTS

STATEMENT: DIM

MODE: COMMAND AND/OR RUN

TYPE: ASSIGNMENT

DIM reserves storage for matrices. The storage area is first assumed to be zero. Matrices in MCS
BASIC- 52 may have only ONE DIMENSION and the size of the dimensioned array MAY NOT
exceed 254 elements. Once a variable is dimensioned in a program it may not be re-dimensioned. An
attempt to re-dimension an array will cause an ARRAY SIZE ERROR. If an arrayed variable is used
that has NOT been dimensioned by the DIM STATEMENT, BASIC will assign a default value of 10 to
the array size. All arrays are set equal to zero when the RUN COMMAND, NEW COMMAND, or the
CLEAR STATEMENT is executed. The number of bytes allocated for an array is 6 times the (array
size plus 1). So, the array A(100) would require 606 bytes of storage. Memory size usually limits the
size of a dimensioned array.

VARIATIONS:

More than one variable can be dimensioned by a single DIM STATEMENT, i.e., DIM A(10), B(15),
A1(20).

EXAMPLE:

 DEFAULT ERROR ON ATTEMPT TO RE-DIMENSION ARRAY

 >10 A(5)=10 - BASIC ASSIGNS DEFAULT OF 10 TO ARRAY SIZE HERE
 >20 DIM A(5) - ARRAY CANNOT BE RE-DIMENSIONED
 >RUN

 ERROR ARRAY SIZE - IN LINE 20

 20 DIM A(5)
 -------x

- 35 -

intel

4.8 DESCRIPTION OF STATEMENTS

STATEMENTS: DO -- UNTIL [rel expr]

MODE: RUN

TYPE: CONTROL

The DO -- UNTIL [rel expr] instruction provides a means of "loop control" within an MCS BASIC-52
program. All statements between the DO and the UNTIL [rel expr] will be executed until the relational
expression following the UNTIL statement is TRUE. DO -- UNTIL loops may be nested.

EXAMPLES:

 SIMPLE DO-UNTIL NESTED DO-UNTIL

 >10 A=0 >10 DO : A=A+1 : DO : B=B+1
 >20 DO >20 PRINT A,B,A*B
 >30 A=A+I >30 UNTIL B=3
 >40 PRINT A >40 B=0
 >50 UNTIL A=4 >50 UNTIL A=3
 >60 PRINT "DONE" >RUN
 >RUN
 1 1 1
 1 1 2 2
 2 1 3 3
 3 2 1 2
 4 2 2 4
 DONE 2 3 6
 3 1 3
 READY 3 2 6
 > 3 3 9

 READY
 >

VARIATIONS:

None

- 36 -

intel

4.9 DESCRIPTION OF STATEMENTS

STATEMENTS: DO -- WHILE [rel expr]

MODE: RUN

TYPE: CONTROL

The DO -- WHILE [rel expr] instruction provides a means of "loop control" within an MCS BASIC-52
program. This operation of this statement is similar to the DO -- UNTIL [rel expr] except that all
statements between the DO and the WHILE [rel expr] will be executed as long as the relational
expression following the WHILE statement is true. DO -- WHILE and DO -- UNTIL statements can be
nested.

EXAMPLES:

 SIMPLE DO-WHILE NESTED DO-WHILE - DO-UNTIL

 >10 DO >10 DO : A=A+1 : B=B+1
 >20 A=A+1 >20 PRINT A,B,A*B
 >30 PRINT A >30 WHILE B<>3
 >40 WHILE A<4 >40 B=0
 >50 PRINT "DONE" >50 UNTIL A=3
 >RUN >RUN

 1 1 1 1
 2 1 2 2
 3 1 3 3
 4 2 1 2
 DONE 2 2 4
 2 3 6

READY 3 1 3
> 3 2 6
 3 3 9

 READY
 >

VARIATIONS:

None

- 37 -

intel

4.10 DESCRIPTION OF STATEMENTS

STATEMENT: END

MODE: RUN

TYPE: CONTROL

The END STATEMENT terminates program execution. The continue command, CONT will not
operate it the END STATEMENT is used to terminate execution (i.e., a CAN'T CONTINUE ERROR
will be printed to the console). The last statement in an MCS BASIC-52 program will automatically
terminate program execution if no END STATEMENT is used.

EXAMPLES:

 LAST STATEMENT TERMINATION END STATEMENT TERMINATION

 >1O FOR I=1 TO 4 >1O FOR I=1 TO 4
 >20 PRINT I >20 GOSUB 100
 >30 NEXT I >30 NEXT I
 >RUN >40 END

 >100 PRINT I
 1 >110 RETURN
 2 >RUN
 3
 4 1
 2
 READY 3
 > 4

 READY
 >

VARIATIONS:

None

- 38 -

intel

4.11 DESCRIPTION OF STATEMENTS

STATEMENTS: FOR -- TO -- {STEP} -- NEXT

MODE: RUN VERSION 1.0 (COMMAND AND/OR RUN in Version 1.1)

TYPE: CONTROL

The FOR -- TO -- {STEP}—NEXT STATEMENTS are used to set up and control loops.

EXAMPLE:

 10 FOR A=3 TO C STEP D
 20 PRINT A
 30 NEXT A

If B = 0, C = 10, and D = 2, the PRINT STATEMENT at line 20 will be executed 6 times. The values
of "A" that will be printed are 0, 2, 4, 6, 8, 10. "A" represents the name of the index or loop counter.
The value of "B" is the starting value of the index, the value of "C" is the limit value of the index, and
the value of "D" is the increment to the index. If the STEP STATEMENT and the value "D" are
omitted, the increment value defaults to 1, therefore, STEP is an optional statement. The NEXT
STATEMENT causes the value of "D" to be added to the index. The index is then compared to the
value of "C," the limit. If the index is less than or equal to the limit, control will be transferred back to
the statement after the FOR STATEMENT. Stepping "backwards" (i.e. FOR I = 100 TO 1 STEP-1) is
permitted in MCS BASIC-52. Unlike some BASICS, the index MAY NOT be omitted from the NEXT
STATEMENT in MCS BASIC-52 (i.e. the NEXT statement MUST always be followed by the
appropriate variable).

EXAMPLES:

 >10 FOR I=1 TO 4 >10 FOR I=0 TO 8 STEP 2
 >20 PRINT I >20 PRINT I
 >30 NEXT I >30 NEXT I
 >RUN >RUN

 1 0
 2 2
 3 4
 4 6
 8
 READY
 > READY
 >

- 39 -

intel

4.11 DESCRIPTION OF STATEMENTS

In Version 1.1 of MCS BASIC-52 it is possible execute the FOR-TO-{STEP}-NEXT statement in the
Command Mode. This makes it possible for the user to do things like display regions of memory by
writing a short program like FOR I=512 TO 560: PH0. XBY(I),: NEXT I. It may also have other uses,
but they haven't been thought of.

Also Version 1.1 allows the NEXT statement to be used without a variable following the statement.
This means that programs like:

EXAMPLE:

 10 FOR I = 1 TO 100
 20 PRINT I
 30 NEXT

Are permitted in Version 1.1 of MCS BASIC-52. The variable associated with the NEXT is always
assumed to be the variable used in the last FOR statement.

- 40 -

intel

4.12 DESCRIPTION OF STATEMENTS

STATEMENTS: GOSUB[ln num] -- RETURN

MODE: RUN

TYPE: CONTROL

GOSUB

The GOSUB [In num] STATEMENT will cause MCS BASIC-52 to transfer control of the program
directly to the line number ([ln num]) following the GOSUB STATEMENT. In addition, the GOSUB
STATEMENT saves the location of the STATEMENT following GOSUB on the control stack so that a
RETURN STATEMENT can be performed to return control.

RETURN

This statement is used to "return" control back to the STATEMENT following the most recently
executed GOSUB STATEMENT. The GOSUB-RETURN sequence can be "nested" meaning that a
subroutine called by the GOSUB STATEMENT can call another subroutine with another GOSUB
STATEMENT.

EXAMPLES:

 SIMPLE SUBROUTINE NESTED SUBROUTINES

 >10 FOR I = 1 TO 5 >10 FOR I = 1 TO 3
 >20 GOSUB 100 >20 GOSUB 100
 >30 NEXT I >30 NEXT I
 >100 PRINT I >40 END
 >110 RETURN >100 PRINT I,
 >RUN >110 GOSUB 200
 >120 RETURN
 1 >200 PRINT I*I
 2 >210 RETURN
 3 >RUN
 4
 5 1 1
 2 4
 READY 3 9
 > READY
 >

- 41 -

intel

4.12 DESCRIPTION OF STATEMENTS

NOTE -- The Control Stack on Version 1.1 permits a graceful exit from incompleted control loops,
given the following example:

EXAMPLE:

 .

 .
 50 GOSUB 1000
 .
 .
 1000 FOR I = 1 TO 10
 1010 IF X = I THEN 1040
 1020 PRINT I*X
 1030 NEXT I
 1040 RETURN

Version 1.1 would permit the programmer to exit the subroutine even though the FOR-NEXT loop
might not be allowed to complete if X did equal 1. Version 1.0 of MCS BASIC-52 would yield a C-
STACK error if the FOR-NEXT loop was not allowed to complete before the RETURN statement was
executed.

- 42 -

intel

4.13 DESCRIPTION OF STATEMENTS

STATEMENT: GOTO [ln num]

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

The GOTO [ln num] STATEMENT will cause BASIC to transfer control directly to the line number
([ln num]) following the GOTO STATEMENT.

EXAMPLE:

 50 GOTO 100

Will, if line 100 exists, cause execution of the program to resume at line 100. If line number 100 does
not exist the message ERROR: INVALID LINE NUMBER will be printed to the console device.

Unlike the RUN COMMAND the GOTO STATEMENT, if executed in the COMMAND MODE, does
not CLEAR the variable storage space or interrupts. However, if the GOTO STATEMENT is executed
in the COMMAND MODE after a line has been edited, MCS BASIC-52 will CLEAR the variable
storage space and all BASIC evoked interrupts. This is a necessity because the variable storage and the
BASIC program reside in the same RAM memory. So editing a program can destroy variables.

NOTE -- (Version 1.0 only)

Because of the way MCS BASlC-52's text interpreter processes a line, when an INVALID LINE
NUMBER ERROR occurs on the GOTO, GOSUB, ON GOTO, and ON GOSUB STATEMENTS the
line AFTER the GOTO or GOSUB STATEMENT will be printed out in the error message. This may be
confusing, but it was a trade-off between execution speed, code size, and error handling. Error handling
lost.

EXAMPLE:

 >10 GOTO l00
 >20 PRINT X
 >RUN

 ERROR INVALID LINE NUMER - IN LINE 20

 20 PRINT X
 ----------x

Version 1.1 does not exhibit this particular anomaly.

- 43 -

intel

4.14 DESCRIPTION OF STATEMENTS

STATEMENTS: ON [expr] GOTO[ln num], [ln num], . . . [ln num]

 ON [expr] GOSUB[ln num], [ln num], . . . [ln num]

MODE: RUN

TYPE: CONTROL

The value of the expression following the ON statement is the number in the line list that control will be
transferred to.

EXAMPLE:

 10 ON Q GOTO 100,200,300

If Q was equal to 0, control would be transferred to line number 100. If Q was equal to 1, control would
be transferred to line number 200. If Q was equal to 2, GOTO line 300, etc. All comments that apply to
GOTO and GOSUB apply to the ON STATEMENT. If Q is less than ZERO a BAD ARGUMENT
ERROR will be generated. If Q is greater than the line number list following the GOTO or GOSUB
STATEMENT, a BAD SYNTAX ERROR will be generated. The ON STATEMENT provides
"conditional branching" options within the constructs of an MCS BASIC-52 program.

- 44 -

intel

4.15 DESCRIPTION OF STATEMENTS

STATEMENTS: IF -- THEN -- ELSE

MODE: RUN

TYPE: CONTROL

The IF statement sets up a conditional test. The generalized form of the IF -- THEN -- ELSE statement
is as follows:

 [ln num] IF [rel expr] THEN valid STATEMENT ELSE valid STATEMENT

A specific example is as follows:

 >10 IF A=100 THEN A=0 ELSE A=A+1

Upon execution of line 10 IF A is equal to 100, THEN A would be assigned a value of 0. IF A does not
equal 100, A would be assigned a value of A + 1 . If it is desired to transfer control to different line
numbers using the IF statement, the GOTO statement may be omitted. The following examples would
yield the same results:

 >20 IF INT(A)< 10 THEN GOTO 100 ELSE GOTO 200

 >20 IF INT(A)< 10 THEN 100 ELSE 200

Additionally, the THEN statement can be replaced by any valid MCS BASIC-52 statement, as shown
below:

 >30 IF A <> 10 THEN PRINT A ELSE 10

 >30 IF A <> 10 PRINT A ELSE 10

The ELSE statement may be omitted. If it is, control will pass to the next statement.

EXAMPLE:

 >20 IF A=10 THEN 40

 >30 PRINT A

In this example. IF A equals 10 then control would be passed to line number 40. If A does not equal 10
line number 30 would be executed.

- 45 -

intel

4.15 DESCRIPTION OF STATEMENTS

COMMENTS ON IF-THEN-ELSE-

Version 1.1 is not compatible with V1.0 when the IF _ THEN _ ELSE STATEMENT is used with
multiple statements per line. In V1.0, the following two examples would function in the same manner.

EXAMPLE 1:

 10 IF A=B THEN C=A : A=A/2 : GOTO 100
 20 PRINT

EXAMPLE 2:

 10 IF A=B THEN C=A
 12 A=A/2
 14 GOTO 100
 20 PRINT

They function in the same manner because V1.0 treats the delimiter (:) exactly the same as a carriage
return (cr) in every case. However, V1.1 executes the remainder of the line if and only if the test A = B
proves to be true. This means in EXAMPLE 1 IF A did equal B, V1.1 would then set C=A, then set A =
A/2, then execute line 100. IF A did not equal B, V1.1 would then PRINT A and ignore the statements
C=A: A=A/2: GOTO 100. V1.1 will execute EXAMPLE 2 exactly the same way as V1.0. This same
logical interpretation holds true for the ELSE statement as well. This example dictates a simple rule for
maintaining IF _ THEN FLSE compatibility between the two versions. IF THE DELIMITER (:) IS
NOT USED IN AN IF_THEN ELSE STATEMENT, V1.0 AND V1.1 WILL TREAT THE
STATEMENTS IN THE SAME MANNER!!

This change was made because most users of MCS BASIC-52 felt that the V1.1 interpretation of this
statement was more useful because fewer GOTO statements need be employed in a typical program.

- 46 -

intel

4.16 DESCRIPTION OF STATEMENTS

STATEMENTS: INPUT

MODE: RUN

TYPE: INPUT/OUTPUT

The INPUT statement allows users to enter data from the console during program execution. One or more
variables may be assigned data with a single input statement. The variables must be separated by a comma.

EXAMPLE:

 INPUT A,B

Would cause the printing of a question mark (?) on the console device as a prompt to the operator to input
two numbers separated by a comma. If the operator does not enter enough data, then MCS BASIC- 52
responds by outputting the message TRY AGAIN to the console device.

EXAMPLE:

 >10 INPUT A,B
 >20 PRINT A,B
 >RUN

 ?1

 TRY AGAIN

 ?1,2
 1 2

 READY

The INPUT statement may be written so that a descriptive prompt is printed to tell the user what to
type. The message to be printed is placed in quotes after the INPUT statement. If a comma appears
before the first variable on the input list, the question mark prompt character will not be displayed.

EXAMPLES:

 >10 INPUT"ENTER A NUMBER,"A >10 INPUT"ENTER A NUMBER",A
 >20 PRINT SQR(A) >20 PRINT SQR(A)
 >RUN >RUN

 ENTER A NUMBER ENTER A NUMBER-100
 ?100 10
 10

- 47 -

intel

4.16 DESCRIPTION OF STATEMENTS

Strings can also be assigned with an INPUT statement. Strings are always terminated with a carriage return
(cr). So, if more than one string input is requested with a single INPUT statement, MCS BASIC- 52 will
prompt the user with a question mark.

EXAMPLES:

 >10 STRING 110,10 >10 STRING 110,10
 >20 INPUT "NAME: "$(1) >20 INPUT "NAMES: ",$(1),$(2)
 >30 PRINT "HI ",$(1) >30 PRINT "HI ",$(1)," AND ",$(2)
 >RUN >RUN

 NAME; SUSAN NAMES BILL
 HI SUSAN ?ANN
 HI BILL AND ANN
 READY
 READY

Additionally, strings and variables can be assigned with a single INPUT statement.

EXAMPLE:

 >10 STRING 100,10
 >20 INPUT"NAME(CR), AGE - ",$(1),A
 >30 PRINT "HELLO ",$(1),", YOU ARE " ,A, "YEARS OLD"
 >RUN

 NAME(CR), AGE - FRED
 ?15
 HELLO FRED. YOU ARE 15 YEARS OLD

 READY
 >

- 48 -

intel

4.17 DESCRIPTION OF STATEMENTS

STATEMENT: LET

MODE: COMMAND AND/OR RUN

TYPE: ASSIGNMENT

The LET statement is used to assign a variable to the value of an expression. The generalized form of
LET is:

 LET [var] = [expr]

EXAMPLES:

 LET A = 10*SIN(B)/100 or

 LET A = A + 1

Note that the = sign used in the LET statement is not equality operator, but rather a "replacement"
operator and that the statement should be read A is replaced by A plus one. THE WORD LET IS
ALWAYS OPTIONAL, i.e.

 LET A = 2 is the same as A = 2

When LET is omitted the LET statement is called an IMPLIED LET. This document will use the word
LET to refer to both the LET statement and the IMPLIED LET statement.

The LET statement is also used to assign the string variables, i.e:

 LET $(1)="THIS IS A STRING" or

 LET $(2)=$(1)

Before Strings can be assigned the STRING [expr], [expr] STATEMENT MUST be executed, or else a
MEMORY ALLOCATION ERROR will occur.

SPECIAL FUNCTION VALUES can also be assigned by the LET statement. i.e.:

 LET IE = 82H or
 LET XBYTE(2000H)=5AH or
 LET DBYTE(25)=XBYTE(1000)

- 49 -

intel

4.18 DESCRIPTION OF STATEMENTS

STATEMENT: ONERR[ln num]

MODE: RUN

TYPE: CONTROL

The ONERR[ln num] statement lets the programmer handle arithmetic errors, should they occur, during
program execution. Only ARITH. OVERFLOW, ARITH. UNDERFLOW, DIVIDE BY ZERO, and
BAD ARGUMENT errors can be "trapped" by the ONERR statement, all other errors are not. If an
arithmetic error occurs after the ONERR statement is executed, the MCS BASIC-52 interpreter will
pass control to the line number following the ONERR[ln num] statement. The programmer can handle
the error condition in any manner suitable to the particular application. Typically, the ONERR[ln num]
statement should be viewed as an easy way to handle errors that occur when the user provides
inappropriate data to an INPUT statement.

With the ONERR[ln num] statement, the programmer has the option of determining what type of error
occurred. This is done by examining external memory location 257 (101H) after the error condition is
trapped. The error codes are as follows:

 ERROR CODE = 10 - DIVIDE BY ZERO

 ERROR CODE = 20 - ARITH. OVERFLOW

 ERROR CODE = 30 - ARITH. UNDERFLOW

 ERROR CODE = 40 - BAD ARGUMENT

This location may be examined by using an XBY(257) statement.

- 50 -

intel

4.19 DESCRIPTION OF STATEMENTS

STATEMENT: ONEX1 [ln num]

MODE: RUN

TYPE: CONTROL

The ONEX1 [ln num] statement lets the user handle interrupts on the 8052AH's INT1 pin with a BASIC
program. The line number following the ONEX1 statement tells the MCS BASIC-52 interpreter which
line to pass control to when an interrupt occurs. In essence, the ONEX1 statement "forces" a GOSUB to
the line number following the ONEX1 statement when the INT1 pin on the 8052AH is pulled low. The
programmer must execute a RETI statement to exit from the ONEX1 interrupt routine. If this is not
done all future interrupts on the INT1 pin will be "locked out" and ignored until a RETI is executed.

The ONEX1 statement sets bits 7 and 2 of the 8052AH's interrupt enable register IE. Before an interrupt
can be processed, the MCS BASIC-52 interpreter must complete execution of the statement it is
currently processing. Because of this, interrupt latency can vary from microseconds to tens of
milliseconds. The ONTIME [expr], [ln num] interrupt has priority over the ONEX1 interrupt. So, the
ONTIME interrupt can interrupt the ONEX1 interrupt routine.

- 51 -

intel

4.20 DESCRIPTION OF STATEMENTS

STATEMENT: ONTIME [expr], [ln num]

MODE: RUN

TYPE: CONTROL

Since MCS BASIC-52 processes a line in the millisecond time frame and the timer/counters on the
8052AH operate in the micro-second time frame, there is an inherent incompatibility between the
timer/counters on the 8052AH and MCS BASIC-52. To help solve this situation the ONTIME [expr],
[ln num] statement was devised. What ONTIME does is generate an interrupt every time the SPECIAL
FUNCTION OPERATOR, TIME, is equal to or greater than the expression following the ONTIME
statement. Actually, only the integer portion of TIME is compared to the integer portion of the
expression. The interrupt forces a GOSUB to the line number ([ln num]) following the expression
([expr]) in the ONTIME statement.

Since the ONTIME statement uses the SPECIAL FUNCTION OPERATOR, TIME, the CLOCK1
statement must be executed in order for ONTIME to operate. If CLOCK1 is not executed the SPECIAL
FUNCTION OPERATOR, TIME, will never increment and not much will happen.

Since the ONTIME statement generates an interrupt when TIME is greater than or equal to the
expression following the ONTIME statement, how can periodic interrupts be generated? That's easy,
the ONTIME statement must be executed again in the interrupt routine:

EXAMPLE:

 >10 TIME=0 : CLOCK1 : ONTIME 2,100 : DO
 >20 WHILE TIME<10 : END
 >100 PRINT "TIMER INTERRUPT AT -",TIME,"SECONDS"
 >110 ONTIME TIME+2,100 : RETI
 >RUN

 TIMER INTERRUPT AT - 2.045 SECONDS
 TIMER INTERRUPT AT - 4.045 SECONDS
 TIMER INTERRUPT AT - 6.045 SECONDS
 TIMER INTERRUPT AT - 8.045 SECONDS
 TIMER INTERRUPT AT - 10.045 SECONDS

 READY

You may wonder why the TIME that was printed out was 45 milliseconds greater than the time that the
interrupt was supposed to be generated. That's because the terminal used in this example was running at
4800 BAUD and it takes about 45 milliseconds to print the message TIMER INTERRUPT AT -" ".

- 52 -

intel

4.20 DESCRIPTION OF STATEMENTS

If the programmer does not want this delay, a variable should be assigned to the SPECIAL FUNCTION
OPERATOR, TIME, at the beginning of the interrupt routine.

EXAMPLE:

 >10 TIME=0 : CLOCK1 : ONTIME 2,100 DO
 >20 WHILE TIME<10 : END
 >100 A=TIME
 >110 PRINT "TIMER INTERRUPT AT -",A,"SECONDS"
 >120 ONTIME A+2,100 : RETI
 >RUN

 TIMER INTERRUPT AT - 2 SECONDS
 TIMER INTERRUPT AT - 4 SECONDS
 TIMER INTERRUPT AT - 6 SECONDS
 TIMER INTERRUPT AT - 8 SECONDS
 TIMER INTERRUPT AT - 10 SECONDS

 READY

Like the ONEX1 statement, the ONTIME interrupt routine must be exited with a RETI statement.
Failure to do this will "lock-out" all future interrupts.

The ONTIME interrupt has priority over the ONEX1 interrupt. This means that the ONTIME interrupt
can interrupt the ONEX1 interrupt routine. This priority was established because time related functions
in control applications were viewed as critical routines. If the user does not want the ONEX1 routine to
be interrupted by the ONTIME interrupt, a CLOCK0 or a CLEARI statement should be executed at the
beginning of the ONEX1 routine. The interrupts would have to be re-enabled before the end of the
ONEX1 routine. The ONEX1 interrupt cannot interrupt an ONTIME routine.

The ONTIME statement in MCS BASIC-52 is unique, relative to most BASICS. This powerful
statement eliminates the need for the user to "test" the value of the TIME operator periodically
throughout the BASIC program.

- 53 -

intel

4.21 DESCRIPTION OF STATEMENTS

STATEMENT: PRINT or P. (? VERSION 1.1 ONLY)

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

The PRINT statement directs MCS BASIC-52 to output to the console device. The value of
expressions, strings, literal values, variables or test strings may be printed out. The various forms may
be combined in the print list by separating them with commas. If the list is terminated with- a comma,
the carriage return/line feed will be suppressed. P. is a "shorthand" notation for PRINT. In Version 1.1 ?
is also "shorthand" notation for PRINT.

EXAMPLES:

 >PRINT 10*10,3*3 >PRINT "MCS-51" >PRINT 5,1E3
 100 9 MCS-51 5 1000

Values are printed next to one another with two intervening blanks. A PRINT statement with no
arguments causes a carriage return/line feed sequence to be sent to the console device.

SPECIAL PRINT FORMATTING STATEMENTS

TAB([expr])

The TAB([expr]) function is used in the PRINT statement to cause data to be printed out in exact
locations on the output device. TAB([expr]) tells MCS BASIC-52 which position to begin printing the
next value in the print list. If the printhead or cursor is on or beyond the specified TAB position, MCS
BASIC-52 will ignore the TAB function.

EXAMPLE:

 >PRINT TAB(5),"X",TAB(10),"Y"
 X Y

SPC([expr])

The SPC([expr]) function is used in the PRINT statement to cause MCS BASIC-52 to output the
number of spaces in the SPC argument.

EXAMPLE:

 >PRINT A,SPC(5),B

may be used to place an additional 5 spaces between the A and B over and above the two that would
normally be printed.

- 54 -

intel

4.21 DESCRIPTION OF STATEMENTS

CR

The CR function is interesting and unique to MCS BASIC-52. When CR is used in a PRINT statement
it will force a carriage return, but no line feed. This can be used to create one line on a CRT device that
is repeatedly updated.

EXAMPLE:

 >10 FOR I=1 TO 1000
 >20 PRINT I,CR,
 >30 NEXT I

will cause the output to remain only on one line. No line feed will ever be sent to the console device.

USING(special characters)

The USING function is used to tell MCS BASIC-52 what format to display the values that are printed.
MCS BASIC-52 "stores" the desired format after the USING statement is executed. So, all outputs
following a USING statement will be in the format evoked by the last USING statement executed. The
USING statement need not be executed within every PRINT statement unless the programmer wants to
change the format. U. is a "shorthand" notation for USING. The options for USING are as follows:

USING(Fx) -- This will force MCS BASIC-52 to output all numbers using the floating point format.

The value of x determines how many significant digits will be printed. If x equals 0.
MCS BASIC-52 will not output any trailing zeros, so the number of digits will vary
depending upon the number. MCS BASIC-52 will always output at least 3 significant
digits even if x is 1 or 2. The maximum value for x is 8.

EXAMPLE:

 >10 PRINT USING(F3),1,2,3
 >20 PRINT USING(F4),1.2,3
 >30 PRINT USING(F5),1,2,3
 >40 FOR I=10 TO 40 STEP 10
 >50 PRINT I
 >60 NEXT I
 >RUN

 1.00 E 0 2.00 E 0 3.00 E 0
 1.000 E 0 2.000 E 0 3.000 E 0
 1.0000 E 0 2.0000 E 0 3.0000 E 0
 1.0000 E+1
 2.0000 E+1
 3.0000 E+1
 4.0000 E+1

 READY

 - 55 -

intel

4.21 DESCRIPTION OF STATEMENTS

USING(#.#) -- This will force MCS BASIC-52 to output all numbers using an integer and/or fraction

format. The number of "#" 's before the decimal point represents the number of
significant integer digits that will be printed in the fraction. The decimal point may be
omitted, in which case only integers will be printed. USING may be abbreviated U. .
USING (###.###), USING(######) and USING(######.##) are all valid in MCS
BASIC-52. The maximum number of "#" characters is 8. If MCS BASIC-52 cannot
output the value in the desired format (usually because the value is too large) a question
mark (?) will be printed to console device, then BASIC will output the number in the
FREE FORMAT described below.

EXAMPLE:

 >10 PRINT USING(##.##),1,2,3
 >20 FOR I=1 TO 120 STEP 20
 >30 PRINT I
 >40 NEXT I
 >RUN

 1.00 2.00 3.00
 1.00
 21.00
 41.00
 61.00
 81.00
 ? 101

 READY

NOTE: The USlNG(Fx) and the USING(#.#) formats will always "align" the decimal points when
printing a number. This feature makes displayed columns of numbers easy to read.

USING(0) -- This argument lets MCS BASIC-52 determine what format to use. The rules are simple, if

the number is between +- 99999999 and +- .1, BASIC will display integers and fractions.
If it is out of this range, BASIC will use the USING(F0) format. Leading and trailing
zeros will always be suppressed. After reset, MCS BASIC-52 is placed in the USING(0)
format.

 - 56 -

intel

4.22 DESCRIPTION OF STATEMENTS

STATEMENT: PRINT# or P.# (?# VERSION 1.1 ONLY)

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

The PRINT#, P.#, and ?# (in Version 1.1 only) statement does the same thing as the PRINT, P. and ?
(in Version 1.1 only) statement except that the output is directed to the list device instead of the console
device. The BAUD rate to the list device must be initialized by the STATEMENT -- BAUD[expr]
before the PRINT#, P.#, or, ?# statement is used. All comments that apply to the PRINT, P. or, ?
statement apply to the PRINT#, P.#, or ? statement. P.# and ?# (in Version 1.1 only) are "shorthand"
notations for PRINT#.

- 57 -

intel

4.23 DESCRIPTION OF STATEMENTS

STATEMENTS: PH0., PH1., PH0.#, PH1.#

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

The PH0. and PH 1. statements do the same thing as the PRINT statement except that the values are
printed out in a hexadecimal format. The PH0. statement suppresses two leading zeros if the number to
be printed is less than 255 (0FFH). The PH1. statement always prints out four hexadecimal digits. The
character "H" is always printed after the number when PH0. or PH1. is used to direct an output. The
values printed are always truncated integers. If the number to be printed is not within the range of valid
integer (i.e. between 0 and 65535 (0FFFFH) inclusive), MCS BASIC-52 will default to the normal
mode of print. If this happens no "H" will be printed out after the value. Since integers can be entered in
either decimal or hexadecimal form the statements PRINT, PH0., and PH1. can be used to perform
decimal to hexadecimal and hexadecimal to decimal conversion. All comments that apply to the PRINT
statement apply to the PH0. and PH1. statements. PH0.# and PH1.# do the same thing as PH0. and PH1.
respectively, except that the output is directed to the list device instead of the console device.

EXAMPLES:

 >PH0. 2*2 >PH1. 2*2 >PRINT 99H >PH0. 100
 04H 0004H 153 64H

 >PH0. 1000 >PH1. 1000 >P. 3E8H >PH0. PI
 3E8H 03E8H 1000 03H

- 58 -

intel

4.24 DESCRIPTION OF STATEMENTS

STATEMENT: PRINT@, PH0.@, PH1.@ (VERSION 1.1 ONLY)

MODE: COMMAND AND/OR RUN

TYPE: INPUT/OUTPUT

The PRINT@ (P.@ OR ?@), PH0.@, and PH1.@ statements do the same thing as the PRINT (P.@ or
?@), PH0., and PH1. statements respectively except that the output is directed to a user defined output
driver. These statements assume that the user has placed an assembly language output routine in
external code memory location 403CH. To enable the @ driver routine the user must SET BIT 27H
(39D) in the internal memory of the MCS BASIC-52 device. BIT 27H (39D) is BIT 7 of internal
memory location 24H (36D). This BIT can be set by the BASIC statement DBY(24H) =
DBY(24H).OR.80H or by a user supplied assembly language routine. If the user evokes the @ driver
routine and this bit is not set, the output will be directed to the console driver. The only reason this BIT
must be set to enable the @ driver is that it adds a certain degree of protection from accidentally typing
LIST@ when no assembly language routine exist. The philosophy here is that if the user sets the bit, the
user provides the driver or else!!!

When MCS BASIC-52 calls the user output driver routine at location 403CH, the byte to output is in
the accumulator and R5 of register bank 0 (RB0). The user may modify the accumulator (A) and the
data pointer (DPTR) in the assembly language output routine, but cannot modify any of the registers in
RB0. This is intended to make it real easy for the user to implement a parallel or serial output driver
without having to do a PUSH or a POP.

 - 59 -

intel

4.25 DESCRIPTION OF STATEMENTS

STATEMENT: PUSH[expr]

MODE: COMMAND AND / OR RUN

TYPE: ASSIGNMENT

The arithmetic expression, or expressions following the PUSH statement are evaluated and then
sequentially placed on MCS BASIC-52's ARGUMENT STACK. This statement, in conjunction with
the POP statement provide a simple means of passing parameters to assembly language routines. In
addition, the PUSH and POP statements can be used to pass parameters to BASIC subroutines and to
"SWAP" variables. The last value PUSHED onto the ARGUMENT STACK will be the first value
POPPED off the ARGUMENT STACK.

VARIATIONS:

More than one expression can be pushed onto the ARGUMENT stack with a single PUSH statement.
The expressions are simply followed by a comma: PUSH[expr],[expr],..[expr]. The last value PUSHED
onto the ARGUMENT STACK will be the last expression [expr] encountered in the PUSH
STATEMENT.

EXAMPLES:

 SWAPPING SUBROUTINE
 VARIABLES PASSING

 >10 A=10 >10 PUSH 1,3,2
 >20 B=20 >20 GOSUB 100
 >30 PRINT A,C >3O POP R1,R2
 >40 PUSH A,C >40 PRINT R1,R2
 >50 POP A,B >5O END
 >60 PRINT A,B >100 REM QUADRATIC A=2,B=3,C=1 IN EXAMPLE
 >RUN >110 POP A,B,C
 >120 PUSH (-B+SQR(B*B-4*A*C))/(2*A)
 10 20 >130 PUSH (-B-SOR(B*B-4*A*C))/(2*A)
 20 10 >140 RETURN
 >RUN
 READY
 > -1 -.5

 READY
 >

- 60 -

intel

4.26 DESCRIPTION OF STATEMENTS

STATEMENT: POP[var]

MODE: COMMAND AND / OR RUN

TYPE: ASSIGNMENT

The top of the ARGUMENT STACK is assigned to the variable following the POP statement and the
ARGUMENT STACK is "-POPPED" (i.e. incremented by 6). Values can be placed on the stack by
either the PUSH statement or by assembly language CALLS. NOTE -- If a POP statement is executed
and no number is on the ARGUMENT STACK, an A-STACK ERROR will occur.

VARIATIONS:

More than one variable can be popped off the ARGUMENT stack with a single POP statement. The
variables are simply followed by a comma (i.e. POP [var],[var], ..[var]).

EXAMPLES:

 See PUSH statement.

COMMENT:

The PUSH and POP statements are unique to MCS BASIC-52. These powerful statements can be used
to "get around" the GLOBAL variable problems so often encountered in BASIC PROGRAMS. This
problem arises because in BASIC the "main" program and all subroutines used by the main program are
required to use the same variable names (i.e. GLOBAL VARIABLES). It is not always convenient to
use the same variables in a subroutine as in the main program and you often see programs re-assign a
number of variables (i.e. A=Q) before a GOSUB STATEMENT is executed. If the user reserves some
variable names JUST for subroutines (i.e. S1, S2) and passes variables on the stack as shown in the
previous example, you will avoid any GLOBAL variable problems in MCS BASIC-52.

- 61 -

intel

4.27 DESCRIPTION OF STATEMENTS

STATEMENT: PWM [expr], [expr], [expr]

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

PWM stands for PULSE WIDTH MODULATION. What it does is generate a user defined pulse
sequence on P1.2 (bit 2 of I/O PORT 1) of the MCS BASIC-52 device. The first expression following
the PWM statement is the number of clock cycles the pulse will remain high. A clock cycle is equal to
12/XTAL, which is 1.085 microseconds at 11.0592 MHz. The second expression is the number of clock
cycles the pulse will remain low and the third expression is the total number of cycles the user wishes to
output. All expressions in the PWM statement must be valid integers (i.e. between 0 and 65535
(0FFFFH) inclusive). Additionally, the minimum value for the first two expressions in the PWM
statement is 25.

The PWM statement can be used to create "audiable" feedback in a system. In addition, just for fun, the
programmer can play music using the PWM statement. More details about using the PWM statement
are in the appendix.

EXAMPLE:

 >PWM 100,100,1000

At 11.0592 MHz would generate 1000 cycles of a square wave that has a period of 217 microseconds
(4608 Hz) on P1.2.

 - 62 -

intel

4.28 DESCRIPTION OF STATEMENTS

STATEMENT: REM

MODE: RUN (Version 1.0) COMMAND AND/OR RUN (Version 1.1)

TYPE: CONTROL -- PERFORMS NO OPERATION

REM is short for REMark. It does nothing, but allows the user to add comments to a program.
Comments are usually needed to make a program a little easier to understand. Once a REM statement
appears on a line the entire line is assumed to be a remark, so a REM statement may not be terminated
by a colon (:) however, it may be placed after a colon. This can be used to allow the programmer to
place a comment on each line.

EXAMPLES:

 >10 REM INPUT ONE VARIABLE
 >20 INPUT A
 >30 REM INPUT ANOTHER VARIA3LE
 >40 INPUT B
 >50 REM MULTIPLY THE TWO
 >60 Z=A*B
 >70 REM PRINT THE ANSWER
 >80 PRINT Z

 >10 INPUT A : REM INPUT ONE VARIABLE
 >20 INPUT B : REM INPUT ANOTHER VARIABLE
 >30 Z=A*B : REM MULTIPLY THE TWO
 >40 PRINT Z : REM PRINT THE ANSWER

The following will NOT work because the entire line would be interpreted as a REMark, so the PRINT
statement would not be executed:

 >10 REM PRINT THE NUMBER : PRINT A

NOTE -- The reason the REM statement was made executable in the command mode in Version 1.1 of
MCS BASIC-52 is that if the user is employing some type of UPLOAD/DOWNLOAD routine with a
computer, this lets the user insert REM statements, without line numbers in the text and not download
them to the MCS BASIC-52 device. This helps to conserve memory.

- 63 -

intel

4.29 DESCRIPTION OF STATEMENTS

STATEMENT: RETI

MODE: RUN

TYPE: CONTROL

The RETI statement is used to exit from interrupts that are handled by an MCS BASIC-52 program.
Specifically, the ONTIME and the ONEX1 interrupts. The RETI statement does the same thing as the
RETURN statement except that it also clears a software interrupt flags so interrupts can again be
acknowledged. If the user fails to execute the RETI statement in the interrupt procedure, all future
interrupts will be ignored.

- 64 -

intel

4.30 DESCRIPTION OF STATEMENTS

STATEMENT: STOP

MODE: RUN

TYPE: CONTROL

The STOP statement allows the programmer to break program execution at specific points in a
program. After a program is STOPped variables can be displayed and/or modified. Program execution
may be resumed with a CONTinue command. The purpose of the STOP statement is to allow for easy
program "debugging." More details of the STOP-CONT sequence are covered in the DESCRIPTION
OF COM- MAND -- CONT section of this manual.

EXAMPLE:

 >10 FOR I=1 TO 100
 >20 PRINT I
 >30 STOP
 >40 NEXT I
 >RUN

 1
 STOP - IN LINE 40

 READY
 >CONT

 2

Note that the line number printed out after the STOP statement is executed is the line number following
the STOP statement, NOT the line number that contains the STOP statement!!!

- 65 -

intel

4.31 DESCRIPTION OF STATEMENTS

STATEMENT: STRING [expr], [expr]

MODE: COMMAND and/or RUN

TYPE: CONTROL

The STRING [expr],[expr] statement allocates memory for strings. Initially, no memory is allocated for
strings. If the user attempts to define a string with a statement such as LET $(1)="HELLO" before
memory has been allocated for strings, a MEMORY ALLOCATION ERROR will be generated. The
first expression in the STRING [expr],[expr] statement is the total number of bytes the user wishes to
allocate for string storage. The second expression denotes the maximum number of bytes that are in
each string. These two numbers determine the total number of defined string variables.

You might think that the total number of defined strings would be equal to the first expression in the
STRING [expr],[expr] statement divided by the second expression. Ha,ha, do not be so presumptuous.
MCS BASIC-52 requires one additional byte for each string, plus one additional byte overall. This
means that the statement STRING 100,10 would allocate enough memory for 9 string variables, ranging
from $(0) to $(8) and all of the 100 allocated bytes would be used. Note that $(0) is a valid string in
MCS BASIC-52.

After memory is allocated for string storage, neither commands, such as NEW nor statements, such as
CLEAR, will "de-allocate" this memory. The only way memory can be de-allocated is to execute a
STRING 0,0 statement. STRING 0,0 will allocate no memory to string variables.

IMPORTANT NOTE

Every time the STRING [expr],[expr] statement is executed, MCS BASIC-52 executes the equivalent of
a CLEAR statement. This is a necessity because string variables and numeric variables occupy the same
external memory space. So, after the STRING statement is executed, all variables are "wiped-out."
Because of this, string memory allocation should be performed early in a program (like the first
statement or so) and string memory should never be "re-allocated" unless the programmer is willing to
destroy all defined variables.

- 66 -

intel

4.33 DESCRIPTION OF STATEMENTS

STATEMENTS: UO1 and UO0 (USER OUTPUT)

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

UO1

The UO1 STATEMENT permits the user to write specific console output drivers for MCS BASIC-52.
After UO1 is executed BASIC will call external program memory location 4030H when a console
output is requested. The user must provide a JUMP instruction to an ASSEMBLY LANGUAGE
OUTPUT ROUTINE at this location. MCS BASIC-52 places the output character in REGISTER 5 (R5)
of REGISTER BANK 0 (RB0). The user returns back to BASIC executing an assembly language RET
instruction. The user must NOT modify any of the 8052AH's REGISTERS, including the
ACCUMULATOR during the user output procedure with the exception of the MEMORY and
REGISTER BANK allocated to the user. UO1 gives the user the freedom to write custom output
routines for MCS BASIC-52.

UO0

UO0 STATEMENT assigns the console output routine back to the software drivers resident on the
MCS BASIC-52 device. UO0 and UO1 may be placed anywhere within a program. This allows the
BASIC program to output characters to different devices at different times.

NOTE: The UO0 and UO1 function is controlled by BIT 28 (1CH) in the 8052AH's internal memory.
BIT 28 is in the internal memory location 35.4 (23.4H), i.e. the fourth bit in the internal memory
location 35 (28H). When BIT 28 is SET (BIT 28 = 1), the user routines will be called. When BIT 28 is
cleared, (BIT 28 = 0), the MCS BASIC-52 output drivers will be used. The assembly language
programmer can use this information to change the output device selection in assembly language.

- 68 -

intel

4.34 DESCRIPTION OF STATEMENTS

STATEMENT: IDLE (VERSION 1.1 ONLY)

MODE: RUN

TYPE: CONTROL

The IDLE statement forces the MCS BASIC-52 device into a "wait until interrupt mode." Execution of
statements is halted until either an ONTIME [expr], [ln num] or an ONEX1 [ln num] interrupt is
received. The user must make sure that one or both of these interrupts have been enabled before
executing the IDLE instruction or else the MCS BASIC-52 device will enter a "wait forever mode" and
for all practical purposes the system will have crashed.

When an ONTIME [expr], [ln num] or an ONEX1 [ln num] is received while in the IDLE mode, the
MCS BASIC-52 device will execute the interrupt routine, then execute the statement following the
IDLE instruction. Hence, the execution of the IDLE instruction is terminated when an interrupt is
received.

While in the IDLE mode, the MCS BASIC-52 device asserts the /DMA ACKNOWLEDGE pin (PORT
1, BIT 6 = 0) to indicate that the IDLE instruction is active and that no external bus activity will occur.
This PIN is physically pin 7 on the MCS BASIC-52 device. When the MCS BASIC-52 device exits
from the IDLE mode, this pin is placed back into the logically 1 (non-active) state.

The user may also exit from the IDLE mode with an assembly language interrupt routine. This is
accom- plished by setting BIT 33 (21H) (which is in Bit addressable RAM location 36.1) when
returning from the assembly language interrupt routine. If this bit is not set by the user, the MCS
BASIC-52 device will remain in the IDLE mode when the user assembly language routine returns to
BASIC.

An attempt to execute the IDLE statement in the direct mode will yield a BAD SYNTAX ERROR.

 - 69 -

intel

4.35 DESCRIPTION OF STATEMENTS

STATEMENT: RROM [integer] (VERSION 1.1 ONLY)

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

RROM stands for RUN ROM. What it does is select a program in the EPROM file, then execute the
program. The integer after the RROM statement selects what program in the EPROM file is to be
executed. In the COMMAND mode RROM 2 would be equivalent to typing ROM 2, then RUN. But,
notice that RROM [integer] is a statement. This means that a program that is already executing can
actually force the execution of a completely different program that is in the EPROM file. This gives the
user the ability to "change programs" on the fly.

If the user executes a RROM [integer] statement and an invalid integer is entered (say 6 programs are
contained in the EPROM file and the user enters RROM 8, or no EPROM is in the system), no error
will be generated and MCS BASIC-52 will execute the statement following the RROM [integer]
statement.

NOTE -- Every time the RROM [integer] statement is executed, all variables and strings are set equal
to zero, so variables and strings CANNOT be passed from one program to another by using the RROM
[integerl statement. Additionally, all MCS BASIC-52 evoked interrupts are cleared.

 - 70 -

intel

4.36 DESCRIPTION OF STATEMENTS

STATEMENTS: LD@ [expr] and ST@ [expr] (VERSION 1.1 ONLY)

MODE: COMMAND AND/OR RUN

TYPE: INPUT/OUTPUT

ST@

The ST@ [expr] statement lets the user specify where MCS BASIC-52 floating point numbers are to be
stored. The expression [expr] following the ST@ statement specifies the address of where the number is
to be stored and the number is assumed to be on the argument stack. The ST@ [expr] statement is
designed to be used in conjunction with the LD@ [expr] statement. The purpose of these two statements
is to allow the user to save floating point numbers anywhere in memory with the assumption that the
user will employ some type of battery back-up or non-volatile scheme with this memory.

LD@

The LD@ [expr] statement lets the user retrieve floating point numbers that were saved with the ST@
[expr] statement. The expression [expr] following the LD@ statement specifies where the number is
stored and after executing the LD@ [expr] statement, the number is placed on the argument stack.

EXAMPLE: Saving and retrieving a ten element array at location array at location 0F000H

 10 REM *** ARRAY SAVE ***
 20 FOR I = 0 TO 9
 30 PUSH A(I) : REM PUT ARRAY VALUE ON STACK
 40 ST@ 0F005H+6*I : REM STORE IT, SIX BYTES PER NUMBER
 50 NEXT I
 60 REM *** GET ARRAY ***
 70 FOR I = 0 TO 9
 80 LD@ 0F005H+6*I
 90 POP B(I)
 100 NEXT I

Remember that each floating point number requires 6 bytes of storage. Also note that expression in the
ST@ [expr] and LD@ [expr] statements point to the most significant byte of the stored number. Hence.
ST@ (0F005H) would save the number in locations 0F005H, 0F004H, 0F003H, 0F002H, 0F01H, and
0F000H.

- 71 -

intel

4.37 DESCRIPTION OF STATEMENTS

STATEMENT: PGM

MODE: COMMAND AND/OR RUN

TYPE: INPUT/OUTPUT

The PGM statement gives the user the ability to program an EPROM or EEPROM while executing a
BASIC program. The PGM statement requires that the user set up internal memory locations 18H
(24D), 19H (25D), 1AH (26D), 1BH (27D), 1EH (30D) and 1GH (31D). Note that these internal
memory locations are normally reserved for the user!!

The User must initialize these internal memory locations with the following:

EXAMPLE:

 LOCATION CONTENTS

 1BH:19H THE ADDRESS OF THE SOURCE INFORMATION THAT IS TO BE
 (27D:25D) PROGRAMMED INTO THE EPROM ú LOCATION 19H IS THE LOW
 BYTE AND LOCATION 1BH IS THE HIGH BYTE

 1AH:18H THE ADDRESS - 1 OF THE EPROM LOCATION(S) THAT ARE TO
 (26D:24D) BE PROGRAMMED, LOCATION 18H IS TH LOW BYTE AND
 LOCATION 1AH IS THE HICH BYTE

 1FH:1EH THE NUMBER OF 8YTES THAT THE USER WANTS TO PROGRAM
 (31D:30D) LOCATION 1EH IS THE LOW BYTE AND LOCATION 1FH IS
 THE HIGH 8YTE

The user must also initialize the width of the desired EPROM programming pulse and store the value in
internal memory locations 40H (64D) (high byte) and 41H (65D) (low byte). The reload for a 50
millisecond EPROM programming pulse is calculated as follows:

 10 REM R = RELOAD VALUE. W = WIDTH IN SECONDS (50 MILLISECONDS)
 20 W = .05
 30 R = 65536 - W * XTAL/12
 40 DBY(40H) = R/256
 50 DBY(41H) = R .AND. 0FFH

In addition, the user must also SET or CLEAR BIT 38.3 (26.3H) to select the INTELligent EPROM
programming algorithm. The Bit is SET to select INTELligent programming and CLEARED to select
the normal 50 millisecond algorithm. To SET the BIT, execute a DBY(38) = DBY(38) .OR. 8H
Statement, to CLEAR the BIT, execute a DBY(38) = DBY(38) .AND. 0F7H instruction.

- 72 -

intel

4.37 DESCRIPTION OF STATEMENTS

IMPORTANT NOTE!

When executed in the RUN mode, The PGM statement will not generate an error if the EPROM fails to
program properly. Instead, the control of the program will be passed back to the user just as if the
EPROM programmed properly. The user must then examine locations 1EH and 1FH. If the contents of
locations 1EH and 1FH both equal zero, then the EPROM programmed properly. If they do not, then an
ERROR occurred during the programming process. The user can then examine locations 1AH:18H to
determine what location in the EPROM failed to program.

Well, this sounds like a lot to do just to program an EPROM, but it's not so bad. The following program
is an example of a universal EPROM/EEPROM programmer built around MCS BASIC-52. This
program can program a block of RAM into an EPROM or EEPROM that is addressed at 8000H or
above.

EXAMPLE:

 10 PRINT "UNIVERSAL PROM PROGRAMMER" : PRINT "WHAT TYPE OF DEVICE ?"
 20 PRINT : PRINT "1 = EEPROM" : PRINT "2 = INTELLIGENT EPROM"
 30 PRINT "3 = NORMAL (50 MS) EPROM" : PRINT : INPUT "TYPE (1,2,3) - ",T
 40 ON (T-1) GOSUB 340,350,360
 50 REM this sets up intelligent programming if needed
 60 IF W=.001 THEN DBY(26)=DBY(26).OR.8 ELSE DBY(26)=DBY(26).AND.0F7H
 70 REM calculate pulse width and save it
 80 PUSH (65536-(W*XTAL/12)) : GOSUB 380
 90 POP G1 : DBY(40H)=G1 : POP G1 : DBY(41H)=G1 : PRINT
 100 INPUT " STARTING DATA ADDRESS - ",S : IF S<512.OR.S>0FFFFH THEN 100
 110 PRINT : INPUT " ENDING DATA ADDRESS - ",E
 120 IF E<S.OR.E>0FFFFH THEN 110
 130 PRINT : INPUT " PROM ADDRESS - ",P : IF P<8000H.OR.P>0FFFFH THEN 130
 140 REM calculate the number of bytes to program
 150 PUSH (E-S)+1 : GOSUB 380 : POP G1 : DBY(31)=G1 : POP G1 : DBY(30)=G1
 160 REM set up the eprom address
 170 PUSH (P-1) : GOSUB 380 : POP G1 : DBY(26)=G1 : POP G1 : DBY(24)=G1
 180 REM set up the source address
 190 PUSH S : GOSUB 380 : POP G1 : DBY(27)=G1 : POP G1 : DBY(25)=G1
 200 PRINT : PRINT "TYPE A 'CR' ON THE KEYBOARD WHEN READY TO PROGRAM"
 210 REM wait for a 'cr' then program the eprom
 220 X=GET : IF X<>0DH THEN 220
 230 REM program the eprom
 240 PGM
 250 REM see if any errors
 260 IF (DBY(30).OR.DBY(31))=0 THEN PRINT "PROGRAMMING COMPLETE" : END
 270 PRINT : PRINT "***ERROR***ERROR***ERROR***ERROR***" : PRINT
 280 REM these routines calculate the address of the source and
 290 REM eprom location that failed to program
 300 S1=DBY(25)+256*DBY(27) : S1=S1-1 : D1=DBY(24)+256*DBY(26)
 310 PH0. "THE VALUE ",XBY(S1), : PH1. " WAS READ AT LOCATION ",S1 : PRINT
 320 PH0. "THE EPROM READ ",XBY(D1), : PH1. " AT LOCATION ",D1 : END
 330 REM these subroutines set up the pulse width
 340 W=.0005 : RETURN
 350 W=.001 : RETURN
 360 W=.05 : RETURN
 370 REM this routine takes the top of stack and returns high, low bytes
 380 POP G1 : PUSH (G1.AND.0FFH) : PUSH (INT(G1/256)) : RETURN

- 73 -

intel

CHAPTER 5
 Description of Arithmetic / Logic Operators and Expressions

5.1 DUAL OPERAND OPERATORS

MCS BASIC-52 contains a complete set of arithmetical and logical operators. Operators are divided
into two groups, dual operand or dyadic operators and single operand or unary operators. The
generalized form of all dual operand instructions is as follows:

[expr] OP [exprl, where OP is one of the following operators:

+ ADDITION OPERATOR

EXAMPLE:

 PRINT 3+2
 5

/ DIVISION OPERATOR

EXAMPLE:

 PRINT 100/5
 20

** EXPONENTIATION OPERATOR
Raises the first expression to the power of the second expression. The power any number can be raised
to is limited to 255. The notation ** was chosen instead of the sometimes used ^ symbol because the
"up arrow" symbol appears different on various terminals. To eliminate confusion the ** notation was
chosen.

EXAMPLE:

 PRINT 2**3
 8

* MULTIPLICATION OPERATOR

EXAMPLE:

 PRINT 3*3
 9

- SUBTRACTION OPERATOR

EXAMPLE:

 PRINT 9-6
 3

- 74 -

intel

5.1 DUAL OPERAND OPERATIONS

.AND. LOGICAL AND OPERATOR

EXAMPLE:

 PRINT 3.AND.2
 2

.OR. LOGICAL OR OPERATOR

EXAMPLE:

 PRINT 1.OR.4
 5

.XOR. LOGICAL EXCLUSIVE OR OPERATOR

EXAMPLE:

 PRINT 7.XOR.6
 1

COMMENTS ON LOGICAL OPERATORS .AND., .OR., and .XOR.

These operators perform a BIT-WISE logical function on valid INTEGERS. That means both
arguments for these operators must be between 0 and 65535 (0FFFFH) inclusive. If they are not, MCS
BASIC-52 will generate a BAD ARGUMENT ERROR. All non-integer values are truncated, NOT
rounded.

You may wonder why the notation .OP. was chosen for the logical functions. The only reason for this is
that MCS BASIC-52 eliminates ALL spaces when it processes a user line and inserts spaces before and
after STATEMENTS when it LISTS a user program. MCS BASIC-52 does not insert spaces before and
after operators. So, if the user types in a line such as 10 A = 10 * 10, this line will be listed as 10 A=
10*10. All spaces entered by the user before and after the operator will be eliminated. The .OP. notation
was chosen for the logical operators because a line entered as 10 B = A AND B would be listed as 10 B
= AANDB. This just looked confusing, so the dots were added to the logical instructions and the
previous example would be listed as 10 B=A.AND.B, which is easier to read.

 - 75 -

intel

5.2.1 UNARY OPERATORS -- GENERAL PURPOSE

ABS([expr])

Returns the ABSOLUTE VALUE of the expression.

EXAMPLES:

 PRINT ABS(5) PRINT ABS(-5)
 5 5

NOT([expr])

Returns a 16 bit one's complement of the expression. The expression must be a valid integer (i.e.
between 0 and 65535 (0FFFFH) inclusive). Non-integers will be truncated, not rounded.

EXAMPLES:

 PRINT NOT(65000) PRINT NOT(0)
 535 65535

INT([expr])

Returns the integer portion of the expression.

EXAMPLES:

 PRINT INT(3.7) PRINT INT(100.876)
 3 100

SGN([expr])

Will return a value of + 1 if the argument is greater than zero, zero if the argument is equal to zero, and
-1 if the argument is less than zero.

EXAMPLES:

 PRINT SGN(52) PRINT SGN(0) PRINT SGN(-8)
 1 0 -1

- 76 -

intel

5.2.1 UNARY OPERATORS -- GENERAL PURPOSE

SQR([expr])

Returns the square root of the argument. The argument may not be less than zero. The result returned
will be accurate to within + / - a value of 5 on the least significant digit.

EXAMPLES:

 PRINT SQR(9) PRINT SQR(45) PRINT SQR(100)
 3 6.7082035 10

RND

Returns a pseudo-random number in the range between 0 and 1 inclusive. The RND operator uses a 16-
bit binary seed and generates 65536 pseudo-random numbers before repeating the sequence. The
numbers generated are specifically between 0/65535 and 65535/65535 inclusive. Unlike most BASICS,
the RND operator in MCS BASIC-52 does not require an argument or a dummy argument. In fact, if an
argument is placed after the RND operator, a BAD SYNTAX error will occur.

EXAMPLES:

 PRINT RND
 .30278477

PI

PI is not really an operator, it is a stored constant. In MCS BASIC-52, PI is stored as 3.1415926. Math
experts will notice that PI is actually closer to 3.141592653, so proper rounding for PI should yield the
number 3.1415927. The reason MCS BASIC-52 uses a 6 instead of a 7 for the last digit is that errors in
the SIN, COS and TAN operators were found to be greater when the 7 was used instead of 6. This is
because the number PI/2 is needed for these calculations and it is desirable, for the sake of accuracy to
have the equation PI/2 + PI/2 = PI hold true. This cannot be done if the last digit in PI is an odd number,
so the last digit of PI was rounded to 6 instead of 7 to make these calculations more accurate.

- 77 -

intel

5.2.2 UNARY OPERATORS -- LOG FUNCTIONS

LOG([expr])

Returns the natural logarithm of the argument. The argument must be greater than 0. This calculation is
carried out to 7 significant digits.

EXAMPLES:

 PPINT LOG(12) PRINT LOG(EXP(1))
 2.484906 1

EXP([expr])

This function raises the number "e" (2.7182818) to the power of the argument.

EXAMPLES:

 PRINT EXP(1) PRINT EXP (L0G (2))
 2.7182818 2

5.2.3 UNARY OPERATORS -- TRIG FUNCTIONS

SlN([expr])

Returns the SIN of the argument. The argument is expressed in radians. Calculations are carried out to 7
significant digits. The argument must be between +- 200000.

EXAMPLES:

 PRINT SIN(PI/4) PRINT SIN(0)
 .7071067 0

COS([expr])

Returns the COS of the argument. The argument is expressed in radians. Calculations are carried out to
7 significant digits. The argument must be between +- 200000.

EXAMPLES:

 PRINT COS(PI/4) PRINT(COS(0))
 7071067 1

- 78 -

intel

5.2.3 UNARY OPERATORS -- TRIG FUNCTIONS

TAN([expr])

Returns the TAN of the argument. The argument is expressed in radians. The argument must be
between +- 200000.

EXAMPLES:

 PRINT TAN(PI/4) PRINT TAN(0)
 1 0

ATN([expr])

Returns the ARCTANGENT of the argument. The result is in radians. Calculations are carried out to 7
significant digits. The ATN operator returns a result between -PI/2 (3.1415926/2) and PI/2.

EXAMPLES:

 PRINT ATN(PI) PRINT ATN(1)
 1.2626272 .78539804

COMMENTS ON TRIG FUNCTIONS

The SIN, COS, and TAN operators use a Taylor series to calculate the function. These operators first
reduce the argument to a value that is between 0 and PI/2. This reduction is accomplished by the
following equation:

REDUCED ARGUMENT = (user arg/PI - INT(user arg/PI)) * PI

The REDUCED ARGUMENT, from the above equation, will be between 0 and PI. The REDUCED
ARGUMENT is then tested to see if it is greater than PI/2. If it is, then it is subtracted from PI to yield
the final value. If it isn't, then the REDUCED ARGUMENT is the final value.

Although this method of angle reduction provides a simple and economical means of generating the
appropriate arguments for a Taylor series. there is an accuracy problem associated with this technique.
The accuracy problem is noticed when the user argument is large (i.e. greater than 1000). That is
because significant digits, in the decimal (fraction) portion of REDUCED ARGUMENT are lost in the
(user arg/PI - INT(user arg/PI)) expression. As a general rule, try to keep the arguments for the TRIG
functions as small as possible!

- 79 -

intel

5.3 UNDERSTANDING PRECEDENCE OF OPERATORS

The hierarchy of mathematics dictates that some operations are carried out before others. If you
understand the hierarchy of mathematics, it is possible to write complex expressions using only a
minimum amount of parentheses. It is easy to illustrate what precedence is all about, examine the
following equation:

4+3*2 = ?

Should you add (4+3) then multiply seven by 2, or should you multiply (3*2) then add 4? Well, the
hierarchy of mathematics says that multiplication has precedence over addition, so you would multiply
(3*2) first then add 4, So,

4+3*2 = 10

The rules for the hierarchy of math are simple. When an expression is scanned from left to right an
operation is not performed until an operator of lower or equal precedence is encountered. In the
example addition could not be performed because multiplication has higher precedence. The
precedence of operators from highest to lowest in MCS BASIC-52 is as follows:

1) OPERATORS THAT USE PARENTHESES ()

2) EXPONENTATION (**)

3) NEGATION (-)

4) MULTIPLICATION (*) AND DIVISION (/)

5) ADDITION (+) AND SUBTRACTION (-)

6) RELATIONAL EXPRESSIONS (=, <>, >, >=, <, <=)

7) LOGICAL AND (.AND.)

8) LOGICAL OR (.OR.)

9) LOGICAL XOR (.XOR.)

Relative to operator precedence, the rule of thumb should always be, when in doubt, use parentheses.

- 80 -

intel

5.4 HOW RELATIONAL EXPRESSIONS WORK

Relational expressions involve the operators =, <>, >, >=, <, and < = . These operators are typically
used to "test" a condition. In MCS BASIC-52 relational operators return a result of 65535 (0FFFFH) if
the relational expression is true, and a result of 0, if the relation expression is false. But, where is the
result returned? It is returned to the argument stack. Because of this, it's possible to actually display the
result of a relational expression.

EXAMPLES:

 PRINT 1=0 PRINT 1>0 PRINT A<>A PRINT A=A
 0 65535 0 65535

It may seem strange to have a relational expression actually return a result, but it offers a unique benefit
in that relational expressions can actually be "chained" together using the logical operators .AND.,
.OR.. and .XOR.. This makes it possible to test a rather complex condition with ONE statement.

EXAMPLE:

 >1O IF A<B AND A<C .OR. A>D THEN.

Additionally, the NOT([expr]) operator can be used.

EXAMPLE:

 >10 IF NOT(A>B). AND. A<C THEN.

By "chaining" together relational expressions with logical operators, it is possible to test very particular
conditions with one statement. When using logical operators to link together relational expressions, it is
very important that the programmer pay careful attention to the precedence of operators. The logical
operators were assigned lower precedence, relative to relational expressions, just to make the linking of
relational expressions possible without using parentheses.

- 81 -

intel

CHAPTER 6
Description of String Operators

6.1 WHAT ARE STRINGS ?

A string is a character or a bunch of characters that are stored in memory. Usually, the characters stored
in a string make up a word or a sentence. Strings are handy because they allow the programmer to deal
with words instead of numbers. This is useful because it allows one to write "friendly" programs, where
individuals can be referred to by their names instead of a number.

MCS BASIC-52 contains ONE dimensioned string variable, $([expr]). The dimension of the string
variable (the [expr] value) ranges from 0 to 254. This means that 255 different strings can be defined
and manipulated in MCS BASIC-52. Initially, NO memory is allocated for strings. Memory is allocated
by the STRING [expr], [expr] STATEMENT. The details of this statement are covered in the
DESCRIPTION OF STATEMENTS chapter of this manual.

In MCS BASIC-52, strings can be defined in two ways, with the LET STATEMENT and with the
INPUT STATEMENT.

EXAMPLE:

 >10 STRING 100,20
 >20 $(1)="THIS IS A STRING, "
 >30 INPUT "WHAT'S YOUR NAME? - ",$(2)
 >40 PRINT $(1),$(2)
 >RUN

 WHAT'S YOUR NAME?. - FRED

 THIS IS A STRING, FRED

STRINGS can also be assigned to each other with a LET statement.

EXAMPLE:

 $(2)=$(1)

Would assign the STRING value in $(1) to the STRING $(2).

- 82 -

intel

6.2 THE ASC OPERATOR

In MCS BASIC-52, two operators manipulate STRINGS. These operators are ASC() and CHR(). Ad-
mittedly, the string operators contained in MCS BASIC-52 are not quite as powerful as the string
operators contained in some BASICS. But surprisingly enough, by using the string operators available
in MCS BASIC-52 it is possible to manipulate strings in almost any way imaginable. This in itself is a
commendable feat since MCS BASIC-52 was designed primarily to be a sophisticated BASIC language
oriented controller, not a string manipulator. The string operators available in MCS BASIC-52 are as
follows:

ASC()

The ASC() operator returns the integer value of the ASCII character placed in the parentheses.

EXAMPLE:

 >PRINT ASC(A)
 65

65 is the decimal representation for the ASCII character "A." In addition, individual characters in a pre-
defined ASCII string can be evaluated with the ASC() operator.

EXAMPLE:

 >10 $(1)="THIS IS A STRING"
 >20 PRINT $(1)
 >30 PRINT ASC($(1),1)

 THIS IS A STRING
 84

When the ASC() operator is used in the manner shown above, the $([expr]) denotes what string is
being accessed and the expression after the comma "picks out" an individual character in the string. In
the above example, the first character in the string was picked out and 84 is the decimal representation
for the ASCII character " T ."

- 83 -

intel

6.2 THE ASC OPERATOR

EXAMPLE:

 >10 $(1)="ABCDEFGHIJKL"
 >20 FOR X=1 TO 12
 >30 PRINT ASC($(1),X),
 >40 NEXT X
 >RUN

 65 66 67 68 69 70 71 72 73 74 75 76

The numbers printed in the previous example are the values that represent the ASCII characters A,B,C,
 . . . L.

Additionally, the ASC() operator can be used to change individual characters in a defined string.

EXAMPLE:

 >10 $(1)="AECDEFGHIJKL"
 >20 PRINT $(1)
 >30 ASC($(1),1)=75
 >40 PRINT $(1)
 >50 ASC($(1),2)=ASC($(1),3)
 >60 PRINT $(1)
 >RUN

 AECDEFGHIJKL
 KBCDEFGHIJKL
 KCCDEFGHIJKL

In general, the ASC() operator lets the programmer manipulate individual characters in a string. A
simple program can determine if two strings are identical.

EXAMPLE:

 >10 $(1)="SECRET" : REM SECRET IS THE PASSWORD
 >20 INPUT "WHAT'S THE PASSWORD - ",$(2)
 >30 FOR I=l TO 6
 >40 IF ASC($(l),I)=ASC($(2),I) THEN NEXT I ELSE 70
 >50 PRINT "YOU GUESSED IT"'
 >60 END
 >70 PRINT "WRONG. TRY AGAIN" : GOTO 20
 >RUN

 WHAT'S THE PASSWORD - SECURE
 WRONG, TRY AGAIN
 WHAT'S THE PASSWORD - SECRET
 YOU GUESSED IT

 - 84 -

intel

6.3 THE CHR OPERATOR

CHR()

The CHR() operator is the converse of the ASC() operator. It converts a numeric expression to an
ASCII character.

EXAMPLE:

 >PRINT CHR(65)
 A

Like the ASC() operator, the CHR() operator can also "pick out" individual characters in a defined
ASCII string.

EXAMPLE:

 >10 $(1)"MCS BASIC-52"
 >20 FOR I=1 TO 12 : PRINT CHR($(1),I), : NEXT I
 >30 PRINT : FOR I=12 TO 1 STEP -1
 >40 PRINT CHR($(1),I), : NEXT I
 >RUN

 MCS BASIC-52
 25-CISAB SCM

In the above example, the expressions contained within the parentheses, following the CHR operator
have the same meaning as the expressions in the ASC() operator.

Unlike the ASC() operator, the CHR() operator CANNOT be assigned a value. A statement such as
CHR($(1),1) = H, is INVALID and will generate a BAD SYNTAX ERROR. Use the ASC() operator
to change a value in a string. The CHR() operator can only be used within a print statement!

- 85 -

intel

CHAPTER 7
Special Operators

7.1 SPECIAL FUNCTION OPERATORS

SPECIAL FUNCTION OPERATORS are called SPECIAL FUNCTION OPERATORS because they
di- rectly manipulate the I/O hardware and the memory addresses on the 8052AH device. All SPECIAL
FUNCTION OPERATORS, with the exception of CBY([expr]) and GET, can be placed on either side
of the replacement operator (=) in a LET STATEMENT.

EXAMPLES:

 A = DBY(100) and DBY(100) = A+2

Both of the above are valid statements in MCS BASIC-52. The SPECIAL FUNCTION OPERATORS
in MCS BASIC-52 include the following:

CBY([expr])

The CBY([exprl] operator is used to retrieve data from the PROGRAM or CODE MEMORY address
space of the 8052AH. Since CODE memory cannot be written into on the 8052AH, the CBY([expr])
operator cannot be assigned a value. It can only be read.

EXAMPLE: A = CBY(1000) Causes the value in code memory space 1000 to be assigned to the
variable A. The argument for the CBY([exprl] operator MUST be a valid integer (i.e. between 0 and
65535 (0FFFFH)). If it is not, a BAD ARGUMENT ERROR will occur.

DBY([expr])

The DBY([expr]) operator is used to retrieve or assign a value to the 8052AH's internal data memory.
Both the value and argument in the DBY operator must be between 0 and 255 inclusive. This is because
there are only 256 internal memory locations in the 8052AH and one byte can only represent a quantity
between 0 and 255 inclusive.

EXAMPLES:

 A=DBY(B) and DBY(250) = CBY(1000)

The first example would assign variable A the value that is in internal memory location B. B would
have to be between 0 and 255. The second example would load internal memory location 250 with the
same value that is in program memory location 1000.

- 86 -

intel

7.1 SPECIAL FUNCTION OPERATORS

XBY([expr])

The XBY([expr]) operator is used to retrieve or assign a value to the 8052AH's external data memory.
The argument in the XBY([expr]) operator must be a valid integer (i.e. between 0 and 65535
(0FFFFH)) . The value assigned to the XBY([expr]) operator must be between 0 and 255. If it is not a
BAD ARGUMENT ERROR will occur.

EXAMPLES:

 XBY(4000H)=DBY(100) and A=XBY(0F000H)

The first example would load external memory location 4000H with the same value that was in internal
memory location 100. The second example would make the variable A equal to the value in external
memory location 0F000H.

GET

The GET operator only produces a meaningful result when used in the RUN mode. It will always return
a result of zero in the command mode. What GET does is read the console input device. Actually, it
takes a "snapshot" of the console input device. If a character is available from the console device, the
value of the character will be assigned to GET. After GET is read in the program, GET will be assigned
the value of zero until another character is sent from the console device. The following example will
print the decimal representation of any character sent from the console:

EXAMPLE:

 >10 A=GET
 >20 IF A<>0 THEN PRINT A
 >30 GOTO 10
 >RUN

 65 (TYPE "A" ON CONSOLE)
 49 (TYPE "1" ON CONSOLE)
 24 (TYPE "CONTROL-X" ON CONSOLE)
 50 (TYPE '2' ON CON8OLE)

The reason the GET operator can be read only once before it is assigned a value of zero is that this
implementation guarantees that the first character entered will always be read, independent of where the
GET operator is placed in the program.

- 87 -

intel

7.1 SPECIAL FUNCTION OPERATORS

The following operators directly manipulate the 8052AH's special function registers. Specific details of
the operation of these registers is in the MICROCONTROLLER USERS HANDBOOK, available from
INTEL.

IE

The IE operator is used to retrieve or assign a value to the 8052AH's special function register IE. Since
the IE register on the 8052AH is a BYTE register, the value assigned to IE must be between 0 and 255.
The IE register on the 8052AH contains an unused bit, BIT IE.6. Since this bit is "undefined," it may be
read as a random one or zero, so the user may want to mask this bit when reading the IE register. This
can be done with a statement like A = IE.AND.0BFH. The only statements in MCS BASIC-52 that
write to the IE register are the CLOCK0, CLOCK1, ONEX1, CLEAR, and CLEARI statements.

EXAMPLES:

 IE = 81H and A = IE.AND.0BFH

IP

The IP operator is used to retrieve or assign a value to the 8052AH's special function register IP. Since
the IP register on the 8052AH is a BYTE register, the value assigned to IP must be between 0 and 255.
The IP register on the 8052AH contains two unused bits, BIT IP.6 and IP.7. Since these bits are "un-
defined," they may be read as a random 1 or 0, so the user may want to mask these bits when reading
the IP register. This can be done with a statement such as B=IP.AND.3FH. MCS BASIC-52 does not
write to the IP register during initialization, so user can establish whatever interrupt priorities are
required in a given application.

EXAMPLES:

 IP = 3 and A = IP.AND.3FH

PORT1

The PORT1 operator is used to retrieve or assign a value to the 8052AH's P1 I/O port. Since P1 on the
8052AH is a BYTE wide register, the value assigned to P1 must be between 0 and 255 inclusive.
Certain bits on P1 have pre-defined functions. If the user does not implement any of the hardware
associated with these pre-defined functions, The PORT1 instruction can be used in any manner
appropriate in the application.

- 88 -

intel

7.1 SPECIAL FUNCTION OPERATORS

PCON

The PCON operator is used to retrieve or assign a value to the 8052AH's PCON register. In the
8052AH, only the most significant bit of the PCON register is used, all other bits are undefined. Setting
this bit will double the baud rate if TIMER/COUNTER1 is used as the baud rate generator for the serial
port. PCON is a byte register.

RCAP2

The RCAP2 operator is used to retrieve and/or assign a value to the 8052AH's special function registers
RCAP2H and RCAP2L. This operator treats RCAP2H and RCAP2L as a 16-bit register pair. RCAP2H
is the high byte and RCAP2L is the low byte. The RCAP2H and RCAP2L registers are the
reload/capture registers for TIMER2. The user must use caution when writing to RCAP2 register
because RCAP2 controls the BAUD rate of the serial port on the MCS BASIC-52 device. The
following can be used to determine what BAUD rate the MCS BASIC-52 device is operating at:

 BAUD = XTAL/(32*(65536-RCAP2))

T2CON

The T2CON operator is used to retrieve and/or assign a value to the 8052AH's special function register
T2CON. The T2CON is a byte register that controls TIMER2's mode of operation and determines
which timer (TIMER1 or TIMER2) is used as the 8052AH's baud rate generator. MCS BASIC-52
initializes T2CON with the value 52 (34H) and assumes that its value is never changed. Randomly
changing the value of T2CON, without knowing what you are doing can "crash" the serial port on the
8052AH. Beware!

- 89 -

intel

7.1 SPECIAL FUNCTION OPERATORS

TCON

The TCON operator is used to retrieve and/or assign value to the 8052AH's special function register
TCON. TCON is a byte register that is used to enable or disable TIMER0 and TIMER1, plus the
interrupts that are associated with these timers. Additionally, TCON determines whether the external
interrupt pins on the 8052AH are operating in a level sensitive or edge-triggered mode. MCS BASIC-52
initializes TCON with the value 244 (0F4H) and assumes that it is never changed. The value 244
(0F4H) places both TIMER0 and TIMER1 in the run (enabled) mode. If the user disables the operation
of TIMER0, by clearing BIT 4 in the TCON register, the REAL TIME CLOCK will NOT work. If the
user disables the operation of TIMER1, by clearing BIT 6 in the TCON register, the EPROM
programming routines, the software serial port. and the PWM statement will NOT work. Use caution
when changing TCON!!!

TMOD

The TMOD operator is used to retrieve and/or assign a value to the 8052AH's special function register
TMOD. TMOD is a byte register that controls TIMER0 and TlMER1's mode of operation. MCS
BASIC- 52 initializes the TCON register with a value of 16 (10H). The value 16 (10H) places TIMER0
in mode 0, which is a 13-bit counter mode and TIMER1 in mode 1, which is a 16-bit counter mode.
MCS BASIC-52 assumes that the modes of these two timer/counters are never changed. If the user
changes the mode of TIMER0, the REAL TIME CLOCK will not operate properly. If the user changes
the mode of TIMER1, EPROM programming. the software serial port, and the PWM statement will not
work properly. If the user does not use these features available in MCS BASIC-52, either timer/counter
can be placed in any mode required by the specific application.

- 90 -

intel

7.1 SPECIAL FUNCTION OPERATORS

TIME

The TIME operator is used to retrieve and/or assign a value to the REAL TIME CLOCK resident in
MCS BASIC-52. After reset, TIME is equal to 0. The CLOCK1 statement enables the REAL TIME
CLOCK.
When the REAL TIME CLOCK is enabled, the SPECIAL FUNCTION OPERATOR, TIME will
increment once every 5 milliseconds. The TIME operator uses TIMER0 and the interrupts associated
with TIMER0 on the 8052AH. The unit of TIME is seconds and the appropriate XTAL value must be
assigned to insure that the TIME operator is accurate.

When TIME is assigned a value with a LET statement (i.e. TIME = 100), only the integer portion of
TIME will be changed.

EXAMPLE:

 >CLOCK1 (enable REAL TIME CLOCK)

 >CLOCK0 (disable REAL TIME CLOCK)

 >PRINT TIME (display TIME)
 3.315

 >TIME = 0 (set TIME = 0)

 >PRINT TIME (display TIME)
 .315 (only the integer is changed)

 The "fraction" portion of TIME can be changed by
 manipulating the contents of internal memory
 location 71 (47H). This is accomplished by a DBY(71)
 statement. Note that each count in internal memory
 location 71 (47H) represents 5 milliseconds of TIME.
 Continuing with the EXAMPLE:

 >DBY(71) = 0 (fraction of TIME = 0)

 >PRINT TIME
 0

 >DBY(71) = 3 (fraction of TIME = 3, 15 ms)

 >PRINT TIME
 1.5 E-2

- 91 -

intel

7.1 SPECIAL FUNCTION OPERATORS

The reason only the integer portion of TIME is changed when assigned a value is that it allows the user
to generate accurate time intervals. For instance, let's say you want to create an accurate 12 hour clock.
There are 43200 seconds in a 12 hour period, so an ONTIME 43200,[ln num] statement is used. Now,
when the TIME interrupt occurs the statement TIME = 0 is executed, but the millisecond counter is not
re-assigned a value so if interrupt latency happens to exceed 5 milliseconds, the clock will still remain
accurate.

TIMER0

The TIMER0 operator is used to retrieve or assign a value to the 8052AH's special function registers
TH0 and TL0. This operator treats the byte registers TH0 and TL0 as a 16-bit register pair. TH0 is the
high byte and TL0 is the low byte. MCS BASIC-52 uses TH0 and TL0 to implement the REAL TIME
CLOCK function. If the user does not implement the REAL TIME CLOCK function (i.e. does not use
the statement CLOCK1) in the BASIC program TH0 and TL0 may be used in any manner suitable to
the particular application.

TIMER1

The TIMER1 operator is used to retrieve or assign a value to the 8052AH's special function registers
TH1 and TL1. This operator treats the byte registers TH1 and TL1 as a 16-bit register pair TH1 is the
high byte and TL1 is the low byte. MCS BASIC-52 uses TH1 and TL1 to implement the timings for the
software serial port, the EPROM programming feature, and the PWM statement. If the user does not use
any of these features TH1 and TL1 may be used in any manner suitable to the particular application.

TIMER2

The TIMER2 operator is used to retrieve or assign a value to the 8052AH's special function registers
TH2 and TL2. This operator treats the byte registers TH2 and TL2 as a 16-bit register pair. TH2 is the
high byte and TL2 is the low byte. MCS BASIC-52 uses TH2 and TL2 to generate the baud rate for the
serial port. If the user does not use TIMER2 to clock the serial port, TH2 and TL2 may be used in any
manner suitable to the particular application.

- 92 -

intel

7.1 SPECIAL FUNCTION OPERATORS

XTAL

The XTAL operator tells MCS BASIC-52 what frequency the system is operating at. The XTAL
operator is used by MCS BASIC-52 to calculate thc REAL TIME CLOCK reload value, the PROM
programming timing, and the software serial port baud rate generation. The XTAL value is expressed in
Hz. So,

XTAL = 9000000

would set the XTAL value to 9 MHz.

- 93 -

intel

7.2 EXAMPLES OF MANIPULATING SPECIAL FUNCTION VALUES

Using the logical operators available in MCS BASIC-52. it is possible to write to or read from any byte
of the special function registers that MCS BASIC-52 treats as a register pair:

EXAMPLE:

 WRITING TO THE HIGH BYTE

 >TIMER0 = (TIMER0 .AND. 00FFH)+ INT(256*(USER BYTE))

EXAMPLE:

 WRITING TO THE LOW BYTE

 >TIMER0 = (TIMER0 .AND. 0FF00H) + (USER BYTE)

EXAMPLE:

 READING HIGH BYTE

 >PH0. INT(TIMER0/256)

EXAMPLE:

 READING LOW BYTE

 >PH0. TIMER0 .AND. 0FFH

TIMER1 can function as the baud rate generator for MCS BASIC-52. To assign TIMER1 as the baud
rate generator, the following instructions must be executed:

 >TMOD = 32 - TIMER1 in auto reload mode
 >TIMER1 = 256*(256-(65536-RCAP2)/12) - load TIMER1
 >T2CON = 0 - use TIMER1 as baud rate gen

This sequence of instructions can be executed in either the direct mode or as part of a program. When
TIMER1 is used as the baud rate generator. TIMER2 can be used in anyway suitable to the application.
The PROG, FPROG, LIST#, PRINT# and PWM commands/statements cannot be used when TIMER1
functions as the baud rate generator for the MCS BASIC-52 device. Certain crystals may not be able to
use TIMER1 as the baud rate generator, especially at high (above 2400) baud rates.

- 94 -

intel

7.3 SYSTEM CONTROL VALUES

The SYSTEM CONTROL VALUES determine or reveal how memory is allocated by MCS BASIC-52.

MTOP

After reset, MCS BASIC-52 sizes the external memory and assigns the last valid memory address to the
SYSTEM CONTROL VALUE, MTOP. MCS BASIC-52 will not use any external RAM memory
beyond the value assigned to MTOP. If the user wishes to allocate some external memory for an
assembly language routine the LET statement can be used (e.g. MTOP = USER ADDRESS). If the user
assigns a value to MTOP that is greater than the last valid memory address, a MEMORY
ALLOCATION ERROR will be generated.

EXAMPLES:

 >PRINT MTOP
 2047

 >MTOP=2000

 >PRINT MTOP
 2000

LEN

The SYSTEM CONTROL VALUE, LEN. tells the user how many bytes of memory the current
selected program occupies. Obviously, LEN cannot be assigned a value, it can only be read. A NULL
program (i.e. no program) will return a LEN of 1. The 1 represents the end of program file character.

FREE

The SYSTEM CONTROL VALUE, FREE, tells the user how many bytes of RAM memory are
available to the user. When the current selected is in RAM memory, the following relationship will
always hold true.

FREE = MTOP -- LEN -- 511

NOTE: Unlike some BASICS, MCS BASIC-52 does not require any "dummy" arguments for the
SYSTEM CONTROL VALUES.

- 95 -

intel

CHAPTER 8
 Error Messages, Bells, Whistles, and Anomalies

8.1 ERROR MESSAGES

MCS BASIC-52 has a relatively sophisticated ERROR processor. When BASIC is in the RUN mode
the generalized form of the ERROR message is as follows:

 ERROR: XXX - IN LINE YYY

 YYY BASIC STATEMENT
 -----------x

Where XXX is the ERROR TYPE and YYY is the line number of the program in which the error
occurred. A specific example is:

 ERROR BAD SYNTAX - IN LINE 10

 10 PRINT 34*21*

--------------x

The X signifies approximately where the ERROR occurred in the line number. The specific location of
the X may be off by one or two characters or expressions depending on the type of error and where the
error occurred in the program. If an ERROR occurs in the COMMAND MODE only the ERROR TYPE
will be printed out NOT the Line number. This makes sense, because there are no line numbers in the
COMMAND MODE. The ERROR TYPES are as follows:

BAD SYNTAX

A BAD SYNTAX error means that either an invalid MCS BASIC-52 COMMAND, STATEMENT, or
OPERATOR was entered and BASIC cannot process the entry. The user should check and make sure
that everything was typed in correctly. In Version 1.1 of MCS BASIC-52 a BAD SYNTAX ERROR is
also generated if the programmer attempts to use a reserved keyword as part of a variable.

BAD ARGUMENT

When the argument of an operator is not within the limits of the operator a BAD ARGUMENT ERROR
will be generated. For instance. DBY(257) would generate a BAD ARGUMENT ERROR because the
argument for the DBY operator is limited to the range 0 to 255. Similarly, XBY(5000H) = -1 would
generate a BAD ARGUMENT ERROR because the value of the XBY operator is limited to the range 0
to 255.

- 96 -

intel

8.1 ERROR MESSAGES

ARITH. UNDERFLOW

If the result of an arithmetic operation exceeds the lower limit of an MCS BASIC-52 floating point
number, an ARITH. UNDERFLOW ERROR will occur. The smallest floating point number in MCS
BASIC-52 is +- 1E-127. For instance, 1E-80/1E + 80 would cause an ARITH. UNDERFLOW ERROR.

ARITH. OVERFLOW

If the result of an arithmetic operation exceeds the upper limit of an MCS BASIC-52 floating point
number, an ARITH. OVERFLOW ERROR will occur. The largest floating point number in MCS
BASIC-52 is +-.99999999E+127. For instance, 1E+70*1E+70 would cause an ARITH. OVERFLOW
ERROR.

DIVIDE BY ZERO

A division by ZERO was attempted i.e. 12/0, will cause a DIVIDE BY ZERO ERROR.

ILLEGAL DIRECT (VERSION 1.0 ONLY)

Some statements, such as IF-THEN and DATA cannot be executed while the MCS BASIC-52 device is
in the COMMAND MODE. If you attempt to execute one of these statements the message ERROR:
ILLEGAL DIRECT will be printed to the console device. The ILLEGAL DIRECT ERROR is not
trapped in Version 1.1 of MCS BASIC-52. ILLEGAL DIRECT ERRORS return a BAD SYNTAX
ERROR in Version 1. 1.

LINE TOO LONG (VERSION 1.0 ONLY)

If you type in a line that contains more than 73 characters the message ERROR: LINE TOO LONG will
be printed to the console device. MCS BASlC-52's input buffer can only handle up to 73 characters.

NOTE

This error does not exist in Version 1.1. Instead the input buffer has been increased to 79 characters and
MCS BASIC-52 will echo a bell character to the user terminal if too many characters are entered into
the input buffer.

NO DATA

If a READ STATEMENT is executed and no DATA STATEMENT exists or all DATA has been read
and a RESTORE instruction was not executed the message ERROR: NO DATA -- IN LINE XXX will
be printed to the console device.

- 97 -

intel

8.1 ERROR MESSAGES

CAN'T CONTINUE

Program execution can be halted by either typing in a control-C to the console device or by executing a
STOP STATEMENT. Normally, program execution can be resumed by typing in the CONT command.
However, if the user edits the program after halting execution and then enters the CONT command, a
CAN'T CONTINUE ERROR will be generated. A control-C must be typed during program execution
or a STOP STATEMENT must be executed before the CONT command will work.

PROGRAMMING

If an error occurs while the MCS BASIC-52 device is programming an EPROM, a PROGRAMMING
ERROR will be generated. An error encountered during programming destroys the EPROM FILE
STRUCTURE, so the user cannot save any more programs on that particular EPROM once a
PROGRAMMING ERROR occurs.

A-STACK

An A-STACK (ARGUMENT STACK) error occurs when the argument stack pointer is forced "out of
bounds." This can happen if the user overflows the argument stack by PUSHing too many expressions
onto the stack, or by attempting to POP data off the stack when no data is present.

C-STACK

A C-STACK (CONTROL STACK) error will occur if the control stack pointer is forced "out of
bounds." 158 bytes of external memory are allocated for the control stack, FOR -- NEXT loops require
17 bytes of control stack DO -- UNTIL, DO -- WHILE, and GOSUB require 3 bytes of control stack.
This means that 9 nested FOR -- NEXT loops is the maximum that MCS BASIC-52 can handle because
9 times 17 equals 153. If the user attempts to use more control stack than is available in MCS BASIC-
52 a C-STACK error will be generated. In addition, C-STACK errors will occur if a RETURN is
executed before a GOSUB a WHILE or UNTIL before a DO, or a NEXT before a FOR.

- 98 -

intel

8.1 ERROR MESSAGES

I-STACK

An I-STACK (INTERNAL STACK) error occurs when MCS BASIC-52 does not have enough stack
space to evaluate an expression. Normally, I-STACK errors will not occur unless insufficient memory
has been allocated to the 8052AH's stack pointer. Details of how to allocate memory to the stack pointer
are covered in the ASSEMBLY LANGUAGE LINKAGE section of this manual.

ARRAY SIZE

If an array is dimensioned by a DIM statement and then you attempt to access a variable that is outside
of the dimensioned bounds, an ARRAY SIZE error will be generated.

EXAMPLE:

 >DIM A(10)
 >PRINT A(11)

 ERROR: ARRAY SIZE
 READY

MEMORY ALLOCATION

MEMORY ALLOCATION ERRORS are generated when user attempts to access STRINGS that are
"outside" the defined string limits. Additionally, if the SYSTEM CONTROL VALUE, MTOP is
assigned a value that does not contain any RAM memory, a MEMORY ALLOCATION ERROR will
occur.

 - 99 -

intel

8.2 DISABLING CONTROL-C

In some applications, it may be desirable or even a requirement that program execution not accidentally
be halted. Under "normal" operation the execution of any MCS BASIC-52 program can be terminated
by typing a "control-C" on the console device. However, it is possible to disable the "control-C" break
function in MCS BASIC-52. This is accomplished by setting BIT 48 (30H) to a one. BIT 48 is located
in internal memory location 38.0 (26.0H). This BIT may be set by executing the following statement in
an MCS BASIC-52 program:

DBY(38) = DBY(38).OR.01H

Once this BIT is set to a one, the control-C break function, for both LIST and RUN operations will be
disabled. The user has the option to create a custom break character or string of characters by using the
GET operator. The following is an example of how to implement a custom break character:

EXAMPLE:

 >10 STRING 100,10: A=1: REM INITIALIZE STRINGS
 >20 $(1) = "BREAK" : REM "BREAK" IS THE PASSWORD
 >30 DBY(38) = DBY(38).OR.1 : REM DISABLE CONTROL-C
 >40 FOR I=1 T0 1000 : REM DUMMY LOOP
 >50 J=SIN(I)
 >60 K=GET : IF K<>0 THEN 100 ELSE NEXT I
 >70 END
 >100 IF K=ASC($(1),A) THEN A=A+1 ELSE A=1
 >110 REM TEST FOR MATCH
 >120 IF A=1 THEN NEXT I
 >130 IF A=6 THEN 200 ELSE NEXT I
 >140 END
 >200 PRINT "BREAK"
 >210 DBY(38)=DBY(38).AND.0FEH : REM ENABLE CONTROL-C

In this example, typing the word BREAK will stop program execution. In other words, BREAK is a
password.

- 100 -

intel

8.3 IMPLEMENTING "FAKE DMA"

The MCS BASIC-52 device does not contain an hardware mechanism that supports Direct Memory
Access (DMA). However, the DMA function is supported in software by MCS BASIC-52. During
DMA operation MCS BASIC-52 guarantees that no external memory access will be performed. To
enable the DMA function, the following must be performed:

1) BIT 49, which is located in internal memory location 38.1 (26.1H) must be set to a one. This can be

accomplished in BASIC by using the statement -- DBY(38) = DBY(38).0R.02H

2) BIT 0 and BIT 7 of the SPECIAL FUNCTION REGISTER, IE (Interrupt enable) must be set to a

one. This can be accomplished in BASIC by using the statement -- IE = IE.OR.81H

After the three BITS mentioned above are set to a one, external interrupt zero (/INT0) acts as a DMA
input pin. /INT0 is pin 12 on the 8052AH. Whenever /INT0 is pulled low (to a logical zero state), the
MCS BASIC-52 device will enter the DMA mode and no accesses will be made to external memory.
To
acknowledge that MCS BASIC-52 has entered the DMA mode, MCS BASIC-52 outputs a zero on pin 7
(P1.6). In essence, PORT 1.6 is the /DMA ACK pin of the MCS BASIC-52 device. In most
applications, this pin would be used to disable three-state buffers that would be placed on PORT2,
PORT0, and the address latch of the MCS BASIC-52 system. After the user pulls the /INT0 pin high,
MCS BASIC-52 will output a one on P1.6 and normal program execution will continue. During this
"fake DMA" cycle, the MCS BASIC-52 program does nothing except wait for the /INT0 pin to be
pulled high. So, program execution is halted.

It should be noted that although this "fake DMA" operation does provide the same functionality as a
normal DMA hardware mechanism, it also takes substantially longer for the normal DMA REQUEST --
DMA ACKNOWLEDGE cycle to be performed. That is because MCS BASIC-52 uses interrupts to
implement the DMA operation, instead of dedicated hardware. As a general rule, cycle stealing DMA is
not an option with MCS BASlC-52's "fake" DMA. Only "burst mode" DMA cycles can be implemented
without a significant time penalty. When "fake DMA" is implemented, the user must provide three-state
buffers on the PORT2, PORT0, and the address latch of the MCS BASIC-52 system.

 - 101 -

intel

8.4 RUN TRAP OPTION (Version 1.1 Only)

Version 1.1 of MCS BASIC-52 permits the user to trap the interpreter in the RUN MODE. This option
is evoked by putting a 34H (52D) in external data memory location 5EH (94D). After a 34H (52D) is
placed in external data memory location 5EH (94D) the MCS BASIC-52 interpreter will be trapped in
the RUN mode forever or until the contents of external data memory location is changed to something
other than 34H (52D). If no program is present when a 34H (52D) is placed in location 5EH (94D),
MCS BASIC-52 will print the READY message forever and it will be time to RESET the device. The
RUN TRAP option can be employed with the other RESET options to permit the user to execute a
program from RAM on a RESET or power-up condition when some type of battery back-up memory
scheme is employed.

- 102 -

intel

8.5 ANOMALIES

Most dictionaries define an anomaly as a deviation from the normal or common order or as an
irregularity anomalies to an extreme become "BUGS" or something that is wrong with the program.
Like all programs, MCS BASIC-52 contains some anomalies, hopefully, no bugs. The purpose of
mentioning the known anomalies here is that it may save the programmer some time, should strange
things happen during program execution. The known anomalies deal mainly with the way MCS
BASIC-52 compacts or tokenizes the BASIC program. The known anomalies and cautions are as
follows:

1) When using the variable H after a line number, make sure you put a space between the line number

and the H, or else BASIC will assume that the line number is a HEX number.

EXAMPLES:

 >20H=10 (WRONG) >20 H=10 (RIGHT)
 >LIST >LIST
 32 =10 20 H=10

2) When using the variable I before an ELSE statement, make sure you put a space between the I and

the ELSE statement, or else BASIC will assume that the IE portion of IELSE is the special function
operator IE.

EXAMPLES:

 >20 IF I>10 THEN PRINT IELSE 100
 >LIST
 20 IF I>10 THEN PRINT IELSE 100 (WRONG)

 >20 IF I>10 THEN PRINT I ELSE 100
 >LIST
 20 IF 1>10 THEN PRINT I ELSE 100 (RIGHT)

3) A Space character may not be placed inside the ASC() operator. In other words, a statement like

PRINT ASC() will yield a BAD SYNTAX ERROR. Spaces may be placed in strings however, so a
statement like LET $(1) = "HELLO, HOW ARE YOU" will work properly. The reason ASC()
yields an error is because MCS BASIC-52 eliminates all spaces when a line is processed. so ASC()
will be stored as ASC() and MCS BASIC-52 interprets this as an error.

- 103 -

intel

CHAPTER 9
Assembly Language Linkage

9.1 OVERVIEW

NOTE: This section assumes that the designer has an understanding of the architecture and assembly
language of the MCS-51 Microcontroller family!!!

MCS BASIC-52 contains a complete library of routines that can easily be accessed with assembly language
CALL instructions. The advantage of using assembly language is that it offers a significant improvement in
execution speed relative to interpreted BASIC. In order to successfully interface MCS BASIC-52 with an
assembly language program, the software designer must be aware of a few simple facts.

READ THIS CAREFULLY!!!

1. MCS BASIC-52 uses REGISTER BANKS 0, 1, and 2 (RB0, RB1, and RB2). REGISTER BANK 3

(RB3) is never used except during a PGM statement. RB3 is designated the USER REGISTER BANK
and the users can do whatever they want to with REGISTER BANK 3 (RB3) and MCS BASIC-52 will
never alter the contents of this REGISTER BANK except during the execution of a PGM statement.
The contents of REGISTER BANK 3 (RB3) can be changed by executing a DBY ([expr]) = [0 to 255]
statement. Where the [expr] evaluates to a number between 24 (18H) and 31 (1FH) inclusive. In
addition, INTERNAL MEMORY LOCATIONS 32 (20H) and 33 (21 H) are also NEVER used by
MCS BASIC-52. These two BIT and/or BYTE addressable locations are specifically reserved for
assembly language programs.

2. MCS BASIC-52 uses REGISTER BANK 0 (RB0) as the WORKING REGISTER FILE. Whenever

assembly language is used to access MCS BASlC-52's routines, the WORKING REGISTER FILE,
REGISTER BANK 0 (RB0) MUST BE SELECTED!!! This means that the USER MUST MAKE
SURE THAT REGISTER BANK 0 (RB0) IS SELECTED BEFORE CALLING ANY OF MCS
BASlC-52's ROUTINES. This is done simply by setting BITS 3 and 4 in the PSW equal to ZERO. If
this is not done, MCS BASIC-52 will "KICK OUT" the USER and NO operation will be performed.
When an ASSEMBLY LANGUAGE program is accessed by using the MCS BASlC-52's CALL
instruction, REGISTER BANK 0 (RB0) will always be selected. So unless the user selects REGISTER
BANK 3 (RB3) in assembly language, it is NOT NECESSARY to change the designated REGISTER
BANK.

3. ALWAYS ASSUME THAT MCS BASIC-52 DESTROYS THE CONTENTS OF THE WORKING

REGISTER FILE AND THE DPTR, UNLESS OTHERWISE STATED IN FOLLOWING DOCU-
MENTATION.

4. Certain routines in MCS BASIC-52 require that REGISTERS be initialized BEFORE the user CALLS

that specific ROUTINE. These registers are ALWAYS in the WORKING REGISTER FILE,
REGISTER BANK 0 (RB0).

5. Certain routines in MCS BASIC-52 return the result of an operation in a register or registers. The result

registers are ALWAYS in the WORKING REGISTER FILE, REGISTER BANK 0, (RB0).

 - 104 -

intel

9.1 OVERVIEW

READ THIS CAREFULLY!!!

6. MCS BASIC-52 loads the INTERNAL STACK POINTER (SPECIAL FUNCTION REGISTER-

SP) with the value that is in INTERNAL MEMORY LOCATION 62 (3EH). MCS BASIC-52
initializes INTERNAL MEMORY LOCATION 62 (3EH) by writing a 77 (4DH) to this location
after a hardware RESET. MCS BASIC-52 does NOT use any memory beyond 77 (4DH) for
anything EXCEPT STACK SPACE. If the user wants to ALLOCATE some additional internal
memory for their application, this is done by changing the contents of INTERNAL MEMORY
LOCATION 62 (3EH) to a value that is GREATER than 77 (4DH). This will allocate the
INTERNAL MEMORY LOCATIONS from 77 (4DH) to the value that is placed in INTERNAL
MEMORY LOCATION 62 (3EH) to the user. As a guideline, it is a good idea to allow at least 48
(30H) bytes of stack space for MCS BASIC-52. The bad news about reducing the stack space is that
it will reduce the amount of nested parentheses that MCS BASIC-52 can evaluate in an expression
[expr]. This will either cause a I-STACK ERROR or will cause a fatal CPU "crash." Use caution
and DON'T allocate more memory than you need.

EXAMPLE OF THE EFFECTS OF ALTERING THE STACK ALLOCATION:

 COMMENTS

 >PRINT DBY(62) AFTER RESET INTERNAL MEMORY LOCATION 6
 77 CONTAINS A 77

 >PRINT (1*(2*(3))) BASIC HAS NO PROBLEM EVALUATING 3 LEVELS
 6 OF NESTED PARENRHESIS

 >DBY(62)=230 NOW ALLOCATE 255-230 = 25 BYTES OF STACK
 SPACE TO BASIC, REMEMBER, THE STACK ON
 >PRINT (1*(2*(3))) THE 8052AH GROWS "UP"

 ERROR: I-STACK BASIC CANNOT EVALUATE THIS EXPRESSION
 READY BECAUSE IT DOES NOT HAVE ENOUGH STACK
 >DBY(62)=210 NOW ALLOCATE 255-210 = 45 BYTES OF STACK
 SPACE TO BASIC
 >PRINT (1*(2*(3))) THE I-STACK ERROR GOES AWAY
 6

7. Throughout this section a 16-BIT REGISTER PAIR is designated-Rx:Ry, where Rx is the most sig-

nificant byte and Ry is the least significant byte.

EXAMPLE:

 R3:R1 - R3=MOST SIGNIFICANT BYTE. R1=LEAST SIGNIFICANT BYTE

- 105 -

intel

9.2 GENERAL PURPOSE ROUTINES

Accessing MCS BASIC-52 routines with assembly language is easy. The user just loads the ACCUMU-
LATOR with a specific value and CALLS LOCATION 48 (30H). The value placed in the
ACCUMULATOR determines what operation will be performed. Unless otherwise stated, the
CONTENTS of the DPTR and REGISTER BANK 0 (RB0) will ALWAYS be altered when calling
these routines. The generalized form for accessing MCS BASlC-52's routines is as follows:

 ANL PSW,#11100111B ; make sure
 RB0 is
 selected
 MOV A,#OPBYTE ; load the
 instruction
 CALL 30H ; execute the
 instruction

The value of OPBYTE determines what operation will be performed. The following operations can be
performed:

OPBYTE = 0 (00H) RETURN TO COMMAND MODE

This instruction causes MCS BASIC-52 to enter the COMMAND MODE. Control of the CPU is
handed back to the MCS BASIC-52 interpreter and BASIC will respond by outputting a READY and a
PROMPT character (>).

OPBYTE = 1 (01H) POP ARGUMENT STACK AND PUT VALUE IN R3:R1

This instruction converts the value that is on the ARGUMENT STACK to a 16 BIT BINARY
INTEGER and returns the BINARY INTEGER in registers R3 (high byte) and R1 (low byte) of
REGISTER BANK 0 (RB0). The ARGUMENT STACK gets popped after this instruction is executed.
If the value on the ARGUMENT STACK cannot be represented by a 16-BIT BINARY NUMBER (i.e.
it is NOT between 0 and 65535 (0FFFFH) inclusive), BASIC WILL TRAP THE ERROR and print a
BAD ARGUMENT ERROR MESSAGE. The BINARY VALUE returned is TRUNCATED, NOT
ROUNDED.

EXAMPLE:

 BASIC PROGRAM - 10 PUSH 20
 20 CALL 5000H

 ASSEMBLY LANGUAGE PROGRAM - ORG 5000H
 MOV A.#01H ; load opbyte
 CALL 30H ; RB0 still selected
 ;
 ; at this point R3 (of RB0) = 01H
 ; and R1 (of RB0) = 04H
 ; so, R3:R1 = 260, which was the value
 ; that was placed on the ARGUGENT STACK

- 106 -

intel

9.2 GENERAL PURPOSE ROUTINES

COMMENTS ON THE NEXT TWO INSTRUCTIONS:

The next two instructions permit the user to transfer floating point numbers between an assembly
language program and MCS BASIC-52. The user provides the address where a floating point number is
stored or will be stored in a 16-bit REGISTER PAIR. Depending on the operation requested, the
floating point numbers are either PUSHED ON or POPPED OFF MCS BASlC-52's ARGUMENT
STACK. This instruction permits the user to keep track of variables in assembly language and bypass
the relatively slow
procedure BASIC must follow.

As mentioned earlier, when a floating point number is PUSHED onto the ARGUMENT STACK, the
ARGUMENT STACK POINTER is decremented by a count of 6. This is because a floating point
number requires 6 bytes of RAM storage. Although it may seem confusing to the novice, the LAST
value placed on the ARGUMENT STACK is referred to as the value on the TOP of the ARGUMENT
STACK, even though it is on the BOTTOM of the STACK relative to the sequential numbering of
memory addresses. No one knows why this is so.

The ARGUMENT STACK resides in EXTERNAL RAM MEMORY LOCATIONS 301 (12DH)
through 510 (1FEH). The lower BYTE of the ARGUMENT STACK POINTER resides in INTERNAL
MEMORY LOCATION 9 (09H). MCS BASIC-52 always assumes that the upper BYTE (higher order
address) of the ARGUMENT STACK POINTER is 1 (01H). The software designer can use this
information, along with the next two instructions to perform operations like copying the stack.

OPBYTE = 2 (02H) PUSH THE FLOATING POINT NUMBER ADDRESSED BY REGISTER
PAIR R2:R0 ONTO THE ARGUMENT STACK.

R2 and R0 (in REGISTER BANK 0, RB0) contain the ADDRESS (R2 = high byte, R0 = low byte) of
the location where the floating point number is stored. After this instruction is executed the floating
point number that the REGISTER PAIR R2:R0 points to is PUSHED onto the TOP of the
ARGUMENT STACK. The ARGUMENT STACK POINTER automatically gets DECREMENTED,
by a count of 6, when the value is placed on the stack. A floating point number in MCS BASIC-52
requires 6 BYTES of RAM storage. The register Pair R2:R0 points to the MOST SIGNIFICANT
BYTE of the floating point number and is DECREMENTED BY 6 after the CALL instruction is
executed. So, if R2:R0 = 7F18H before this instruction was executed, it would equal 7F12H after this
instruction was executed.

 - 107 -

intel

9.2 GENERAL PURPOSE ROUTINES

OPBYTE = 3 (03H) POP THE ARGUMENT STACK AND SAVE THE FLOATING POINT
NUMBER IN THE LOCATION ADDRESSED BY R3:R1.

The TOP of the ARGUMENT STACK is moved to the location pointed to by the REGISTER PAIR
R3:R1(R3 = high byte, R1 = low byte, in REGISTER BANK 0, RB0). The ARGUMENT STACK
POINTER is automatically INCREMENTED BY 6. Just as in the previous PUSH instruction, the REG-
ISTER PAIR R3:R1 points to the MOST SIGNIFICANT BYTE of the floating point number and is
DECREMENTED BY 6 after the CALL instruction is executed.

EXAMPLE OF USER PUSH AND POP:

 BASIC PROGRAM: >5 REM PUT 100 AND 200 ON THE ARGUMENT STACK
 >10 PUSH 100,200
 >15 REM CALL THE USER ROUTINE TO SAVE NUMBERS
 >20 CALL 5000H
 >25 REM CLEAR THE STACK
 >30 CLEARS
 >35 REM USE ASM TO PUT NUMBERS BACK ON STACK
 >40 CALL 5010H
 >50 POP A,B
 >60 PRINT A,B
 >RUN

 100 200

 READY

 ASM PROGRAM: ORG 5000H
 MOV R3,#HIGH USER_SAVE ; LOAD POINTERS TO WHERE
 MOV R1,#LOW USER_SAVE ; NUMBERS WILL BE SAVED.
 MOV A,#03H ; LOAD OPBYTE
 CALL 30H ; SAVE ONE NUMBER
 MOV A,#03H ; LOAD OPBYTE AGAIN
 CALL 30H ; SAVE ANOTHER NUMBER
 RET ; BACK TO BASIC
 ;
 ORG 5010H
 MOV R2,#HIGH USER_SAVE ;LOAD ADDRESS WHERE
 MOV R0,#LOW USER_SAVE ;NUMBERS ARE STORED
 MOV A,#02H ;LOAD OPBYTE
 CALL 30H ;PUT ONE NUMBER ON STACK
 MOV A,#02H ;LOAD OPBYTE
 CALL 30H ;NEXT NUMBER ON STACK
 RET ;BACK TO BASIC

 - 108 -

intel

9.2 GENERAL PURPOSE ROUTINES

OPBYTE = 4 (04H) PROGRAM A PROM USING R3:R1 AS THE SOURCE ADDRESS
POINTER, R2:R0 AS THE DESTINATION (PROM) ADDRESS POINTER, AND R7:R6 AS
THE BYTE COUNTER.

This instruction assumes that the DATA to be programmed into a PROM is stored in external memory and that
the REGISTER PAIR R3:R1 (in RB0) contains the address of this external memory. REGISTER PAIR R7:R6
contains the total number of bytes that are to be programmed. The PROM is programmed sequentially and every
time a byte is programmed the REGISTER PAIR R7:R6 is decremented and the REGISTER PAIRS R3:R1 and
R2:R0 are incremented. Programming continues until R7:R6 equals ZERO. The REGISTER PAIR R2:R0 must
be initialized with the desired ADDRESS of the EPROM to be programmed MINUS 1. This may sound strange,
but that is the way it works. So, if you wanted to program an EPROM starting at address 9000H, with the data
stored in address 0D00H and you wanted to program 500 BYTES, then the registers would be set up as follows:
R2:R0 = 8FFFH, R3:R1 = 0D00H, and R7:R6 = 01F4H (500 decimal). You would then put a 4 (04H) in the
ACC and CALL location 30H.

NOTE: In Version 1.0, if an ERROR OCCURS DURING PROGRAMMING, MCS BASIC-52 WILL TRAP
THE ERROR AND ENTER THE COMMAND MODE. The user cannot handle errors that occur during the
EPROM programming operation!!!!

In Version 1.1, programming errors will only be trapped if the MCS BASIC-52 device is in the COMMAND
MODE. If the MCS BASIC-52 device is in the run mode, control will be passed back to the user. The user must
then examine registers R6 and R7. If R6 = R7 = 0, then the programming operation was successfully completed,
if these registers do not equal zero then registers R2:R0 contain the address of the EPROM location that failed to
program. This feature in Version 1.1 permits the user to program EPROMS in embedded applications and
manage errors, should they occur in the programming process, without trapping to the command mode.

In addition to setting up the pointers previously described, the user must also initialize the INTERNAL
MEMORY locations that control the width of the programming pulse. This gives the user complete control over
this critical prom programming parameter. The internal memory locations that must be initialized with this
information are 64 (40H) and 65 (41H). These locations are treated as a 16 bit register pair with location 64 (40H)
designated as the most significant byte and location 65 (41H) as the least significant byte. Locations 64 (40H) and
65 (41H) are loaded into TH1 (TIMER1 high byte) and TL1 (TIMER1 low byte) respectively. The width of the
programming pulse, in microseconds is determined by the following equation:

 WIDTH = (65536-256*DBY(64)+DBY(65))*12/XTAL microseconds

conversely;

 DBY(64):DBY(65) = 65536-WIDTH*XTAL/12

The proper values for the "normal" 50 millisecond programming algorithm and the 1 millisecond "INTELligent"
algorithm are calculated and stored by MCS BASIC-52 in external memory locations 296:297 (128H: 129H)
and 298:299 (12AH: 12BH) respectively. If the user wants to use the pre- calculated values the statements
DBY(64) = XBY(296) and DBY(65) = XBY(297) may be used to initialize the prom programming width for the
normal algorithm and the statements DBY(64) = XBY(298) and DBY(65) = XBY(299) can be used to initialize
for the INTELligent algorithm.

- 109 -

intel

9.2 GENERAL PURPOSE ROUTINES

To select the "INTELLIGENT" EPROM PROGRAMMING algorithm the directly addressable BIT 51
(33H) MUST be set to 1 before the EPROM PROGRAMMING routine is called. The "STANDARD"
50 ms EPROM PROGRAMMING algorithm is selected by CLEARING BIT 51 (33H) (i.e. BIT 51 = 0)
before calling the EPROM PROGRAMMING routine. The directly addressable BIT 51 is located in
internal memory location 38.3 (26.3H) (BIT 3 of BYTE 38 (26H) in internal memory). This BIT can be
SET or CLEARED by the BASIC STATEMENTS DBY(38) = DBY(38).0R.08H to SET and
DBY(38)=DBY(38).AND.0F7H to CLEAR. Of course, the user can set or clear this bit in assembly
language with a SETB 51 or CLR 51 instruction.

The user must also turn on the EPROM PROGRAMMING voltage BEFORE calling the EPROM PRO-
GRAMMING routine. This is done by CLEARING BIT P1.5, the fifth BIT on PORT 1. This too can be
done in BASIC with a PORT1 = PORT1.AND.0DFH instruction or in assembly language with a CLR
P1.5 instruction. The user must also set this bit when the PROM PROGRAMMING procedure is
complete.

This instruction assumes that the hardware surrounding the MCS BASIC-52 device is the same as the
suggestions in the EPROM PROGRAMMING chapter of this manual.

- 110 -

intel

9.2 GENERAL PURPOSE ROUTINES

OPBYTE = 5 (05H) INPUT A STRING OF CHARACTERS AND STORE IN THE BASIC
INPUT BUFFER.

This instruction inputs a line of text from the console device and saves the information in the MCS
BASIC-52's input buffer. MCS BASlC-52's input buffer begins at EXTERNAL MEMORY
LOCATION 7 (0007H). All of the line editing features available in MCS BASIC-52 are implemented
in this instruction. If a control-C is typed during the input process, MCS BASIC-52 will trap back into
the command mode. A carriage return (cr) terminates the input procedure.

OPBYTE = 6 (06H) OUTPUT THE STRING OF CHARACTERS POINTED TO BY THE
REGISTER PAIR R3:R1 TO THE CONSOLE DEVICE.

This instruction is used to OUTPUT a string of characters to the console device. R3:R1 contains the
initial address of this string. The string can either be stored in PROGRAM MEMORY or EXTERNAL
DATA MEMORY. If BIT 52 (34H) (which is BIT 4 of internal RAM location 38 (26H)) is set, the
output will be from PROGRAM MEMORY. If BIT 52 is cleared, the output will be from EXTERNAL
DATA MEMORY. The DATA stored in MEMORY is sent out to the console device one byte at a time
and the memory pointer is incremented. The output is stopped when a termination character is read. The
termination character for PROGRAM MEMORY and EXTERNAL DATA MEMORY are different.
The termination character for EXTERNAL DATA MEMORY is a (cr) 0DH. The termination character
for PROGRAM MEMORY is a " or 22H.

OPBYTE = 7 (07H) OUTPUT A CARRIAGE RETURN-LINE FEED SEQUENCE TO THE
CONSOLE DEVICE.

Enough said.

OPBYTE = 128 (80H) OUTPUT THE CHARACTER IN R5 (REGISTER BANK 0) TO THE
CONSOLE DEVICE.

This routine takes the character that is in R5 (register bank 0) and directs it to the console device. Any
console device may be selected (i.e. U0 or UI or the software serial port).

- 111 -

intel

9.2 GENERAL PURPOSE ROUTINES

OPBYTE = 144 (90H) OUTPUT THE NUMBER ON THE TOP OF ARGUMENT STACK TO
THE CONSOLE DEVICE.

The floating point number that is on the top of the argument stack is outputted to the console device.
The FORMAT is determined by the USING statement. The argument stack is POPPED after the output
operation.

OPBYTE = 154 (9AH) THE 16 BIT NUMBER REPRESENTED BY REGISTER PAIR R2:R0
IS PUSHED ON THE ARGUMENT STACK.

This instruction converts the 16 bit register pair R2:R0 to a floating point number and pushes this
number onto the argument stack. This instruction is the converse of the OPBYTE = 1 instruction.

- 112 -

intel

9.3 UNARY OPERATORS

The next group of instructions perform an operation on the number that is on the TOP of the
ARGUMENT STACK. If the TOP of the ARGUMENT STACK is represented by the symbol [TOS],
then the following instructions would take the general form:

 [TOS] < OP [TOS]

 Where OP is one of the following operators:

OPBYTE = 24 (18H) -- ABSOLUTE VALUE

[TOS] < ABS([TOS]). The [TOS] is replaced by the absolute value of [TOS].

OPBYTE = 25 (19H) -- INTEGER

[TOS] < INT([TOS]). The [TOS] is replaced by the integer portion of [TOS].

OPBYTE = 26 (1AH) -- SIGN

[TOS] < SGN([TOS]). If [TOS] > 0 then [TOS] = 1, if [TOS] = 0 then [TOS] = 0, and if [TOS] < O
then [TOS] = -1.

OPBYTE = 27 (1BH) -- ONE'S COMPLEMENT

[TOS] < NOT([TOS]). [TOS] must be a valid integer.

OPBYTE = 28 (1CH) -- COSINE OPERATOR

[TOS] < COS([TOS]). [TOS] must be between +-200000.

OPBYTE = 29 (1DH) -- TANGENT OPERATOR

[TOS] < TAN([TOS]). [TOS] must be between +- 200000 and [TOSl cannot equal PI/2,
3*PI/2, 5*PI/2..... (2*N+1)*PI/2.

- 113 -

intel

9.3 UNARY OPERATORS

OPBYTE = 30 (1EH) -- SINE OPERATOR

[TOSl < SIN([TOS]). [TOS] must be between +-200000.

OPBYTE = 31 (1FH) -- SQUARE ROOT

[TOS] < SQR ([TOS]). [TOS] must be >= 0.

OPBYTE = 32 (20H) -- CBY OPERATOR

[TOS] < CBY ([TOS]). [TOS] must be a valid integer.

OPBYTE = 33 (21H) -- E TO THE [TOS] OPERATOR

[TOS] < e (2.7182818)**[TOS]. e is raised to the [TOS] power.

OPBYTE = 34 (22H) -- ATN OPERATOR

[TOS] < ATN([TOS]). Arctangent, the value returned is between +- PI/2.

OPBYTE = 35 (23H) -- LOG OPERATOR (natural LOG)

[TOS] < LOG([TOS]) -- [TOS] must be > 0.

OPBYTE = 36 (24H) -- DBY OPERATOR

[TOS] < DBY([TOS]). [TOS] must be between 0 and 255 inclusive.

OPBYTE = 37 (25H) -- XBY OPERATOR

[TOS] < XBY([TOS]). [TOS] must be a valid integer.

- 114 -

intel

9.4 SPECIAL OPERATORS

The next group of instructions place a value on the stack. The value placed on the stack is as follows:

OPBYTE = 38 (26H) -- PI

[TOS] = PI. PI (3.1415926) is placed on the [TOS].

OPBYTE = 39 (27H) -- RND

[TOS] = RND. A random number is placed on the [TOS].

OPBYTE = 40 (28H) -- GET

[TOS] = GET. The value of the SPECIAL FUNCTION OPERATOR, GET is put on the [TOS].

OPBYTE = 41 (29H) -- FREE

[TOS] = FREE. The value of the SYSTEM CONTROL VALUE, FREE is put on the [TOS].

OPBYTE = 42 (2AH) -- LEN

[TOS] = LEN. The value of the SYSTEM CONTROL VALUE, LEN is put on the [TOS].

OPBYTE = 43 (2BH) -- XTAL

[TOS] = XTAL. The value of the SPECIAL FUNCTION OPERATOR, XTAL is put on the [TOS].

OPBYTE = 44 (2CH) -- MTOP

[TOS] = MTOP. The value of the SYSTEM CONTROL VALUE, MTOP is put on the [TOS].

- 115 -

intel

9.4 SPECIAL OPERATORS

OPBYTE = 45 (2DH) -- TIME

[TOS] = TIME. The value of the SPECIAL FUNCTION OPERATOR, TIME is put on the [TOS].

OPBYTE = 46 (2EH) -- IE

TOS] = IE The value of the IE register is put on the [TOS].

OPBYTE = 47 (2FH) -- IP

[TOS] = IP. The value of the IP register is put on the [TOS].

OPBYTE = 48 (30H) -- TIMER0

[TOS] = TIMER0. The value of TIMER0 (TH0:TL0) is put on the [TOS].

OPBYTE = 49(31H) -- TIMER1

[TOS] = TIMERI. The value of TIMERI (TH1:TL1) is put on the [TOS].

OPBYTE = 50 (32H) -- TIMER2

[TOS] = TIMER2. The value of TIMER2 (TH2:TL2) is put on the [TOS].

OPBYTE = 51 (33H) -- T2CON

[TOS] = T2CON. The value of the T2CON register is put on the [TOS].

OPBYTE = 52 (34H) -- TCON

[TOS] = TCON. The value of the TCON register is put on the [TOS].

- 116 -

intel

9.4 SPECIAL OPERATORS

OPBYTE = 53 (35H) – TMOD

[TOS] = TMOD. The value of the TMOD register is put on the [TOS].

OPBYTE = 54 (36H) -- RCAP2

[TOS] = RCAP2. The value of the RCAP2 registers (RCAP2H:RCAP2L) is put on the [TOS].

OPBYTE = 55 (37H) -- PORT1

[TOS] = PORT1. The value of the PORT1 (P1) pins is placed on the [TOS].

OPBYTE = 56 (38H) -- PCON

[TOS] = PCON. The value of the PCON register is put on the [TOS].

- 117 -

intel

9.5 DUAL OPERAND OPERATORS

The next group of instructions assume that TWO values are on the ARGUMENT STACK. If number on
the TOP of the ARGUMENT STACK is represented by the symbol [TOS] and the number NEXT to
TOP of the ARGUMENT STACK is represented by the symbol [NxTOS] and the ARGUMENT
STACK POINTER is represented by the symbol AGSP, then the following instructions would take the
general form:

 TEMP1 = [TOS]
 TEMP2 = [NxTOS]
 AGSP < AGSP + 6
 RESULT = TEMP2 OP TEMP1
 [TOS] = RESULT

Where OP is one of the following operators to be described. NOTE that the group of instructions
ALWAYS POP the ARGUMENT STACK by one FLOATING POINT NUMBER SIZE (i.e. 6
BYTES).

ERRORS can be handled in two different ways with the ADD, SUBTRACT, MULTIPLY, and DIVIDE
routines. One option is to let MCS BASIC-52 trap ERRORS, should they occur during the operation.
With this option MCS BASIC-52 will print the appropriate error message to the console device. The
other option passes a STATUS CODE to the user. After the operation the Accumulator contains the
status code information. The Status information is as follows:

 ACC.0 -- ARITHMETIC UNDERFLOW
 ACC.1 -- ARITHMETIC OVERFLOW
 ACC.2 -- RESULT WAS ZERO (not an error, just a condition)
 ACC.3 -- DIVIDE BY ZERO
 ACC.4 -- NOT USED, ZERO RETURNED
 ACC.5 -- NOT USED, ZERO RETURNED
 ACC.6 -- NOT USED, ZERO RETURNED
 ACC.7 -- NOT USED, ZERO RETURNED

If an ARITH. OVERFLOW or a DIVIDE BY ZERO ERROR occurs and the user is handling the error
condition, the floating point processor will return a result of +- 99999999E+ 127 to the argument stack.
The user can do what they want to with this result (i.e. use it or waste it). An ARITH. UNDERFLOW
ERROR will return to the argument stack a result of 0 (zero).

- 118 -

intel

9.5 DUAL OPERAND OPERATORS

MCS BASIC-52 can perform the following DUAL OPERAND OPERATIONS:

OPBYTE = 9 (09H) EXPONENTIATION -- The [NxTOS] value is raised to the [TOS] power.
RESULT = [NxTOS] ** [TOS]. NOTE -- [TOS] MUST BE LESS THAN 256.

OPBYTE = 10 (0AH) MULTIPLY

RESULT = [NxTOS] * [TOS]. If an ERROR occurs during this operation (i.e. ARITH. OVERFLOW or
UNDERFLOW) MCS BASIC-52 will trap the error and print the error message to the console device.

OPBYTE = 136 (88H) MULTIPLY

RESULT = [NxTOS] * [TOS]. If an error occurs during this operation, the status byte previously
discussed will be returned to the user.

OPBYTE = 11 (0BH) ADD

RESULT = [NxTOS] + [TOS]. BASIC handles errors.

OPBYTE = 130 (82H) ADD

RESULT = [NxTOS] + [TOS]. User handles errors.

OPBYTE = 12 (0CH) DIVIDE

RESULT = [NxTOS] / [TOS]. BASIC handles errors.

OPBYTE = 138 (8AH) DIVIDE

RESULT = [NxTOS] / [TOS]. User handles errors.

OPBYTE = 13 (0DH) SUBTRACT

RESULT = [NxTOS] -- [TOS]. BASIC handles errors.

- 119 -

intel

9.5 DUAL OPERAND OPERATORS

OPBYTE = 132 (84H) SUBTRACT

RESULT = [NxTOS] - [TOS]. User handles errors.

OPBYTE = 14 (0EH) EXCLUSIVE OR

RESULT = [NxTOS] XOR [TOS], both values must be GREATER THAN OR EQUAL TO ZERO and
LESS THAN OR EQUAL TO 65535 (0FFFFH).

OPBYTE = 15 (0FH) LOGICAL AND

RESULT = [NxTOS] and [TOS], both values must be GREATER THAN OR EQUAL TO ZERO and
LESS THAN OR EQUAL TO 65535 (0FFFFH).

OPBYTE = 16 (10H) LOGICAL OR

RESULT = [NxTOS] OR [TOS], both values must be GREATER THAN OR EQUAL TO ZERO and
LESS THAN OR EQUAL TO 65535 (0FFFFH).

OPBYTE = 18 (12H) TEST FOR EQUALITY

IF [NxTOS] = [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

OPBYTE = 19 (13H) TEST FOR GREATER THAN OR EOUAL

IF [NxTOS] > = [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

OPBYTE = 20 (14H) TEST FOR LESS THAN OR EQUAL

IF [NxTOS] < = [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

- 120 -

intel

9.5 DUAL OPERAND OPERATORS

OPBYTE = 21(15H) TEST FOR NOT EQUAL

IF [NxTOS] <> [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

OPBYTE = 22(16H) TEST FOR LESS THAN

IF [NxTOS] < [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

OPBYTE = 23(17H) TEST FOR GREATER THAN

IF [NxTOS] > [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

- 121 -

intel

9.6 ADDED LINK ROUTINES TO VERSION 1.1

Version 1.1 of MCS BASIC-52 contains a number of useful assembly language link routines that were
not available in Version 1.0. Most of these routines were designed to be used in conjunction with the
new Command/Statement extensions that are described in Chapter 11 of this manual. The added link
routines are as follows:

OPBYTE = 57 (39H) EVALUATE AN EXPRESSION WITHIN THE BASIC TEXT STRING

AND PLACE THE RESULT ON THE ARGUMENT STACK

This routine permits the user to evaluate a BASIC expression [expr] containing variables, operators and
constants. The result of the evaluated expression is placed on the floating point argument stack. This
lets the user evaluate expressions in "customized" statements and commands. An example of use of this
OPBYTE is given at the end of this section.

OPBYTE = 58 (3AH) PERFORM CRYSTAL DEPENDENT CALCULATIONS WITH THE

VALUE THAT IS ON THE ARGUMENT STACK

This routine is provided mainly to let the user write an assembly language RESET routine and perform
all of the crystal dependent calculations that are required by MCS BASIC-52. An example of a
customized RESET routine that uses this OPBYTE is presented in Chapter 11 of this manual.

OPBYTE = 63 (3FH) GET A CHARACTER OUT OF THE BASIC TEXT STRING

This routine permits the user to "pick" a character out of the BASIC program. For instance, in BASIC
the user could have the following:

 10 CALL 1000H A

If the user executed the following in assembly language at 1000H:

 MOV A, #63
 LCALL 30H

The character A would be returned in the accumulator. The Basic text pointer is located in location 8
(8H) (low byte) and 10 (0AH) (high byte) of the internal ram on the MCS BASIC-52 device. If the user
were to implement the above function, the basic text pointer must be advanced to the carriage return at
the end of the statement before returning back to Basic. Failure to do this will cause a BAD SYNTAX
ERROR when the user returns back to Basic. The following OPBYTE can be used to advance the Basic
Text pointer.

 - 122 -

intel

9.6 ADDED LINK ROUTINES TO VERSION 1.1

OPBYTE = 64 (40H) GET CHARACTER, THEN INCREMENT TEXT POINTER

This OPBYTE does the same thing as the previous one described, except that the BASIC text pointer is
INCREMENTED AFTER the character is read. An example of this OPBYTE is presented at the end of
this section.

OPBYTE = 65 (41H) INPUT A CHARACTER FROM THE CONSOLE DEVICE, PUT IT IN

THE ACCUMULATOR, THEN RETURN

This OPBYTE permits the user to input characters from MCS BASlC-52's console input routine. The
character is placed in the accumulator upon return.

OPBYTE = 66 (42H) ENTER THE RUN MODE

This OPBYTE permits the user to start the execution of an MCS BASIC-52 program from assembly
language. The user need only insure that locations 19 (13H) and 20 (14H) of internal data memory
contain the start address (high byte, low byte respectively) of the BASIC program.

OPBYTE = 129 (81H) INPUT AN ASCII FLOATING POINT NUMBER AND PLACE IT ON

THE ARGUMENT STACK. THE DPTR POINTS TO THE EXTERNAL
RAM LOCATION, WHERE THE ASCII TEXT STRING IS STORED

This routine assumes that the user has placed an ASCII text string somewhere in memory and that this
ASCII text string represents a valid floating point number. The user then puts the DPTR to the starting
address of this text string. After this OPBYTE is executed the text string will be converted to a valid
MCS BASIC-52 floating point number and placed on the argument stack and the DPTR will be
advanced to the end of the floating point number. If the DPTR does not point to a text string that
contains a valid floating point number, the accumulator will contain an 0FFH upon return.

OPBYTE = 152 (98) OUTPUT, IN HEX, TO THE CONSOLE OUTPUT DRIVER, THE

CONTENTS OF R3:R1

This routine is used to display HEX numbers, assuming that they are in registers R3:R1. If R3 = 0,
leading zeros can be suppressed by setting BIT 54 (36H) before calling this routine. If BIT 54 (36H) is
cleared when this routine is called, the driver will always output four hex digits followed by the
character H. This routine always outputs a space character (20H) to the console device, before any hex
digits are output. BIT 54 (36H) is bit 6 of internal RAM location 38.

- 123 -

intel

9.6 ADDED LINK ROUTINES TO VERSION 1.1

EXAMPLE:

M
C
S
-
5
1

M
A
C
R
O

A
S
S
E
M
B
L
E
R

 I
S
I
S
-
I
I

M
C
S
-
5
1

M
A
C
R
O

A
S
S
E
M
B
L
E
R

V
1
.
0

O
B
J
E
C
T

M
O
D
U
L
E

P
L
A
C
E
D

I
N
:
F
4
:
D
E
M
O

H
E
X

A
S
S
E
M
B
L
E
R

I
N
V
O
K
E
D

B
Y
:

A
S
M
5
1

:
F
4
:
D
E
M
O

 L
O
C

O
B
J

L
I
N
E

S
O
U
R
C
E

1

;
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

2

;

3

;

T
h
e

f
o
l
l
o
w
i
n
g

i
s

a
n

e
x
a
m
p
l
e

o
f

a

p
r
o
g
r
a
m

t
h
a
t

u
s
e
s

t
h
e

n
e
w

O
P
B
Y
T
E
S

4

;

a
v
a
i
l
a
b
l
e

i
n

v
e
r
s
i
o
n

1
.
1

o
f

M
C
S

B
A
S
I
C
-
5
2
.

T
h
i
s

c
o
d
e

i
s

b
y

n
o

m
e
a
n
s

5

;

o
p
t
i
m
i
z
e
d

b
u
t

i
t

i
s

m
e
a
n
t

t
o

d
e
m
o
n
s
t
r
a
t
e

h
o
w

t
h
e

u
s
e
r

c
a
n

d
e
f
i
n
e

6

;

"
c
u
s
t
o
m
i
z
e
d
"

c
o
m
m
a
n
d
s

a
n
d

s
t
a
t
e
m
e
n
t
s

i
n

v
e
r
s
i
o
n

1
.
1

o
f

M
C
S

B
A
S
I
C
-
5
2
.

7

;

8

;

T
h
e

n
e
w

c
o
m
m
a
n
d

d
e
f
i
n
e
d

h
e
r
e

i
s

D
I
S
P
L
A
Y
.

W
h
a
t

i
t

d
o
e
s

i
s

d
i
s
p
l
a
y

a

9

;

r
e
g
i
o
n

o
f

e
x
t
e
r
n
a
l

d
a
t
a

m
e
m
o
r
y

t
o

t
h
e

c
o
n
s
o
l
e

d
e
v
i
c
e
.

T
h
e

s
y
n
t
a
x

1
O

;

f
o
r

t
h
i
s

s
t
a
t
e
m
e
n
t

i
s
:

1
1

;

1
2

;

D
I
S
P
L
A
Y

[
e
x
p
r
]
,

[
e
x
p
r
]

1
3

;

1
4

;

W
h
e
r
e

t
h
e

f
i
r
s
t

e
x
p
r
e
s
s
i
o
n

i
s

t
h
e

s
t
a
r
t
i
n
g

a
d
d
r
e
s
s

a
n
d

t
h
e

l
a
s
t

1
5

;

e
x
p
r
e
s
s
i
o
n

i
s

t
h
e

e
n
d
i
n
g

a
d
d
r
e
s
s
.

I
n

t
h
i
s

e
x
a
m
p
l
e

t
h
e

D
I
S
P
L
A
Y

i
s

1
6

;

t
r
e
a
t
e
d

l
i
k
e

a

c
o
m
m
a
n
d

w
h
i
c
h

m
e
a
n
s

t
h
a
t

i
t

c
a
n
n
o
t

b
e

e
x
e
c
u
t
e
d

i
n

1
7

;

R
U
N

m
o
d
e
.

1
8

;

1
9

;

T
h
e

o
u
t
p
u
t

f
o
r

t
h
e

D
I
S
P
L
A
Y

c
o
m
m
a
n
d

i
s

a
s

f
o
l
l
o
w
s
:

2
0

;

2
1

;

A
D
D
R
E
S
S

t
h
e
n

1
6

B
y
t
e
s

o
f

C
h
a
r
a
c
t
e
r
s

i
.

e
.

2
2

;

2
3

;

1
0
0
0
H

0
0
H

2
2
H

3
3
H

2
7
H

.

.

.

.

.

.

.

.

2
4

;

2
5

;

N
o
w

o
n

t
o

t
h
e

p
r
o
g
r
a
m
.

2
6

;
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- 124 -

intel

L
O
C

O
B
J

L
I
N
E

S
O
U
R
C
E

2
7

2
0
0
2

2
8

O
R
G

2
0
0
2
H

2
9

2
0
0
2

5
A

3
0

D
B

5
A
H

;

T
e
l
l

b
a
s
i
c

t
h
a
t

e
x
p
a
n
s
i
o
n

o
p
t
i
o
n

i
s

3
1

;

p
r
e
s
e
n
t

2
0
4
8

3
2

O
R
G

2
0
4
8
H

3
3

2
0
4
8

D
2
2
D

3
4

S
E
T
B

4
5

;

S
e
t

t
h
e

b
i
t

t
h
a
t

s
a
g
s

s
o

2
0
4
A

2
2

3
5

R
E
T

3
6

2
0
7
0

3
7

O
R
G

2
0
7
0
H

;

S
e
t

u
p

D
P
T
R

t
o

J
u
m
p

t
a
b
l
e

3
8

2
0
7
0

9
0
2
0
7
C

3
9

M
O
V

D
P
T
R
,
#
V
E
C
T
O
R
_
T
A
B
L
E

2
0
7
3

2
2

4
0

R
E
T

4
1

2
0
7
8

4
2

O
R
G

2
0
7
8
H

;

S
e
t

u
p

D
P
T
R

t
o

e
x
p
a
n
s
i
o
n

t
a
b
l
e

4
3

2
0
7
8

9
0
2
0
7
E

4
4

M
O
V

D
P
T
R
,
#
U
S
E
R
_
T
A
B
L
E

2
0
7
8

2
2

4
5

R
E
T

4
6

4
7

V
E
C
T
O
R

T
A
B
L
E
:

4
8

2
0
7
C

2
0
8
7

4
9

D
W

D
O
_
D
I
S
P
L
A
Y

;

T
h
i
s

i
s

t
h
e

a
d
d
r
e
s
s

o
f

D
I
S
P
L
A
Y

5
0

5
1

U
S
E
R

T
A
B
L
E
:

5
2

2
0
7
E

1
0

5
3

D
B

1
0
H

;

T
o
k
e
n

f
o
r

D
i
s
p
l
a
y

2
0
7
F

4
4
4
9
5
3
5
0

5
4

D
B

'
D
I
S
P
L
A
Y
'

;

A
S
C
I
I

f
o
r

d
i
s
p
l
a
y

2
0
8
3

4
C
4
1
5
9

2
0
8
6

F
F

5
5

D
B

0
F
F
H

;

E
n
d

o
f

t
a
b
l
e

(
s
h
o
r
t

t
a
b
l
e
)

5
6

5
7

5
8

5
9

D
O

D
I
S
P
L
A
Y
:

6
0

2
0
8
7

3
0
2
F
6
3

6
1

J
N
P

4
7
,
D
U
M
M
Y

;

m
a
k
e

s
u
r
e

t
h
a
t

M
C
S

B
A
S
I
C
-
5
2

i
s

i
n

6
2

;

t
h
e

c
o
m
m
a
n
d

m
o
d
e
.

B
i
t

4
7

i
s

s
e
t

6
3

;

i
f

i
t

i
s
.

6
4

2
0
8
A

7
4
3
9

6
5

M
O
V

A
,
#
5
7

;

E
v
a
l
u
a
t
e

t
h
e

f
i
r
s
t

e
x
p
r
e
s
s
i
o
n

a
f
t
e
r

2
0
8
C

1
2
0
0
3
0

6
6

L
C
A
L
L

3
0
H

;

t
h
e

k
e
y
w
o
r
d

d
i
s
p
l
a
y
,

M
C
S

B
A
S
I
C
-
5
2

6
7

;

w
i
l
l

h
a
n
d
l
e

a
n
y

e
r
r
o
r
s
.

T
h
e

v
a
l
u
e

6
8

;

o
f

t
h
e

e
x
p
r
e
s
s
i
o
n

w
i
l
l

b
e

o
n

t
h
e

6
9

;

A
r
g
u
m
e
n
t

S
t
a
c
k
.

7
0

9.6 ADDED LINK ROUTINES TO VERSION 1.1

- 125 -

intel

L
O
C

O
B
J

L
I
N
E

S
O
U
R
C
E

 2
0
8
F

7
4
4
0

7
1

M
O
V

A
,
#
6
4

;

G
e
t

t
h
e

c
h
a
r
a
c
t
e
r

a
f
t
e
r

t
h
e

e
x
p
r
e
s
s
i
o
n

2
0
9
1

1
2
0
0
3
0

7
2

L
C
A
L
L

3
0
H

;

a
n
d

b
u
m
p

t
h
e

B
A
S
I
C

t
e
x
t

p
o
i
n
t
e
r

7
3

2
0
9
4

B
4
2
C
6
A

7
4

C
J
N
E

A
,
#
'
,
'
,
C
_
E
R
R
O
R
;

M
a
k
e

s
u
r
e

i
t

i
s

a

c
o
m
m
a
,

i
f

n
o
t

d
o

a
n

7
9

;

e
r
r
o
r

7
6

2
0
9
7

7
4
3
9

7
7

M
O
V

A
,
#
5
7

;

E
v
a
l
u
a
t
e

t
h
e

n
e
x
t

e
x
p
r
e
s
s
i
o
n

(
t
h
e

2
0
9
9

1
2
0
0
3
0

7
8

L
C
A
L
L

3
0
H

;

e
n
d
i
n
g

a
d
d
r
e
s
s
)

a
n
d

p
u
t

i
t

o
n

t
h
e

7
9

;

A
r
g
u
m
e
n
t

S
t
a
c
k

8
0

2
0
9
C

7
4
0
1

8
1

M
O
V

A
,
#
1

;

C
o
n
v
e
r
t

t
h
e

l
a
s
t

e
x
p
r
e
s
s
i
o
n

(
t
h
e

2
0
9
E

1
2
0
0
3
0

8
2

L
C
A
L
L

3
0
H

;

e
n
d
i
n
g

a
d
d
r
e
s
s
)

o
n

t
h
e

s
t
a
c
k

t
o

8
3

;

a
n

i
n
t
e
g
e
r

a
n
d

p
u
t

i
t

i
n

R
3
:
R
1

8
4

2
0
A
1

8
9
1
8

8
5

M
O
V

1
8
H
,
R
1

;

S
a
v
e

t
h
e

e
n
d
i
n
g

a
d
d
r
e
s
s

i
n

t
h
e

u
s
e
r

2
0
A
3

8
B
1
9

8
6

M
O
V

1
9
H
,
R
3

;

r
e
s
e
r
v
e
d

l
o
c
a
t
i
o
n
s

1
8
H

a
n
d

1
9
H
.

T
h
i
s

8
7

;

i
s

r
e
s
e
r
v
e
d

a
s

r
e
g
i
s
t
e
r

b
a
n
k

3

8
8

2
0
A
5

7
4
0
1

8
9

M
O
V

A
,
#
1

;

C
o
n
v
e
r
t

t
h
e

f
i
r
s
t

e
x
p
r
e
s
s
i
o
n

(
t
h
e

2
0
A
7

1
2
0
0
3
0

9
0

L
C
A
L
L

3
0
H

;

s
t
a
r
t
i
n
g

a
d
d
r
e
s
s
)

o
n

t
h
e

s
t
a
c
k

t
o

9
l

;

a
n

I
n
t
e
g
e
r

a
n
d

p
u
t

i
t

i
n

R
3
:
R
1

9
2

2
0
A
A

8
9
1
A

9
3

M
O
V

1
A
H
.
R
1

;

S
a
v
e

t
h
e

s
t
a
r
t
i
n
g

a
d
d
r
e
s
s

i
n

t
h
e

u
s
e
r

2
0
A
C

8
B
1
B

9
4

M
O
V

1
B
H
.
R
3

;

r
e
s
e
r
v
e
d

l
o
c
a
t
i
o
n
s

1
A
H

a
n
d

1
8
H

9
5

9
6

;

N
o
w

e
v
e
r
y
t
h
i
n
g

i
s

s
e
t

u
p

t
o

l
o
o
p

9
7

2
0
A
E

C
3

9
8

L
O
O
P
1
:

C
L
R

C

;

C
h
e
c
k

t
o

m
a
k
e

s
u
r
e

t
h
a
t

t
h
e

s
t
a
r
t
i
n
g

2
0
A
F

E
5
1
8

9
9

M
O
V

A
,
1
8
H

;

o
r

c
u
r
r
e
n
t

a
d
d
r
e
s
s

i
s

<
=

t
h
e

e
n
d
i
n
g

2
0
B
1

9
5
1
A

1
0
0

S
U
B
8

A
,
1
A
H

;

a
d
d
r
e
s
s

2
0
B
3

E
5
1
9

1
0
1

M
O
V

A
,
1
9
H

2
0
B
5

9
5
1
B

1
0
2

S
U
B
B

A
,
1
B
H

2
0
B
7

5
0
0
4

1
0
3

J
N
C

L
O
O
P
2

;

I
f

t
h
e

c
a
r
r
y

i
s

s
e
t
,

i
t
'
s

o
v
e
r

2
0
B
9

E
4

1
0
4

C
L
R

A

;

G
o

t
o

t
h
e

c
o
m
m
a
n
d

m
o
d
e

 2
0
B
A

0
2
0
0
3
0

1
0
5

L
J
M
P

3
0
H

;

(
i
f

d
i
s
p
l
a
y

w
a
s

a

s
t
a
t
e
m
e
n
t

i
n
s
t
e
a
d

1
0
6

;

o
f

a

c
o
m
m
a
n
d
.

t
h
i
s

r
o
u
t
i
n
e

w
o
u
l
d

1
0
7

;

e
x
i
t

w
i
t
h

a

R
E
T
)

1
0
8

2
0
B
D

7
4
0
7

1
0
9

L
O
O
P
2
:

M
O
V

A
,
#
7

;

D
o

a

c
a
r
r
i
a
g
e

r
e
t
u
r
n
,

l
i
n
e

f
e
e
d

2
0
B
F

1
2
0
0
3
0

1
1
0

L
C
A
L
L

3
0
H

1
1
1

2
0
C
2

A
9
1
A

1
1
2

M
O
V

R
1
.
1
A
H

;

O
u
t
p
u
t

t
h
e

S
t
a
r
t
i
n
g

a
d
d
r
e
s
s

2
0
C
4

A
B
1
B

1
1
3

M
O
V

R
3
.
1
8
H

1
1
4

2
0
C
6

C
2
3
6

1
1
5

C
L
R

3
6
H

;

D
o
n
'
t

s
u
p
p
r
e
s
s

l
e
a
d
i
n
g

z
e
r
o
s

9.6 ADDED LINK ROUTINES TO VERSION 1.1

 - 126 -

intel

L
O
C

O
B
J

L
I
N
E

S
O
U
R
C
E

 2
0
C
8

7
4
9
8

1
1
6

M
O
V

A
,
#
9
8
H

2
0
C
A

1
2
0
0
3
0

1
1
7

L
C
A
L
L

3
0
H

1
1
8

2
0
C
D

8
5
1
A
8
2

1
1
9

L
O
O
P
3
:

M
O
V

D
P
L
,
1
A
H

;

N
o
w
,

s
e
t

u
p

t
o

r
e
a
d

1
6

b
y
t
e
s

2
0
D
0

8
5
1
B
8
3

1
2
0

M
O
V

D
P
H
,
1
B
H

;

p
u
t

a
d
d
r
e
s
s

i
n

D
P
T
R

1
2
1

2
0
D
3

E
0

1
2
2

M
O
V
X

A
,
@
D
P
T
R

;

R
e
a
d

t
h
e

b
y
t
e

i
n

e
x
t
e
r
n
a
l

R
A
M

2
0
D
4

A
3

1
2
3

I
N
C

D
P
T
R

;

B
u
m
p

t
o

t
h
e

n
e
x
t

l
o
c
a
t
i
o
n

1
2
4

2
0
D
5

8
5
8
2
1
A

1
2
5

M
O
V

1
A
H
,
D
P
L

;

S
a
v
e

t
h
e

A
d
d
r
e
s
s

2
0
D
8

8
5
8
3
1
B

1
2
6

M
O
V

1
B
H
,
D
P
H

1
2
7

2
0
D
B

F
9

1
2
8

M
O
V

R
1
,
A

;

O
u
t
p
u
t

t
h
e

b
y
t
e

2
0
D
C

7
B
0
0

l
2
9

M
O
V

R
3
,
#
0

;

T
h
e

h
i
g
h

b
y
t
e

i
s

a
l
w
a
y
s

z
e
r
o

2
0
D
E

D
2
3
6

1
3
0

S
E
T
B

3
6
H

;

S
u
p
p
r
e
s
s

l
e
a
d
i
n
g

Z
e
r
o
s

2
0
E
0

7
4
9
8

1
3
1

M
O
V

A
,
#
9
8
H

2
0
E
2

1
2
0
0
3
0

1
3
2

L
C
A
L
L

3
0
H

1
3
3

2
0
E
5

E
5
1
A

1
3
4

M
O
V

A
,
1
A
H

;

C
h
e
c
k

t
o

s
e
e

i
f

o
n

a

1
6

b
y
t
e

b
o
u
n
d
a
r
y

2
0
E
7

5
4
0
F

1
3
5

A
N
L

A
,
#
0
F
H

2
0
E
9

7
0
E
2

1
3
6

J
N
Z

L
O
O
P
3

;

L
o
o
p

u
n
t
i
l

o
n

a

1
6

B
y
t
e

B
o
u
n
d
a
r
y

2
0
E
B

8
0
C
1

1
3
7

S
J
M
P

L
O
O
P
1

1
3
8

1
3
9

D
U
M
M
Y
:

1
4
0

2
0
E
D

7
4
0
7

1
4
1

M
O
V

A
,
#
7

;

D
o

a

c
a
r
r
i
a
g
e

r
e
t
u
r
n
-
l
i
n
e

f
e
e
d

2
0
E
F

1
2
0
0
3
0

1
4
2

L
C
A
L
L

3
0
H

1
4
3

2
0
F
2

7
B
2
1

1
4
4

M
O
V

R
3
,
#
H
I
G
H

D
_
M
S
G
;

D
i
s
p
l
a
y

t
h
e

e
r
r
o
r

m
e
s
s
a
g
e

2
0
F
4

7
9
1
5

1
4
5

M
O
V

R
1
,
#
L
O
W

D
_
M
S
G

2
0
F
6

D
2
3
4

1
4
6

S
E
T
B

5
2

;

P
r
i
n
t

f
r
o
m

R
O
M

2
0
F
8

7
4
0
6

1
4
7

M
O
V

A
,
#
6

2
0
F
A

1
2
0
0
3
0

1
4
8

L
C
A
L
L

3
0
H

2
0
F
D

E
4

1
4
9

C
L
R

A

;

G
o

b
a
c
k

t
o

t
h
e

c
o
m
m
a
n
d

m
o
d
e

2
0
F
E

0
2
0
0
3
0

1
5
0

L
J
M
P

3
0
H

1
5
1

1
5
2

C
_
E
R
R
O
R
:

1
5
3

2
1
0
1

7
4
0
7

1
5
4

M
O
V

A
,
#
7

;

D
o

w
h
a
t

w
e

d
i
d

b
e
f
o
r
e

2
1
0
3

1
2
0
0
3
0

1
5
5

L
C
A
L
L

3
0
H

1
5
6

2
1
0
6

7
B
2
1

1
5
7

M
O
V

R
3
,
#
H
I
G
H

C
_
M
S
G

2
1
0
8

7
9
3
B

1
5
8

M
O
V

R
1
,
#
L
O
W

C
_
M
S
G

2
1
0
A

D
2
3
4

1
5
9

S
E
T
B

5
2

2
1
0
C

7
4
0
6

1
6
0

M
O
V

A
,
#
6

2
1
0
E

1
2
0
0
3
0

1
6
1

L
C
A
L
L

3
0
H

9.6 ADDED LINK ROUTINES TO VERSION 1.1

 - 127 -

intel

L
O
C

O
B
J

L
I
N
E

S
O
U
R
C
E

 2
1
1
1

E
4

1
6
2

C
L
R

A

2
1
1
2

0
2
0
0
3
0

1
6
3

L
J
M
P

3
0
H

1
6
4

2
1
1
5

4
4
4
9
5
3
5
0

1
6
5

D
_
M
S
G
:

D
B

"
D
I
S
P
L
A
Y

I
S

A

C
O
M
M
A
N
D
,

N
O
T

A

S
T
A
T
E
M
E
N
T
"

2
1
1
9

4
C
4
1
5
9
2
0

2
1
1
D

4
9
5
3
2
0
4
1

2
1
2
1

2
0
4
3
4
F
4
D

2
1
2
5

4
D
4
1
4
E
4
4

2
1
2
9

2
C
2
0
4
E
4
F

2
1
2
D

5
4
2
0
4
1
2
0

2
1
3
1

5
3
5
4
4
1
5
4

2
1
3
5

4
5
4
D
4
5
4
E

2
1
3
9

5
4
2
2

1
6
6

2
1
3
B

5
9
4
F
5
5
2
0

1
6
7

C
_
M
S
G
:

D
B

"
Y
O
U

N
E
E
D

A

C
O
M
M
A

T
O

M
A
K
E

D
I
S
P
L
A
Y

W
O
R
K
"

2
1
3
F

4
E
4
5
4
5
4
4

2
1
4
3

2
0
4
1
2
0
4
3

2
1
4
7

4
F
4
D
4
D
4
1

2
1
4
B

2
0
5
4
4
F
2
0

2
1
4
F

4
D
4
1
4
B
4
5

2
1
5
3

2
0
4
4
4
9
5
3

2
1
5
7

5
0
4
C
4
1
5
9

2
1
5
B

2
0
5
7
4
F
5
2

2
1
5
F

4
B
2
2

1
6
8

1
6
9

E
N
D

 A
S
S
E
M
B
L
Y

C
O
M
P
L
E
T
E
.

N
O

E
R
R
O
R
S

F
O
U
N
D

(
t
h
a
t
'
-

a
l
l

i
t

t
a
k
e
s
)

9.6 ADDED LINK ROUTINES TO VERSION 1.1

 - 128 -

intel

9.7 INTERRUPTS

Interrupts can be handled by MCS BASIC-52 in two distinct ways. The first, which has already been
discussed, allows statements in an MCS BASIC-52 program to perform the required interrupt routine.
The ONTIME and ONEX1 statements enable this particular interrupt mode. Additionally, setting BIT
26.1H permits EXTERNAL INTERRUPT 0 to act as a "fake" DMA input and the details of this feature
are in the BELLS, WHISTLES, and ANOMALIES section of this manual. The second method of
handling interrupts in MCS BASIC-52 allows the programmer to write assembly language routines to
perform the interrupt task. This method yields a much faster interrupt response time, but, the
programmer must exercise some caution.

All interrupt vectors on the MCS BASIC-52 device are "mirrored" to external PROGRAM MEMORY
LOCATIONS 4003H through 402BH inclusive. The only MCS BASIC-52 STATEMENTS that enable
the interrupts on the 8052AH are the CLOCK1 and the ONEX1 STATEMENTS. If interrupts are NOT
enabled by these STATEMENTS, BASIC assumes that the USER is providing the interrupt routine in
assembly language. The vectors for the various interrupts are as follows:

 LOCATION---INTERRUPT

 4003H------EXTERNAL INTERRUPT 0

 400BH------TIMER 0 OVERFLOW

 4013H------EXTERNAL INTERRUPT 1

 401BH------TIMER 1 OVERFLOW

 4023H------SERIAL PORT

 402BH------TIMER 2 OVERFLOW/EXTERNAL INTERRUPT 2

The programmer can enable interrupts in MCS BASIC-52 by using the statement IE = IE.OR.XXH,
where XX enables the appropriate interrupts. The bits in the interrupt register (IE) on the 8052AH are
defined as follows:

BIT 7 6 5 4 3 2 1 0

 EA X ET2 ES ET1 EX1 ET0 EX0

 ENABLE UNDE- TIMER 2 SERIAL TIMER 1 EXT 1 TIMER 0 EXT 0
 ALL FINED PORT

- 129 -

intel

9.7 INTERRUPTS

Interrupts are enabled when the appropriate BITS in the IE register are set to a one. Details of the
8052AH interrupt structure are available in the MICROCONTROLLER USERS MANUAL available
from INTEL.

IMPORTANT NOTE!!

Before MCS BASIC-52 vectors to the USER interrupt locations just described, the PROCESSOR
STATUS WORD (PSW) is PUSHED onto the STACK. So, the USER does not have to save the PSW in
the assembly language interrupt routine!!! HOWEVER, THE USER MUST POP THE PSW BEFORE
RETURNING FROM THE INTERRUPT.

VERY IMPORTANT NOTE!!!

If the user is running some interrupt driven "background" routine while MCS BASIC-52 is running a
program, the user MUST NOT CALL any of the assembly language routines available in the MCS
BASIC-52 device. The only way the routines in the MCS BASIC-52 device can be accessed is when the
CALL statement in MCS BASIC-52 is used to transfer control to the users assembly language program.
The reason for this is that the MCS BASIC-52 interpreter must be in a "known" state before the user can
call the routines available in the MCS BASIC-52 device and a "random" interrupt does not guarantee
that the interpreter is in this known state. The user should use REGISTER BANK 3 to handle interrupt
routines in assembly language.

 - 130 -

intel

9.8 RESOURCE ALLOCATION

Specific statements in MCS BASIC-52 require the use of certain hardware features on the device. If the
user wants to use these hardware features for interrupt driven routines, conflicts between BASIC and the
assembly language routine may occur. To avoid these potential conflicts, the programmer needs to know
what hardware features are used by MCS BASIC-52. The following is a list of the COMMANDS and/or
STATEMENTS that use the hardware features on the 8052AH.

 CLOCK1 -- uses TIMER/COUNTER 0 in the 13 bit 8048 mode.

 PWM -- uses TIMER/COUNTER 1 in the 16 bit mode

 LIST# -- uses TIMER/COUNTER 1 to generate baud rate in 16 bit mode

 PRINT# -- same as LIST#

 PROG -- uses TIMER/COUNTER 1 for programming pulse

 ONEX1 -- uses EXTERNAL INTERRUPT 1

In addition, TIMER/COUNTER 2 is used to generate the baud rate for the serial port. What the
preceding list means is that if CLOCK1, PWM, ONEX1, LIST#, PRINT#, and PROG
commands/statements are used by the programmer, the user MAY NOT use the associated
TIMER/COUNTER or EXTERNAL INTERRUPT pin for an assembly language routine.

MCS BASIC-52 initializes the TIMER/COUNTER modes by writing a 244 (0F4H), 16 (10H), and 52
(34H) to the TCON, TMOD, and T2CON registers respectively. These registers are initialized only
during the RESET initialization sequence, and MCS BASIC-52 assumes that these registers are NEVER
changed.
So, if the user changes the contents of TCON, TMOD, or T2CON, something funny and/or disastrous is
bound to happen if the Statements/Commands listed above are executed. If the user does not execute any
of the previously mentioned Statements or Commands, the user is free to use the interrupts in any way
suitable to the application.

- 131 -

intel

CHAPTER 10
System Configuration

10.1 MEMORY / HARDWARE CONFIGURATION

MCS BASIC-52 always requires at least 1K bytes of external memory. After reset, MCS BASIC-52
sizes the external memory. If less than 1K bytes of external memory are available, MCS BASIC-52 will
not "sign-on." in fact, it will internally loop forever. This obviously is not too exciting, so it is wise to
hang some external memory on the MCS BASIC-52 device.

MCS BASIC-52 sizes consecutative external memory locations from 0000H until a memory failure is
detected. The sizing operation is performed simply by writing a 5AH to an external memory location,
then testing the location. If the particular memory location passes this test, BASIC then writes a 00H to
the location, then again, checks the location. MCS BASIC-52 only sizes the external memory from
locations 0 through 0DFFFH. Memory locations 0E000H through 0FFFFH are reserved for user I/O
and/or assembly language programs.

The MCS BASIC-52 program resides in the 8K of ROM available in INTEL's 8052AH device and as a
result requires that external memory be "partitioned" in a specific manner. The architecture of the
8052AH is NOT Von Neumann. This means that Data and Program Memory do not reside in the same
physical address space on the 8052AH. Specifically, the /RD (pin 17) and /WR (pin 16) pins on the
8052AH are used to enable DATA memory and /PSEN (pin 29) pin is used to enable PROGRAM
memory. Depending on the hardware configuration, MCS BASIC-52 operates in two distinct "memory"
modes.

RAM ONLY MODE

In this mode of operation, Read/write memory is connected to the MCS BASIC-52 device starting at
memory address 0000H. Memory can be placed up to location 0FFFFH. In this mode of operation the
decoded addresses are used to generate the CHIP SELECT (/CS) signal for the RAM devices. The RD
pin on the 8052AH is used to generate the OUTPUT ENABLE (/OE) strobe and the /WR pin generates
the WRITE ENABLE (/WE or /WR) strobe. /PSEN is not used in the RAM only mode of operation. The
RAM only mode of operation offers the simplest hardware configuration available for the MCS BASIC-
52 device. An example of this configuration is shown in Figure 1. Since /PSEN is not used in the RAM
only mode, the user may not CALL assembly language routines. The RAM only also does not support
EPROM programming. In general, the RAM only mode will be used only to "check out" the device
during the initial system development stage.

 - 132 -

intel

10.1 MEMORY / HARDWARE CONFIGURATION

RAM / EPROM MODE

The RAM/EPROM mode of operation allows for the complete system implementation of MCS BASIC-
52. This mode of operation requires that external memory be mapped in a certain manner. The
RAM/EPROM memory configuration is as follows:

1) The /RD and the &WR pins on the MCS BASlC-52 device are used to enable RAM memory that is

addressed from 0000H to 7FFFH. Addresses are used to decode the chip select (/CS) for the RAM
devices and /RD and /WR are used to enable the /OE and /WE or (/WR) pins respectively.

2) The /PSEN pin on the MCS BASIC-52 device is used to enable EPROM memory that is addressed

from 2000H to 7FFFH. Addresses are used to decode the chip select (/CS) for the EPROM devices
and /PSEN is used to enable the /OE pin.

3) For addresses between 8000H and 0FFFFH both the /RD and the /PSEN pin on the MCS BASIC-52

device are used to enable the memory. Either EPROM or RAM devices can be placed in this address
space. To permit both the /RD and the /PSEN pins to enable addresses in this address space, /RD and
/PSEN must be logically "ANDED" together. This can be accomplished with a simple TTL gate such
as a 74LS08. The /WR pin on the MCS BASIC-52 device is used to write to RAM memory in this
same address space. The /PSEN and /RD signals do not have to be anded beyond address 7FFFH to
enable MCS BASIC-52 to program an EPROM. This is only a suggestion since it will permit the
user to execute assembly language routines as well as MCS BASIC-52 programs that are located in
this address space.

 - 133 -

intel

10.1 MEMORY / HARDWARE CONFIGURATION

This scheme of memory addressing actually permits MCS BASIC-52 to address 96K bytes of memory,
32K of RAM devices, 32K of EPROM/ROM devices and 32K of combined RAM/EPROM/ROM
devices. Since /RD and /PSEN are ANDED for addresses from 8000H through 0FFFFH, the 8052AH
"looks like" a Von Neumann machine in this address space. The XBY and CBY special function
operators will yield the same value when their arguments are between 8000H and 0FFFFH.

When the EPROM programming feature in MCS BASIC-52 is used, BASIC assumes that the EPROM
to be programmed is addressed starting at location 8000H. MCS BASIC-52 can only program EPROMS
addressed between 8000H and 0FFFFH. When the PROG command is used for the first time, on an
erased EPROM, MCS BASIC-52 stores this program beginning at address 8010H. Locations 8000H
through 800FH are used to save the baud rate information, plus configuration information. Some
suggestions for implementation of the RAM/EPROM mode are shown in figure 2.

 - 134 -

intel

10.2 EPROM PROGRAMMING CONFIGURATION / TIMING

With the proper hardware, the MCS BASIC-52 device can program just about any EPROM or EEPROM
device. The only requirement for EPROM programming is that the EPROM to be programmed is
addressed starting at location 8000H. MCS BASIC-52 requires very little external hardware to program
EPROMS. All of the critical EPROM programming timings are generated by three I/O port pins on the
MCS BASIC-52 device. These pins provide the following signals:

P1.3 -- ALE DISABLE

PORT 1, BIT 3 (pin 4 on the 8052AH) is used to DISABLE the ALE signal to the external latched
required by the 8052AH when external memory is addressed. This pin should be logically ANDED with
ALE. A simple TTL gate, such as a 74LS08 can be used to perform the ANDING function. Under
normal operation, P1.3 is in a logical high state (1). ONLY DURING EPROM PROGRAMMING IS
P1.3 PLACED IN A LOGICAL LOW STATE (0). Disabling the ALE signal to the external latch is
required to program EPROMS because of the way MCS BASIC-52 carries out the EPROM
programming process.

During programming, MCS BASIC-52 treats I/O PORT 0 and I/O PORT 2 as I/O ports, not as address/
data ports. MCS BASIC-52 first writes the low order address to be programmed to PORT 0. The data in
PORT 0 is then latched into the external address latch and then MCS BASIC-52 disables the ALE signal
to the latch by clearing bit P1.3. Thus, the low order address is "permanently" stored in the external
latch. MCS BASIC-52 then writes the high order address to PORT 2 and the DATA to be programmed
to PORT 0. So, the external address latch contains the low order address, PORT 2 contains the high
order address, and PORT 0 contains the DATA when EPROM programming occurs.

IMPORTANT NOTES

When PORT 0 on the 8052AH is used as an I/O port, the output structure is an "open drain"
configuration. This requires that "pull-up" resistors be placed on PORT 0 to permit MCS B ASIC-52 to
program EPROMS. Experimentally, 10K ohm pull-ups resistors on PORT 0 have yielded satisfactory
results.

In Version 1.1, INT0 must be kept high when programming EPROMs.

 - 135 -

intel

10.2 EPROM PROGRAMMING CONFIGURATION/TIMING

P1.4 -- PROGRAM PULSE WIDTH

PORT 1, BIT 4 (pin 5 on the 8052AH) is used to provide the 50 millisecond or the 1 millisecond
programming pulse. The length of the programming pulse is determined by whether the "normal" or the
"INTELligent" EPROM programming mode is selected. MCS BASIC-52 calculates the length of the
programming pulse from the assigned crystal value. So, be sure the proper XTAL has been assigned.
The accuracy of this pulse is within 10 CPU clock cycles. This pin is normally in a logical high (1) state.
It is asserted low (0) to program the EPROMS. Depending on the EPROM to be programmed this signal
will be used in different ways. More about this later.

P1.5 -- ENABLE PROGRAM VOLTAGE

PORT 1, BIT 5 (pin 6 on the 8052AH) is used to enable the EPROM programming voltage. This pin is
normally in a logical high (1) state. Prior to the EPROM programming operation, this pin is brought to a
logical low (0) state. This pin is used to turn on or off the high voltage (12.5 volts to 25 volts, depending
on the EPROM) required to program the EPROMS.

The timing for the EPROM programming pins is shown in figure 3. The hardware required to program
different devices is shown in figure 4. Note that with very little external hardware the MCS BASIC-52
device can program virtually all commercially available EPROMS. Additionally, figure 5 suggests a
circuit using an INTEL 2816A EEPROM. This circuit also features a push button erase option.

IMPORTANT NOTE

MCS BASIC-52 calculates the programming pulse width when the XTAL value is assigned. To insure
proper programming, make sure XTAL is assigned the proper value. MCS BASIC-52 performs the pro-
gramming pulse width calculation to within 5 clock cycles, so the accuracy of the programming pulse is
well within the limits of any EPROM device.

10.3 SERIAL PORT IMPLEMENTATION

The serial port I/O signals on the 8052AH are TTL compatible signals. They are typically not
compatible with most terminals. Figure 6 suggests hardware options for making the serial interface
compatible with terminals. The serial port is initialized by MCS BASIC-52 to the 8-bit uart mode. In this
mode 8 data bits, plus one start and one stop bit are transmitted. Parity is not used.

- 136 -

intel

8.
2k

+5
V

 V
C

C

 G

N
D

 D
I 0

 D

O
0

 D
I 1

 D

O
1

 D
I 2

 D

O
2

 D
I 3

 D

O
3

 D
I 4

 D

O
4

 D
I 5

 D

O
5

 D
I 6

 D

O
6

 D
I 7

 D

O
7

 E

 O
E

74

 LS

37
3

V C

C

 C

E

G
N

D

 A 0

 A 1

A 8

 A 2

 A 3

A 9

 A 4

 A 5

A 1

0
 A 6

 A 7

 O

0
 O

1
 O

2
 O

3
 O

4
 O

5
 O

6
 O

7

 O

E

 W
E

2K

 x 8

SR
AM

+5
V

+5
V

V C
C

 V
SS

 P1
.0

P1
.1

P1
.2

P1
.5

P1
.3

P1
.4

P1
.6

P1
.7

P2
.0

P2
.1

P2
.2

P2
.5

P2
.3

P2
.4

P2
.6

P2
.7

P0
.0

P0
.1

P0
.2

P0
.5

P0
.3

P0
.4

P0
.6

P0
.7

P3
.0

 (R
XD

)

P3
.1

 (T
XD

)

P3
.2

 (I
N

T0
)

P3
.5

 (T
1)

P3
.3

 (I
N

T1
)

P3
.4

 (T
0)

P3
.6

 (W
R

)

P3
.7

 (R
D

)

XT
AL

 2

XT
AL

 1

R
ES

ET

EA

AL
E

 P

SE
N

39

38

37

36

33

34

35

32

21

22

23

24

27

26

25

28

1 2 3 4 7 6 5 8

10 11 12 13 161514 17

30

29

3191819

40
20

M
C

S

B
AS

IC
-

+5
V 30

 p
F

30
 p

F

10
 µ

F

Fi
gu

re
 1

. I
nt

er
fa

ce
 to

 2
K

 x
 8

 S
ta

tic
 R

A
M

- 137 -

intel

Th
is

 sy
st

em
 w

ill
 d

ec
od

e:
 R

A
M

 fr
om

 0
 to

 1
6K

 o
n

2K
 b

ou
nd

ar
ie

s,
EP

R
O

M
 fr

om
 0

 to
 3

2K
 o

n
8K

 b
ou

nd
ar

ie
s,

R

AM
/E

PR
O

M
 fr

om
 3

2K
 to

 6
4K

 o
n

8K
 b

ou
nd

ar
ie

s

Fi
gu

re
 2

A
. F

ul
l s

ys
te

m
 w

ith
 E

PR
O

M
 p

ow
er

 o
n

pr
ot

ec
tio

n
(n

o
 D

M
A

)

V
PP

PG
M

 C

E
 A

12

 A
11

 A

10

 A
9

 A
8

 D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

 A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

 O

E 2 7 1 2 8

74
LS

08

1k

74
07

 +5
V

74
07

4.
7k

10
k

+2
1V

10
k

2N
44

03
1

+5
V

 P

1.
5

P1
.4

 R

ST

P2
.7

X
TA

L1

P2
.6

P2
.5

P2
.4

X
TA

L2

P2
.3

P2
.2

P2
.1

P2
.0

P0
.7

P0
.6

P0
.5

P0
.4

P0
.3

P0
.2

P0
.1

P0
.0

P1
.3

A
LE

SE
R

IA
L

 IN

W

R

R
D

PS
EN

SE
R

IA
L

 O
U

T

EA

V
cc

G
N

D

C
1

C
2

 D
7

 D

O
7

D
6

 D

O
6

D
5

 D

O
5

D
4

 D

O
4

D
3

 D

O
3

D
2

 D

O
2

D
1

 D

O
1

D
0

 D

O
0

 G
N

D

O
E

 V

cc

7 4 L S 3 7 3

74
LS

08

74
LS

08

+5
V

+5
V

14
89

14
88

4.
7

µF

C 1 =
C 2

 =
30

 pF

FO

R

XT
AL

S

40
 pF

FO
R

CE

RA
M

IC

RE

SO
NA

TO
RS

+5
V

7 6 5 4 3 2 1 0

 E3

 E2

 E1

 A
2 A
1

 A
0

7 4 L S 1 3 8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

 A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

 W
E

 O

E 2K

x8

ST
AT

IC

R
AM

 A
8

 C

E
A

9
 A

10

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

 A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

 W
E

 O

E 2K

x8

ST
AT

IC

R
AM

 A
8

 C

E
A

9
 A

10

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

 A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

 W
E

 O

E 2K

x8

ST
AT

IC

R
AM

 A
8

 C

E
A

9
 A

10

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

 A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

 W
E

 O

E 2K

x8

ST
AT

IC

R
AM

 A
8

C
E

A
9

 A
10

+5

+5

7 6 5 4 3 2 1 0 E3

 E1

E2

A
2

7 4 L S 1 3 8

74
LS

08

40
01

40
01

+5
V

10
0K

+5
V

 10
K

40
01

+5
V

 R
D

 EN

AB
LE

 F
O

R

 M
EM

O
R

Y
AD

D
R

ES
SE

D

 FR
O

M
 3

2K
 T

O
 6

4K

A
D

D
IT

IO
N

A
L

C
H

IP
 E

N
A

B
LE

S
 8K

-1
6K

 W
IT

H
 2

K
BO

U
N

D
AR

IE
S

A
D

D
IT

IO
N

A
L

C
H

IP
 E

N
A

B
LE

 0
-6

4K
 W

IT
H

 8
K

 B
O

U
N

D
A

R
IE

S

A
1

 A
0

- 138 -

intel

Fi
gu

re
 2

B
. P

ro
gr

am
m

in
g

28
17

A
’s

 w
ith

 V
er

si
on

 1
.1

 o
f M

C
S

B
A

SI
C

-5
2

7 6 5 4 3 2 1 0

W
R

 R

EA
D

Y
 C

E
 A

10

 A
9

 A
8

 D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

 A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

 OE

 2 8 1 7 A

74
LS

08

 C
E

 A
12

 A

11

 A
10

 A

9
 A

8
 D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
 A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0

 W
E

O

E 8K

x8

ST
AT

IC

R
AM

 D
7

 D

O
7

D
6

 D

O
6

D
5

 D

O
5

D
4

 D

O
4

D
3

 D

O
3

D
2

 D

O
2

D
1

 D

O
1

D
0

 D

O
0

7 4 L S 3 7 3

74
LS

08

+5
V

+5
V

 E3

 E2

 E1

 A
2 A
1

 A
0

+5
V

7 4 L S 1 3 8

+5

+5

+5
V

8.
2k

10
M

FD

C 1 =
C 2

 =
30

 pF

FO

R

XT
AL

S

40
 pF

FO
R

CE

RA
M

IC

RE

SO
NA

TO
RS

C
1

C
2

P1
.4

 R

ST

P2
.7

X
TA

L1

P2
.6

P2
.5

P2
.4

X
TA

L2

P2
.3

P2
.2

P2
.1

P2
.0

P0
.7

P0
.6

P0
.5

P0
.4

P0
.3

P0
.2

P0
.1

P0
.0

P1
.3

A
LE

SE
R

IA
L

 IN

W
R

R
D

PS
EN

SE
R

IA
L

 O
U

T

EA

V
cc

G
N

D

14
89

14
88

IN
T0

D

M
A

R

EQ
U

ES
T

(P
3.

2)

10
k

+5

- 139 -

intel

 E3

 E2

 E1

 A
2 A
1

 A
0

Fi
gu

re
 2

C
. P

ro
gr

am
m

in
g

28
17

A
’s

 w
ith

 V
er

si
on

 1
.0

 o
f M

C
S

B
A

SI
C

-5
2

7 6 5 4 3 2 1 0

 W
R

 C
E

 A
10

 A

9
 A

8
 D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
 A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0
 O

E 2 8 1 7 A

74
LS

08

 C
E

 A
12

 A

11

 A
10

 A

9
 A

8
 D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
 A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0
 W

E

O
E 8K

x8

ST

AT
IC

R

A
M

 D
7

 D
O

7
D

6

 D

O
6

D
5

 D
O

5
D

4

 D

O
4

D
3

 D
O

3
D

2

 D

O
2

D
1

 D
O

1
D

0

 D

O
0

 G
N

D

O
E

V

cc

7 4 L S 3 7 3

74
LS

08

+5
V

+5
V

+5
V

7 4 L S 1 3 8

+5

+5

+5
V

8.
2k

10
M

FD

C 1 =
C 2

 =
30

 pF

FO

R

XT
AL

S

40
 pF

FO
R

CE

RA
M

IC

RE

SO
NA

TO
RS

C
1

C
2

P1
.4

 R

ST

P2
.7

X
TA

L1

P2
.6

P2
.5

P2
.4

X
TA

L2

P2
.3

P2
.2

P2
.1

P2
.0

P0
.7

P0
.6

P0
.5

P0
.4

P0
.3

P0
.2

P0
.1

P0
.0

P1
.3

A
LE

SE
R

IA
L

 IN

W

R

R
D

PS
EN

SE
R

IA
L

 O
U

T

EA

V
cc

G
N

D

14
89

14
88

IN
T0

D

M
A

R

EQ
U

ES
T

(P
3.

2)

+5

10
k

10
k

33
0

pF

74
LS

08

- 140 -

intel

P1
.5

EP
R

O
M

 V
O

LT
AG

E
EN

AB
LE

PO
R

T
0 P1
.3

AL
E

D
IS

AB
LE

PO
R

T
1.

4

PR
O

G
R

AM
M

IN
G

 P
U

LS
E

PO
R

T
2

EP
R

O
M

 P
R

O
G

R
AM

M
IN

G
 T

IM
IN

G

LO
W

 O
R

D
ER

 A
D

D
R

ES
S

VA
LI

D

D
AT

A
VA

LI
D

H
IG

H
 O

R
D

ER
 A

D
D

R
ES

S
 VA

LI
D

1
M

S
 IF

 IN
TE

LL
IG

EN
T

AL
G

O
R

IT
H

M
 U

SE
D

50
 M

S

40
 T

C
Y

 M
IN

82

 T
C

Y
 M

IN

6 TC
Y

 M
IN

1
TC

Y
1

TC
Y

N
O

TE
:

H
O

R
IZ

O
N

TA
L

TI
M

E
SC

AL
E

IS
 N

O
T

TC

Y
-

 1
2

 ;

 T
C

Y
–

1
us

XT
AL

 A

T
12

 M
H

z

W
H

EN
 U

SI
N

G
 T

H
E

IN
TE

LL
IG

EN
T

AL
G

O
R

IT
H

M
 (F

PR
O

G
)

TH

E
LE

N
G

TH
 O

F
TH

E
LA

ST
 P

R
O

G
R

AM
M

IN
G

 P
U

LS
E

IS

 T
H

R
EE

 T
IM

ES
 T

H
E

TO
TA

L
N

U
M

BE
R

 O
F

PU
LS

ES

AF

TE
R

 T
H

E
PR

O
M

 IS
 P

R
O

G
R

AM
M

ED
.

Fi
gu

re
 3

A
. E

PR
O

M
 P

ro
gr

am
m

in
g

Ti
m

in
g

Ve
rs

io
n

- 141 -

intel

AD
D

R
ES

S
LO

W
/

D
AT

A

PO
R

T
0

AD
D

R
ES

S
H

IG
H

 PO

R
T

2
AD

D
R

ES
S

H
IG

H

N
O

TE
 1

. T
hi

s
pu

ls
e

is
 e

ith
er

 1
 m

illi
se

co
nd

 (I
N

TE
Li

ge
nt

 a
lg

or
ith

m
) o

r 5
0

m
illi

se
co

nd
s

(n
or

m
al

 a
lg

or
ith

m
).

 N
O

TE
 2

. W
he

n
PR

O
G

 c
om

m
an

d
is

 e
xe

cu
te

d,
 P

1.
5

go
es

 lo
w

, a
nd

 th
en

 th
e

EP
R

O
M

 is
 re

ad
 to

 s
ee

 w
he

re
 to

 p
la

ce
 th

e
BA

SI
C

 p
ro

gr
am

.

1
tc

y

Fi
gu

re
 3

B
. E

PR
O

M
 P

ro
gr

am
m

in
g

Ti
m

in
g

fo
r V

er
si

on
 1

.1

EP
R

O
M

 V
O

LT
AG

E
EN

AB
LE

P1
.5

AL
E

D
IS

AB
LE

P1
.3

PR
O

G
R

AM
M

IN
G

 P
U

LS
E

PO
R

T
1.

4

R
EA

D

P3
.7

D
O

N
’T

 C
AR

E
N

EX
T

 AD
D

R
ES

S
H

IG
H

D
O

N
’T

 C
AR

E
N

EX
T

 AD
D

R
ES

S
LO

W

AD
D

R
ES

S
LO

W

D
AT

A
O

U
T

D
AT

A
IN

FL

O
AT

FL

O
AT

30
 tc

y
1

tc
y

30
 tc

y

30
 tc

y
1

tc
y

SA
M

PL
ED

 tc
y

NO
TE

 2
tc

y

NO
TE

 1
tc

y

PR
O

G
R

AM
 O

N
E

B
YT

E

36
 tc

y
1

tc
y

1
tc

y

VE
R

IF
Y

B
YT

E
PR

O
G

R
AM

 N
EX

T
 B

YT
E

- 142 -

intel

21
VOLTS

2N4403

1N270

10K

+5
 VOLTS

10K Ω

4.7K Ω

7407
(PIN 5)

P1.5
 OF
8052AH

(PIN 6)
P1.4
OF
8052AH

1K

+5

ANY NON-INVERTER
TTL GATE MAY
BE USED

TO
ADDRESS
DECODE
(ACTIVE LOW)

(PIN 1) Vpp

PGM (PIN 27)

CE

OE

2
7
6
4

2
7
1
2
8

~

RD
PSEN

7407

74LS08

Figure 4A. Programming 2764‘s/27128‘s Figure 4B. Programming 2732A‘s
RD

PSEN

74LS08
7407

TO
ADDRESS
DECODE
(ACTIVE

LOW)

+5
4.7K

2N4403

21
VOLTS

10K Ω

4.7K Ω

7407
74LS32

P1.5

P1.4

CE OE

2
7
3
2
A

 P1.5
 OF
8052AH

P1.4
OF
8052AH

TO
ADDRESS
DECODE
(ACTIVE

LOW)

Figure 4C. Programming 2716‘s
RD

PSEN

1N270

+25 VOLTS

7407
74LS32

2N4403

10K Ω

4.7K Ω

74LS32

74LS08
Vpp

OE

74LS04

74LS32
74LS08

2
7
1
6

CE/ PGM

10K

+5V

- 143 -

intel

+ 10 TO + 15 VOLTS

2N4403

10K

4.7K

7407

P1.4
PROGRAM
PULSE
WIDTH

TO
ADDRESS
DECODE
LOGIC
(ACTIVE LOW)

(PIN 1) Vpp

CE (PIN 18)

OE (PIN 20)

2
8
1
6
A

7407

Figure 5. 2816A Circuit with Push Button Erase

RD

PSEN
74LS08

4.7K
+ 5

WE
(PIN 21)

(Basic-52 should be „idle“ in the command mode when the Erase Button is pushed.)

10K
+ 5

74LS08 7407

7407

+ 5

15K Ω

5uF

+ 5

+ 5

15K

5uF

+ 5

10K

½ 74221 ½ 74221

Q

Cx

Rx/C

R
B
A Q

Cx

Rx/C

R
B
A

4.7K

+5

4.7K

10uF
15V

4.7K

4.7K

+5

TO TXD ON
 BASIC-52
 DEVICE

1.8K

TO RXD ON
 BASIC-52
 DEVICE

SERIAL
OUTPUT

SERIAL
OUTPUT

1N914
OR
EQUIV.

2N2222
OR
EQUIV.

Figure 6A.

TWO TRANSISTORS TO IMPLEMENT RS-232. THE “NEGATIVE”
SUPPLY FOR THE SERIAL OUTPUT LINE IS TAKEN FROM THE
SERIAL INPUT LINE. NO ±12 VOLT SUPPLY IS REQUIRED.

Figure 6B.

USING THE STANDARD 1489 AND1488 LINE RECEIVERS AND
DRIVERS. ±12 VOLT IS NEEDED WITH THIS IMPLEMENTATION.

SERIAL
OUTPUT

SERIAL
OUTPUT

TO TXD ON
 BASIC-52
 DEVICE

TO RXD ON
 BASIC-52
 DEVICE

+5

1/4 1489

1/4 1488

+12
-12

- 144 -

intel

CHAPTER 11
Reset Options (Version 1.1 Only)

Version 1.1 of MCS BASIC-52 contains numerous RESET options that were not available in Version
1.0. They are discussed in detail in chapters 3.2 through 3.5 of this manual. Briefly, they are as follows:

PROG1

Saves only the serial port baud rate for a power-up or RESET condition.

PROG2

Saves the serial port baud rate and automatically runs the first program that is saved in EPROM on a
power-up or RESET condition.

PROG3

Saves the serial port baud rate plus the assigned MTOP value. If RAM is available beyond the assigned
MTOP value, it will not be cleared during a power-up or RESET condition.

PROG4

Saves the serial port baud rate plus the assigned MTOP value, just like PROG3, but also automatically
runs the first program that is saved in EPROM on a power-up or RESET condition.

PROG5

Does the same thing as PROG4, however, if external memory location 5FH contains the character
0A5H on a power-up or RESET condition, external memory will not be cleared. This mode assumes
that the user has employed some type of memory back-up.

- 145 -

intel

RESET OPTIONS (VERSION 1.1 ONLY)

PROG6

Does the same thing as PROG5, but CALLS external program memory location 4039H during a
RESET or power-up sequence. This option also requires the user to put the character 0A5H in external
memory location 5FH to insure that external RAM will not be cleared during RESET or power-up. The
user must put an assembly language RESET routine in external memory location 4039H or else this
RESET mode will crash. When the user returns from the customized assembly language RESET
routine, three options exist:

OPTION 1 FOR PROG6

If the CARRY BIT is CLEARED (CARRY = 0) upon return from the user RESET routine MCS
BASIC- 52 will enter the auto-baud rate determining routine. The user must then type a space character
(20H) on the terminal to complete the RESET routine and produce a RESET message on the terminal.

OPTION 2 FOR PROG6

If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is CLEARED (ACC. 0 =
0) MCS BASIC-52 will produce the standard sign-on message upon return from the user supplied
RESET routine. The baud rate will be the one that was saved when the PROG6 option was used.

OPTION 3 FOR PROG6

If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is SET (ACC. 0 = 1),
MCS BASIC-52 will execute the first program stored by the user in EPROM (starting address of the
program is 8010H) upon return from the user supplied RESET routine.

- 146 -

intel

RESET OPTIONS (VERSION 1.1 ONLY)

If these options are still not sufficient to address the needs of a specific application, one other option
exists and it functions as follows:

After RESET, MCS BASIC-52 initializes the SPECIAL FUNCTION REGISTERS SCON, TMOD,
TCON, and T2CON with the following respective values, 5AH, 10H, 54H, and 34H. If the user places
the character 0AAH in external CODE MEMORY location 2001H (remember CODE MEMORY is
enabled by /PSEN), MCS BASIC-52 will CALL external CODE MEMORY location 2090H
immediately after these special function registers are initialized. No other registers or memory locations
will be altered except that the ACCUMULATOR will contain a 0AAH and the DPTR will contain a
2001H.

Since MCS BASIC-52 does not write to the above mentioned Special Function Registers at any time
except during the RESET or power-up sequence the user has the option of modifying any of the Special
Function Registers with this RESET option. Upon returning from this RESET mode, the MCS BASIC-
52 software package will clear the internal memory of the 8052AH and proceed with the RESET
routine. The PROG1 through PROG6 options will function as usual.

Now, suppose the user does not want to enter the normal RESET routines, or the user wants to
implement some type of "warm" start-up routine. This can be accomplished simple by initializing the
necessary Special Function Registers and then jumping back into either MCS BASIC-52's COMMAND
mode or RUN MODE. For a warm start-up or RESET (warm means that the MCS BASIC-52 device
was RESET, but power was not removed -- i.e. the user hit the RESET button) the following must be
initialized:

SCON, TMOD, TCON, T2CON, if the user does not want to use the values that MCS BASIC-52
supplies.

RCAP2H and RCAP2L must be loaded with the proper baud rate values. If the user has programmed an
EPROM with one of the PROG1 through PROG6 options, the proper baud rate value will be stored in
external DATA MEMORY locations 8001H (RCAP2H) and 8002H (RCAP2L).

The STACK POINTER (Special Function Register SP) must be initialized with the contents of the
STACK POINTER SAVE location, which is in internal DATA MEMORY location 3EH. A MOV SP,
3EH assembly language instruction will accomplish the STACK POINTER initialization.

 - 147 -

intel

RESET OPTIONS (VERSION 1.1 ONLY)

After the above are initialized by the user supplied RESET routine, the user may enter MCS BASIC-
52's command mode by executing the following:

 CLR A
 LJMP 30H

Now, it is important to remember that the previous description applies only to a "warm" RESET with
power remaining to the MCS BASIC-52 system. This means that the user must also provide some way
of detecting the difference between a warm RESET and a power-on RESET. This usually involves
some type of flip-flop getting set with a power-on-clear signal from the users power supply. The details
of implementing this RESET detection mechanism will not be discussed here as the possible hardware
options vary depending upon the design.

The user may also implement a "cold start" reset option with the previously described reset mode. The
following code details what is necessary to implement a cold start option.

EXAMPLE:

 ORG 2001H
 ;
 DB 0AAH ; TELL BASIC THAT RESET IS EXTERNAL
 ;
 ORG 2090H ; LOCATION BASIC WILL CALL FOR RESET
 ;
 ; AT THIS POINT BASIC HAS PLACED A 5AH IN
 ; SCON, A 10H IN TMOD, A 54H IN TCON AND
 ; A 34H IN T2CON
 ;
 ; FIRST CLEAR THE INTERNAL MEMORY
 MOV R0,#0FFH ; LOAD R0 WITH THE TOP OF INTERNAL MEMORY
 CLR A ; SET ACCUMULATOR = 0

 RESET1: MOV @R0.A ; LOOP UNTIL ALL THE INTERNAL RAM IS CLEARED
 DJNZ R0.RESET1
 ;
 ; NOW SET UP THE STACK POINTER AND THE STACK
 ; POINTER HOLDING REGISTER
 MOV SP,#4DH ; 4DH IS THE INITIALIZED VALUE OF THE STACK
 MOV 3EH,#4DH ; THIS IS THE SP HOLDING REGISTER

 ; NOW CLEAR THE EXTERNAL RAM, IN THIS
 ; EXAMPLE ASSUME THAT 1FFFH BYTES OF RAM
 ; ARE AVAILABLE
 ; THE USER MUST CLEAR AT LEAST THE FIRST 512
 ; BYTES OF RAM FOR A COLD START RESET
 ;
 MOV R3,#HIGH 1FFFH
 MOV R1,#LOW 1FFFH
 MOV DPTR,#0FFFFH
 ;

- 148 -

intel

RESET OPTIONS (VERSION 1.1 ONLY)

 RESET2: INC DPTR ; DPTR = 0 THE FIRST TIME THRU
 CLR A
 MOVX @DPTR,A ; CLEAR THE RAM. A MEMORY TEST PROGRAM COULD
 ; BE IN THIS LOOP
 MOV A,R3 ; NOW TEST FOR THE MEMORY LIMITS
 CJNE A,DPH-RESET2
 MOV A,R1
 CJNE A,DPL.RESET2
 ;
 ; WHEN YOU GET HERE, YOU ARE DONE
 ;
 ; NOW SET UP THE MEMORY POINTERS- FIRST MTOP
 ;
 MOV DPTR.#10AH ; LOCATION OF MTOP IN EXTERNAL RAM
 MOV A,#HIGH 1FFFH ; SAVE MTOP
 MOVX @DPTR,A
 INC DPTR ; NOW, SAVE THE LOW BYTE
 MOV A,#LOW 1FFFH
 MOVX @DPTR,A
 ;
 ; NOW SET UP THE VARTOP POINTER, WITH NO STRINGS.
 ; VARTOP = MEMTOP
 ;
 MOV DPTR,#104H ; LOCATION OF VARTOP IN EXTERNAL RAM
 MOV A,#HIGH 1FFFH
 MOVX @DPTR,A
 INC DPTR
 MOV A,#LOW 1FFFH
 MOVX @DPTR,A
 ;
 ;
 ; NOW SAVE THE MATRIX POINTER "DIMUSE". THIS POINTER IS
 ; DESCRIBED IN THE APPENDIX, WITH NO PROGRAM IN RAM.
 ; DIMUSE = 525 AFTER RESET
 ;
 MOV DPTR,#108H ; LOCATION OF DIMUSE IN EXTERNAL RAM
 MOV A,#HIGH 528
 MOVX @DPTR,A
 INC DPTR
 MOV A,#LOW 528
 MOVX @DPTR,A
 ;
 ; NOW SAVE THE VARIABLE POINTER "VARUSE" THIS POINTER IS
 ; ALSO DESCRIBED IN THE APPENDIX. AFTER RESET VARUSE = VARTOP
 ;
 MOV DPTR,#106H ; LOCATION OF VARUSE IN EXTERNAL RAM
 MOV A,#HIGH 1FFFH
 MOVX @DPTR,A
 INC DPTR
 MOV A,#LOW 1FFFH
 MOVX @DPTR,A
 ;
 ; NOW SETUP BASICS CONTROL STACK AND ARGUMENT STACK
 ;
 MOV 9H,#0FEH ; THIS INITIALIZES THE ARGUMENT STACK
 MOV 11H,#0FEH ; THIS INITIALIZES THE CONTROL STACK
 ;
 ; NOW TELL BASIC THAT NO PROGRAM IS IN RAM. THIS IS NOT NEEDED
 ; IF THE USER HAS A PROGRAM IN RAM
 ;
 MOV DPTR,#512 ; LOCATION OF THE START OF A USER PROGRAM
 MOV A,#01H ; END OF FILE CHARACTER
 MOVX @DPTR,A

- 149 -

intel

RESET OPTIONS (VERSION 1.1 ONLY)

 ; NOW PUSH THE CRYSTAL VALUE ON TO THE STACK AND LET BASIC
 ; CALCULATE ALL CRYSTAL DEPENDENT PARAMETERS
 ;
 SJMP RESET3
 ;
 XTAL: DB 88H ; THIS IS THE FLOATING POINT VALUE
 DB 00H ; FOR AN 11.0592 MHZ CRYSTAL
 DB 00H
 DB 92H
 DB 05H
 DB 11H
 ;
 RESET3: MOV DPTR,#XTAL ; SET UP TO PUSH CRYSTAL VALUE
 MOV A,9 ; GET THE ARG STACK
 CLR C
 SUBB A,#6 ; DECREMENT ARG STACK BY ONE FP NUMBER
 MOV 9,A
 MOV R0,A ; SAVE THE CALCULATED ADDRESS IN R0
 MOV P2,#1 ; THIS IS THE ARG STACK PAGE ADDRESS
 MOV R1,#6 ; NUMBER OF BYTES TO TRANSFER
 ;
 RESET4: CLR A ; TRANSFER ROM CRYSTAL VALUE TO THE
 MOVC A,@A+DPTR ; ARGUMENT STACK OF BASIC
 MOVX @R0,A
 INC DPTR ; BUMP THE POINTERS
 DEC R0
 DJNZ R1,RESET4 ; LOOP UNTIL THE TRANSFER IS COMPLETE
 ;
 ; NOW CALL BASIC TO DO ALL THE CRYSTAL CACULATIONS
 ;
 MOV A,#58 ; OPBYTE FOR CRYSTAL CALCULATION
 LCALL 30H ; DO THE CALCULATION
 ;
 ; NOW TELL BASIC WHERE START OF THE USER BASIC PROGRAM IS
 ; BY LOADING THE START ADDRESS. IF THE PROGRAM IS IN EPROM
 ; 13H WOULD = HIGH 8011H AND 14H = LOW 8011H. ANYWAY
 ; ADDRESS 13H:14H MUST POINT TO THE START OF THE BASIC
 ; PROGRAM
 ;
 MOV 13H,#HIGH 512 ; THIS TELLS BASIC THAT THE START OF
 MOV 14H.#LOW 512 ; THE PROGRAM IS IN LOCATION 512
 ;
 ; NOW THE SERIAL PORT MUST BE INITIALIZED. THE USER
 ; CAN SET UP THE SERIAL PORT TO ANY DESIRED CONFIGURATION
 ; HOWEVER, THIS DEMO CODE WILL SHOW THE AUTO BAUD
 ; ROUTINE

 MOV R3,#00H ; INITIALIZE THE AUTO BAUD COUNTERS
 MOV R1,#00H
 MOV R0,#04H
 JB RXD,$; LOOP UNTIL A START BIT IS RECEIVED
 ;

- 150 -

intel

RESET OPTIONS (VERSION 1.1 ONLY)

 ;
 RESET5: DJNZ R0,$; WASTE 8 CLOCKS INITIALLY. SIX CLOCKS
 ; IN THE LOOP (16) TOTAL
 CLR C ; 1 CLOCK (1)
 MOV A,R1 ; 1 CLOCK (2)
 SUBB A,#1 ; 1 CLOCK (3)
 MOV R1,A ; 1 CLOCK (4)
 MOV A,R3 ; 1 CLOCK (5)
 SUBB A,#00H ; 1 CLOCK -- R3:R1 = R3:R1 - 1 (6)
 MOV R3,A ; 1 CLOCK (7)
 MOV R0,#3 ; 1 CLOCK (8)
 JNB RXD,RESET5 ; 2 CLOCKS (10), WAIT FOR END OF SPACE
 JB RXD,$; WAIT FOR THE SPACE TO END (20H)
 JNB RXD,$; WAIT FOR THE STOP BIT
 MOV RCAP2H.R3 ; LOAD THE TIMER 2 HOLDING REGISTERS
 MOV RCAP2L.R1
 ;
 ; NOW YOU CAN ADD A CUSTOM SIGN ON MESSAGE
 ;
 MOV R3,#HIHH MSG ; PUT ADDRESS OF MESSAGE IN R3:R1
 MOV R1,#LOW MSG
 SETB 52 ; PRINT FROM ROM
 MOV A,#6 ; OP BYTE TO PRINT TEXT STRING
 LCALL 30H
 ;
 ; NOW OUTPUT A CR LF
 ;
 MOV A,#7 ; OP 8YTE FOR CRLF
 LCALL 30H
 ;
 ; GO TO THE COMMAND MODE
 ;
 CLR A
 JMP 30H
 ;
 MSG: DB 'CUSTOM SIGN ON MESSAGE'
 DB 22H ; TERMINATES MESSAGE
 ;
 END

 - 151 -

intel

RESET OPTIONS (VERSION 1.1 ONLY)

To Summarize what the user must do to successfully implement a "COLD START" RESET:

1) The user must clear the internal RAM of the MCS BASIC-52 device and at least the first 512 bytes

of external RAM memory.

2) The user must initialize the stack pointer (special function register -- SP) and the stack pointer

holding register (internal RAM location 3EH) with a value that is between 4DH and 0E0H. 4DH
gives MCS BASIC-52 the maximum stack size.

3) The user must initialize the following pointers in external RAM. MTOP at location 10AH (high

byte) and 10BH (low byte). VARTOP at locations 104H (high byte) and 105H (low byte). DIMUSE
at locations 108H (high byte) and 109H (low byte). VARUSE at locations 106H (high byte) and
107H (low byte). Details of what needs to be in these locations are presented in appendix 1.7 of this
manual.

4) The Control stack pointer (location 11H in internal memory) and the Argument stack pointer

(location 09H in internal memory) must also be initialized with the value 0FEH. If the user is not
going to assign the XTAL (crystal) value in BASIC, then the XTAL value must be pushed onto the
argument stack and the user must Do an OPBYTE 58 call to MCS BASIC-52.

5) The User must also initialize the start address of a program. The start address is in locations 13H

(high byte) and 14H (low byte) of internal data memory. If the user BASIC program is in RAM, then
13H: 14H = 512, if the user program is the the first program in EPROM, then 13H: 14H = 8011H.

6) The user must finally initialize the serial port. Any scheme can be used (as long as it works!!)

The added reset options should go a long way toward making MCS BASIC-52 configurable to any
custom application.

 - 152 -

intel

CHAPTER 12
Command/Statement Extensions (Version 1.1 Only)

MCS BASIC-52 V1.1 provides a simple, but yet effective way for the user to add COMMANDS and/or
STATEMENTS to the ones that are provided on the chip. All the user must do is write a few simple
programs that will reside in external code memory. The step by step approach is as follows:

STEP 1

The user must first inform the MCS BASIC-52 device that the expansion options are available. This is
done by putting the character 5AH in CODE memory location 2002H. When MCS BASIC-52 enters the
command mode it will examine CODE memory location 2002H. If a 5AH is in this location, MCS
BASIC-52 will CALL external CODE memory location 2048H. The user must then write a short
routine to SET BIT 45 (2DH), which is bit 5 of internal memory location 37 (decimal) and place this
routine at code memory location 2048H. Setting BIT 45 tells MCS BASIC-52 that the expansion option
is available. The following simple code will accomplish all that is stated above:

 ORG 2002H
 DB 5AH
 ;
 OG 2048H
 SETB 45
 RET

STEP 2

With BIT 45 SET, MCS BASIC-52 will CALL external CODE memory location 2078H every time it
attempts to tokenize a line that has been entered. At location 2078H, the user must load the DPTR (Data
Pointer) with the address of the user supplied lookup table, complete with tokens.

- 153 -

intel

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

STEP 3

The user needs the following information to generate a user token table:

1) THE USER TOKENS ARE THE NUMBRES 10H THROUGH 1FH (16 TOKENS AVAILABLE)

2) THE USER TOKEN TABLE BEGINS WITH THE TOKEN, FOLLOWED BY THE ASCII TEXT

THAT IS TO BE REPRESENTED BY THAT TOKEN, FOLLOWED BY A ZERO (00H)
INDICATING THE END OF THE ASCII, FOLLOWED BY THE NEXT TOKEN.

3) THE TABLE IS TERMINATED WITH THE CHARACTER 0FFH.

EXAMPLE:

 ORG 2078H
 ;
 MOV DPTR,#USER_TABLE
 RET
 ;
 ORG 2200H ; THIS DOES NOT NEED TO BE
 ; ; IN THIS LOCATION
 USER_TABLE:
 ;
 DB 10H ; FIRST TOKEN
 DB 'DISPLAY' ; USER KEYWORD
 DB 00H ; KEYWORD TERMINATOR

 DB 11H ; SECOND TOKEN
 DB 'TRANSFER' ; SECOND USER KEYWORD
 DB 00H ; KEYWORD TERMINATOR

 DB 12H ; THIRD TOKEN (UP TO 16)
 DB 'ROTATE' ; THIRD USER KEYWORD
 DB 0FFH ; END OF USER TABLE

This same user table is used when MCS BASIC-52 "de-tokenizes" a line during a LIST.

- 154 -

intel

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

STEP 4

Step 3 tokenizes the user keyword, this means that MC BASIC-52 translates the user keyword into the
user token. So, in the preceding example, the keyword TRANSFER would be replaced with the token
11H. When MCS BASIC-52 attempts to execute the user token, it first makes sure that the user
expansion option BIT is set (BIT 45), then CALLS location 2070H to get the address of the user vector
table. This address is placed in the DPTR. The user vector table consist of series of Data Words that
define the address of the user assembly language routines.

EXAMPLE:

 ORG 2070H ; LOCATION BASIC CALLS TO
 ; GET USER LOOKUP
 ;
 MOV DPTR,#VECTOR_TABLE
 RET
 ;
 VECTOR_TABLE:
 ;
 DW RUN_DISPLAY ; ADDRESS OF DISPLAY
 ; ROUTINE, TOKEN (10H)
 DW RUN_TRANSFER ; ADDRESS OF TRANSFER
 ; ROUTINE, TOKEN (11H)
 DW RUN_ROTATE ; ADDRESS OF ROTATE
 ; ROUTINE, TOKEN (12H)
 ;
 ORG 2300H ; AGAIN, THESE ROUTINES
 ; MAY BE PLACED ANYWHERE
 ;
 RUN DISPLAY:
 ;
 ; USER ASM CODE FOR DISPLAY GOES HERE
 ;
 RUN TRANSFER:
 ;
 ; USER ASM CODE FOR TRANSFER GOES HERE
 ;
 RUN_ROTATE:
 ;
 ; USER ASM CODE FOR ROTATE GOES HERE
 ;

- 155 -

intel

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

Note that the ordinal position of the DATA WORDS in the user vector table must correspond to the
token, so the user statement with the token 10H must be the first DW entry in the vector table, 11H, the
second, 12H, the third, and so on. The order of the tokens in the user table is not important!! The
following user lookup table would function properly with the previous example:

EXAMPLE:

 ;
 USER_TABLE:
 ;
 DB 13H ; THE TOKENS DO NOT HAVE
 DB 'ROTATE' ; TO BE IN ORDER IN THE
 DB 00H ; USER LOOKUP TABLE

 DB 10H
 DB 'DISPLAY'
 DB 00H

 DB 12H
 DB 'TRANSFER'
 DB 0FFH ; END OF TABLE

- 156 -

intel

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

The user may also use the command/statement extension option to re-define the syntax of MCS BASIC-
52. This is done simply by placing your own syntax in the user table and placing the appropriate BASIC
token in front of your re-defined keyword. A complete listing of all MCS BASIC-52 tokens and
keywords are provided in the back of this chapter. MCS BASIC-52 will always list out the program
using the user defined syntax, but it will still accept the standard keyword as a valid instruction. As an
example, suppose that the user would like to substitute the keyword HEXOUT for PH1., then the user
would generate the following entry in the user table:

EXAMPLE:

 ;
 USER_TABLE:

 DB 8FH ; TOKEN FOR PH1.
 DB 'HEXOUT' ; TO BE IN ORDER IN THE
 DB 00H ; USER LOOKUP TABLE
 ;
 DB 10H
 DB 'DISPLAY'
 DB 00H

 ; REST OF USER_TABLE
 ;
 DB 0FFH ; END OF TABLE

MCS BASIC-52 will now accept the keyword HEXOUT and it will function in a manner identical to
PH1. PH1 will still function correctly, however HEXOUT will be displayed when the user LIST a
program.

- 157 -

intel

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

 TOKEN KEYWORD TOKEN KEYWORD TOKEN KEYWORD

 80H LET 080H ABS 0ECH <=
 81H CLEAR 081H INT 0EDH <>
 82H PUSH 0B2H SGN 0EEH <
 83H GOTO 083H NOT 0EFH >
 84H PWM 084H COS 0FOH RUN
 85H PH0. 085H TAN 0FlH LIST
 86H UI 0B6H SIN 0F2H NULL
 87H UO 087H SOR 0F3H NEW
 88H POP 088H CBY 0F4H CONT
 89H PRINT 089H EXP 0F3H PROG
 89H P. 08AH ATN 0F6H XFER
 89H ? (V1.1 ONLY) 088H LOG 0F7H RAM
 8AH CALL 08CH DBY 0F8H ROM
 88H DIM 08DH XBY 0F9H FPROG
 8CH STRING 08EH PI 0FAH-0FFH NOT USED
 8DH BAUD 08FH RND
 8EH CLOCK 0C0H GET
 8FH PH1. 0C1H FREE
 90H STOP 0C2H LEN
 91H ONTIME 0C3H XTAL
 92H ONEX1 0C4H MTOP
 93H RETI 0C5H TIME
 94H DO 0C6H IE
 95H RESTORE 0C7H IP
 96H REM 0C8H TIMER0
 97H NEXT 0C9H TIMER1
 98H ONERR 0CAH TIMER2
 99H ON 0C8H T2CON
 9AH INPUT 0CCH TCON
 98H READ 0CDH TMOD
 9CH DATA 0CEH RCAP2
 9DH RETURN 0CFH PORT1
 9EH IF 0D0H PCON
 9FH GOSUB 0D1H ASC(
 0A0H FOR 0D2H USING(
 0A1H WHILE 0D2H U.(
 0A2H UNTIL 0D3H CHR(
 0A3H END 0D4H-0DFH NOT USED
 0A4H TAB 0E0H (
 0A5H THEN 0E1H **
 0A6H TO 0E2H *
 0A7H STEP 0E3H +
 0A8H ELSE 0E4H /
 0A9H SPC 0E5H -
 0AAH CR 0E6H .XOR.
 0A8H IDLE 0E7H .AND.
 0ACH ST@ (V1.1 ONLY) 0E8H .OR.
 0ADH LD@ (V1.1 ONLY) 0E9H - (NEGATE)
 0AEH PGM (V1.1 ONLY) 0EAH =
 0AFH RROM(V1.1 ONLY) 0EBH >=

- 158 -

intel

CHAPTER 13
Mapping User Code Memory

You might have noticed by now that some of external CODE memory locations that MCS BASIC-52
calls and uses are located around 2000H and some of the locations are located around 4000H.
Specifically, they are as follows:

LOCATION FUNCTION

2001H ON RESET, MCS BASIC-52 LOOKS FOR A 0AAH IN THIS LOCATION, IF

PRESENT, CALLS LOCATION 2090H

2002H MCS BASIC-52 EXAMINES THIS LOCATION TO SEE IF THE USER WANTS TO
IMPLEMENT THE COMMAND/STATEMENT EXTENSION OPTION, A 05AH IS TO
BE PLACED IN THIS LOCATION TO EVOKE THE COMMAND/EXTENSION
OPTION

2048H MCS BASIC-52 CALLS THE LOCATION IF THE USER WANTS TO IMPLEMENT
THE COMMAND/STATEMENT EXTENSION OPTION. THE USER WILL USUALLY
SET BIT 45 THEN RETURN.

2070H MCS BASIC-52 CALLS THIS LOCATION TO GET THE USER VECTOR TABLE
ADDRESS WHEN THE COMMAND/STATEMENT EXTENSION OPTION IS
EVOKED. THE ADDRESS OF THE VECTOR TABLE IS PUT IN THE DPTR BY
THE USER.

2078H MCS BASIC-52 CALLS THIS LOCATION TO GET THE USER LOOKUP TABLE
ADDRESS WHEN THE COMMAND/STATEMENT EXTENSION OPTION IS
EVOKED. THE ADDRESS OF THE LOOKUP TABLE IS PUT IN THE DPTR BY
THE USER.

2090H MCS BASIC-52 CALLS THIS LOCATION WHEN THE USER EVOKES THE
ASSEMBLY LANGUAGE RESET OPTION

4003H EXTERNAL INTERRUPT 0

400BH TIMER0 INTERRUPT

4013H EXTERNAL INTERRUPT 1

401BH TIMER1 INTERRUPT

4023H SERIAL PORT INTERRUPT

402BH TIMER 2 INTERRUPT

4030H USER CONSOLE OUTPUT

4033H USER CONSOLE INPUT

4036H USER CONSOLE STATUS

403CH USER PRINT@ OR LIST@ VECTOR

4100H-41FFH USER CALLS FROM 0 TO 7FH

- 159 -

intel

MAPPING USER CODE MEMORY

Other vectors between 2040H and 2090H also exist, but they are mainly for testing purposes, but for
your information they are:

LOCATION FUNCTION

2040H TRAP LOCATION FOR EXTERNAL INTERRUPT 0 IF BIT 26H OF INTERNAL RAM

IS SET AND THE DMA OPTION IS EVOKED. PSW IS NOT PUSHED ONTO
STACK. INTERRUPTS OF COURSE, MUST BE ENABLED. ALSO, THIS
LOCATION WILL BE CALLED FOR CONSOLE OUTPUT IF BIT 2CH OF
INTERNAL RAM IS SET.

2050H TRAP LOCATION FOR SERIAL PORT INTERRUPT IF BIT 1FH OF INTERNAL

RAM IS SET. PSW IS PUSHED ONTO THE STACK.

2060H CALLED FOR CONSOLE INPUT IF BIT 32H OF INTERNAL RAM IS SET.

2068H CALLED FOR CONSOLE STATUS CHECK IF BIT 32H OF INTERNAL RAM IS

SET.

2088H TIMER1 INTERRUPT TRAP IF BIT 1AH OF INTERNAL RAM IS SET. PSW IS

PUSHED ONTO THE STACK.

Contrary to popular belief, these vectors were not chosen to force the user to buy bigger EPROMS.
They are chosen so that addresses 2000H and 4000H can be overlayed and create no conflicts. The
Overlayed addresses would appear as 2001H, 2002H, 4003H, 400BH, 4013H, 401BH, 4023H, 402BH,
4030H, 4033H, 4036H, 4039H, 2040H, 2048H, 2050H, 2060H, 2068H, 2070H, 2078H, 2088H, 2090H,
and 4100H thru 41FFH. The diagram on the next page illustrates how to implement overlapping
addresses for 2000H and 4000H. By using overlapping addresses, the user can implement all MCS
BASIC-52 user expansion options with only a few hundred bytes of EPROM.

The reason this type of addressing scheme was chosen is that it permits the designer to offer custom
versions of MCS BASIC-52, by using the vector locations in the 2000H region. And give the designers
OEM the ability to take advantage of the I/O vectors located in the 4000H region.

As an added note, the MCS-51 instruction set is object relocatable on 2K boundaries if no LCALL or
LJMP instructions are used. This means that it is possible for the designer to ORG a program for 2000H
and actually execute the program at 2800H, 3000H, 3800H, etc. If the user does not use the LCALL or
LJMP instructions.

- 160 -

intel

S1
 C

LO
SE

D
 P

R
O

D
U

C
ES

 O
V

ER
LA

PP
IN

G
 A

D
D

R
ES

SE
S

 S2
 C

LO
SE

D
 P

ER
M

IT
S

27
12

8
TO

 B
E

AT
 A

D
D

R
ES

S
80

00
H

.
A1

3
M

U
ST

 B
E

C
O

N
N

EC
TE

D
 O

N
 2

71
28

O
ve

rl
ap

pi
ng

 u
se

r
E

PR
O

M
 a

dd
re

ss
 sp

ac
e

 E3

 E2

 E1

 A
2 A
1

 A
0

 D
7

 D
O

7
D

6

 D

O
6

D
5

 D
O

5
D

4

 D

O
4

D
3

 D
O

3
D

2

 D

O
2

D
1

 D
O

1
D

0

 D

O
0

 G
N

D

O
E

 V

cc

7 4 L S 3 7 3

 C
E

A
12

 A

11

 A
10

 A

9
 A

8
 D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
 A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0
 W

E

 O
E

V
PP

PG
M

 C

E
A

12

 A
11

 A

10

 A
9

 A
8

 D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

 A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

 O

E 2 7 1 2 8

8K

x8

ST
AT

IC

R
A

M

 C
E

A
12

 A

11

 A
10

 A

9
 A

8
 D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
 A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0
 O

E

US
ER

EX

PA
NS

IO
N

EP
R

O
M

 P

1.
5

P1
.4

 R

ST

P2
.7

X
TA

L1

P2
.6

P2
.5

P2
.4

X
TA

L2

P2
.3

P2
.2

P2
.1

P2
.0

P0
.7

P0
.6

P0
.5

P0
.4

P0
.3

P0
.2

P0
.1

P0
.0

P1
.3

A
LE

SE
R

IA
L

 IN

W

R

R
D

PS
EN

SE
R

IA
L

 O
U

T

EA

V
cc

G
N

D

74
LS

08

74
LS

08

74
LS

08

74
LS

08

+5
V

+5
V

+5
V

 4.
7k

4.
7k

1k

S1
 S2

+5
V

74
07

 +5
V

74

07

4.
7k

14
89

14
88

+5
V

8.
2k

10
M

FD

C 1 =
C 2

 =
30

 pF

FO

R

XT
AL

S

40
 pF

FO
R

CE

RA
M

IC

RE

SO
NA

TO
RS

C
1

C
2

+ 5
V

+5
V

10
k

+2
1V

10
k

2N
44

03
1

+5
V

7 6 5 4 3 2 1 0

7 4 L S 1 3 8

- 161 -

intel

APPENDIX A

1.1 MEMORY USAGE (Version 1.0)

The following list specifies what locations in internal and external memory MCS BASIC-52 uses, and
what these locations are used for. This information can largely be regarded as "for your information,"
but it can be used to do things like alter the pulse width of a EPROM programming pulse, etc.

INTERNAL MEMORY ALLOCATION:

LOCATION(S) IN HEX MCS BASIC-52 USAGE

00H THRU 07H "WORKING REGISTER BANK"
08H BASIC TEXT POINTER -- LOW BYTE
09H ARGUMENT STACK POINTER
0AH BASIC TEXT POINTER -- HIGH BYTE
0BH THRU 0FH TEMPORARY BASIC STORAGE
10H READ TEXT POINTER -- LOW BYTE
11H CONTROL STACK POINTER
12H READ TEXT POINTER -- HIGH BYTE
13H START ADDRESS OF BASIC PROGRAM -- HIGH BYTE
14H START ADDRESS OF BASIC PROGRAM -- LOW BYTE
15H NULL COUNT
16H PRINT HEAD POSITION FOR OUTPUT
17H FLOATING POINT OUTPUT FORMAT TYPE
18H THRU 21H NOT USED -- RESERVED FOR USER

22H BITS USED SPECIFICALLY AS FOLLOWS

BIT 22.0H SET WHEN "ONTIME" STATEMENT IS EXECUTED
BIT 22.1H SET WHEN BASIC INTERRUPT IN PROGRESS
BIT 22.2H SET WHEN "ONEX1" STATEMENT IS EXECUTED
BIT 22.3H SET WHEN "ONERR" STATEMENT IS EXECUTED
BIT 22.4H SET WHEN "ONTIME" INTERRUPT IS IN PROGRESS
BIT 22.5H SET WHEN A LINE IS EDITED
BIT 22.6H SET WHEN EXTERNAL INTERRUPT IS PENDING
BIT 22.7H WHEN SET, CONT COMMAND WILL WORK

23H BITS USED SPECIFICALLY AS FOLLOWS

BIT 23.0H USED AS FLAG FOR "GET" OPERATOR
BIT 23.1H SET WHEN INVALID INTEGER FOUND IN TEXT
BIT 23.2H TEMPORARY BIT LOCATION
BIT 23.3H CONSOLE OUTPUT CONTROL, 1 = LINE PRINTER
BIT 23.4H CONSOLE OUTPUT CONTROL, 1 = USER DEFINED
BIT 23.5H BASIC ARRAY INITIALIZATION BIT
BIT 23.6H CONSOLE INPUT CONTROL, 1 = USER DEFINED
BIT 23.7H RESERVED

- 162 -

intel

1.1 MEMORY USAGE (Version 1.0)

INTERNAL MEMORY ALLOCATION:

LOCATION(S) IN HEX MCS BASIC-52 USAGE

24H BITS USED SPECIFICALLY AS FOLLOWS

BIT 24.0H STOP STATEMENT OR CONTROL-C ENCOUNTERED
BIT 24.1H 0 = HEX INPUT, 1 = FP INPUT
BIT 24.2H 0 = RAM MODE, 1 = ROM MODE
BIT 24.3H ZERO FLAG FOR DOUBLE BYTE COMPARE
BIT 24.4H SET WHEN ARGUMENT STACK HAS A VALUE
BIT 24.5H RETI INSTRUCTION EXECUTED
BIT 24.6H RESERVED
BIT 24.7H RESERVED

25H BITS USED SPECIFICALLY AS FOLLOWS

BIT 25.0H RESERVED, SOFTWARE TRAP TEST
BIT 25.1H FIND THE END OF PROGRAM, IF SET
BIT 25.2H RESERVED
BIT 25.3H INTERRUPT STATUS SAVE BIT
BIT 25.4H SET WHEN PROGRAM EXECUTION IS COMPLETE
BIT 25.5H RESERVED, EXTERNAL TRAP TEST
BIT 25.6H SET WHEN CLOCK1 EXECUTED, ELSE CLEARED
BIT 25.7H SET WHEN BASIC IS IN THE COMMAND MODE

26H BITS USED SPECIFICALLY AS FOLLOWS

BIT 26.0H SET TO DISABLE CONTROL-C
BIT 26.1H SET TO ENABLE "FAKE" DMA
BIT 26.2H RESERVED
BIT 26.3H SET TO EVOKE "INTELLIGENT" PROM PROGRAMMING
BIT 26.4H SET TO PRINT TEXT STRING FROM ROM
BIT 26.5H RESERVED
BIT 26.6H SET TO SUPPRESS ZEROS IN HEX MODE PRINT
BIT 26.7H SET TO EVOKE HEX MODE PRINT

- 163 -

intel

1.1 MEMORY USAGE

INTERNAL MEMORY ALLOCATION:

LOCATION(S) IN HEX MCS BASIC-52 USAGE

27H "BIT" ADDRESSABLE BYTE COUNTER
28H THRU 3DH BIT AND BYTE FLOATING POINT WORKING SPACE
3EH INTERNAL STACK POINTER HOLDING REGISTER
3FH LENGTH OF USER DEFINED STRING -- $
40H TIMER 1 RELOAD LOCATION -- HIGH BYTE
41H TIMER 1 RELOAD LOCATION -- LOW BYTE
42H BASIC TEXT POINTER SAVE LOCATION -- HIGH BYTE
43H BASIC TEXT POINTER SAVE LOCATION -- LOW BYTE
44H RESERVED
45H TRANSCENDENTAL FUNCTION TEMP STORAGE
46H TRANSCENDENTAL FUNCTION TEMP STORAGE
47H MILLI-SECOND COUNTER FOR REAL TIME CLOCK
48H SECOND COUNTER FOR REAL TIME CLOCK -- HIGH BYTE
49H SECOND COUNTER FOR REAL TIME CLOCK -- LOW BYTE
4AH TIMER 0 RELOAD FOR REAL TIME CLOCK
4BH SOFTWARE SERIAL PORT BAUD RATE -- HIGH BYTE
4CH SOFTWARE SERIAL PORT BAUD RATE -- LOW BYTE
4DH THRU 0FFH 8052AH STACK SPACE AND USER WORKING SPACE

- 164 -

intel

1.1 MEMORY USAGE

EXTERNAL MEMORY ALLOCATION

LOCATION(S) IN HEX MCS BASIC-52 USAGE

00H AND 01H "LAST" END OF FILE ADDRESS FOR RAM FILE (H-L)
02H AND 03H CURRENT END OR FILE ADDRESS FOR RAM FILE (H-L)
04H LENGTH OF THE CURRENT EDITED LINE
05H AND 06H LN NUM IN BINARY OF CURRENT EDITED LINE (H-L)
07H THRU 49H BASIC INPUT BUFFER
50H THRU 5FH FLOATING POINT OUTPUT TEMP
60H THRU 0FEH CONTROL STACK
0FFH CONTROL STACK OVERFLOW
100H LOCATION TO SAVE "GET" CHARACTER
101H LOCATION TO SAVE ERROR CHARACTER CODE
102H AND 103H LOCATION TO GO TO ON USER "ONERR" (H-L)
104H AND 105H TOP OF VARIABLE STORAGE (H-L)
106H AND 107H FP STORAGE ALLOCATION (H-L)
108H AND 109H MEMORY ALLOCATED FOR MATRICES (H-L)
10AH AND 10BH TOP OF MEMORY ASSIGNED TO BASIC (H-L)
10CH AND 10DH RANDOM NUMBER SEED (H-L)
10EH THRU 113H CRYSTAL VALUE
114H THRU 11FH FLOATING POINT TEMPS
120H AND 121H LOCATION TO GO TO ON ONEX1 INTERRUPT (H-L)
122H AND 123H NUMBER OF BYTES ALLOCATED FOR STRINGS (H-L)
124H THRU 127H ONTIME INTERRUPT AND LINE NUMBER (H-L)
128H AND 129H "NORMAL" PROM PROGRAMMER TIME OUT (H-L)
12AH AND 12BH "INTELLIGENT" PROM PROGRAMMER TIME OUT (H-L)
12CH RESERVED
12DH THRU 1FEH ARGUMENT STACK

NOTE: (H-L) means HIGH BYTE -- LOW BYTE. in external memory all 16 bit binary numbers are
stored with the HIGH BYTE in the first (lower order) address and the LOW BYTE in the next
sequential address.

- 165 -

intel

1.1 MEMORY USAGE (VERSION 1.1)

The following list specifies what locations in internal and external memory locations are used by
Version 1.1 of MCS BASIC-52. Any differences between V1.0 and V1.1 are in bold face type.

INTERNAL MEMORY ALLOCATION: (VERSION 1.1)

LOCATION(S) IN HEX MCS BASIC-52 USAGE

00H THRU 07H "WORKING REGISTER BANK"
08H BASIC TEXT POINTER -- LOW BYTE
09H ARGUMENT STACK POINTER
0AH BASIC TEXT POINTER -- HIGH BYTE
0BH THRU 0FH TEMPORARY BASIC STORAGE (Available to user in BASIC
 CALLS to ASM routines)
10H READ TEXT POINTER -- LOW BYTE
11H CONTROL STACK POINTER
12H READ TEXT POINTER -- HIGH BYTE
13H START ADDRESS OF BASIC PROGRAM -- HIGH BYTE
14H START ADDRESS OF BASIC PROGRAM -- LOW BYTE
15H NULL COUNT
16H PRINT HEAD POSITION FOR OUTPUT
17H FLOATING POINT OUTPUT FORMAT TYPE
18H THRU 21H NOT USED -- RESERVED FOR USER

22H BITS USED SPECIFICALLY AS FOLLOWS

BIT 22.0H SET WHEN "ONTIME" STATEMENT IS EXECUTED
BIT 22.1H SET WHEN BASIC INTERRUPT IN PROGRESS
BIT 22.2H SET WHEN "ONEX1" STATEMENT IS EXECUTED
BIT 22.3H SET WHEN "ONERR" STATEMENT IS EXECUTED
BIT 22.4H SET WHEN "ONTIME" INTERRUPT IS IN PROGRESS
BIT 22.5H SET WHEN A LINE IS EDITED
BIT 22.6H SET WHEN EXTERNAL INTERRUPT IS PENDING
BIT 22.7H WHEN SET, CONT COMMAND WILL WORK

23H BITS USED SPECIFICALLY AS FOLLOWS

BIT 23.0H USED AS FLAG FOR "GET" OPERATOR
BIT 23.1H SET WHEN PRINT@ OR LIST@ IS EVOKED
BIT 23.2H RESERVED, TRAPS TIMER 1 INTERRUPT
BIT 23.3H CONSOLE OUTPUT CONTROL, 1 = LINE PRINTER
BIT 23.4H CONSOLE OUTPUT CONTROL, 1 = USER DEFINED
BIT 23.5H BASIC ARRAY INITIALIZATION BIT
BIT 23.6H CONSOLE INPUT CONTROL, 1 = USER DEFINED
BIT 23.7H RESERVED, USED TO TRAP SERIAL PORT INTERRUPT

- 166 -

intel

INTERNAL MEMORY ALLOCATION (VERSION 1.1)

LOCATION(S) IN HEX MCS BASIC-52 USAGE

24H BITS USED SPECIFICALLY AS FOLLOWS

BIT 24.0H STOP STATEMENT OR CONTROL-C ENCOUNTERED
BIT 24.1H USER IDLE BREAK BIT
BIT 24.2H SET DURING AN INPUT INSTRUCTION
BIT 24.3H RESERVED
BIT 24.4H SET WHEN ARGUMENT STACK HAS A VALUE
BIT 24.5H RETI INSTRUCTION EXECUTED
BIT 24.6H RESERVED, TRAPS EXTERNAL INTERRUPT 0
BIT 24.7H SET BY USER TO SIGNIFY THAT A VALID LIST@ OR
 PRINT@ DRIVER IS PRESENT

25H BITS USED SPECIFICALLY AS FOLLOWS

BIT 25.0H RESERVED, SOFTWARE TRAP TEST
BIT 25.1H FIND THE END OF PROGRAM, IF SET
BIT 25.2H SET DURING A DIM STATEMENT
BIT 25.3H INTERRUPT STATUS SAVE BIT
BIT 25.4H RESERVED, INPUT TRAP
BIT 25.5H SET TO SIGNIFY EXPANSION IS PRESENT
BIT 25.6H SET WHEN CLOCK1 EXECUTED, ELSE CLEARED
BIT 25.7H SET WHEN BASIC IS IN THE COMMAND MODE

26H BITS USED SPECIFICALLY AS FOLLOWS

BIT 26.0H SET TO DISABLE CONTROL-C
BIT 26.1H SET TO ENABLE "FAKE" DMA
BIT 26.2H RESERVED, OUTPUT TRAP
BIT 26.3H SET TO EVOKE "INTELLIGENT" PROM PROGRAMMING
BIT 26.4H SET TO PRINT TEXT STRING FROM ROM
BIT 26.5H SET WHEN CONTROL-S ENCOUNTERED
BIT 26.6H SET TO SUPPRESS ZEROS IN HEX MODE PRINT
BIT 26.7H SET EVOKE HEX MODE PRINT

- 167 -

intel

INTERNAL MEMORY ALLOCATION (VERSION 1.1)

LOCATION(S) IN HEX MCS BASIC-52 USAGE

27H "BIT" ADDRESSABLE BYTE COUNTER
28H THRU 3DH BIT AND BYTE FLOATING POINT WORKING SPACE
3EH INTERNAL STACK POINTER HOLDING REGISTER
3FH LENGTH OF USER DEFINED STRING -- $
40H TIMER 1 RELOAD LOCATION -- HIGH BYTE
41H TIMER 1 RELOAD LOCATION -- LOW BYTE
42H BASIC TEXT POINTER SAVE LOCATION -- HIGH BYTE
43H BASIC TEXT POINTER SAVE LOCATION -- LOW BYTE
44H RESERVED
45H TRANCENDENTAL FUNCTION TEMP STORAGE
46H TRANCENDENTAL FUNCTION TEMP STORAGE
47H MILLI-SECOND COUNTER FOR REAL TIME CLOCK
48H SECOND COUNTER FOR REAL TIME CLOCK -- HIGH
 BYTE
49H SECOND COUNTER FOR REAL TIME CLOCK -- LOW
 BYTE
4AH TIMER 0 RELOAD FOR REAL TIME CLOCK
4BH USER ARGUMENT FOR ONTIME -- HIGH BYTE
4CH USER ARGUMENT FOR ONTIME -- LOW BYTE
4DH THRU 0FFH 8052AH STACK SPACE AND USER WORKING SPACE

- 168 -

intel

EXTERNAL MEMORY ALLOCATION (VERSION 1.1)

LOCATION(S) IN HEX MCS BASIC-52 USAGE

00H THRU 03H NOT USED, RESERVED
04H LENGTH OF THE CURRENT EDITED LINE
05H AND 06H LN NUM IN BINARY OF CURRENT EDITED LINE (H-L)
07H THRU 56H BASIC INPUT BUFFER
56H THRU 5DH BINARY TO INTEGER TEMP
5EH USED FOR RUN TRAP MODE (= 34H)
5FH USED FOR POWER-UP TRAP (= 0A5H)
60H THRU 0FEH CONTROL STACK
00FH CONTROL STACK OVERFLOW
100H LOCATION TO SAVE "GET" CHARACTER
101H LOCATION TO SAVE ERROR CHARACTER CODE
102H AND 103H LOCATION TO GO TO ON USER "ONERR" (H-L)
104H AND 105H TOP OF VARIABLE STORAGE (H-L)
106H AND 107H FP STORAGE ALLOCATION (H-L)
108H AND 109H MEMORY ALLOCATED FOR MATRICIES (H-L)
10AH AND 10BH TOP OF MEMORY ASSIGNED TO BASIC (H-L)
10CH AND 10DH RANDOM NUMBER SEED (H-L)
1OEH THRU 113H CRYSTAL VALUE
114H THRU 11FH FLOATING POINT TEMPS
120H AND 121H LOCATION TO GO TO ON ONEX1 INTERRUPT (H-L)
122H AND 123H NUMBER OF BYTES ALLOCATED FOR STRINGS (H-L)
124H AND 125H SOFTWARE SERIAL PORT BAUD RATE (H-L)
126H AND 127H LINE NUMBER FOR ONTIME INTERRUPT (H-L)
128H AND 129H "NORMAL" PROM PROGRAMMER TIME OUT (H-L)
12AH AND 12BH "INTELLIGENT" PROM PROGRAMMER TIME OUT (H-L)
12CH RESERVED
12DH THRU 1FEH ARGUMENT STACK

NOTE: (H-L) still means HIGH BYTE -- LOW BYTE, in external memory all 16 bit binary numbers
are stored with the HIGH BYTE in the first (lower order) address and the LOW BYTE in the next
sequential address.

- 169 -

intel

1.2 USING THE PWM STATEMENT

The PWM statement can be used to generate quite accurate frequencies. The following table lists the
reload values 8 octaves of an equal tempered chromatic scale. The reload values are for the first two
arguments of the PWM statement, so it is assumed that a square wave is being generated. The reload
values assume a 11.0592 MHz crystal.

 IDEAL ACTUAL HEX
NOTE OCTAVE FREQUENCY FREQUENCY RELOAD RELOAD

 C 1 32.703 32.704 14090 370AH
 C# 1 34.648 34.649 13299 33F3H
 D 1 36.708 36.708 12553 3109H
 D# 1 38.891 38.889 11849 2E49H
 E 1 41.203 41.202 11184 2BB0H
 F 1 43.654 43.653 10556 293CH
 F# 1 46.246 46.215 9963 26EBH
 G 1 48.999 49.000 9404 24BCH
 G# 1 51.913 51.915 8876 22ACH
 A 1 55.000 55.001 8378 20BAH
 A# 1 58.270 58.270 7908 1EE4H
 B 1 61.735 61.736 7464 1D28H
 C 2 65.406 65.408 7045 1B85H
 C# 2 69.296 69.293 6650 19FAH
 D 2 73.416 73.411 6277 1885H
 D# 2 77.782 77.785 5924 1724H
 E 2 82.406 82.403 5592 15D8H
 F 2 87.308 87.306 5278 149EH
 F# 2 92.498 92.493 4982 1376H
 G 2 97.998 98.000 4702 125EH
 G# 2 103.826 103.830 4438 1156H
 A 2 110.000 110.002 4189 105DH
 A# 2 116.540 116.540 3954 0F72H
 B 2 123.470 123.472 3732 0E94H
 C 3 130.812 130.798 3523 0DC3H
 C# 3 138.592 138.586 3325 0CFDH
 D 3 146.832 146.845 3138 0C42H
 D# 3 155.564 155.570 2962 0B92H
 E 3 164.812 164.807 2796 0AECH
 F 3 174.616 174.612 2639 0A4FH
 F# 3 184.996 184.986 2491 09BBH
 G 3 195.996 196.001 2351 092FH
 G# 3 207.652 207.661 2219 08ABH
 A 3 220.000 219.952 2095 082FH
 A# 3 233.080 233.080 1977 07B9H
 B 3 246.940 246.946 1866 074AH

- 170 -

intel

1.2 USING THE PWM STATEMENT

 IDEAL ACTUAL HEX
NOTE OCTAVE FREQUENCY FREQUENCY RELOAD RELOAD

 C 4 261.624 261.669 1761 06E1H
 C# 4 277.184 277.256 1662 067EH
 D 4 293.664 293.690 1569 0621H
 D# 4 311.128 311.141 1481 05C9H
 E 4 329.624 329.614 1398 0576H
 F 4 349.232 349.355 1319 0527H
 F# 4 369.992 370.120 1245 04DDH
 G 4 391.992 391.836 1176 0498H
 G# 4 415.304 415.135 1110 0456H
 A 4 440.000 440.114 1047 0417H
 A# 4 466.160 465.925 989 03DDH
 B 4 493.880 493.890 933 03A5H
 C 5 523.248 523.042 881 0371H
 C# 5 554.368 554.512 831 033FH
 D 5 587.238 587.006 785 0311H
 D# 5 622.256 621.862 741 02E5H
 E 5 659.248 659.228 699 02BBH
 F 5 698.464 698.182 660 0294H
 F# 5 739.984 739.647 623 026FH
 G 5 783.984 783.674 588 024CH
 G# 5 830.608 830.270 555 022BH
 A 5 880.000 879.389 524 020CH
 A# 5 932.320 932.793 494 01EEH
 B 5 987.760 986.724 467 01D3H
 C 6 1046.496 1047.272 440 01B8H
 C# 6 1108.736 1107.692 416 01A0H
 D 6 1174.656 1175.510 392 0188H
 D# 6 1244.512 1245.405 370 0172H
 E 6 1318.496 1320.343 349 015DH
 F 6 1396.928 1396.364 330 014AH
 F# 6 1479.968 1481.672 311 0137H
 G 6 1567.968 1567.347 294 0126H
 G# 6 1661.216 1663.538 277 0115H
 A 6 1760.000 1758.779 262 0106H
 A# 6 1864.640 1865.587 247 00F7H
 B 6 1975.520 1977.682 233 00E9H

- 171 -

intel

1.2 USING THE PWM STATEMENT

 IDEAL ACTUAL HEX
NOTE OCTAVE FREQUENCY FREQUCNCY RELOAD RELOAD

 C 7 2092.992 2094.545 220 00DCH
 C# 7 2217.472 2215.385 208 00DOH
 D 7 2349.312 2351.020 196 00C4H
 D# 7 2489.024 2490.811 185 00B9H
 E 7 2636.992 2633.143 175 00AFH
 F 7 2793.856 2792.727 165 00A5H
 F# 7 2959.936 2953.846 156 009CH
 G 7 3135.936 3134.694 147 0093H
 G# 7 3322.432 3315.108 139 008BH
 A 7 3520.000 3517.557 131 0083H
 A# 7 3729.280 3716.129 124 007CH
 B 7 3951.040 3938.362 117 0075H
 C 8 4185.984 4189.091 110 006EH
 C# 8 4434.944 4430.770 104 0068H
 D 8 4698.624 4702.041 98 0062H
 D# 8 4987.048 5008.695 92 005CH
 E 8 5273.984 5296.552 87 0057H
 F 8 5587.712 5619.512 82 0052H
 F# 8 5919.872 5907.692 78 004EH
 G 8 6217.872 6227.027 74 004AH
 G# 8 6644.864 6678.261 69 0045H
 A 8 7040.000 7089.231 65 0041H
 A# 8 7458.560 7432.258 62 003EH
 B 8 7902.080 7944.827 58 003AH

- 172 -

intel

1.2 USING THE PWM STATEMENT

The following program generates the appropriate reload values for the PWM statement, using any
crystal. The user enters the desired frequency and the crystal and the program determined the reload
values and errors.

 >10 INPUT "ENTER CRYSTAL FREQUENCY - ",X
 >20 T-12/X
 >30 INPUT "ENTER DESIRED FREQUENCY FOR PWM - ",F
 >40 F1=1/F
 >50 C=(F1/T)/2 : REM CALCULATE RELOAD VALUE
 >60 IF C<20 THEN 30
 >70 C1=C-INT(C) : REM CALCULATE FRACTION
 >80 IF C1<.5 THEN 90 : C=C+1
 >90 PRINT : PRINT "THE DESIRED FREQUENCY IS - ",X,"HZ"
 >100 C=INT(C) : PRINT
 >110 PRINT "THE ACTUAL FREQUENCY IS - ",1/(2*C*T),"HZ"
 >120 PRINT
 >130 PRINT "THE RELOAD VALUE FOR PWM IS - ",C," IN HEX - ",: PH1.C
 >140 INPUT "ANOTHER FREQUENCY, 1=YES. 0=N0 - ",Q
 >150 1F Q=1 THEN 20

- 173 -

intel

1.3 BAUD RATES AND CRYSTALS

The 16 bit auto-reload timer/counter (TIMER2) that is used to generate baud rates for the MCS BASIC-
52 device is capable of generating accurate baud rates with a number of crystals. The following is a list
of
crystals that will accurately generate 9600 baud on the MCS BASIC-52 device. Additionally, the crystal
values on the left hand side of the table will accurately generate 19200 baud.

 XTAL RCAP2 RELOAD XTAL RCAP2 RELOAD

 3680400 65524 3993600 65523
 4300800 65522 4608000 65521
 4915200 65520 5222400 65519
 5529600 65518 5836800 65517
 6144000 65516 6451200 65515
 6758400 65514 7065600 65513
 7372800 65512 7680000 65511
 7987200 65510 8294400 65509
 8601600 65508 8908800 65507
 9216000 65506 9523200 65505
 9830400 65504 10137600 65503
 10444800 65502 10752000 65501
 11059200 65500 11366400 65499
 11673600 65498 11980800 65497

With the crystals listed above. the accuracy of the baud rate generator and the REAL TIME CLOCK
will depend ONLY on the absolute accuracy of the crystal. Note that the baud rate generator for the
8052AH is so accurate that any crystal above 10 MHz will generate 9600 baud to within 1.5%
accuracy.

- 174 -

intel

1.3 BAUD RATES AND CRYSTALS

The following program generates the appropriate TIMER2 reload values for a given baud rate. The user
supplies the system clock frequency and the desired baud rate and the program calculates the proper
TIMER2 reload value. Additionally, percent error, for both the baud rate generator and MCS BASlC-
52's REAL TIME CLOCK are calculated and displayed.

 >10 INPUT"ENTER CRYSTAL - ",X
 >20 INPUT"ENTER BAUD RATE - ",B
 >30 R=X/(32*B) : T=X/76800
 >40 R1=R-INT(R) : T1=T-INT(T)
 >50 IF R1<.5 THEN 80
 >60 R1=1-R1
 >70 R=R+1
 >80 IF T1<.5 THEN 110
 >90 T1=1-T1
 >100 T=T+1
 >110 PRINT "TIMER2 RELOAD VALUE IS - ",USING(######),INT(65536-R)
 >120 PRINT "BAUD RATE ERROR IS - ",USING(## ###),(R1/R)*100,"%"
 >130 PRINT "REAL TIME CLOCK ERROR IS - "(T1/T)*100,"/."

- 175 -

intel

1.4 QUICK REFERENCE

COMMANDS:

COMMAND FUNCTION EXAMPLE(S)

RUN Execute a program RUN

CONT CONTinue after a STOP or control-C CONT

LIST LIST program to the console device LIST
 LIST 10-50

LIST# LIST program to serial printer LIST#
 LIST# 50

LIST@ LIST program to user driver (version 1.1 only) LIST@
 LIST@ 50

NEW erase the program stored in RAM NEW

NULL set NULL count after carriage return line feed NULL
 NULL 4

RAM evoke RAM mode, current program in RAM
 READ/WRITE memory

ROM evoke ROM mode, current program in ROM
 ROM/EPROM memory ROM 3

XFER transfer a program from ROM/EPROM to RAM XFER

PROG save the current program in EPROM PROG

PROG1 save baud rate information in EPROM PROG1

PROG2 save baud rate information in EPROM and execute PROG2
 program after RESET

PROG3 save baud rate and MTOP information in EPROM PROG3
 (version 1.1 only)

PROG4 save baud rate and MTOP information in EPROM PROG4
 and execute program after RESET (version 1.1 only)

- 176 -

intel

1.4 QUICK REFERENCE

COMMANDS:

COMMAND FUNCTION EXAMPLE(S)

PROG5 same as PROG4 except that external RAM is not PROG5
 cleared on RESET or power up if external RAM
 contains a 0A5H in location 5EH (version 1.1 only)

PROG6 same as PROG6 except that external code location PROG6
 4039H is CALLED after RESET (version 1.1 only)

FPROG save the current program in EPROM using the FPROG
 INTELligent algorithm

FPROG1 save baud rate information in EPROM using the FPROG1
 INTELligent algorithm

FPROG2 save baud rate information in EPROM and execute FPROG2
 program after RESET, use INTELligent algorithm

FPROG3 same as PROG3, except INTELligent programming FPROG3
 algorithm is used (version 1.1 only)

FPROG4 same as PROG4, except INTELligent programming FPROG4
 algorithm is used (version 1.1 only)

FPROG5 same as PROG5, except INTELligent programming FPROG5
 algorithm is used (version 1.1 only)

FPROG6 same as PROG6, except INTELligent programming FPROG6
 algorithm is used (version 1.1 only)

- 177 -

intel

1.4 OUICK REFERENCE

STATEMENTS:

STATEMENT FUNCTION EXAMPLE(S)

BAUD set baud rate for line printer port BAUD 1200

CALL CALL assembly language program CALL 9000H

CLEAR CLEAR variables, interrupts and Strings CLEAR

CLEARS CLEAR Stacks CLEARS

CLEARI CLEAR Interrupts CLEARI

CLOCK1 enable REAL TIME CLOCK CLOCK1

CLOCK0 disable REAL TIME CLOCK CLOCK0

DATA DATA to be read by READ statement DATA 100

READ READ data in DATA statement READ A

RESTORE RESTORE READ pointer RESTORE

DIM allocate memory for arrayed variables DIM A(20)

DO set up loop for WHILE or UNTIL DO

UNTIL test DO loop condition (loop if false) UNTIL A= 10

WHILE test DO loop condition (loop if true) WHILE A= B

END terminate program execution END

FOR-TO-{STEP} set up FOR-NEXT loop FOR A= 1 TO 5

NEXT test FOR-NEXT loop condition NEXT A

- 178 -

intel

1.4 QUICK REFERENCE

STATEMENTS:

STATEMENT FUNCTION EXAMPLE(S)

GOSUB execute subroutine GOSUB 1000

RETURN RETURN from subroutine RETURN

GOTO GOTO program line number GOTO 500

ON GOTO conditional GOTO ON A GOTO 5,20

ON GOSUB conditional GOSUB ON A GOSUB 2,6

IF-THEN-{ELSE} conditional test IF A<B THEN A=0

INPUT INPUT a string or variable INPUT A

LET assign a variable or string a value LET A= 10
 (LET is optional)

ONERR ONERRor GOTO line number ONERR 1000

ONTIME generate an interrupt when TIME is equal to or ONTIME 10, 1000
 greater than ONTIME argument-line number is
 after comma

ONEX1 GOSUB to line number following ONEX1 when ONEX1 1000
 INT1 pin is pulled low

PRINT PRINT variables, strings or literals PRINT A
 (P. is shorthand for PRINT)

PRINT# PRINT to software serial port PRINT# A

PH0. PRINT HEX mode with zero suppression PH0. A

PH1. PRINT HEX mode with no zero suppression PH1. A

PH0.# PH0. to line printer PH0.# A

PH1.# PH1.# to line printer PH1.# A

- 179 -

intel

1.4 QUICK REFERENCE

STATEMENTS:

STATEMENT FUNCTION EXAMPLE(S)

PRINT@ PRINT to user defined driver (version 1.1 only) PRINT@ 5*5

PH0.@ PH0. to user defined driver (version 1.1 only) PH0. @
 XBY(5EH)

PH1.@ PH1. to user defined driver (version 1.1 only) PH1.@ A

PGM Program an EPROM (version 1.1 only) PGM

PUSH PUSH expressions on argument stack PUSH 10, A

POP POP argument stack to variables POP A, B, C

PWM PULSE WIDTH MODULATION PWM 50, 50, 100

REM REMark REM DONE

RETI RETurn from Interrupt RETI

STOP break program execution STOP

STRING allocate memory for STRlNGs STRING 50, 10

UI1 evoke User console Input routine UI1

UI0 evoke BASIC console Input routine UI0

UO1 evoke User console Output routine UO1

UO0 evoke BASIC console Output routine UO0

ST@ store top of stack at user specified location ST@ 1000H
 (version 1.1 only) ST@ A

LD@ load top of stack from user specified location LD@ 1000H
 (version 1.1 only) LD@ A

IDLE wait for interrupt (version 1.1 only) IDLE

RROM run a program in EP(ROM) (version 1.1 only) RROM 3

- 180 -

intel

1.4 QUICK REFERENCE

OPERATORS -- DUAL OPERAND:

OPERATOR FUNCTION EXAMPLE(S)

+ ADDITION 1 + 1

/ DIVISION 10 / 2

* * EXPONENTATION 2 * * 4

* MULTIPLICATION 4 * 4

- SUBTRACTION 8 - 4

.AND. LOGICAL AND 10.AND.5

.OR. LOGICAL OR 2.0R.1

.XOR. LOGICAL EXCLUSIVE OR 3.XOR.2

OPERATORS -- SINGLE OPERAND:

ABS() ABSOLUTE VALUE ABS(-3)

NOT() ONES COMPLEMENT NOT(0)

INT() INTEGER INT(3.2)

SGN() SIGN SGN(- 5)

SQR() SQUARE ROOT SQR(100)

RND RANDOM NUMBER RND

LOG() NATURAL LOG LOG(10)

EXP() "e" (2.7182818) TO THE X EXP(10)

SIN() RETURNS THE SINE OF ARGUMENT SIN(3.14)

COS() RETURNS THE COSINE OF ARGUMENT COS(0)

TAN() RETURNS THE TANGENT OF ARGUMENT TAN(.707)

ATN() RETURNS ARCTANGENT OF ARGUMENT ATN(1)

- 181 -

intel

1.4 QUICK REFERENCE

OPERATORS -- SPECIAL FUNCTION:

CBY() READ PROGRAM MEMORY P. CBY(4000)

DBY() READ/ASSIGN INTERNAL DATA DBY(99)=10
 MEMORY

XBY() READ/ASSIGN EXTERNAL DATA P. XBY(10)
 MEMORY

GET READ CONSOLE P. GET

IE READ/ASSIGN IE REGISTER IE=82H

IP READ/ASSIGN IP REGISTER IP=0

PORT1 READ/ASSIGN l/O PORT 1 (P1) PORT1=0FFH

PCON READ/ASSIGN PCON REGISTER PCON=0

RCAP2 READ/ASSIGN RCAP2 RCAP2=100
 (RCAP2H:RCAP2L)

T2CON READ/ASSIGN T2CON REGISTER P. T2CON

TCON READ/ASSIGN TCON REGISTER TCON=10H

TMOD READ/ASSIGN TMOD REGISTER P. TMOD

TIME READ/ASSIGN THE REAL TIME CLOCK P. TIME

TIMER0 READ/ASSIGN TIMER0 (TH0: TL0) TIMER0=0

TIMER1 READ/ASSIGN TIMER1 (TH1: TL1) P. TIMER1

TIMER2 READ/ASSIGN TIMER2 (TH2: TL2) TIMER2=0FFH

STORED CONSTANT:

PI PI -- 3.1415926 PI

- 182 -

intel

1.5 INSTRUCTION SET SUMMARY

COMMANDS STATEMENTS OPERATORS
RUN BAUD ADD (+)
CONT CALL DIVIDE (/)
LIST CLEAR EXPONENTIATION (**)
LIST# CLEAR(S&I) MULTIPLY (*)
LIST@ (V1.1) CLOCK(1&0) SUBTRACT (-)
NEW DATA LOGICAL AND (.AND.)
NULL READ LOGICAL OR (.OR.)
RAM RESTORE LOGICAL X-OR (.XOR.)
ROM DIM LOGICAL NOT (.OR.)
XFER DO-WHILE ABS()
PROG DO-UNTIL INT()
PROG1 END SGN()
PROG2 FOR-TO-STEP SQR()
PROG3 (V1.1) NEXT RND
PROG4 (V1.1) GOSUB LOG()
PROG5 (V1.1) RETURN EXP()
PROG6 (V1.1) GOTO SIN()
FPROG ON-GOTO COS()
FPROG1 ON-GOSUB TAN()
FPROG2 IF-THEN-ELSE ATN()
FPROG3 (V1.1) INPUT =, >, >=, <, <=, <>
FPROG4 (V1.1) LET ASC()
FPROG5 (V1.1) ONERR CHR()
FPROG6 (V1.1) ONEX1 CBY()
 ONTIME DBY()
 PRINT XBY()
 PRINT# GET
 PRINT@ (V1.1) IE
 PH0. IP
 PH0.# PORT1
 PH0.@ (V1.1) PCON
 PH1. RCAP2
 PH1.# T2CON
 PH1.(@ (V1.1) TCON
 PGM (V1.1) TMOD
 PUSH TIME
 POP TIMER0
 PWM TIMER1
 REM TIMER2
 RETI XTAL
 STOP MTOP
 STRING LEN
 UI(1&0) FREE
 U0(1&0) PI
 LD@ (V1.1)
 ST@ (V1.1)
 IDLE (V1.1)
 RROM (V1.1)

- 183 -

intel

1.6 FLOATING POINT FORMAT

MCS BASIC-52 stores all floating point numbers in a normalized packed BCD format with an offset
binary exponent. The simplest way to demonstrate the floating point format is to use an example. If the
number PI (3.1415926) was stored in location X, the following would appear in memory.

LOCATION VALUE DESCRIPTION

 X 81H EXPONENT -- 81H = 10**1, 82H = 10**2,
 80H = 10**0, 7FH = 10**-1 etc.
 THE NUMBER ZERO IS REPRESENTED WITH A
 ZERO EXPONENT

 X-1 00H SIGN BIT -- 00H = POSITIVE, 01H = NEGATIVE OTHER BITS ARE
 USED AS TEMPS ONLY DURING A CALCULATION

 X-2 26H LEAST SIGNIFICANT TWO DIGITS

 X-3 59H NEXT LEAST SIGNIFICANT TWO DIGITS

 X-4 41H NEXT MOST SIGNIFICANT TWO DIGITS

 X-5 31H MOST SIGNIFICANT TWO DIGITS

Because MCS BASIC-52 normalizes all numbers, the most significant digit is never a zero unless the
number is zero.

- 184 -

intel

1.7 STORAGE ALLOCATION

This section is intended to answer the question -- where does MCS BASIC-52 store its variables and
strings?

Two 16 bit pointers stored in external memory control the allocation of strings and variables and an
additional two pointers control the allocation of scalar variables and dimensioned variables. These
pointers are located and defined as follows:

LOCATION (H-L) NAME DESCRIPTION

10AH-10BH MTOP THE TOP OF RAM THAT IS ASSIGNED TO BASIC

104H-105H VARTOP VARTOP = MTOP - (THE NUMBER OF BYTES OF MEM-
 ORY THAT THE USER HAS ALLOCATED FOR STRINGS).
 IF STRINGS ARE NOT USED, VARTOP = MTOP

106H-107H VARUSE AFTER A NEW, CLEAR, OR RUN IS EXECUTED, VARUSE =
 VARTOP, EVERYTIME THE USER ASSIGNS OR USES A
 VARIABLE VARUSE IS DECREMENTED BY A COUNT OF 8.

108H-109H DIMUSE AFTER A NEW, CLEAR, OR RUN IS EXECUTED, DIMUSE =
 [LENGTH OF THE USER PROGRAM THAT IS IN RAM MEM-
 ORY + STARTING ADDRESS OF THE USER PROGRAM IN
 RAM (512) + THE LENGTH OF ONE FLOATING POINT
 NUMBER (6)]. IF NO PROGRAM IS IN RAM MEMORY,
 DIMUSE = 518 AFTER A CLEAR IS EXECUTED

MCS BASIC-52 stores string variables between VARTOP and MTOP. $(0) is stored from VARTOP to
VARTOP + (user defined string length + I), $(1) is stored from VARTOP + (user defined string length +
I) + I to VARTOP + 2 * (user defined string length + 1) etc. If MCS BASIC-52 attempts to access a string
that is outside the bounds established by MTOP, a MEMORY ALLOCATION ERROR is generated.

Now, Scalar variables are stored from VARTOP "down" and Dimensioned variables are stored from
DIMUSE "up." When the user dimensions a variable either implicity or explicity the value of DIMUSE
increases by the number of bytes required to store that dimensioned variable. For example, if the user
executes a DIM A(10) statement, DIMUSE would increase by 66. This is because the user is requesting
storage for 11 numbers (A(0) through A(10)) and each number requires 6 bytes for storage and 6 * 11 = 66.

- 185 -

intel

1.7 STORAGE ALLOCATION

As mentioned in the previous example, every time the user defines a new variable the VARUSE pointer
decrements by a count of 8. Six of the eight counts are due to the memory required to store a floating
point number and the other two counts are the storage required for the variable name (i.e. A1, B7, etc).
The variable B7 would be stored as follows:

LOCATION VALUE DESCRIPTION

 X 37H THE ASCII VALUE -- 7, IF B7 WAS A DIMENSIONED VARIABLE THE
 MOST SIGNIFICANT BIT OF THIS LOCATION WOULD BE SET. IN
 VERSION 1.1 THIS LOCATION ALWAYS CONTAINS THE ASCII
 VALUE FOR THE LAST CHARACTER USED TO DEFINE A VARIABLE

 X-1 42H THE ASCII VALUE -- B, IN VERSION 1.1 OF MCS BASIC-52 THIS
 LOCATION CONTAINS THE ASCII VALUE OF THE FIRST CHARAC-
 TER USED TO DEFINE A VARIABLE PLUS 26 * THE NUMBER OF
 CHARACTERS USED TO DEFINE A VARIABLE, IF THE VARIABLE
 CONTAINS MORE THAN 2 CHARACTERS.

 X-2 ?? THE NEXT SIX LOCATIONS WOULD CONTAIN THE FLOATING
 THRU POINT NUMBER THAT THE VARIABLE IS ASSIGNED TO, IF THE
 X-7 VARIABLE WAS A SCALAR VARIABLE. IF THE VARIABLE WAS DI-
 MENSIONED, X-2 WOULD CONTAIN THE LIMIT OF THE DIMENSION
 (I.E. THE MAX. NUMBER OF ELEMENTS IN THE ARRAY) AND
 X-3: X-4 WOULD CONTAIN THE BASE ADDRESS OF THE ARRAY.
 THIS ADDRESS IS EQUAL TO THE OLD VALUE OF THE DIMUSE
 POINTER BEFORE THE ARRAY WAS CREATED

Whenever a new scalar or dimensioned variable is used in a program, MCS BASIC-52 checks both the
DIMUSE and VARUSE pointers to make sure that VARUSE > DIMUSE. If the relationship is not true,
a MEMORY ALLOCATION ERROR is generated.

- 186 -

intel

1.7 STORAGE ALLOCATION

To Summarize:

Strings are stored from VARTOP to MTOP.

Scalar variables are stored from VARTOP "down" and VARUSE points to the next available scalar
location.

Dimensioned variables are stored from the end of the user program in RAM "up." If no program is in
RAM this location is 518 . DIMUSE keeps track of the number of bytes the user has allocated for
dimensioned variables.

If DIMUSE >= VARUSE a MEMORY ALLOCATION ERROR is generated

- 187 -

intel

1.8 FORMAT OF AN MCS BASIC-52 PROGRAM

This section answers the question "How does MCS BASIC-52 store a program?"

LINE FORMAT

Each line of MCS BASIC-52 text consists of tokens and ASCII characters, plus 4 bytes of overhead.
Three of these four bytes are stored at the beginning of every line. The first byte contains the length of a
line in binary and the second two bytes are the line number in binary. The fourth byte is stored at the
end of the line and this byte is always a 0DH or a carriage return in ASCII. An example of a typical line
is shown below, assume that this is the first line of a program in RAM.

 10 FOR I = I TO 10: PRINT 1: NEXT I

LOCATION BYTE DESCRIPTION

 512 11H THE LENGTH OF THE LINE IN BINARY (17D BYTES)
 513 00H HIGH BYTE OF THE LINE NUMBER
 514 0AH LOW BYTE OF THE LINE NUMBER
 515 0A0H THE TOKEN FOR "FOR"
 516 49H THE ASCII CHARACTER "I"
 517 0EAH THE TOKEN FOR "="
 518 31H THE ASCII FOR "1"
 519 0A6H THE TOKEN FOR "TO"
 520 31H THE ASCII FOR "1"
 521 30H THE ASCII FOR "0"
 522 3AH THE ASCII FOR ":"
 523 89H THE TOKEN FOR "PRINT"
 524 49H THE ASCII FOR "I"
 525 3AH THE ASCII FOR ":"
 526 97H THE TOKEN FOR "NEXT"
 527 49H THE ASCII FOR "I"
 528 0DH END OF LINE (CARRIAGE RETURN)

TO FIND THE LOCATION OF THE NEXT LINE, THE LENGTH OF THE LINE IS ADDED TO
THE LOCATION WHERE THE LENGTH OF THE LINE IS STORED. IN THIS EXAMPLE, 512
+ 17D = 529, WHICH IS WHERE THE NEXT LINE IS STORED.

The END of a program is designated by the value 01H. So, in the previous example if line 10 was the
only line in the program, location 529 would contain the value 01H. A program simply consists of a
number of lines packed together in one continuous block with the last line ending in a 0DH, 01H
sequence.

- 188 -

intel

1.8 FORMAT OF AN MCS BASIC-52 PROGRAM

EPROM FILE FORMAT

The EPROM FILE format consists of the same line and program format, previously described except
that each program in the EPROM file begins with the value 55H. The value 55H is only used by MCS
BASIC-52 to determine if a valid program is present. If the user types ROM 6, MCS BASIC-52
actually goes through the first program stored in EPROM line by line until the END of PROGRAM
(01H) is found, then it examines the next location to see if a 55H is stored in that location. It then goes
through that program line by line. This process is repeated 6 times. If the character 55H is not found
after the end of a program, MCS BASIC-52 will return with the PROM MODE error message. This
would mean that less than six programs were stored in that EPROM.

The first program stored in EPROM (ROM 1) always begins at location 8010H and this location will
always contain a 55H. The actual user program will begin at location 8011H.

EPROM locations 8000H through 800FH are reserved by MCS BASIC-52. These locations contain ini-
tialization information when the PROGX options are used. Version 1.0 of MCS BASIC-52 only used
the
first three bytes of this reserved EPROM area. The information stored in these bytes is as follows:

LOCATION DESCRIPTION

 8000H CONTAINED A 31H IF PROG 1 WAS USED, CONTAINED A 32H IF PROG 2
 WAS USED

 8001H BAUD RATE (RCAP2H)

 8002H BAUD RATE (RCAP2L)

Version 1.1 of MCS BASIC-52 uses the same locations as Version 1.0, but additionally locations
8003H and 8004H (high byte, low byte) are used to store the MTOP information for the PROG 3, 4, 5,
6 options.

IMPORTANT NOTE --

The PROG X options simply store ASCII character following the PROG command in location 8000H.
That is why PROG 1 stores a 31H in location 8000H, PROG 2 a 32H, PROG 3 (Version 1.1 only) a
33H etc. If the user employs the user defined reset option defined in Chapter 11 of this manual, it would
be possible for the user to create unique PROG options. For example, PROG A would store a 41H in
location 8000H and upon RESET the user could examine this location with an assembly language
routine and generate a unique PROG A reset routine for that particular application.

- 189 -

intel

1.9 ANSWERS TO A FEW QUESTIONS

QUESTION

Why can't MCS BASIC-52 access the 8052's SPECIAL FUNCTION REGISTER SCON ?

ANSWER

The only time the user would likely change the contents of SCON is if the user is writing custom I/O
drivers in assembly language. If the user is writing assembly language I/O drivers, then the user can
change the contents of SCON in assembly language. Changing the contents of SCON can cause MCS
BASIC-52's console routines to crash.

QUESTION

I have written an upload/download routine using my computer, but when I download a program, MCS
BASIC-52 misses characters, why?

ANSWER

MCS BASIC-52 is actually capable of accepting characters at 38,400 baud. The problem is that after
MCS BASIC-52 receives a carriage return (cr), it tokenizes the line of text that was just entered.
Depending on how complicated and how long the line is, MCS BASIC-52 can take up to a couple of
hundred milliseconds to tokenize the line. If the user keeps stuffing characters into the serial port while
MCS BASIC-52 is tokenizing the line, the characters will be lost. What the user must do in the
download routine is wait until MCS BASIC-52 responds with the prompt character (>) after a carriage
return is sent to the MCS BASIC-52 device. The prompt (>) informs the user that MCS BASIC-52 is
ready to receive characters from the console device.

QUESTION

I am writing in assembly language and I notice that the 8052AH has no decrement DPTR instruction.
What is the easiest. shortest or simplest way to decrement the DPTR?

ANSWER

The shortest one we know is:

 XCH A, DPL ; SWAPA<>DPL
 JNZ DECDP ; DPH = DPH-1 IF DPL = O
 DEC DPH
 DECDP: DEC A ; DPL = DPL-1
 XCH A, DPL

This routine affects no flags or registers (except the DPTR) either!

- 190 -

intel

1.9 ANSWERS TO A FEW QUESTIONS

QUESTION

After RESET or power-up, MCS BASIC-52 does not return the proper value for MTOP, what's the
problem?

ANSWER

Virtually every time this problem occurs it is because something is wrong with the decoding circuitry in
the system or one or more of the address lines to the RAM are open or shorted. The user should make
sure that all of the address lines to the system RAM are connected properly!

A simple memory test can be implemented in the COMMAND MODE to verify the addressing to the
RAM. First set XBY(1000H) = 55, then walk ones across the address (i.e. P. XBY(1001H) - P.
XBY(1002H) - P. XBY(1004H) -- P. XBY(1008H) P. XBY(1010H)) until all locations are tested. If for
instance, P. XBY(1008H) returns a result of 55, then address line 3 (A3) would probably be open or
shorted.

- 191 -

intel

1.10 PIN-OUT LIST

The following is a pin-out list of the most common devices found in an MCS BASIC-52 system:

2732A 27256 2764A

VPP
A12
A7
A6
A5
A4
A3
A2
A1
A0
O0
O1
O2

GND

VPP
A12
A7
A6
A5
A4
A3
A2
A1
A0
O0
O1
O2

GND

A7
A6
A5
A4
A3
A2
A1
A0
O0
O1
O2

GND

27256 2732A 2764A

VCC
A8
A9
A11

OE/VPP
A10
CE
O7
O6
O5
O4
O3

VCC

PGM
N.C.

A8
A9
A11

OE/VPP
A10
CE
O7
O6
O5
O4
O3

VCC
A14
A13
A8
A9
A11

OE/VPP
A10
CE
O7
O6
O5
O4
O3

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

GND

O2

O0

O1

A3

A2

A1

A0

A7

A6

A5

A4

VPP

A12

O4

O6

O5

OE

A10

CE

O7

A13

A8

A9

A11

VCC

PGM

O3

P27128A

EPROMS

GND

O2

O0

O1

A3

A7

A6

A5

A4

VPP 1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

O4

O5

D5
D4

D6
O7
D7
O6

VCC

74LS373

E

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

GND

I/O2

I/O0

I/O1

A3

A2

A1

A0

A7

A6

A5

A4

NC

A12

I/O4

I/O6

I/O5

OE

A10

CE

I/O7

NC

A8

A9

A11

VCC

WR

I/O3

8K x 8 SRAM

1

2

3

4

5

6

7

8

9

10

11

12

13

14 27

28

29

30

31

32

33

34

35

36

37

38

39

40

15

16

17

18

19

20 21

22

23

24

25

26

A14

A15

ALE

PSEN

AD5

AD6

AD7

+ 5 VOLTS

AD1

AD2

AD3

AD4

VCC

AD0

A8

A9

A11

A10

A13

A12
T2

INT1

CONSOLE SERIAL OUTPUT

INT0 / DMA REQUEST

LINE PRINTER OUTPUT / P1.7

RESET

CONSOLE SERIAL INPUT

PWM OUTPUT / P1.2

ALE DISABLE / P1.3

PROGRAM PULSE / P1.4

PROGRAM ENABLE / P1.5

T2 / P1.0

T2EX / P1.1

GND

XTAL1

RD

XTAL2

T1

WR

DMA ACKNOLEDGE / P1.6

8052AH-

BASIC

1

2

3

4

5

6

7

8

9

10

11

12

13

14 27

28

29

30

31

32

33

34

35

36

37

38

39

40

15

16

17

18

19

20 21

22

23

24

25

26

PC3

PC4

PC6

PC5

A1

A0

PC7

PA1

PA0

RD

CS

PA3

PA2

PB2

PB1

PC0

PB0

PC2

PC1

GND

D7

D6

D4

D5

D0

D1

D2

D3

PA6

PA7

WR

RESET

PA4

PA5

PB3

PB4

PB6

PB5

VCC

PB7

8255A

1

2

3

4

5

6

7 8

9

10

11

12

13

14 VCC

74LS08
74LS00

INVERTING

GND

1

2

3

4

5

6

7 8

9

10

11

12

13

14

GND

74LS32

VCC
1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

GND

74LS138

VCC A0

A2

E1

A1

E3

O7

E2

O0

O2

O3

O1

O5

O6

O4

1

2

3

4

5

6

7 8

9

10

11

12

13

14 VCC

7406/LS04/LS05
7407 NON-
INVERTING

GND

1

2

3

4

5

6

7 8

9

10

11

12

13

14 VCC

1489

INPUT D

RESPONSE
OUTPUT D

OUTPUT D

INPUT C

RESPONSE
CONTROL C

OUTPUT C

INPUT A

RESPONSE
CONTROL A

OUTPUT A

INPUT B

RESPONSE
CONTROL B

OUTPUT B

GROUND

1

2

3

4

5

6

7 8

9

10

11

12

13

14 VCC

1488

VEE

INPUT A

OUTPUT A

INPUT B1

INPUT B2

OUTPUT B

GND

INPUT D1

INPUT D2

OUTPUT D

INPUT C1

INPUT C2

OUTPUT C
1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

74LS245

GND

A3

A4

A5

A6

A7

A2

CE

VCC DIR

A0

A1 B0

B1

B2

B3

B4

B5

B6

B7

- 192 -

intel

1.11 8052AH SPECIAL FUNCTION REGISTERS

The following details the operation of the special function registers on the 8052AH:

SYMBOL
NAME

NAME

ADDRESS

MCS BASIC-52

ACC Accumulator 0E0H NOT ADDRESSABLE
B B Register 0F0H NOT ADDRESSABLE
PSW Program Status Word 0D0H NOT ADDRESSABLE
SP Stack Pointer 81H NOT ADDRESSABLE
DPTR Data Pointer 2 Bytes:
 DPH Low Byte 82H NOT ADDRESSABLE
 DPL High Byte 83H NOT ADDRESSABLE
P0 Port 0 80H NOT ADDRESSABLE
P1 Port 1 90H PORT1
P2 Port 2 0A0H NOT ADDRESSABLE
P3 Port 3 0B0H NOT ADDRESSABLE
IP Interrupt Priority Control 0B8H IP
IE Interrupt Enable Control 0A8H IE
TMOD Timer/Counter Mode Control 89H TMOD
TCON Timer/Counter Control 88H TCON
T2CON Timer/Counter 2 Control 0C8H T2CON
TH0 Timer/Counter 0 High Byte 8CH
 } TIMER0
TL0 Timer/Counter 0 Low Byte 8AH
TH1 Timer/Counter 1 High Byte 8DH
 } TIMER1
TL1 Timer/Counter 1 Low Byte 8BH
TH2 Timer/Counter 2 High Byte 0CDH
 } TIMER2
TL2 Timer/Counter 2 Low Byte 0CCH
RCAP2H T/C 2 Capture Reg. High Byte 0CBH
 } RCAP2
RCAP2L T/C 2 Capture Reg. Low Byte 0CAH
SCON Serial Control 98H NOT ADDRESSABLE
SBUF Serial Data Buffer 99H NOT ADDRESSABLE
PCON Power Control 87H NOT ADDRESSABLE

- 193 -

intel

1.11 8052AH SPECIAL FUNCTION REGISTERS

PSW: PROGRAM STATUS WORD. ADDRESS 0D0H

CY AC F0 RS1 RS0 OV -- P

CY PSW.7 Carry Flag.

AC PSW.6 Auxiliary Carry Flag.

F0 PSW.5 Flag 0 available to the user for general purpose.

RS1 PSW.4 Register Bank selector bit 1.

RS0 PSW.3 Register Bank selector bit 0.

OV PSW.2 Overflow Flag.

-- PSW.1 RESERVED FOR FUTURE USE.

P PSW.0 PARITY FLAG.

PCON: POWER CONTROL REGISTER. NOT BIT ADDRESSABLE.

SMOD -- -- -- -- -- -- --

SMOD Doubles the baud rate when TIMER 1 is used to generate the baud rate for the serial port.
The remaining bits of PCON are not implemented on the MCS BASIC-52 device.

- 194 -

intel

GATE Gating control When set. Timer/Counter "x"
is enabled only while "INTx" pin is high and
"TRx" control pin is set. When cleared
Timer "x" is enabled whenever "TRx"
control bit is set

C/T Timer or Counter Selector Cleared for Timer

operation (input from internal system clock).
Set for Counter operation (input from "Tx"
input pin).

1.11 8052AH SPECIAL FUNCTION REGISTERS

TMOD: Timer/Counter Mode Control Register

(MSB) (LSB)
GAT

E C/T M1 M0 GAT
E C/T M1 M0

TIMER 1 TIMER 0

M1 M0 Operating Mode
0 0 MCS-48 Timer "TLx" serves as five-

bit prescaler.

0 1 16 bit Timer/Counter "THx" and "TLX"

are cascaded; there is no prescaler

1 0 8-bit auto-reload timer-counter "THx"

holds a value which is to be reloaded into
"TLx" each time it overflows.

1 1 (Timer 0) TL0 is an eight-bit timer

counter-controlled by the
standard Timer 0 control
bits TH0 is an eight-bit timer
only controlled by Timer1
control bits.

1 1 (Timer 1) Timer-counter 1 stopped.

- 195 -

intel

1.11 8052AH SPECIAL FUNCTION REGISTERS

 Symbol Position Name and Significance

 TF2 T2CON.7 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared
by software. TF2 will not be set when either RCLK = 1 or TCLK = 1.

 EXF2 T2CON.6 Timer 2 external flag set when either a capture or reload is caused by a
negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt
is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2
interrupt routine. EXF2 must be cleared by software.

 RCLK T2CON.5 Receive clock flag. When set, causes the serial port to use Timer 2
overflow pulses for its receive clock in modes 1 and 3. RCLK = 0
causes Timer 1 overflow to be used for the receive clock.

 TCLK T2CON.4 Transmit clock flag. When set, causes the serial port to use Timer 2
overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0
causes Timer 1 overflows to be used for the transmit clock.

 EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to
occur as a result of a negative transition on T2EX if Timer 2 is not
being used to clock the serial port.

 EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

 TR2 T2CON.2 Start/stop control for Timer 2. A logic 1 starts the timer.

 C/T2 T2CON.1 Timer or counter select. (Timer 2)
 0 = Internal timer (OSC/12)
 1 = External event counter (falling edge triggered).

 CP/RL2 T2CON.0 Capture/Reload flag. When set, captures will occur on negative
transitions at T2EX if EXEN2 = 1. When cleared, auto reloads will
occur either with Timer 2 overflows or negative transitions at T2EX
when EXEN 2 = 1. When either RCLK = 1 or TCLK = 1, this bit is
ignored and the timer is forced to auto-reload on Timer 2 overflow.

Timer/Counter2 Control Register

(MSB) (LSB)

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RLS2

- 196 -

intel

1.11 8052AH SPECIAL FUNCTION REGISTERS

 where SM0, SM1 specify the serial port mode, as follows:

 SM0 SM1 Mode Description Baud
 Rate

 0 0 0 shift fosc /12
 0 1 1 register variable
 1 0 2 8-bit UART fosc./64
 9-bit UART or
 fosc /32

 1 1 3 9-bit UART variable

SCON: Serial Port Control Register

TCON: Timer/Counter Control Register

(MSB) (LSB)
SM0 SM1 SM2 REN TB8 RB8 TI RI

• TB8 is the 9th data bit that will be transmitted in
modes 2 and 3. Set or clear by software as
desired.

• RB8 In modes 2 and 3, is the 9th data bit that
was received. In mode 1, if SM2 = 0, RB8
is the stop bit that was received. In mode
0, RB8 is not used.

• TI is transmit interrupt flag. Set by hardware at
the end of the 8th bit time in mode 0, or at
the beginning of the stop bit in the other
modes, in any serial transmission. Must be
cleared by software.

• RI is receive interrupt flag. Set by hardware at
the end of the 8th bit time in mode 0, or
halfway through the stop bit time in the
other modes, in any serial reception
(except see SM2). Must be cleared by
software.

• SM2 enables the multiprocessor
communication feature in modes 2 and 3.
In mode 2 or 3, if SM2 is set to 1 then RI
will not be activated if the received 9th
data bit (RB8) is 0. In mode 1, if SM2 = 1
then RI will not be activated if a valid stop
bit was not received. In mode 0, SM2
should be 0.

• REN enables serial reception. Set by software to
enable reception. Clear by software to dis-
able reception.

(MSB) (LSB)
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

 0 1 0 1 0 1 0 0

Symb. Position Name and Significance

TF1 TCON.7 Timer 1 overflow Flag. Set by hard-
ware on timer/counter overflow.
Cleared by hardware when processor
vectors to interrupt routine.

TR1 TCON.6 Timer 1 Run control bit. Set cleared
by software to turn timer/ counter
on/off.

TF0 TCON.5 Timer 0 overflow flag. Set by hard-
ware on timer/counter overflow.
Cleared by hardware when processor
vectors to interrupt routine.

TR0 TCON.4 Timer 0 Run control bit. Set
cleared by software to turn timer/
counter on/off.

Symb. Position Name and Significance

IE1 TCON.3 Interrupt 1 Edge flag. Set by hardware
when external interrupt edge detected.
Cleared when interrupt processed.

IT1 TCON.2 Interrupt 1 Type control bit. Set
cleared by software to specify falling
edge/low level triggered external
interrupts.

IE0 TCON.1 Interrupt 0 Edge flag. Set by hardware
when external interrupt edge detected.
Cleared when interrupt processed.

IT0 TCON.0 Interrupt 0 Type control bit. Set/
cleared by software to specify falling
edge/low level triggered external
interrupts.

- 197 -

intel

1.11 8052AH SPECIAL FUNCTION REGISTERS

Symbol Position Function

 -- IP.7 reserved

 -- IP.6 reserved

 PT2 IP.5 defines the Timer 2 interrupt

priority level. PT2 = 1 programs it
to the higher priority level.

 PS IP.4 defines the Serial Port interrupt

priority level. PS = 1 programs it
to the higher priority level.

 PT1 IP.3 defines the Timer 1 interrupt

priority level. PT1 = 1 programs it
to the higher priority level.

 PX1 IP.2 defines the External Interrupt 1

priority level. PX1 = 1 programs
it to the higher priority level.

 PT0 IP.1 defines the Timer 0 interrupt

priority level. PT0 = 1 programs it
to the higher priority level.

 PX0 IP.0 defines the External Interrupt 0

priority level. PX0 = 1 programs
it to the higher priority level.

(MSB) (LSB)
X X PT

2 PS PT
1

PX
1

PT
0

PX
0

(MSB) (LSB)
EA X ET

2 ES ET
1

EX
1

ET
0

EX
0

Symbol Position Function

 EA IE.7 disables all interrupts. If EA = 0, no

interrupt will be acknowledged. If
EA = 1, each interrupt source is
individually enabled or disabled by
setting or clearing its enable bit.

 -- IE.6 reserved

 ET2 IE.5 enables or disables the Timer 2

overflow or capture interrupt. If ET2
= 0, the Timer 2 interrupt is disabled.

 ES IE.4 enables or disables the Serial Port

interrupt. If ES = 0, the Serial Port
interrupt is disabled.

 ET1 IE.3 enables or disables the Timer 1

Overflow interrupt. If ET1 = 0, the
Timer 1 interrupt is disabled.

 EX1 IE.2 enables or disables External Interrupt

1. If EX1 = 0, External Interrupt 1 is
disabled.

 ET0 IE.1 enables or disables the Timer 0

Overflow interrupt. If ET0 = 0, the
Timer 0 Interrupt is disabled.

 EX0 IE.0 enables or disables External Interrupt

0. If EX0 = 0, External Interrupt 0 is
disabled.

IP: Interrupt Priority Register

IP: Interrupt Enable Register

- 198 -

intel

1.12 REFERENCES

REFERENCES

J. Sack and J: Meadows, Entering BASIC, Science Research Associates, 1973.

C. Pegels, BASIC: A Computer Programming Language, Holden-Day, Inc., 1973.

J. Kemeny and T. Kurtz, BASIC Programming, People Computer Company, 1967.

Albrecht, Finkle, and Brown, BASIC, People Computer Company, 1973.

T. Dwyer, A Guided Tour of Computer Programming in BASIC, Houghton Mifflin Co., 1973.

Eugene H. Barnett, Programming Time Shared Computers in BASIC, Wiley-Interscience, L/C 72-175789.

Programming Language #2, Digital Equipment Corp., Maynard, Mass. 01754.

101 BASIC Computer Games, Digital Equipment Corp., Maynard, Mass. 01754.

What to do After You Hit Return. People Computer Company.

BASIC-80 REFERENCE MANUAL, Intel Corp., Santa Clara, Calif

- 199 -

intel

APPENDIX B

INSTRUCTION SET SUMMARY

This appendix contains two tables (see tables B-1 and B-2): the first identifies all of the 8052's
instructions in alphabetical order; the second table lists the instructions according to their hexadecimal
opcodes and lists the assembly language instructions that produced that opcode.

The alphabetical listing also includes documentation of the bit pattern, flags affected, number of
machine cycles per execution and a description of the instructions operation and function. The list
below defines the conventions used to identify operation and bit patterns.

ABBREVIATIONS AND NOTATIONS USED

A Accumulator
AB Register Pair
B Multiplication Register
bit address 8052 bit address
page address 11-bit code address within

2K page
relative offset 8-bit 2's complement offset
C Carry Flag
code address Absolute code address
data Immediate data
data address On-chip 8-bit RAM address
DPTR Data pointer
PC Program Counter
Rr Register (r = 0-7)
SP Stack pointer
High High order byte
low Low order byte
i-j Bits i through j
.n Bit n
aaa aaaaaaaa Absolute page address

encoded in instruction
and operand byte

bbbbbbbb Bit address encoded in
operand byte

dddddddd Immediate data encoded in
operand byte

llllllll One byte of a 16-bit
address encoded in
operand byte

mmmmmmmm Data address encoded in
operand byte

oooooooo Relative offset encoded in
operand byte

r or rrr Register identifier encoded
in operand byte

AND Logical AND
NOT Logical complement
OR Logical OR
XOR Logical exclusive OR
+ Plus
- Minus
/ Divide
· Multiply
(X) The contents of X
((X)) The memory location

addressed by (X) (The
contents of X)

= Is equal to
<> Is not equal to
< Is less than
> Is greater than
<- Is replaced by

- 200 -

intel

Table B-1. Instruction Set Summary

Mnemonic
Operation Cycles Binary

Code
Flags

 P OV AC C Function

ACALL code addr
 (PC) <- (PC) + 2
 (SP) <- (SP) + 1
 ((SP)) <- (PC) low
 (SP) <- (SP) + 1
 ((SP)) <- (PC) high
 (PC) 0-10 <- page address

2 a a a 1 0 0 0 1
a a a a a a a a

 Push PC on stack, and
replace low order 11 bits
with low order 11 bits of
code address.

ADD A,#data
 (A) <- (A) + data

1 0 0 1 0 0 1 0 0
d d d d d d d d

P OV AC C Add immediate data to A.

ADD A,@Rr
 (A) <- (A) + ((Rr))

1 0 0 1 0 0 1 1 r P OV AC C Add contents of indirect
address to A.

ADD A,Rr
 (A) <- (A) + (Rr)

1 0 0 1 0 1 r r r P OV AC C Add register to A.

ADD A,data addr
 (A) <- (A) + (data address)

1 0 0 1 0 0 1 0 1
m m m m m m m m

P OV AC C Add contents of data
address to A.

ADDC A,#data
 (A) <- (A) + (C) + data

1 0 0 1 1 0 1 0 0
d d d d d d d d

P OV AC C Add C and immediate data
to A

ADDC A,@Rr
 (A) <- (A) + (C) + ((Rr))

1 0 0 1 1 0 1 1 r P OV AC C Add C and contents of
indirect address to A.

ADDC A,Rr
 (A) <- (A) + (C) + (Rr)

1 0 0 1 1 1 r r r P OV AC C Add C and register to A

ADDC A,data addr
 (A) <- (A) + (C) + (data address)

1 0 0 1 1 0 1 0 1
m m m m m m m m

P OV AC C Add C and contents of data
address to A

AJMP code addr
 (PC) 0-10 <- code address

2 a a a 0 0 0 0 1
a a a a a a a a

 Replace low order 11 bits of
PC with low order 11 bits
code address.

ANL A,#data
 (A) <- (A)AND data

1 0 1 0 1 0 1 0 0
d d d d d d d d

P Logical AND immediate data
to A.

ANL A,@Rr
 (A) <- (A) AND ((Rr))

1 0 1 0 1 0 1 1 r P Logical AND contents of
indirect address to A

ANL A,Rr
 (A) <- (A) AND (Rr)

1 0 1 0 1 1 r r r P Logical AND register to A

ANL A,data addr
 (A) <- (A) AND (data address)

1 0 1 0 1 0 1 0 1
m m m m m m m m

P Logical AND contents of
data address to A.

ANL C,bit addr
 (C) <- (C) AND (bit address)

2 1 0 0 0 0 0 1 0
b b b b b b b b

 C Logical AND bit to C

ANL C,lbit addr
 (C) <- (C) AND NOT (bit address)

2 1 0 1 1 0 0 0 0
b b b b b b b b

 C Logical AND complement of
bit to C

ANL data addr, #data
 (data address) <-
 (data address) AND data

2 0 1 0 1 0 0 1 1
m m m m m m m m
d d d d d d d d

 Logical AND immediate data
to contents of data address

ANL data addr,A
 (data address) <-
 (data address) AND A

1 0 1 0 1 0 0 1 0
m m m m m m m m

 Logical AND A to contents of
data address.

- 201 -

intel

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Operation Cycles Binary

Code
Flags

 P OV AC C Function

CJNE @Rr,#data,code addr
 (PC) <- (PC) + 3
 IF ((Rr)) <> data
 THEN
 (PC) <- (PC) + relative offset
 IF ((Rr)) < data
 THEN(C) <- 1
 ELSE(C) <- 0

2 1 0 1 1 0 1 1 r
d d d d d d d d
o o o o o o o o

 C If immediate data and
contents of indirect address
are not equal, jump to code
address.

CJNE A,#data,code addr
 (PC) <- (PC) + 3
 IF(A) <> data
 THEN
 (PC) <- (PC) + relative offset
 IF (A) < data
 THEN(C) <- 1
 ELSE(C) <- 0

2 1 0 1 1 0 1 0 0
d d d d d d d d
o o o o o o o o

 C If immediate data and A are
not equal, jump to code
address.

CJNE A,data addr,code addr
 (PC) <- (PC) + 3
 IF (A) <> (data address)
 THEN
 (PC) <- (PC) + relative offset
 IF (A) < (data address)
 THEN(C) <- 1
 ELSE(C) <- 0

2 1 0 1 1 0 1 0 1
m m m m m m m m
o o o o o o o o

 C If contents of data address
and A are not equal, jump to
code address.

CJNE Rr,#data,code addr
 (PC) <- (PC) + 3
 IF (Rr) <> data
 THEN
 (PC) <- (PC) + relative offset
 IF (Rr) < data
 THEN(C) <- 1
 ELSE(C) <- 0

2 1 0 1 1 1 r r r
d d d d d d d d
o o o o o o o o

 C If immediate data and
register are not equal, jump
to code address.

CLR A
 (A) <- 0

1 1 1 1 0 0 1 0 0 P Set A to zero (0).

CLR C
 (C) <- 0

1 1 1 0 0 0 0 1 1 C Set C to zero (0).

CLR bit addr
 (bit address) <- 0

1 1 1 0 0 0 0 1 0
b b b b b b b b

 Set bit to zero (0).

CPL A
 (A) <- NOT (A)

1 1 1 1 1 0 1 0 0 P Complements each bit in A.

CPL C
 (C) <- NOT (C)

1 1 0 1 1 0 0 1 1 C Complement C.

CPL bit addr
 (bitaddress) <-
 NOT (bit address)

1 1 0 1 1 0 0 1 0
b b b b b b b b

 Complement bit.

DA A 1 1 1 0 1 0 1 0 0 P C Adjust A after a BCD add.
DEC @Rr
 ((Rr)) <- ((Rr)) - 1

1 0 0 0 1 0 1 1 r Decrement contents of
indirect address.

DEC A
 (A) <- (A) - 1

1 0 0 0 1 0 1 0 0 P Decrement A.

DEC Rr
 (Rr) <- (Rr) -1

1 0 0 0 1 1 r r r Decrement register.

- 202 -

intel

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Operation Cycles Binary

Code
Flags

 P OV AC C Function

DEC data addr
 (data address) <-
 (data address) - 1

1 0 0 0 1 0 1 0 1
m m m m m m m m

 Decrement contents of data
address.

DIV AB
 (AB) <- (AJ/(B)

4 1 0 0 0 0 1 0 0 P OV C Divide A by B (multiplication
register).

DJNZ Rr,code addr
 (PC) <- (PC) + 2
 (Rr) <- (Rr) - 1
 IF(Rr) <> 0
 THEN
 (PC) <- (PC) + relative offset

2 1 1 0 1 1 r r r
o o o o o o o o

 Decrement register, if not
zero (0), then jump to code
address.

DJNZ data addr,code addr
 (PC), <- (PC) + 3
 (data address) <-
 (data address) - 1
 IF (data address) <> 0
 THEN
 (PC) <- (PC) + relative offset

2 1 1 0 1 0 1 0 1
m m m m m m m m
o o o o o o o o

 Decrement data address, if
zero (0), then jump to code
address.

INC @Rr
 ((Rr)) <- ((Rr)) + 1

1 0 0 0 0 0 1 1 r Increment contents of
indirect address.

INC A
 (A) <- (A) + 1

1 0 0 0 0 0 1 0 0 P Increment A.

INC DPTR
 (DPTR) <- (DPTR) + 1

1 1 0 1 0 0 0 1 1 Increment 16-bit data
pointer.

INC Rr
 ((R) <- (Rr) + 1

1 0 0 0 0 1 r r r Increment register.

INC data addr
 (data address) <-
 (data address) + 1

2 0 0 0 0 0 1 0 1
m m m m m m m m

 Increment contents of data
address.

JB bit addr,code addr
 (PC) <- (PC) + 3
 IF (bit address) = 1
 THEN
 (PC) <- (PC) + relative offset

2 0 0 1 0 0 0 0 0
b b b b b b b b
o o o o o o o o

 If bit is one, n jump to code
address.

JBC bit addr,code addr
 (PC) <- (PC) + 3
 IF (bit address) = 1
 THEN
 (bit address) <- 0
 (PC) <- (PC) + relative offset

2 0 0 0 1 0 0 0 0
b b b b b b b b
o o o o o o o o

 If bit is one, n clear bit and
jump to code address.

JC code addr
 (PC) (PC) + 2
 IF(C) = 1
 THEN
 (PC) <- (PC) + relative offset

2 0 1 0 0 0 0 0 0
o o o o o o o o

 If C is one, then jump to
code address.

JMP @A + DPTR
 (PC) <- (A) + (DPTR)

2 0 1 1 1 0 0 1 1 Add A to data pointer and
jump to that code address.

JNB bit addr,code addr
 (PC) <- (PC) + 3
 IF (bit address) = 0
 THEN
 (PC) <- (PC) + relative offset

2 0 0 1 1 0 0 0 0
b b b b b b b b
o o o o o o o o

 If bit is zero, n jump to code
address.

- 203 -

intel

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Operation Cycles Binary

Code
Flags

 P OV AC C Function

JNC code addr
 (PC) + (PC) + 2
 IF (C) = 0
 THEN
 (PC) <- (PC) + relative offset

2 0 1 0 1 0 0 0 0
o o o o o o o o

 If C is zero (0), n jump to
code address.

JNZ code addr
 (PC) <- (PC) + 2
 IF (A) <> 0
 THEN
 (PC) <- (PC) + relative offset

2 0 1 1 1 0 0 0 0
o o o o o o o o

 If A is not zero (0), n jump to
code address.

JZ code addr
 (PC) <- (PC) + 2
 IF (A) = 0
 THEN
 (PC) <- (PC) + relative offset

2 0 1 1 0 0 0 0 0
o o o o o o o o

 If A is zero (0), then jump to
code address.

LCALL code addr
 (PC) <- (PC) + 3
 (SP) <- (SP) + 1
 ((SP)) <- ((PC)) low
 (SP) <- (SP) + 1
 ((SP)) <- (PC) high
 (PC) <- code address

2 0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 1†
1 1 1 1 1 1 1 1†

 Push PC on stack and
replace entire PC value with
code address.

LJMP code addr
 (PC) <- code address

2 0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 1†
1 1 1 1 1 1 1 1†

 Jump to code address.

MOV @Rr,#data
 ((Rr)) <- data

1 0 1 1 1 0 1 1 r
d d d d d d d d

 Move immediate data to
indirect address.

MOV @Rr,A
 ((Rr)) <- (A)

1 1 1 1 1 0 1 1 r Move A to indirect address.

MOV @Rr,data addr
 ((Rr)) <- (data address)

2 1 0 1 0 0 1 1 r
m m m m m m m m

 Move contents of data
address to indirect address.

MOV A,#data
 (A) <- data

1 0 1 1 1 0 1 0 0
d d d d d d d d

P Move immediate data to A.

MOV A,@Rr
 (A) <- ((Rr))

1 1 1 1 0 0 1 1 r P Move contents of indirect
address to A.

MOV A,Rr
 (A) <- (Rr)

1 1 1 1 0 1 r r r P Move register to A.

MOV A,data addr
 (A) <- (data address)

1 1 1 1 0 0 1 0 1
m m m m m m m m

P Move contents of data
address to A.

MOV C,bit addr
 (C) <- (bitaddress)

1 1 0 1 0 0 0 1 0
b b b b b b b b

 C Move bit to C.

MOV DPTR,#data
 (DPTR) <- data

2 1 0 0 1 0 0 0 0
d d d d d d d d†
d d d d d d d d†

 Move two bytes of
immediate data pointer.

MOV Rr,#data
 (Rr) <- data

1 0 1 1 1 1 r r r
d d d d d d d d

 Move immediate data to
register.

MOV Rr,A
 (Rr) <- (A)

1 1 1 1 1 1 r r r Move A to register.

† The high order byte of the 16-bit operand is in the first byte following the opcode. The low order byte is in the
 second byte following the opcode.

- 204 -

intel

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Operation Cycles Binary

Code
Flags

 P OV AC C Function

MOV Rr,data addr
 (Rr) <- (data address)

2 1 0 1 0 1 r r r
m m m m m m m m

 Move contents of data
address to register.

MOV bit addr,C
 (bit address) <- (C)

2 1 0 0 1 0 0 1 0
b b b b b b b b

 Move C to bit.

MOV data addr,#data
 (data address) <- data

2 0 1 1 1 0 1 0 1
m m m m m m m m
d d d d d d d d

 Move immediate data to data
address.

MOV data addr,@Rr
 (data address) <- ((Rr))

2 1 0 0 0 0 1 1 r
m m m m m m m m

 Move contents of indirect
address to data address.

MOV data addr,A
 (data address) <- (A)

1 1 1 1 1 0 1 0 1
m m m m m m m m

 Move A to data address.

MOV data addr,Rr
 (data address) <- (Rr)

2 1 0 0 0 1 r r r
m m m m m m m m

 Move register to data
address.

MOV data addr1,data addr2
 (data address1) <-
 (data address2)

2 1 0 0 0 0 1 0 1
m m m m m m m m•
m m m m m m m m•

 Move contents of second
data address to first data
address.

MOVC A,@A + DPTR
 (PC) <- (PC) + 1
 (A) <- ((A) + (DPTR))

2 1 0 0 1 0 0 1 1 P Add A to DPTR and move
contents of that code
address with A.

MOVC A,@A + PC
 (A) <- ((A) + (PC))

2 1 0 0 0 0 0 1 1 P Add A to PC and move
contents of that code
address with A.

MOVX @DPTR,A
 DPTR)) <- (A)

2 1 1 1 1 0 0 0 0 Move A to external data
location addressed by
DPTR.

MOVX @Rr,A
 ((Rr)) <- (A)

2 1 1 1 1 0 0 1 r Move A to external data
location addressed by
register.

MOVX A,@DPTR
 (A) <- ((DPTR))

2 1 1 1 0 0 0 0 0 P Move contents of external
data location addressed by
DPTR to A

MOVX A,@Rr
 (A) <- ((Rr))

2 1 1 1 0 0 0 1 r P Move contents of external
data location addressed by
register to A.

MUL AB
 (AB) <- (A) * (B)

4 1 0 1 0 0 1 0 0 P OV C Multiply A by B
(multiplication register).

NOP 1 0 0 0 0 0 0 0 0 Do nothing.
ORL A,#data
 (A) <- (A)OR data

1 0 1 0 0 0 1 0 0
d d d d d d d d

P Logical OR immediate data
to A.

ORL A,@Rr
 (A) <- (A) OR ((Rr))

1 0 1 0 0 0 1 1 r P Logical OR contents of
indirect address to A.

ORL A,Rr
 (A) <- (A) OR (Rr)

1 0 1 0 0 1 r r r P Logical OR register to A.

ORL A,data addr
 (A) <- (A) OR (data address)

1 0 1 0 0 0 1 0 1
m m m m m m m m

P Logical OR contents of data
address to A.

ORL C,bit addr
 (C) <- (C) OR (bit address)

2 0 1 1 1 0 0 1 0
b b b b b b b b

 C Logical OR bit to C.

• The source data address (second data address) is encoded in the first byte following the opcode. The
destination data address is encoded in the second byte following the opcode.

- 205 -

intel

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Operation Cycles Binary

Code
Flags

 P OV AC C Function

ORL C,/bit addr
 (C) <- (C) OR NOT (bit address)

2 1 0 1 0 0 0 0 0
b b b b b b b b

 C Logical OR complement of
bit to C.

ORL data addr,#data
 (data address) <-
 (data address) OR data

2 0 1 0 0 0 0 1 1
m m m m m m m m
d d d d d d d d

 Logical OR immediate data
to data address.

ORL data addr,A
 (data address) <-
 (data address) OR A

1 0 1 0 0 0 0 1 0
m m m m m m m m

 Logical OR A to data
address.

POP data addr
 (data address) <- ((SP))
 (SP) <- (SP) – 1

2 1 1 0 1 0 0 0 0
m m m m m m m m

 Place top of stack at data
address and decrement SP.

PUSH data addr
 (SP) <- (SP) + 1
 ((SP)) <- (data address)

2 1 1 0 0 0 0 0 0
m m m m m m m m

 Increment SP and place
contents of data address at
top of stack.

RET
 (PC)high <- ((SP))
 (SP) <- (SP) - 1
 (PC)low <- ((SP))
 (SP) <- (SP) - 1

2 0 0 1 0 0 0 1 0 Return from subroutine call.

RETI
 (PC)high <- ((SP))
 (SP) <- (SP) - 1
 (PC)low <- ((SP))
 (SP) <- (SP)

2 0 0 1 1 0 0 1 0 Return from interrupt routine.

RL A 1 0 0 1 0 0 0 1 1 Rotate A left one position.
RLC A 1 0 0 1 1 0 0 1 1 P C Rotate A through C left one

position.
RR A 1 0 0 0 0 0 0 1 1 Rotate A right one position.
RRC A 1 0 0 0 1 0 0 1 1 P C Rotate A through C right one

position.
SETB C
 (C) <- 1

1 1 1 0 1 0 0 1 1 C Set C to one (1).

SET8 bit addr
 (bit address) <- 1

1 1 1 0 1 0 0 1 0
b b b b b b b b

 Set bit to one (1).

SJMP code addr
 (PC) <- (PC) + 2
 (PC) <- (PC) + relative offset

2 1 0 0 0 0 0 0 0
o o o o o o o o

 Jump to code address.

SUBB A,#data
 (A) <- (A) - (C) - data

1 1 0 0 1 0 1 0 0
d d d d d d d d

P OV AC C Subtract immediate data
from A.

SUBB A,@Rr
 (A) <- (A) - (C) - ((Rr))

1 1 0 0 l 0 l l r P OV AC C Subtract contents of indirect
address from A.

SUBB A,Rr
 (A) <- (A) - (C) - (Rr)

1 1 0 0 1 1 r r r P OV AC C Subtract register from A.

SUBB A, data addr
 (A) <- (A) - (C) - (data address)

1 1 0 0 1 0 1 0 1
m m m m m m m m

P OV AC C Subtract contents of data
address from A

SWAP A 1 1 1 0 0 0 1 0 0 Exchange low order nibble
with high order nibble in A

- 206 -

intel

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Operation Cycles Binary

Code
Flags

 P OV AC C Function

XCH A,@Rr
 temp <- ((Rr))
 ((Rr)) <- (A)
 (A) <- temp

1 1 1 0 0 0 1 1 r P Move A to indirect address
and vice versa.

XCH A,Rr
 temp <- (Rr)
 (Rr) <- (A)
 (A) <- temp

1 1 1 0 0 1 r r r P Move A to register and vice
versa.

XCH A,data addr
 temp <- (data address)
 (data address) <- (A)
 (A) <- temp

1 1 1 0 0 0 1 0 1
m m m m m m m m

P Move A to data address and
vice versa.

XCHD A,@Rr
 temp <- ((Rr)) 0-3
 ((Rr)) 0-3 <- (A) 0-3
 (A) 0-3 <- temp

1 0 1 1 0 0 1 1 r P Move low order of A to low
order nibble of indirect
address and vice versa.

XRL A,#data
 (A) <- (A) XOR data

1 0 1 1 0 0 1 0 0
d d d d d d d d

P Logical exclusive OR
immediate data to A.

XRL A,@Rr
 (A) <- (A) XOR ((Rr))

1 0 1 1 0 0 1 1 r P Logical exclusive OR
contents of indirect address
to A.

XRL A,Rr
 (A) <- (A) XOR (Rr)

1 0 1 1 0 1 r r r P Logical exclusive OR register
to A.

XRL A,data addr
 (A) <- (A) XOR (data address)

1 0 1 1 0 0 1 0 1
m m m m m m m m

P Logical exclusive OR
contents of data address to
A.

XRL data addr,#data
 (data address) <-
 (data address) XOR data

2 0 1 1 0 0 0 1 1
m m m m m m m m
d d d d d d d d

 Logical exclusive OR
immediate data to data
address.

XRL data addr,A
 (data address) <-
 (data addr as) XOR A

1 0 1 1 0 0 0 1 0
m m m m m m m m

 Logical exclusive OR A to
data address.

- 207 -

intel

Table B-2. Instruction Opcodes in Hexadecimal

 Hex
Code

Number
of Bytes Mnemonic Operands

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
18
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
80
31
32
83
34
35
36
37
38
89
3A
3B

1
2
3
1
1
2
1
1
1
1
1
1
1
1
1
1
3
2
3
1
1
2
1
1
1
1
1
1
1
1
1
1
3
2
1
1
2
2
1
1
1
1
1
1
1
1
1
1
3
2
1
1
2
2
1
1
1
1
1
1

NOP
AJMP
LJMP
RR
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
JBC
ACALL
LCALL
RRC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
JB
AJMP
RET
RL
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
JNB
ACALL
RETI
RLC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC

code addr
code addr
A
A
data addr
@R0
@R1
R0
R1
R2
R3
R4
R5
R6
R7
b i t addr ,code addr
code addr
code addr
A
A
data addr
@R0
@R1
R0
R1
R2
R3
R4
R5
R6
R7
b i t addr ,code addr
code addr

A
A,#data
A,data addr
A,@R0
A,@R1
A,R0
A,R1
A,R2
A,R3
A,R4
A,R5
A,R6
A,R7
b i t addr ,code addr
code addr

A
A,#data
A,data addr
A,@R0
A,@R1
A,R0
A,R1
A,R2
A,R3

- 208 -

intel

Table B-2. Instruction Opcodes in Hexadecimal

 Hex
Code

Number
of Bytes Mnemonic Operands

3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77

1
1
1
1
2
2
2
3
2
2
1
1
1
1
1
1
1
1
1
1
2
2
2
3
2
2
1
1
1
1
1
1
1
1
1
1
2
2
2
3
2
2
1
1
1
1
1
1
1
1
1
1
2
2
2
1
2
3
2
2

ADDC
ADDC
ADDC
ADDC
JC
AJMP
ORL
ORL
ORL
ORL
ORL
ORL
ORL
ORL
ORL
ORL
ORL
ORL
ORL
ORL
JNC
ACALL
ANL
ANL
ANL
ANL
ANL
ANL
ANL
ANL
ANL
ANL
ANL
ANL
ANL
ANL
JZ
AJMP
XRL
XRL
XRL
XRL
XRL
XRL
XRL
XRL
XRL
XRL
XRL
XRL
XRL
XRL
JNZ
ACALL
ORL
JMP
MOV
MOV
MOV
MOV

A,R4
A,R5
A,R7
A,R7
code addr
code addr
data addr ,A
data addr ,#data
A,#data
A,data addr
A,@R0
A,@R1
A,R0
A,R1
A,R2
A,R3
A,R4
A,R5
A,R6
A,R7
code addr
code addr
data addr ,A
data addr ,#data
A,#data
A,data addr
A,@R0
A,@R1
A,R0
A,R1
A,R2
A,R3
A,R4
A,R5
A,R6
A,R7
code addr
code addr
data addr ,A
data addr ,#data
A,#data
A,data addr
A,@R0
A,@R1
A,R0
A,R1
A,R2
A,R3
A,R4
A,R5
A,R6
A,R7
code addr
code addr
C,b i t addr
@A + DPTR
A,#data
data addr .#data
@R0,#data
@R1,#data

- 209 -

intel

Table B-2. Instruction Opcodes in Hexadecimal

 Hex
Code

Number
of Bytes Mnemonic Operands

78
79
7A
7B
7C
7D
7E
7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3

2
2
2
2
2
2
2
2
2
2
2
1
1
3
2
2
2
2
2
2
2
2
2
2
3
2
2
1
2
2
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1

2
2
2
2
2
2
2
2
2
2
2
2
2
1

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
SJMP
AJMP
ANL
MOVC
DIV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
ACALL
MOV
MOVC
SUBB
SUBB
SUBB
SUBB
SUBB
SUBB
SUBB
SUBB
SUBB
SUBB
SUBB
SUBB
ORL
AJMP
MOV
INC
MUL
reserved
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
ANL
ACALL
CPL
CPL

R0,#data
R1,#data
R2,#data
R3,#data
R4,#data
R5,#data
R6,#data
R7,#data
code addr
code addr
C,b i t addr
A,@A + PC
AB
data addr , data addr
data addr ,@R0
data addr ,@R1
data addr ,R0
data addr ,R1
data addr ,R2
data addr ,R3
data addr ,R4
data addr ,R5
data addr ,R6
data addr ,R7
DPTR,#data
code addr
b i t addr ,C
A,@A + DPTR
A,#data
A,data addr
A,@R0
A,@R1
A,R0
A,R1
A,R2
A,R3
A,R4
A,R5
A,R6
A,R7
C, lb i t addr
code addr
C,b i t addr
DPTR
AB

@R0,data addr
@R1,data addr
R0,data addr
R1,data addr
R2,data addr
R3,data addr
R4,data addr
R5,data addr
R6,data addr
R7,data addr
C, lb i t addr
code addr
b i t addr
C

- 210 -

intel

Table B-2. Instruction Opcodes in Hexadecimal

 Hex
Code

Number
of Bytes Mnemonic Operands

B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
1
1
2
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
3
1
1
2
2
2
2
2
2
2
2
1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
1

CJNE
CJNE
CJNE
CJNE
CJNE
CJNE
CJNE
CJNE
CJNE
CJNE
CJNE
CJNE
PUSH
AJMP
CLR
CLR
SWAP
XCH
XCH
XCH
XCH
XCH
XCH
XCH
XCH
XCH
XCH
XCH
POP
ACALL
SETB
SETB
DA
DJNZ
XCHD
XCHD
DJNZ
DJNZ
DJNZ
DJNZ
DJNZ
DJNZ
DJNZ
DJNZ
MOVX
AJMP
MOVX
MOVX
CLR
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

A,#data,code addr
A,data addr ,code addr
@R0,#data,code addr
@R1,#data,code addr
RO,#data,code addr
R1,#data,code addr
R2,#data,code addr
R3,#data,code addr
R4,#data,code addr
R5,#data,code addr
R6,#data,code addr
R7,#data,code addr
data addr
code addr
b i taddr
C
A
A,data addr
A,@R0
A,@R1
A,R0
A,R1
A,R2
A,R3
A,R4
A,R5
A,R6
A,R7
data addr
code addr
b i t addr
C
A
data addr ,code addr
A,@R0
A,@R1
R0,code addr
R1,code addr
R2,code addr
R3,code addr
R4,code addr
R5,code addr
R6,code addr
R7,code addr
A,@DPTR
code addr
A,@R0
A,@R1
A
A,data addr
A,@R0
A,@R1
A,R0
A,R1
A, R2
A,R3
A,R4
A,R5
A,R6
A,R7

 - 211 -

intel

Table B-2. Instruction Opcodes in Hexadecimal

 Hex
Code

Number
of Bytes Mnemonic Operands

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
1

MOVX
ACALL
MOVX
MOVX
CPL
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

@DPTR,A
code addr
@R0,A
@R1,A
A
data addr ,A
@R0,A
@R1,A
R0,A
R1,A
R2,A
R3,A
R4,A
R5,A
R6,A
R7,A

- 212 -

intel

INDEX

A
ABS, 5, 76, 113, 158, 181, 183
Accumulator, 27,1 06,1 23, 1 46,1 47,1 93
ADD, 5, 8, 74, 80, 118, 119, 181, 183
Argument Stack, 8, 31, 60, 61, 98,106-108,

112, 113, 118, 122, 123, 163, 165, 167,
169

Arithmetic Overflow, 97,118
Arithmetic Underflow, 97,1 1 8
Array Size, 99
ASC, 83-85, 103, 158, 183
Assembly Language Linkage, 29, 67, 99,104
ATN, 79, 114, 158, 181, 183
Auto_Baud, 2

B
BAUD Rate, 16, 24, 27, 28, 57, 89, 93, 94,

131, 145-147, 158, 164, 169, 174, 175,
178, 183, 189, 194

C
CALL, 12, 29, 104, 107, 108, 130, 132, 158,

178, 183
Carry Bit, 27,146
CBY, 86, 114, 158, 182, 183
CHR, 83, 85, 158, 183
CLEAR, 6, 30, 32, 35, 66158, 178
CLEARI, 31, 32, 53, 178, 183
CLEARS, 31, 178, 183
CLOCK0, 32, 53, 158, 178, 183
CLOCK1, 30-32, 52, 91, 92, 131, 158, 163,

167, 178, 183
Command Mode, 4, 12, 13, 24, 106, 109,

111, 167, 191
Command/Statement Extension, 10, 11, 122,

153-159
Constants, 5, 6, 122
CONT, 14, 38, 65, 158, 166, 176, 183
Control Stack, 8,11, 31, 42, 98,169
COS, 5, 77-79, 113, 158, 181, 183
CR, 4, 55, 158

D
DATA, 33, 34, 97, 158, 178, 183
Data Format, 5
DBY, 86, 114, 158, 182, 183

DIM, 6, 35, 99, 158, 167, 178, 183
DIMUSE, 185, 186
Direct Memory Access (DMA), 101, 129,

163,167
DIVIDE, 5, 8, 80, 118, 119, 181, 183
DO_UNTIL, 8, 31, 36, 37, 98, 158, 178, 183
DO_WHILE, 8, 31, 37, 98, 158, 178, 183
DPTR, 104, 106, 123, 147, 153, 155, 159,

190, 193

E
END, 38, 158, 178, 183, 188
EPROM Programming, 10, 20, 23, 72,109,

110, 132, 134-136, 141, 142, 162
EQUAL, 7, 80, 81, 120, 158, 183
Error Messages, 96-99
EXCLUSIVE OR, 120, 158
EXP, 78, 158, 181, 183
EXPONENT, 74, 80, 119, 181, 183
Expression, 6

F
Floating Point Numbers, 55, 71,107, 108,

112, 118, 123, 184, 186
FOR_TO{STEP}_NEXT, 8, 11, 12, 31, 39,

40, 42, 98, 158, 178, 183
FPROG, 25, 94, 158, 177, 183
FPROG1, 25, 177, 183
FPROG2, 25, 177, 183
FPROG3, 26, 177, 183
FPROG4, 26, 177, 183
FPROG5, 27, 177, 183
FPROG6, 27, 177, 183
FREE, 7, 21, 95, 115, 158, 183

G
GET, 67, 86, 87, 100, 115, 122, 123, 158,

162,165,166, 169, 182, 183
GOSUB, 8, 11, 12, 41, 43, 44, 51, 52, 61,

98, 158, 179, 183
GOTO, 12, 13, 43, 44, 46, 158, 179, 183
GREATER THAN, 7, 80, 81, 121, 158, 183
GREATER THAN OR EQUAL, 7, 80, 81,

120, 158, 183

- 213 -

intel

I
IDLE, 10, 69, 158, 167, 180, 183
IE, 31, 51, 88, 101, 103, 116, 129, 130, 158,

182, 183, 193, 198
IF_THEN_ELSE, 9, 45, 46, 97, 158, 179,

183
Illegal Direct, 97
INPUT, 47, 48, 82, 158, 179, 183
Input Buffer, 11 , 111
INT, 76, 113, 158, 181, 183
Integers, 5, 75, 76
INTELligent Algorithm, 25, 26, 72, 109, 110,

136, 141 , 163, 165, 167, 169,177
Internal Stack, 8, 99
Interrupts, 129, 130, 159, 160, 162, 163,

166, 167
IP, 88, 116, 158, 182, 183, 193, 198

L
LD@, 10, 71, 158, 180, 183
LEN, 7, 95, 115, 158, 183
LESS THAN, 7, 80, 81, 121, 158, 183
LESS THAN OR EQUAL, 7, 80, 81, 120,

158, 183
LET, 49, 66, 82, 86, 91, 95, 158, 179, 183
Line Editor, 8
LIST, 4, 9, 10, 15-17, 21, 100, 158, 176,

183
LIST#, 16, 28, 94, 131, 176, 183
LlST@, 11, 17, 59, 159, 166, 167, 176, 183
LOG, 78, 114, 158, 181, 183
LOGICAL AND, 76, 80, 81, 120, 158, 181,

183
LOGICAL EXCLUSIVE OR, 75, 80, 81, 181,

183
LOGICAL OR, 75, 80, 81, 120, 158, 181,

183

M
MTOP, 2, 7, 21, 26, 27, 95,115, 145,152,

158, 176, 183, 185, 187, 189, 191
MULTIPLY, 8, 74, 80, 118, 119, 181, 183

N
NEGATION, 80, 158
NEW, 18, 35, 66, 158, 176, 183
NOT, 76, 81, 113, 158, 181, 183
NOT EQUAL, 7, 80, 81, 121, 158, 183
NULL, 19, 95, 158, 166, 176, 183

O
ON GOSUB, 43, 44, 158, 179
ON GOTO, 43, 44158, 179
ONERR, 30, 50, 158, 162, 166, 169, 179,

183
ONEX1, 30, 31, 51, 53, 64, 69, 129, 131,

158, 162, 166, 169, 179, 183
ONTIME, 30, 31, 51, 52, 53, 64, 69, 129,

158, 162, 166, 168, 179, 183
ON_GOSUB, 183
ON_GOTO, 183
Opbyte, 11, 106-109, 111-124
Operators, 122

P
PCON, 89, 117, 158, 182, 183, 193, 194
PGM, 10, 72, 73, 104, 158, 180, 183
PH0., 58, 158, 179, 183
PH0.#, 58, 179, 183
PH0.@, 59, 180, 183
PH1., 58, 157, 158, 179, 183
PH1.#, 58, 179, 183
PH1.@, 59, 180, 183
PI, 77, 79, 115, 158, 182, 183
POP, 60, 61, 98, 106, 108, 118, 130, 158,

180,183
PORT1, 88, 117, 158, 182, 183
PRINT, 4, 10, 11, 54, 55, 57-59, 63, 158,

179, 183
PRINT#, 28, 57, 94, 131, 179, 183
PRlNT@, 11, 59, 159, 166, 167, 180, 183
PROG, 23, 25, 94, 131, 134, 158, 176, 183,

189
PROG1, 10, 24, 25, 145, 176, 183, 189
PROG2, 10, 24, 25, 145, 176, 183, 189
PROG3, 10, 26, 145, 176, 183, 189
PROG4, 10, 26, 145, 176, 183
PROG5, 10, 27, 145, 177, 183
PROG6, 10, 27, 146, 177, 183
Programming Error, 98
PSW, 130, 160, 193, 194
PUSH, 60, 61, 98, 107, 130, 158, 180, 183
PWM, 62, 90, 94, 131, 158, 170-173, 180,

183

- 214 -

intel

R
RAM, 21, 158, 176, 183
RAM Only Mode, 132
RAM/EPROM Mode, 133,134
RCAP2, 89, 117, 158, 182, 183
READ, 33, 34, 97, 158, 178, 183
REM, 12, 63, 158, 180, 183
Reset, 2, 3, 10, 24, 26, 27, 29,102, 122,

131, 145-152, 159, 176, 177, 191
RESTORE, 33, 158, 178, 183
RETI, 51, 53, 64, 158, 163, 180, 183
RETURN, 41, 42, 64, 98, 123, 158, 179, 183
RND, 77, 115, 158, 181, 183
ROM, 21, 158, 176, 183
RROM, 10, 70, 158, 180, 183
RUN, 13, 21, 24, 35, 43, 100, 158, 176, 183
Run Mode, 4, 13, 123
Run Trap, 10, 27, 102,169

S
SCON, 147, 190, 193, 197
Serial Port, 131 ,136, 159, 160, 166
SGN, 76, 113, 158, 181, 183
Sign-On, 2
SIN, 5, 77-79, 114, 158,181, 183
SMOD, 194
SPC, 4, 54, 158
SQR, 77, 114, 158, 181, 183
ST@, 10, 71, 158, 180, 183
Stack Pointer, 8, 31, 105, 147, 152, 193
STOP, 14, 65, 98, 158, 163, 176, 180, 183
STRING, 30, 49, 66, 82, 83, 99, 158, 164,

168, 180, 183, 185
SUBTRACT, 5, 8, 74, 80, 118-120, 181, 183

T
T2CON, 2, 3, 89, 116, 131, 147, 158, 182,

183, 193
TAB, 4, 54, 158
TAN, 77, 79, 113, 158, 181, 183
TCON, 3, 90, 116, 131, 147, 158, 182, 183,

193, 197
Text Pointer, 122, 123,162, 164, 166
TIME, 7, 32, 52, 53, 91, 92, 116, 158, 182,

183
TIMER0, 90, 92, 116, 158, 182, 183
TIMER1, 89, 90, 92, 94, 116, 158, 182, 183
TIMER2, 89, 92, 94, 116, 158174, 175, 182

183, 196
TMOD, 3, 90, 117, 131, 147, 158, 182, 183

193, 195

U
UI, 67, 158, 180, 183
UNTIL, 178
UO, 68, 158, 180, 183
USING, 4, 55, 56, 112, 158

V
Variables, 6, 11, 122, 185
VARTOP, 185, 187
VARUSE, 185-187

X
X-OFF, 10
X-ON, 10
XBY, 87, 114, 158, 182, 183
XFER, 21, 22, 158, 176, 183
XTAL, 2, 3, 7, 28, 32, 62, 89, 91, 93, 115,

136, 152, 158, 165, 169, 174, 175, 183

- 215 -

