The
Microcontroller Idea Book

Circuits, Programs, & Applications
featuring the 8052-BASIC Microcontroller

Jan Axelson

Lakeview Research
Madison, WI

copyright 1994, 1997 by Jan Axelson
Published by Lakeview Research
14 13 12 11 10 9 8 7 6 5 4

L akeview Research

5310 Chinook Ln.
Madison, WI 53704

USA

Phone: 608-241-5824

Fax: 608-241-5848

Email: jaxel son@lvr.com
WWW: http://www/Ivr.com

No part of this book, except the programs and program listings, may be reproduced in any
form, or stored in a database or retrieval system, or transmitted or distributed in any form,
by any means, electronic, mechanical photocopying, recording, or otherwise, without the
prior written permission of Lakeview Research or the author, except as permitted by the
Copyright Act of 1976. The programs and program listings, or any portion of these, may be
stored and executed in a computer system and may be incorporated into computer programs
developed by the reader.

Trademarks

Macintosh is aregistered trademark of Apple Computer. Procomm Plus and Datastorm are
registered trademarks of Datastorm Technologies, Inc. VT100 is aregistered trademark of
Digital Equipment Corporation. IBM is a registered trademark of International Business
Machines Corporation. MCS-BASIC-52 and Intel areregistered trademarks of Intel Corpo-
ration. Microsoft, MS-DOS, GW-BASIC, and Microsoft Windowsareregistered trademarks
of Microsoft Corporation. Philips is aregistered trademark of Philips International BV.

The author and publisher have used their best efforts in preparing this book and the
materialsinit. Theauthor built and tested the el ectronic circuitsdescribed, ranand tested
the computer programs presented, and reviewed all materials for completeness and
accuracy. The author and publisher make no warranty with regard to the circuit
schematics, programlistings, and other materialsin thisbook. The author and publisher
take no responsibility for any damages resulting fromany use of the material in this book.

ISBN 0-9650819-0-7

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Table of Contents

Microcontroller Basics
What’'s a Microcontroller? 1
A Little History 2

New Tools 3

Project Steps 4

Insidethe 8052-BASIC

Possibilities 11

Limits 13

What You Need 14

The 8051 Family 16

Elements of the 8052 and 8052-BASIC 17

Powering Up

About the Circuit 23
Circuit Construction 30
Powering Up 35

Basic Tests 38

Simple Programsto Try 40
Exiting Programs 44

Saving Programs

Nonvolatile Memory Options 47
Adding NVRAM or EEPROM 50
Using the Programming Commands 53
Adding Bootup Options 54

23

a7

Erasing NV Memory 55

Adding more NVRAM or EEPROM 56
Adding EPROM 56
EPROM-programming Circuits 57
Power Supplies for Programming 61
Storing Programs on Disk 63

Chapter 5 Programming 65
Programming Basics 65
BASIC-52 Bugs and Things to Watch Out For 69
Finding Program Errors 70
BASIC-52 Keywords by Function 72
Quick Referenceto BASIC-52 74

Chapter 6 Inputsand Outputs 87
TheMemory Map 87
Usesfor I/O Ports 89
Adding Ports 89
The 8255 Programmable Periphera Interface 98

Chapter 7 Switchesand Keypads 109

Simple Switches 109
Adding aKeypad 116

Chapter 8 Displays 125
Using LEDs 125
7-segment Displays 129
Displaying Messages 138
Inside the Display Controller 140
Mounting Displaysin an Enclosure 152

Chapter 9 Using Sensorsto Detect and Measure 153
Sensor Basics 153
Choosing Sensors 154
On/off Sensors 155
Analog Sensors 156
Sensor Examples 163
Level Trandating 167
Choosing a Converter 169

Chapter 10 Clocksand Calendars 171

BASIC-52's Real-time Clock 171
A Watchdog Timekeeper 174

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Appendix A

Control Circuits

Switching Power to aLoad 185

Controlling a Switch Matrix 187

Op Amp with Programmable Gain 189
Controlling a Stepper Motor 191

Speed Control of a Continuous DC Motor 195

WirdessLinks
Infrared Links 199

Increasing the Distance 212
Radio Links 216

Calling Assembly-language Routines
Assembly-language Basics 218

What You Need 218

Loading aRoutine 221

File Formats for Assembly-language Routines 222
Assembling aProgram 224

Uploading a Program 225

Example: Creating a Sine Wave 227

Avoiding Program Crashes 231

Interrupts 232

Adding Custom Commands and Instructions 233
A Genera-purpose EPROM Programmer 237

Running BASI C-52 from External Memory
Reasons 239

Copying BASIC-52 240

System Requirements 241

Storing BASIC-52 Programs 243

Related Products

Enhanced BASIC-52 245
BASIC Compilers 246
Programming Environments 247
Pc Boards 248

BASIC-52 Source Code 250

Sources

Books 251

BBS's 254

Product Vendors 255

185

199

217

239

245

251

Appendix B Programsfor Loading Files 263

Appendix C Number Systems 271

About Number Systems 271
Kilobytes and Megabytes 273

Vi

Introduction

Introduction

This book is a hands-on guide to designing, building, and testing microcontroller-based
devices. Microcontrollers, or single-chip computers, are ideal for projects that require
computer intelligence, but don’t need the overhead of a complete personal computer with
disk drives, keyboard, and full-screen display.

Why the 8052-BASIC?

This book focuses on the 8052-BA SIC microcontroller, which is easy to use, full featured,
and inexpensive to work with. The on-chip BASIC-52 programming language enables you
to write, run, and test your programs quickly. With over 100 commands, instructions, and
operators, BASIC-52ismore capable than other microcontroller BASI Cs. And, asamember
of the 8051 microcontroller family, the 8052-BA SIC has a standard, popular architecture.

The ideas and applications presented here are not limited to the 8052-BASIC, however. If
your favorite chip is a different one, you can adapt the circuits and programs to it. The
schematics and program listings in this book include comments and explanations to help
you apply the ideas, whether or not you are using the 8052-BASIC.

Vil

Introduction

What'’s Inside?

Thisis not just a textbook that presents information but glosses over the details of how to
apply it. Inside, you'll find practical information, including the following:

e Complete circuit schematics and parts lists—so you can easily build the circuits
yourself.

¢ Design theory—for example, why use this particular component? or how can | expand
or modify the circuit shown?

¢ Example program listings—for easy testing and use of the circuits.

e Construction and debugging tips—to help you get the circuits up and running without
problems.

The appendices include a complete list of sources to help you find the components and
additional information you need for your projects.

Because microcontroller projectsinvolve both circuit design and programming, | cover both
the hardware and software aspects. The book begins with an introduction to microcontrol -
lers, and to the 8052-BASIC chip in particular. Next are basic circuits to get you started
programming and interfacing to the chip, along with the reasons behind the component and
design choices, and construction details for prototyping. To the basic circuits, | show how
to add switches, keypads, displays, and other input/output interfaces.

A programming reference describes each of BASIC-52's keywords, with specific tips for
trouble-free programming in BASIC-52.

You'll also find out how to add these to your system:
e Sensors, for detecting detect and measuring physical properties.

¢ Clock/calendar functions, for keeping track of seconds, minutes, hours, days, months,
and years, and to trigger alarms at particular times.

e Control of AC power, switch matrices, stepper and continuous motors, and gain of an
op amp.

¢ Programmable wireless links, for situations where stringing wiresisn’t practical or
convenient.

Viii

Introduction

A chapter on assembly-languageinterfacing showshow to add assembly-language programs
for faster program execution, how to add your own commands the BASIC-52 programming
language, and how to use the 8052-BASIC as a development system for an all-assembly-
language project.

The final chapters cover other options for 8052-BASIC systems, including how to store
BASIC-52 in external memory rather than in the 8052’s internal ROM, and a review of
related products, including BASIC compilers, 8052-BASIC circuit boards, and devel opment
software for more convenient and possibly cheaper project development.

Your Feedback Is Welcome

This book is the result of requests from readers of my articles in Computer Craft magazine
and its successor, The MicroComputer Journal. I’ veexpanded the coverage of several topics,
including programming of EPROMs and other devices, display options, sensors, and
programming tips.

Thanksto everyone who responded to my articles with comments, questions, criticisms, and
suggestions, and who, in doing so, hel ped to makethisbook asuseful asit can be. Asaways,
| welcome your comments on this work.

Jan Axelson
10-94

Introduction

Microcontroller Basics

1

Microcontroller Basics

This chapter introduces you to the world of microcontrollers, including definitions, some
history, and a summary of what’s involved in designing and building a microcontroller
project.

What’s a Microcontroller?

A microcontroller is a computer-on-a-chip, or, if you prefer, a single-chip computer. Micro
suggests that the device is small, and controller tells you that the device might be used to
control objects, processes, or events. Another term to describe amicrocontroller isembedded
controller, because the microcontroller and its support circuits are often built into, or
embedded in, the devices they control.

You can find microcontrollersin all kinds of things these days. Any device that measures,
stores, controls, calculates, or displays information is a candidate for putting a microcon-
trollerinside. Thelargest single usefor microcontrollersisin automobiles—just about every
car manufactured today includes at least one microcontroller for engine control, and often
more to control additional systemsin the car. In desktop computers, you can find microcon-
trollers inside keyboards, modems, printers, and other peripherals. In test equipment,
microcontrollers make it easy to add features such as the ability to store measurements, to
create and store user routines, and to display messages and waveforms. Consumer products
that use microcontrollers include cameras, video recorders, compact-disk players, and
ovens. And these are just afew examples.

The Microcontroller Idea Book 1

Chapter 1

A microcontroller issimilar to the microprocessor inside apersonal computer. Examples of
microprocessors include Intel’s 8086, Motorola's 68000, and Zilog's Z80. Both microproc-
essors and microcontrollers contain a central processing unit, or CPU. The CPU executes
instructions that perform the basic logic, math, and data-moving functions of a computer.
To make a complete computer, a microprocessor requires memory for storing data and
programs, and input/output (1/O) interfaces for connecting external devices like keyboards
and displays.

In contrast, amicrocontroller isasingle-chip computer becauseit contains memory and 1/0
interfacesin addition to the CPU. Because the amount of memory and interfacesthat can fit
on asingle chip islimited, microcontrollers tend to be used in smaller systems that require
little more than the microcontroller and a few support components. Examples of popular
microcontrollers are Intel’s 8052 (including the 8052-BASIC, which is the focus of this
book), Motorola’'s 68HC11, and Zilog's Z8.

A Little History

To understand how microcontrollersfit into the always-expanding world of computers, we
need to look back to the roots of microcomputing.

Inits January 1975 issue, Popular Electronics magazine featured an article describing the
Altair 8800 computer, which was the first microcomputer that hobbyists could build and
program themselves. The basic Altair included no keyboard, video display, disk drives, or
other elements we now think of as essential elements of a persona computer. Its 8080
microprocessor was programmed by flipping toggle switches on the front panel. Standard
RAM was 256 bytes and a kit version cost $397 ($498 assembled). A breakthrough in the
Altair’'s usability occurred when a small company called Microsoft offered aversion of the
BASIC programming language for it.

Of course, the computer world has changed a lot since the introduction of the Altair.
Microsoft has become an enormous software publisher, and a typical personal computer
now includes akeyboard, video display, disk drives, and Megabytes of RAM. What’smore,
there’sno longer any need to build apersonal computer from scratch, since mass production
has drastically lowered the price of assembled systems. At most, building a persona
computer now involves only installing assembled boards and other major componentsin an
enclosure.

A personal computer like Apple’'s Macintosh or IBM’s PC is a general-purpose machine,
since you can use it for many applications—word processing, spreadsheets, computer-aided
design, and more—just by loading the appropriate software from disk into memory.
Interfaces to personal computers are for the most part standard ones like those to video
displays, keyboards, and printers.

2 The Microcontroller [Idea Book

Microcontroller Basics

But along with cheap, powerful, and versatile personal computers has developed a new
interest in small, customized computers for specific uses. Each of these small computersis
dedicated to one task, or a set of closely related tasks. Adding computer power to adevice
can enable it to do more, or do it faster, better, or more cheaply. For example, automobile
engine controllers have helped to reduce harmful exhaust emissions. And microcontrollers
insde computer modems have made it easy to add features and abilities beyond the basic
computer-to-phone-line interface.

In addition to their use in mass-produced products like these, it's also become feasible to
design computer power into one-of-a-kind projects, such as an environmental controller for
ascientific study or an intelligent test fixture that ensuresthat a product meetsits specifica-
tions beforeit’s shipped to a customer.

At the core of many of these specialized computers is a microcontroller. The computer’s
program is typically stored permanently in semiconductor memory such as ROM or
EPROM. The interfaces between the microcontroller and the outside world vary with the
application, and may include asmall display, akeypad or switches, sensors, relays, motors,
and so on.

These small, specia-purpose computers are sometimes called single-board computers, or
SBCs. The term can be miseading, however, since the computer doesn’t have to be on a
single circuit board, and many types of computer systems, such as laptop and notebook
computers, are now manufactured on a single board.

New Tools

To design and build acomputer-controlled device, you need skillsin both circuit design and
software programming. The good news s that a couple of recent advances have simplified
the tasks involved.

Oneistheintroduction of microcontrollersthemselves, sincethey contain all of theelements
of a computer on a single chip. Using a microcontroller can reduce the number of
components and thus the amount of design work and wiring required for a project. The
8052-BASIC microcontroller even includesits own programming language, called BASIC-
52.

The other development is personal computers themselves. A desktop computer can help
tremendously by serving as a host system for writing and testing programs. As you are
developing aproject, you can use aserial link to connect the host system to atarget system,
which contains the microcontroller circuits you are testing. You can then use the personal
computer’skeyboard, video display, disk drives, and other resourcesfor writing and testing
programs and transferring files between the two systems.

The Microcontroller Idea Book 3

Chapter 1

Project Steps

Putting together a microcontroller project involves severa steps:

1. Define the task

2. Design and build the circuits
3. Write the control program

4. Test and debug

Sometimesthe stepswon'’t follow exactly inthisorder. You may begin writing your program
before you build the circuits, or you may build and test some of the circuits before you start
programming. But however you go about it, each of the above stepsis part of the process.
To seewhat’s involved in each step, let’slook at each in more detail.

Defining the Task

Every project begins with an idea, or a problem that needs a solution. For example, How
can | monitor light intensity at different locations and times of day to find the best location
for a solar collector? Or how can | automate the process of drilling printed-circuit boards?
Or how can | create a computer-controlled, animated display for a store window?

Once you know what you want to accomplish, you need to determine whether or not your
ideais one that requires a computer at al. In general, acomputer isthe way to go when the
circuits must make complex decisions or deal with complex data. For example, a simple
AND gate can easily decide whether or not two inputs are both valid logic highs, and will
change its output accordingly. But it would require many small-scale chipsto build acircuit
that stores a series of values representing sensor outputs and the times they occurred, and
displays the information in an easily understandable form.

This type of application is where microcontrollers come in handy. Inside, microcontrollers
are little more than a carefully designed array of logic gates and memory cells, but modern
fabrication processes allow thousands of these to fit on a single chip. Since the basic
functions of a microcontroller—performing arithmetic, logic, data-moving, and program
branching functions—are common ones that are useful in many applications, it’s practical
to design and market a chip that performs these functions. The user accesses the abilities of
the microcontroller by writing a program that performs the desired functions.

On the other end of the scale, how do you know if an ideais suitable for a microcontroller,
or whether you should use a full desktop computer? If your design requires users to enter
or view complex commands, data, or graphical information, or if you need large amounts
of dataor program storage, then asystem with keyboard, full-screen display, and disk drives

4 The Microcontroller [Idea Book

Microcontroller Basics

makes sense. For ssimpler designs, a microcontroller with perhaps a keypad, small display,
and solid-state memory (no disk drives) can often do the job, with less expense and smaller
size.

In fact, recently the two extremes have been meeting. Some 32-bit microcontrollers are as
capable as desktop systems, and notebook-size computers are available with solid-state,
diskless storage. Also, expansion cards, other hardware, and software are now available for
those who want to use desktop computers for monitoring and control tasks. So there’'s
something for everyone.

The 8052-BASIC chip described in this book is perfect for many simpler applications,
especially control and monitoring tasks. Because the chip is easy to use, it's agood way to
learn about microcontrollers and computers in general. Although you can’t do the most
complex projects with it, you can do alot, at low cost and without alot of hasse.

Designing and Building

When you're ready to design and build the circuits for a project, there are several ways to
proceed. You can design your circuits from scratch, using manufacturers' data books as
guides; you canfollow atested design (akit or project presented in amagazinefor example);
or you can buy an assembled single-board computer, adding only the interfaces and
programming your application requires. This book presents designs that you can build
yourself, but you can also use akit or assembled board as abase if you wish.

Choosing a chip. Does it matter which microcontroller chip you use? All microcontrollers
contain a CPU, and chances are that you can use any of several devicesfor aspecific project.

Within each device family, you'll usually find a selection of family members, each with
different combinations of options. For example, the 8052-BASIC is a member of the 8051
family of microcontrollers, whichincludeschipswith program memory in ROM or EPROM,
and with varying amounts of RAM and other features. You select the version that best suits
your system’s requirements.

Microcontrollers are a so characterized by how many bits of datathey process at once, with
a higher number of bits generally indicating afaster or more powerful chip. Eight-bit chips
are popular for simpler designs, but 4-bit, 16-bit, and 32-bit architectures are also available.
The 8052-BASIC is an 8-hit chip.

Power consumption isanother consideration, especially for battery-powered systems. Chips
manufactured with CMOS processes usually have lower power consumption than those
manufactured with NM OS processes. Many CM OS devices have special standby or “deep”
modes that limit current consumption to as low as afew microamperes when the circuits are

The Microcontroller Idea Book 5

Chapter 1

inactive. Using these modes, a data logger can reduce its power consumption between
samples, and power up only when it’stime to take data.

The 8052-BASIC chip is available in both NMOS and CMOS versions. The original
8052-BASIC was an NMOS chip, offered directly from Intel. (Intel’s term for its NMOS
process is HMOS.) Although Intel never offered a CMOS version directly, Micromint
became a source by ordering a batch of CMOS 8052’s with the BASIC-52 programming
language in ROM. The CMOS version, the 80C52-BASIC, has maximum power consump-
tion of 30 milliamperes, compared to 175 milliamperes for the NMOS 8052-BASIC.

All microcontrollers have a defined instruction set, which consists of the binary words that
causethe CPU to carry out specific operations. For example, the instruction 0010 0110 tells
an 8052 to add the values in two locations. The binary instructions are also known as
operation codes, or opcodes for short. The opcodes perform basic functions like adding,
subtracting, logic operations, moving and copying data, and controlling program branching.

Control circuits often require reading or changing single bits of input or output, rather than
reading and writing abyte at atime. For example, amicrocontroller might usethe eight bits
of an output port to switch power to eight sockets. If each socket must operate independently
of the others, a way is needed to change each bit without affecting the others. Many
microcontrollers include bit-manipulation (also called Boolean) opcodes that easily allow
programs to set, clear, compare, copy, or perform other logic operations on single bits of
data, rather than a byte at atime.

Options for storing programs. Another consideration in circuit design is how to store
programs. Instead of using disk storage, most microcontroller circuits store their programs
on-chip. For one-of-kind projects or small-volume production, EPROM has long been the
most popular method of program storage. Besides EPROMS, other options include
EEPROM, ROM, nonvolatile (NV), or battery-backed, RAM, and Flash EPROM. The
program memory may be in the microcontroller chip, or a separate component.

To save a program in EPROM, you must set the EPROM’s data and address pins to the
appropriate logic levels for each address and apply special programming voltages and
control signals to store the data at the selected address. The programming process is
sometimes called burning the EPROM. You erase the contents by exposing the chip’s quartz
window, and the circuits beneath it, to ultraviolet energy.

Some microcontrollers contain aone-time-programmabl e, or field-programmable, EPROM.
This type has no window, so you can’'t erase its contents, but because it's cheaper than a
windowed IC, it's a good choice when a program is finished and the device is ready for
quantity production.

6 The Microcontroller [Idea Book

Microcontroller Basics

Several techniques are available for programming EPROMs and other memory chips. With
a manual programmer, you flip switches to toggle each bit and program the EPROM byte
by byte. Thisisacceptable for short programs, but quickly becomes tedious with a program
of any length. Computer control simplifies the job greatly. With an EPROM programmer
that connects to a personal computer, you can write a program at your keyboard, save it to
disk if you wish, and store the program in EPROM in a few easy steps. Data sheets for
EPROMSs rarely specify the number of erase and reprogramming cycles a device is
guaranteed for, but atypical EPROM should endure 100 erase/program cycles, and usually
many more.

EEPROM saremuch like EPROMsexcept that they areel ectrically erasable—no ultraviolet
source is required. Limitations of EEPROM s include slow speed, high cost, and a limited
number of times that they can be reprogrammed (typically 10,000 to 100,000).

ROM s are cost-effective when you need thousands of copies of a single program. ROMs
must be factory-programmed and once programmed, can’t be changed.

NVRAM typically includes a lithium cell, control circuits, and RAM encapsulated in a
single IC package. When power isremoved from the circuit, the lithium cell takes over and
preserves the information in RAM, for 10 years or more. You can reprogram an NVRAM
n infinite number of times, with the only limitation being battery life.

Flash EPROM is electricaly erasable, like EEPROM, but most Flash devices erase all at
once, or inafew large blocks, rather than byte-by-byte like EEPROM. Some Flash EPROMs
require specia programming voltages. As with EPROMs, the number of erase/program
cyclesislimited.

The 8052-BASIC usestwo types of program memory. An 8-kilobyte, or 8K, on-chip ROM
stores the BASIC-52 interpreter. For storing the BASIC-52 programs that you write, the
BASIC-52 language has programming commands that enable you to save programs in
externa EPROM, EEPROM, or NVRAM.

Other memory. Most systems also require away to store datafor temporary use. Usually,
thisis RAM, whose contents you can change as often as you wish. Unlike EPROM, ROM,
EEPROM, and NVRAM, the contents of the RAM disappear when you remove power the
chip (unlessit has battery back-up).

Most microcontrollersinclude some RAM, typically afew hundred bytes. The 8052-BASIC
has 256 bytes of internal RAM. A complete 8052-BA S| C system requiresat least 1024 bytes
of external RAM as well.

I/O options. Finaly, input/output (I/0O) requires design decisions. Most systems require
interfaces to things like sensors, keypads, switches, relays, and displays. Most microcon-

The Microcontroller Idea Book 7

Chapter 1

trollers have portsfor interfacing to the world outside the chip. The 8052-BA SIC uses many
of its portsfor accessing external memory and performing other special functions, but some
port bits are available for user applications, and you can easily increase the available I/O by
adding support chips.

Writing the Control Program

When it's time to write the program that controls your project, the options include using
machine code, assembly language, or a higher-level language. Which programming lan-
guage you use depends on things like desired execution speed, program length, and
convenience, aswell aswhat’s available in your price range.

M achine code. The most fundamental program form is machine code, the binary instruc-
tions that cause the CPU to perform the operations you desire.

Assembly language. One step removed from machine code is assembly language, where
abbreviations called mnemonics (memory aids) substitute for the machine codes. The
mnemonics are easier to remember than the machine codes they stand for. For example, in
the 8052’s assembly language, the mnemonic CLR C means clear the carry bit, andiseasier
to remember than its binary code (11000011).

Since machine code is ultimately the only language that a CPU understands, you need some
way of transl ating assembly-language programsinto machine code. For very short programs,
you can hand assemble, or trandate the mnemonics yourself by looking up the machine
codes for each abbreviation. Another option isto use an assembler, which is software that
runs on a desktop computer and trandates the mnemonics into machine code. Most
assemblers provide other features, such asformatting the program codeand creating alisting
that shows both the machine-code and assembly-language versions of a program side
-by-side.

Higher-level languages. A disadvantage to assembly language is that each device family
has its own set of mnemonics, so you have to learn a new vocabulary for each family you
work with. To get around this problem, higher-level languageslike C, Pascal, Fortran, Forth,
and BASIC follow a standard syntax so that programs are more portable from one device
to another. Theideaisthat with minor changes, you can use alanguage like BASIC to write
programs for many different devices. In redlity, each language tends to develop many
different dialects, depending on the chip and the preferences of the language's vendor, so
porting aprogram to adifferent deviceisn’t alwayseffortless. But thereare many similarities
among the dial ects of asinglelanguage, so, as with spoken language, anew dialect iseasier
to learn than a whole new language.

Higher-level languages also simplify programming by allowing you to do in one or a few
lines what would require many lines of assembly code to accomplish.

8 The Microcontroller [Idea Book

Microcontroller Basics

Inter preter s and compilers are two forms of higher-level languages. An interpreter trans-
lates a program into machine code each time the program runs, while a compiler trandates
only once, creating a new, executable file that the computer runs directly, without re-trans-
lating.

Asarule, interpreters are very convenient for shorter programs where execution speed isn’t
critical. With aninterpreted language, you can run your program codeimmediately after you
write it, without a separate compile or assembly step. A compiler is a good choice when a
programislong or has to execute quickly. A single language like BASIC may be available
in both interpreted and compiled versions.

Each devicefamily requiresitsowninterpreter or compiler to transl ate the higher-level code
into the machine code for that device. In other words, you can’'t use QuickBASIC for IBM
PCsto program an 8052 microcontroller—you need acompiler that generates program code
for the 8052.

Compared to an equivalent program written in assembly language, a compiled program
usually islarger and slower, so assembly language isthe way to go if aprogram must be as
fast or as small aspossible. A higher-level language also may not offer al of the abilities of
assembly code, though you can get around this by calling subroutines in assembly language
when necessary.

BASIC-52 isan interpreted language, but BASIC compilersfor the 8052 are also available.
In fact, you can have the best of both worlds by testing your programs with the BASIC-52
interpreter, and compiling the finished product for faster execution and other benefits of the
compiled version.

Testing and Debugging

After you' ve written aprogram, or a section of one, it’'stime to test it and as necessary, find
and correct mistakesto get it working properly. The process of ferreting out and correcting
mistakesis called debugging. Easy debugging and troubleshooting can makeabig difference
in how long it takesto get a system up and running. Aswith programming, you have severd
options here as well.

Testing in EPROM. One way isto burn your program into EPROM, install the EPROM
in your system, run the program, and observe the results. If problems occur (as they usually
will) you modify the program, erase and reburn the EPROM, and try again, repeating as
many times as necessary until the system is operating properly.

Development systems. Another option is to use adevelopment system. A typical develop-

ment system consists of a monitor program, which is a program stored in EPROM or other
memory in the microcontroller system, and a seria link to a personal computer. Using the

The Microcontroller Idea Book 9

Chapter 1

abilities of the monitor program, you can load your program from a personal computer into
RAM (instead of the more permanent EPROM) on the microcontroller system, then run the
program, modify it, and retry as often as necessary until the program is working properly.

M ost devel opment systems al so allow single-stepping, setting breakpoints, and viewing and
changing the data in memory. In single-stepping, you run the program one step at time,
pausing after each step, so you can more easily monitor what the circuits and program are
doing at each step. A breakpoint is a program location where the program stops executing
and waits for a command to continue. You can set breakpoints at critical spots in your
program. At any breakpoint, you can view or change the contents of memory or perform
other tests.

Simulators. Another development tool is a simulator, which is software that runs on a
desktop computer and usesthe video display to demonstrate what would happen if aspecific
microprocessor or microcontroller were to run a particular program. You can look “inside’
the simulated chip, observe the contents of internal memory, and single-step or set break-
points to stop program execution at a desired program location or condition. In this way,
you can get a program working properly before you commit it to EPROM. One drawback
to simulators is that they can’t mimic all features of the chip of interest, especially
interrupt-response and timing characteristics.

Emulators. An in-circuit emulator (ICE) is hardware that replaces the microprocessor in
question by plugging into the microprocessor’s socket on the device you want to test. Like
a simulator, an emulator lets you control program execution and monitor what happens at
each program step. Microprocessor emulators typically are expensive. A ROM emulator is
a lower-cost option that simulates an EPROM (using RAM, for example) for program
storage, and usually provides the abilities of a development system as well.

The 8052-BASI C’s development system. The 8052-BASIC system and a persona com-
puter form a complete development system for writing, testing, and storing programs. The
personal computer’s keyboard and screen make it easy to write and run programs and view
the results.

BASIC-52 has many built-in debugging featuresthat make it easy to test programs. You can
run aprogramimmediately after writing it, without having to assemble, compile, or program
an EPROM. You can use a STOP statement and CONT (continue) command to set
breakpoints and resume executing your program. You can use PRINT statements to display
variables as the program runs. And, if you wish, you can use your persona computer for
writing programs off-line and upl oading and downl oading them to the 8052-BA S| C system.

10 The Microcontroller Idea Book

Inside the 8052-BASIC

2
Inside the 8052-BASIC

This chapter introduces you to the 8052-BASIC chip, including the kinds of projects you
can do with it, what equipment, materials, and skills you need in order to design and build
an 8052-BASIC project, and a pin-by-pin look at the chip and its abilities.

Possibilities

The 8052-BASIC microcontroller isan easy-to-use, low-cost, and versatile computer-on-a-
chip. It'sideal for projectsthat require more than an assortment of logic gates, but less than
acomplete desktop computer system with afull keyboard, display, and disk drives. If you're
interested in doing more with computers than simply running applications programs, the
8052-BASIC gives you a chance to design and build a system from the ground up.

With afew support chips and aprogram stored in memory, you can use the 8052-BASIC to
sense, measure, and control processes, events, or conditions. Here are just afew examples
of the uses you can put it to:

e data collection

¢ machine control

e test equipment

e wired and wireless links for communications and control

The Microcontroller Idea Book 11

Chapter 2

The 8052-BASIC is actually two products in one: it's an 8052 microcontroller, with the
BASIC-52 programming language on-chip. To begin using the 8052-BASIC, you need a
minimum circuit consisting of the 8052-BASIC and some support components, plus a
personal computer. Thisbook contains specificinstructionsfor usewith *IBM-compatible,”
or MS-DOS, computers, but you can use any computer that has an RS-232 serial port and
communications software to go with it. Figure 2-1 shows the basic setup.

With an 8052-BASIC circuit connected by a seria link to a personal computer, you have a
complete development system with these abilities:

¢ Y ou can write and run BASIC programs. Y ou use the keyboard, video display, and
other resources of the personal computer to type and view the programs and commands
that the 8052-BA SIC system executes. BASIC-52 is an interpreted language whose
programs do not require an additional assembling or compiling step. Y ou can run
programs or execute commands immediately after you write them.

¢ Y ou can use BASIC-52' s programming functions to permanently store your programs
in EPROM or other nonvolatile memory. Y ou don’t need a separate EPROM
programmer.

SERITAL LINK BETWEEN
8052-BASIC AND PERSONAL COMPUTER.

WHEN PROGRAM DEVELOPMENT 1S COMPLETE,
SERITAL LINK MAY BE DISCONNECTED
FOR STAND-ALONE 8052-BASIC OPERATION.

L 77 ﬂgﬁﬂ% 5,

PERSONAL COMPUTER - 8052-BASIC CIRCUIT -
ALLOWS YOU TO ENTER, DISPLAY, RUNS AND STORES PROGRAMS.
TEST, AND EDIT PROGRAMS.

Figure 2-1 Setup for working with the 8052-BASIC.

12 The Microcontroller Idea Book

Inside the 8052-BASIC

¢ Y ou can aso store programs on your personal computer’s disk. You can write or edit
programs on your personal computer, and then upload them to the 8052-BASIC system.

¢ To the basic circuits, you can add displays, switches, keypads, relays, and other
components, depending on the needs of your project.

¢ After program development, you can disconnect the link to the personal computer and
let the 8052-BASIC system run its stored program on its own.

Limits

No single product isideal for every use. These are some of the limitations to the 8052-BA-
SIC:

¢ Program execution can be slow, compared with programs that run on more powerful
computers, or programs written in assembly language. A typical program linein
BASIC-52 takes severa milliseconds to execute. Because of this, there are some tasks
that BASIC-52 just can’'t handle—for example, detecting and responding to an interrupt
within afew microseconds. But for many control, monitoring, and other tasks,
BASIC-52 isfine. For example, aweather station that senses conditions once per
minute and stores or displays the results doesn’t need super-fast response. And, if
necessary, you can call an assembly-language routine for a portion of a program where
speed is critical.

Even if you write your programs in assembly language, C, or another language, you can
use the 8052-BA SIC system as a development system that enables you to upload your
program to memory, run the program, and test and debug your programs and circuits.

¢ Another limitation of the 8052-BASIC is that a complete project requires additional
components. If you' re looking for a true single-chip solution, the 8052-BASIC isn't it.
Even aminimal system requires an external RAM chip, and most systems aso have an
external EPROM or other non-volatile memory. The seria link and other optional
functions also use some of the on-chip timers and input/output ports, so these may not
be available for other uses.

Still, the 8052-BASIC lets you to do alot with alittle. When needed, you can easily add
chips to expand the input/output ports, timers, and other functions.

¢ And finally, don’t expect BASIC-52 to have the abilities of QBasic, Visual Basic or
other BASIC programming languages that you may use on your personal computer.
BASIC-52 is more capable than many other single-chip BASICs. It includes features
like loops, subroutines, string handling, and even floating-point math for handling

The Microcontroller Idea Book 13

Chapter 2

fractional quantities. But there are some primitive aspects to the language. For example,
the on-line editing functions are limited. Once you write a program line, you can
changeit only by retyping from the beginning. The limitations are understandable,
because the entire programming language has to fit in the 8052’ s 8 kilobytes of ROM.
Fancy editing and other features just aren’t feasible in this small space.

There are solutions here as well. Y ou can get around many of the editing limitations by
writing and editing programs off-line, using your personal computer and text editor, and
then uploading to the 8052-BASIC system. And, there are software and hardware
products that enhance BASIC-52 and make it easier to use, especialy for longer, more
complex programming jobs.

What You Need

To use the 8052-BASIC chip, you need the following equipment, materials, and skills:
Components

The 8052-BASIC chip and supporting components are widely available. Appendix A lists
sources for the components used in the circuits described in this book.

Power Supply

You'll need aregulated +5-volt power supply to power the circuits. Output capability of at
least 500 milliamperes is recommended for general experimenting. The power supply can
be powered by batteriesor AC linevoltage, but it must have aregulated output between 4.75
and 5.25 volts.

Construction Materials

To build the circuits, you'll need circuit-construction materials and the skills to use them.
Wire-wrapping is an effective, quick way to build the circuits described, but if you prefer,
you can use point-to-point soldering or design and make a printed-circuit board, or use any
method that you' re comfortable with. Another option is to buy one of the available kits or
prebuilt 8052-BASIC boards. You can then use this book as aguide to using and expanding
the abilities of your board. Appendix A lists board suppliers and books on project-construc-
tion techniques.

Documentation

Using just the information in this book, you can build and begin using your system. For
serious experimenting, two additional references are recommended: programming and

14 The Microcontroller Idea Book

Inside the 8052-BASIC

hardware manuals. For programming, you have two choices. Intel’s BASC-52 User’s
Manual, or Systronix’s BASC-52 Programming. Each of these describes the BASIC-52
programming language in detaill. The Intel manua includes a few schematics, while
Systronix’s version has more programming examples and is better organized in general.
Intel’sEmbedded Microcontrollersdatabook isahardwarereferencethat describesthe 8052
chip, including electrical specifications and timing requirements. It also includes an as-
sembly-language reference. Appendix A tells where to get these.

Other useful documentation includes data sheets for the other componentsin your projects.
For asmall charge, many component vendors will send along data sheets for the parts you
order.

Host Computer

To program the 8052-BASIC, you connect its circuits to a host computer, using an RS-232
asynchronous seria port and terminal-emulation software. The computer can be any type,
aslong asit has a seria port and appropriate software.

The seria port is the same connector where you plug in an external modem, seria printer,
serial mouse, or other RS-232 serial device.

Terminal-emulation software is the same type of software that you may use for modem
communications with an on-line BBS. Examples for MS-DOS computers are Datastorm

Table 2-1. Differences among 8051-family chips.

Chip Program Memory Ram Timers
(bytes)
Type kilobytes
8051 ROM 4 128 2
8052 ROM 8 256 3
8031 none - 128 2
8032 none - 256 3
8751 EPROM 4 128 2
8752 EPROM 8 256 3

¢ 80C51, 80C52, 80C31, and so on are CMOS versions of above.

¢ 80C51FA/B/C add more versatile timers and an enhanced serial channel.
¢ 8052-BASIC has the BASIC-52 programming language in ROM.

¢ Packages include 40-pin DIP, 40-lead PLCC, and 44-pin QFP.

The Microcontroller Idea Book 15

Chapter 2

Technologies' Procomm Plus and the Terminal accessory in Microsoft Windows. At mini-
mum, the software must enable you to do the following: set the baud rate and other
communications parameters, serially transmit the characters that you type at the keyboard,
and display the characters received at the serial port. Also useful, but not essentid, is the
ability to upload and download text files from your disk, over the serial link. If you don’t
have a favorite communications program, look in shareware catalogs or the file areas of
online services or BBS's, where you can try out the offerings for a small disk-copying or
downloading charge.

Test EQuipment

Some basic test equipment will help you monitor, test, and troubleshoot your circuits.
Minimum requirements include a multimeter capable of reading volts, ohms, and milliam-
peres. Just about any basic meter will do for this. A logic probe is convenient, but not
essential, for monitoring logic levels and transitions. Best of all, an oscilloscope lets you
view the actual waveforms on one or more channels.

Knowledge

This book assumes that you have abasic knowledge of electronic circuits, including digital
logic. It does not assume that you know alot about computer programming and computer
circuits. Appendix A lists some books that cover the basics, if you want to review or learn
these. Appendix Cisareview of hexadecimal, binary, and decimal number systems.

The 8051 Family

At the core of the 8052-BASIC is an 8052 microcontroller, a member of the 8051
microcontroller family. Intel Corporation introduced the 8051 in 1980. Since that time,
8051-family chips have been used as the base of thousands of products. Many other
companies, including Philips, Siemens, Dallas Semiconductor, OKI, Fujitsu, and Harris-
Matra now also make 8051-family chips. Some companies have expanded the 8051 family
by offering compatible chips with additional features.

Table 2-1 summarizes the differences among popular 8051-family chips. The 8052 is an
enhanced 8051, with an extra timer and more RAM and ROM. The 8031 and 8032 are
identical to the 8051 and 8052, except that the ROM areaisunused, and program code must
be stored in an external EPROM or other memory chip.

The 8052, like other 8051-family chips, isavailablein NMOS and CMOS versions. Figure

2-2 shows the pinout of the 8052 and 8052-BASIC, and Table 2-2 describes the pin
functions.

16 The Microcontroller Idea Book

Inside the 8052-BASIC

BASIC-52
FUNCTIONS
T2/p1.0ed1 2 aeofpvcc
T2(EX)/PL.142 9bro.0/ADO
PWM OUT PlL.203 38ppro.1/ADI
ALE DIS P1.304 37bPo.2/AD2
PCM PLS P1.405 36 PO.3/AD3
PGM EN Pl.5Ol6 3sibro.4/AD4
DMA ACK Pl.6017 34pbPo.5/AD5
LPT OUT P1.7018 33brPo.6/AD6
RESET}9 32bro.7/AD7
SER IN RXD/P3.0]10 JIPDEA
SER OUT TXD/P3. 1411 3o ALE
DMA REQ INTQ/P3.2Q12 290 PSEN
INTL/P3.3413 280 P2.7/A15
To/P3.4} 14 270 P2.6/A14
T1/P3.5415 260 P2.5/A13
WR/P3.6}16 250 P2.4/A12
RD/P3.70417 240 P2.3/A11
XTAL2]18 230 P2.2/A10
XTAL1 19 220 P2.1/A9
VSS[20 210 P2.0/A8
8052-BASIC
4Q-PIN DIP

Figure 2-2 Pin functions of the 8052 and 8052-BASIC microcontrollers.
Elements of the 8052 and 8052-BASIC

These are the mgjor elements of the 8052, plus the enhancements included in the 8052-BA -
SIC:

CPU

The CPU, or central processing unit, executes program instructions. Types of instructions
include arithmetic (addition, subtraction), logic (AND, OR, NOT), datatransfer (move), and
program branching (jump) operations. An external crystal provides a timing reference for
clocking the CPU.

ROM
ROM (read-only memory) isthe read-only memory that is programmed into the chip in the
manufacturing process. In the 8052-BASIC, the ROM contains the BASIC-52 interpreter

program that the 8052 executes on boot-up. As far asthe hardware is concerned, thisisthe
only difference between the ordinary 8052 and the 8052-BASIC.

The Microcontroller Idea Book 17

Chapter 2

Table 2-2.(page 1 of 2) Pin functions of the 8052 microcontroller and
8052-BASIC additions.

Pin Symbol Input/ 8052 8052-BASIC Additions
Output Function Symbol Function
1 P1.0 /0 Port 1, bit O;
T2 Timer 2 external input
2 P1.1 /0 Port 1, bit 1;
T2(EX) Timer 2 external reload/capture
3 P1.2 /0 Port 1, bit 2 PWM Pulse-width-modulated output
4 P1.3 /0 Port 1, bit 3 ALE DIS Address latch disable
5 P1.4 I/O Port 1, bit 4 PGM PLS Program pulse
6 P15 I/0 Port 1, bit 5 PGMEN Programming voltage enable
7 P1.6 /0 Port 1, bit 6 DMAACK DMA acknowledge
8 P1.7 /0 Port 1, bit 7 LPT Line printer out
9 Reset Input Reset system
10 P3.0 /0 Port 3, bit 0 SER IN Serial port in
RXD Serial receive
11 P3.1 /0 Port 3, bit 1 SER OUT Serial port out
TXD Serial transmit
12 P3.2 /0 Port 3, bit 2 DMA DMA request
INTO External interrupt O REQ
13 P3.3 lfe} Port 3, bit 3
INT1 External interrupt 1
14 P3.4 I/O Port 3, bit 4
TO Timer 0 external input
15 P3.5 I/1O Port 3, bit 5
T1 Timer 1 external input
16 P3.6 lfe} Port 3, bit 6
WR Write strobe for external
memory
17 P37 o Port 3, bit 7
RD Read strobe for external
memory
18 XTAL1 Input Inverting oscillator amplifier
(crystal)
19 XTAL2 Output Inverting oscillator amplifier
(crystal)
20 VSS Input Circuit ground

18 The Microcontroller Idea Book

Inside the 8052-BASIC

Table 2-2. (page 2 of 2)

Pin Symbol Input/ 8052 8052-BASIC Additions
Output Function (none on pins 21-40)
21 P2.0 /0 Port 2, bit 0
A8 Address bit 8
22 P2.1 /0 Port 2, bit 1
A9 Address bit 9
23 P2.2 /0 Port 2, bit 2
Al10 Address bit 10
24 P2.3 /0 Port 2, bit 3
All Address bit 11
25 P2.4 /0 Port 2, bit 4
Al2 Address bit 12
26 P2.5 /0 Port 2, bit 5
Al3 Address bit 13
27 P2.6 110 Port 2, bit 6
Al4 Address bit 14
28 P2.7 /0 Port 2, bit 7
Al15 Address bit 15
29 PSEN Output Program store enable
Read strobe for external
program memory
30 ALE Output Address latch enable
31 EA Input External access enable for
program memory
32 P0.7 /0 Port 0, bit 7
AD7 Address/data bit 7
33 P0.6 /0 Port 0, bit 6
AD6 Address/data bit 6
34 P0.5 110 Port 0, bit 5
AD5 Address/data bit 5
35 P0.4 /0 Port 0, bit 4
AD4 Address/data bit 4
36 P0.3 /0 Port 0, bit 3
AD3 Address/data bit 3
37 P0.2 /0 Port 0, bit 2
AD2 Address/data bit 2
38 PO.1 I//10 Port 0, bit 1
AD1 Address/data bit 1
39 P0.0 /0 Port 0, bit 0
ADO Address/data bit 0
40 Vce Input Supply voltage

The Microcontroller Idea Book

19

Chapter 2

RAM

RAM (random-access memory) is where programs store information for temporary use.
Unlike ROM, the CPU canwriteto RAM aswell asread it. Any information stored in RAM
is lost when power isremoved from the chip. The 8052 has 256 bytes of RAM. BASIC-52
uses much of thisfor its own operations, with a few bytes available to users.

I/O Ports

[/O (Input/Output) Ports enable the 8052 to read and write to external memory and other
components. The 8052 has four 8-bit 1/0 ports (Ports 0-3). As the name suggests, the ports
can act asinputs (to beread) or outputs (to bewritten to). Many of the port bitshaveoptional,
aternate functions relating to accessing external memory, using the on-chip timer/counters,
detecting external interrupts, and handling serial communications. BASIC-52 assigns
alternate functions to the remaining port bits. Some of these functions are required by
BASIC-52, while othersare optional. If you don’'t use an alternate function, you can usethe
bit for any control, monitoring, or other purpose in your application.

Accessing external memory. Thelargest alternate use of the ports hasto do with accessing
external memory. Although the 8052 is a single-chip computer, a complete 8052-BASIC
system requiresadditional components. It must have external RAM in addition to the 8052's
internal RAM, and most systems also have EPROM, EEPROM, or battery-backed RAM
for permanent storage of BASIC-52 programs.

Accessing this external memory uses all of Ports 0 and 2, plus bits6 and 7 of Port 3, to hold
data, addresses, and control signals for reading and writing to external memory. Data here
refersto abyteto beread or written, and may be any type of information, including program
code. The address defines the location in memory to be read or written.

During a memory access, Port 0's eight pins (AD0-AD7) first hold the lower byte of the
address, followed by the datato be read or written. This method of carrying both addresses
and data on the same signal lines is called a multiplexed address/data bus. It's a popular
arrangement that many devices use, since it requires fewer pins on the chip, compared to
giving each data and addressline its own pin. Port 2's eight lines hold the higher byte of the
addressto beread or written to. Theselines make up the high addressbus (A8-A15). Together,
the 16 address lines can access 64 kilobytes (65,536 bytes) of memory, from 00000000
00000000 to 11111111 11111111 in binary, or 0000h to FFFFh in hexadecimal.

Besides pins to hold the data and addresses, the 8052 must also provide control signals to
initiate the read and write operations. Control signals include WR (write), RD (read), PSEN
(program store enable), and ALE (address latch enable). Some of the address lines may also
function as control signals that help to select a chip during amemory access.

20 The Microcontroller Idea Book

Inside the 8052-BASIC

Code and data memory. To understand the operation of the control signals, you need to
know alittle about how the 8052 distingui shes between two typesof memory: dataand code,
or program, memory. By using different control signals for each type of memory, the 8052
can access two separate 64K areas of memory, with each addressed from 0000h to FFFFh,
and each using the same data and address lines.

The 8052 accesses code memory when it executes an assembly-language program or
subroutine. Code memory isread-only; you can’'t writetoit. Theonly instructionsthat access
code memory are read operations. Code memory is intended for programs or subroutines
that have been previously programmed into ROM or EPROM. The 8052 strobes, or pulses,
PSEN when it accesses external code memory. Accesses to internal code memory (the
BASIC-52 interpreter in ROM) do not use PSEN or any external control signals.

Datamemory isread/write memory, usualy RAM. Instructionsthat read datamemory strobe
RD, and instructions that write to data memory strobe WR. The termdata memory may be
misleading, becauseit can hold any information that is accessed with instructions that strobe
RD or WR. Infact, BASIC-52 programs are stored in datamemory, not code memory asyou
might think. Thisisbecausethe8052 doesnot executethe BASIC programsdirectly. Instead,
the BASIC-52 interpreter program reads the BASIC programs as data and then trandates
them to machine code for execution by the 8052.

If you don't need all of the available memory space, you can combine code and datamemory
in asingle area. With combined memory, WR controls write operations, and PSEN and RD
are logically ANDed to create a read signal that is active when either PSEN or RD is low.
Combined data/code memory is handy if you want the flexibility to store either BASIC or
assembly-language programs in the same chip, or if you want to be able to upload
assembly-language routines into RAM for testing.

ALE isthe fina control signal for accessing external memory. It controls an external latch
that stores the lower address byte during memory accesses. When the 8052 reads or writes
to external memory, it places the lower address byte on AD0O-AD7 and strobes ALE, which
causesthe external latch to save the lower address bytefor therest of the read or write cycle.
After ashort delay, the 8052 replaces the address on AD0-AD7 with the data to be written or
read.

Timers and Counters. The 8052 has three 16-bit timer/counters, which make it easy to
generate periodic signals or count signal transitions. BASIC-52 assigns optional functions
for each of the timer/counters.

Timer O controls a real-time clock that increments every 5 milliseconds. You can use this
clock to time events that occur at regular intervals, or as the base for clock or caendar
functions. Timer 1 hasseveral usesin BASIC-52, including controlling a pul se-width-modu-
lated output (PWM) (aseries of pulsesof programmable width and number); writingto aline

The Microcontroller Idea Book 21

Chapter 2

printer or other seria periphera (LPT); and generating pulses for EPROM programming
(PGM PULSE). Timer 2 generates a baud rate for serial communications at SER IN and SER
OUT. These are all typical applications for timer/counters in microcontroller circuits.

If you don’'t use the optional timer functions, you can program the timers for other
applications. In addition to timing functions, where the timer increments at a defined rate,
you can use the timersfor event counting, where the timer increments on an external trigger
and measures the time between triggers. If you use thetimersfor event counting, T2, T2(EX),
T0, and T1 detect transitions to be counted.

The serial port. The 8052's seria port automatically takes care of many of the details of
serial communications. On the transmit side, the serial port translates bytes to be sent into
seria data, including adding start and stop bits and writing the datain a timed sequence to
SER OUT. On the receive side, the serial port accepts seria dataat SER IN and setsaflag to
indicate that a byte has been received. BASIC-52 uses the seria port for communicating
with a host computer.

External interrupts. INTO and INT1 are external interrupt inputs, which detect logic levels
or transitionsthat interrupt the CPU and causeit to branch to apredefined program location.
BASIC-52 usesNTO for its optional direct-memory-access (DMA) function.

Programming functions. BASIC-52's programming commands use three additional port
bits (ALEDIS, PGM PULSE, and PGM EN) to control programming voltages and timing for
storing BASIC-52 programs in EPROM or other nonvolatile memory.

Additional Control Inputs

Two additional control inputs need to be mentioned. A logic high on RESET resets the chip
and causes it to begin executing the program that begins at 0 in code memory. In the
8052-BASIC chip, this program is the BASIC-52 interpreter. EA (external memory access)
determines whether the chip will accessinternal or external code memory in the areafrom
O0to 1FFFh. InBASIC-52 systems, EA istied high so that the chip runsthe BASIC interpreter
in internal ROM on boot-up.

Power Supply Connections

And, finally, the chip hastwo pinsfor connecting to a +5-volt DC power supply (vCC) and
ground (VSS).

That finishes our tour of the 8052-BASIC chip. We' re now ready to put together a working
system.

22 The Microcontroller Idea Book

Powering Up

3

Powering Up

This chapter presentsacircuit that enables you to start using the 8052-BASIC chip. You can
write and run programs and experiment with the BASIC-52 programming language. Later,
you can add non-volatile memory for permanent program storage and interfacesto displays,
keypads, and whatever else your projects require.

About the Circuit

Figure 3-1 contains all of the components you need to get a BASIC-52 system up and
running, plus afew optional extras for future use. Table 3-1 is a partslist for the circuit.

The circuit has five mgjor components: the 8052-BASIC chip (U2), an address latch (U4),
an address decoder (U6), static RAM (U7), and an RS-232 interface (U5). As I’ll explain
below, afew of the componentsaren’t essential at this point, but I’ veincluded themto allow
easy expansion later on.

Thecircuit configuration isamore-or-less standard design, similar to many other microcon-
troller circuits. When you understand this circuit, you' re well on your way to understanding
many others.

Thefollowing paragraphs explain the circuit operation, component by component. If you' re
impatient to get started, you can skim or skip over this section for now, and go straight to
the construction details.

The Microcontroller Idea Book 23

Chapter 3

DATA BUS (D@-D7)

u2 vl
80(C152-BASIC R9 74HCT373
L 1ok D03 2 A
—P1-e/12 ADO o] 10 10—
+5y —5{P1.1/T2EX ADI % 7] 20 20—
PWM —P1.2/PWM AD2 o 55l 30 30—
-ALEDIS —P1.3/ALEDIS AD3 o T3] 40 40— LOW ADDRESS BUS
-PGM PLS —P1.4/PGM PLS AD4 5 05141 50 50 =73 (A@-A7)
R1 ~PGM EN —{P1.5/PGM EN AD5S 3 171 60 60 =702
10K —5|P1-6/DMA ACK AD6 o 718 7° 70—
DI —P1.7/LPT AD7 8D 80 v7
ot | 2 9 == +5Y I 6264 (8K)
x UlA RESET EA LE oR
s! L T ALE == 62256 (32K)
74HC14 SER IN—1P3.0/RXD BASIC ocC
RESET Il —
¢ P3.1/1XD PSEN ADDRESS LATCH Ao |
1 P3.2/1NT@/DMA JT[Q|EXTERNAL 5 j— A AQ 1/01
P3.3/TNTI AlS — -ALEDIS — - A Al 1/02
— P3.4/T0 Al4 - 4 A3 A2 1/03
- P3.5/TL Al3 yvammrs LX) 1/04
P3.6/fR Al2 | A =M 1705
P3.7/RD Al ro 1/06
Alo) -RDANY A7 3|A6 1/07
XTAL2 A9 ~READ— A7 1708
XTALI A8
e s 2
MICROCONTROLLER 74HCT(38 A9
Al FIE A
AlS 3 A 23
12 51¢ Y0 [-—— 0000+ A S ALl
A3 T8 Y1 7 2000H Al2
A Y2 H5— 4000H *5V
+5Yy Y3 5— 6000H
Y4 [=—— 8000H J2[O| 8K 26
6 Y5 ——— AQOQH AL e CS2/A13
Gl
+5V 4159 Y6 [5— C@0OoH 32K
5|5%8 Y7 —— EQ00H Al4 lNC/AT4
+ mos F 0000H o] 8k 20| —
V+(+10V) = = ADDRESS DECODER <! csi
AlS
32K
c7 5 N HIGH ADDRESS BUS (A8-Al5) y J3 .%.a&@
v-(-lev) Lo _|I:s_._" -READ -~ 0E
5 — STATIC RAM
c2- -
Rs232 N 3[R M~ Riol12 o mww POWER AND GROUND PINS
L - 1 1 1 1 | ic | +sv | ono
8 R2] V R2019 TN TN TN TN TN ™~ I 14 ;
c8 [cle cll C cl u2 40 20
Rs232 out A4 T1O A__ THTL e out v_\ TouF | 0.I1uF | @.1uF |[0.1uF | 0O 0. 1uF U3 (4 7
7lt20 1 121]10 Vv [Leol U4 20 (o
~J us 16 15
j— 3 16 8
RS232 INTERFACE - PLACE A @.1uF CAPACITOR NEAR THE +5V AND u7 28 (4

GND CONNECTIONS OF EACH IC.

Figure 3-1. Complete 8052-BASIC system for experimenting.

The Microcontroller Idea Book

O |N|o|u
RIR[R(RE8Z8

24

Powering Up

Table 3-1. Parts list for Figure 3-1's circuit.

Semiconductors

LED1 Light-emitting diode

Ul 74HC14 quad inverting Schmitt trigger

u2 8052-BASIC or 80C52-BASIC microcontroller

U3 74HCTO08 quad AND gate

U4 74HCT373 octal transparent latch

us MAX?232, RS-232 driver/receiver

U6 74HCT138 3-to-8-line decoder

u7 6264 (8 kilobyte) or 62256 (32 kilobyte) static RAM, access time 250ns or
less

Resistor s (1/4-watt, 5% tolerance)

R1-R9 10,000-ohm
R10 330-ohm

Capacitors (16WVDC, 20% tolerance)

C1,C8 10-microfarad, aluminum or tantalum electrolytic
C2,C3 30-picofarad ,ceramic disc

C4-C7 1.0-microfarad,aluminum or tantalum electrolytic
C9-C13 0.1-microfarad, ceramic disc

Miscellaneous

J1-33 SIP header, 3-terminal, and shorting block
S1 Switch, normally-open momentary pushbutton
XTAL1 11.0592-Mhz crystd

RS232 connector, | C sockets, perforated board, wire, solder, and other circuit-construction
materials

The Microcontroller

U2 isthe 8052-BASIC chip. The circuit is designed so that you can use either the NMOS
version or the CMOS 80C52-BASIC.

EA, the External Access Enableinput (pin 31 of U2), connectsto +5V. This causes the 8052
toruntheBASIC-52interpreter inROM on boot-up. If EA islow, the8052 ignoresitsinternal
ROM and instead accesses external program memory on boot-up. You can wire EA directly

The Microcontroller Idea Book 25

Chapter 3

to +5V, or use a jumper as shown in the schematic, to allow you to bypass BASIC-52 and
boot to an assembly-language program in external memory, as described in Chapter 13.

Thecrystal. XTAL1isan 11.0592-Mhz crystal that connectsto pins 18 and 19 of U2. This
crystal frequency hastwo advantages. It givesaccurate baud ratesfor serial communications,
due to the way that the 8052’s timer divides the system clock to generate the baud rates.
Plus, BASIC-52 assumes this frequency when it times the real-time clock, EPROM
programming pulses, and seria printer port.

However, you should be able to use any crystal value from 3.5 to 12 Megahertz. If you use
adifferent value, you can use BASIC-52's XTAL operator to adjust the timing to match the
frequency of the crystal you are using. The serial communications are reliable if the baud
rate is accurate to within a few percent. The higher the crystal frequency, the faster your
programs will execute, so most designs use either 11.0592 Mhz or 12 Mhz, which is the
maximum clock frequency that the standard 8052 chip can use.

Capacitors C2 and C3 are 30 picofarads each, as specified in the 8052's data sheet. Their
precisevalueisn’'t critical. Smaller values decreasethe oscillator’ s start-up time, whilelarger
values increase stability.

Reset circuit. A logic high on pin 9 of U2 resets the chip. On power up, pin 1 of U1 rises
slowly from OV to +5V as capacitor C1 charges through resistor R1. Inverter U1 has a
Schmitt-trigger input, which has upper and lower switching thresholds that help to ensure
aclean reset pulse at pin 9 of U2. On alogic gate that doesn’t have a Schmitt-trigger input,
the output may oscillate if aslowly changing input remains near the switching threshold. In
contrast, at U1, when pin 1 reaches the upper switching threshold (about 2.8V), pin 2
switches from high to low, but won’t go high again until pin 1 drops to the lower threshold
of about 1.8V.

Pressing and releasing S1 resets the 8052-BA S| C chip by discharging C1 and then allowing
it to recharge, which brings RESET high, then low again

External Memory

The remaining connections to U2 have to do with reading and writing to external memory.
Read and writesignals. To enable reading combined program and datamemory, AND gate
U3A’s output is RDANY. This signal islow when either READ or PSEN islow. Figure 3-1's

circuit doesn't use RDANY, but I’ ve included U3A for future use. Writing to data memory
is controlled by WRITE. Code memory can’t be written to.

ADO-AD7 connect to U4, a 74HCT 373 octal transparent latch that stores the lower address
byte during memory accesses. The chip containsaset of D-typelatchesthat storelogic states.

26 The Microcontroller Idea Book

Powering Up

74HCT 138
3-TO-8-LINE DECODER
INPUTS
OUTPUTS
ENABLE SELECT
Gl GAGIB| C B A|YD YL Y2 Y3 Y4 Y5 Y6 Y7
L X X|X X X|H H HH HHH H
X H X|X X X|H H H H H H H H
X X H|X X X|H H H H H H H H
H L L|L L L|L H H H H H H H
H L L|L L H|H L H H H H H H
H L L|L H L|H H L H H H H H
H L L|L H H|/H H H L H H H H
H L L|H L L|H H H H L H H H
H L L|H L H|/H H H H H L H H
H L L|H H L|H H H H H H L H
H L L|H H H|/H H H H H H H L
74HCT373
OCTAL TRANSPARENT LATCH
OUTPUT | LATCH
CONTROL | ENaBLE| PATA| OUTPUT
oC LE [ID-8D| 1Q-8Q
L H H H L=LOGIC LOW
L H L ﬁb H=LOGIC HIGH
L L X | CHANGE X=DON'T CARE
H X X 7 7-HIGH [MPEDANCE

Figure 3-2. Truth tables for the 74HCT138 decoder and 74HCT373 octal
transparent latch.

A latch-enable input (LE) controls whether the outputs are latched (stored), or not latched
(immediately follow the inputs). Figure 3-2 shows the truth table for the chip. When pin 11
ishigh, 1Q-8Q follow 1D-8D. When pin 11 goes |ow, outputs 1Q-8Q will not change until pin
11 goes high again.

During each external memory access, 1Q-8Q store the low address byte, so the eight lines
that connect to these outputs carry the label LOW ADDRESSBUS. AND gate U3B latches, or
stores, U4's outputs only when both ALE and ALEDIS are high. During norma memory
accesses, ALEDIS remains high, and ALE controls U4. ALEDIS disables the latches when
BASIC-52 executes its programming commands. Figure 3-1's circuit doesn’'t use the
programming commands, so ALE could control U4 directly, but again, I’ ve included U3B
for future use.

Because ADO-AD7 hold the data to be read or written during a memory access, thesignals as
agroup carry the label DATA BUS. Each line of ADO-AD7 hasa 10K pullup resistor. These are

The Microcontroller Idea Book 27

Chapter 3

required for the programming functions, and are included for future use. You can use eight
individual resistors, or aresistor network that containseight resistorsina S| Por DIP package.
In abussed resistor network, one pin connectsto one side of all of theresistors, so you have
fewer connectionsto wire.

The remaining bus is the HIGH ADDRESS BUS (A8-A15), which consists of the upper eight
address lines, and is not multiplexed.

Address decoding. U6 is a 74HCT138 3-to-8-line decoder. It functions as an address
decoder for the 64K external memory space. Address decoding allows multiple chips to
connect to the address and data buses, with each chip enabled only when it is selected.

Figure 3-2 shows atruth table for the decoder. The 8052-BASIC chip uses the three highest
address lines (A13-A15) to generate a chip-select signal for each of eight 8K blocks in
memory. Thisisby no meansthe only way to decode memory, but it sacommon and flexible
one. In the schematic, each output is labeled with the base, or bottom, address in the block
it controls.

For example, when U2 reads or writes to an address between 0 and 1FFFh in external
memory, A13,A14, and A15 are low, so pin 15 of U6 islow. For all other addresses, pin15is
high. If we connect pin 15 to the chip-select input of an 8K RAM, the RAM will be enabled
only when addresses from 0 to 1FFFh are accessed. (Remember that 8K, or 8 kilobytes, is
2000h, or 0 through 1FFFh, in hexadecimal.)

If you use a 32K RAM, you don't need U6 to decode its addressing. For al of the 32K
RAM'’s addresses (0 to 7FFFh), A15islow, and for al other addresses (7FFFh to FFFFh),
A15is high. This means that you can use A15 directly as a chip select, without additional
decoding. U6 will comein handy later, however, even if you use a 32K RAM.

RAM choices. Theminimal circuit includesjust one memory chip, U7, which can bean 8K
or 32K static RAM, or SRAM. BASIC-52 requires at least 1K of RAM, but I’ ve used the
larger capacities, since the extraroom is useful and doesn’t cost much more. The pinouts of
the two chips are similar, with jumpers J2 and J3 routing the signals that vary.

The 8K chip has 13 addressinputs (A0-A12), while the 32K chip has 15 (A0-A14). Eight data
I/O pins (1/01-1/08) connect to the data bus and hold the bytes to be read or written.

The RAM has three control inputs whose functions match those of the 8052's control

outputs. Pin 20 (Cs1, or Chip Select 1) enables U7 whenever the 8052 reads or writesto the
chip, with the address decoding determining the address range of the chip.

28 The Microcontroller Idea Book

Powering Up

Jumper J3 chooses the chip select for an 8K or 32K device. Some 8K RAMs have a second
chip select (Cs2), which is tied high (always selected) by J2. If you limit yourself to either
8K or 32K RAMs, you can eliminate J2 and J3 and wire the appropriate connectionsdirectly.

Pin 27 (WE, or Write Enable) is driven by WRITE, and is strobed low during each write to
external data memory. Pin 22 (OE, or Output Enable) is driven by READ, and strobes low
when either external data or code memory is read.

With an 8K RAM, each write cycle follows this sequence: The 8052 brings ALE high and
places the address to be written to on ADO-AD7 and A8-A15. For addresses from O to 1FFFH,
A13-A15arelow, so U7 isselected at its pin 20. After a short delay, the 8052 brings ALE low,
which causes U7 to storethelower address byte. After another short delay, the 8052 replaces
the address on ADO-AD7 with the data to be written. A low pulse at pin 27 (WE) causes the
RAM to write the data into the address specified by A0-A12.

Read cyclesare similar, except that apulseat pin 22 (OE) causes the requested datato appear
on ADO-AD7, where the 8052 readsiit.

With a 32K RAM, the process is the same, except that A15 is the chip select and there are
two more address lines on the chip.

Static RAM chips are rated by their read-access time, which is the maximum time the chip
will requireto place abyte on the data bus after aread is requested. With acrystal frequency
of 12 Mhz or lower, an access time of 250 nanoseconds or lessisfine for accessing external
data or code memory. Access times and other timing characteristics are described in the
timing diagrams in the data sheets for the 8052 and RAM.

When you use the 8052-BASIC, you don’t have to worry about any of these specifics about
the read and write cycles. If the circuit iswired correctly, and if all of the components are
functioning as they should, reading and writing occur automatically in the course of
executing BASIC-52 statements and commands. A single program line in BASIC-52 can
cause dozens or more read and write operations to occur.

Logic families. Logic chips U3, U4, and U6 are HCT-family components, which have
TTL-compatible inputs and CM OS-compatible outputs. This means that they can interface
directly to either TTL or CMOS logic.

If HCT-family parts aren’t available, there are alternatives. You may use an LSTTL chip
(74LS08, 74L.S138, 74LS373) for U3, U4, or U6. Or, if you use a CMOS 80C52-BASIC
for U2, you may use an HCMOS 74HCO08 or 74HC138 for U3 or U6. If U3 isa74HCO08 or
74HCTO08, you may use a 75HC373 for U4. For U1, you may use a 74HC14 or 74LS14.

The Microcontroller Idea Book 29

Chapter 3

Table 3-2. Voltage specifications for different types of logic, powered at 5V.
Logic Type Output Input
0 (maximum) 1 (minimum) 0 (maximum) 1 (minimum)

TTL, including LSTTL 0.4v 2.4V 0.8v 2.0v

most NMOS

HCTMOS 0.1v 4.9v 0.8V 2.0V

HCMOS 0.1v 4.9V 1.0v 3.5V

4000-series CMOS 0.1v 4.9V 1.5V 3.5V

Table 3-2 summarizes the input and output voltage specifications for different logic-device
families. The main point to remember is that a TTL logic-high output voltage (and most
NMOShigh outputs) may beaslow as 2.4V, which does not meet the minimum input-voltage
requirement for HCMOS or 4000-series CMOS devices. To interface a TTL output to
CMOS, useanHCTM OSdevice, which accepts TTL-logicinputs. Or, you may add apull-up
resistor toa TTL output to pull it near +5V.

Serial Interface

The final chip in the schematic is U5, a MAX232 driver/receiver, which is the popular
single-chip solution for RS-232 interfaces. One side connects to the 8052's serial input and
output on pins 10 and 11 of U1, and the other side sends and receives signals at standard
RS-232 levels to a personal computer. Larger capacitor values for C4-C7 are fine, and the
MAX232A version can usevaluesas small as 0.1 microfarad. If you splurgeonaMAX 233,
which has internal capacitors, you don’'t need C4-C7 at all.

Power Supply

A final essential component is the power supply. For the basic system, all you need is a
regulated +5-volt supply. These are widely available from mail-order suppliers. An output
capability of at least 500 milliamperes is recommended.

Capacitors C8-C13 provide power-supply decoupling. Digital devices draw current as they
switch. Capacitors C9-C13 store energy that the components can draw quickly, without
causing spikes in the supply or ground lines. C8 stores energy for quick recharging of
C9-C13. The exact values aren't critical, but C9-C13 should be a type with good high-fre-
guency response, such as ceramic, mica, or polystyrene.

LED1 and current-limiting resistor R10 are an optional power-on indicator.

30 The Microcontroller Idea Book

Powering Up

Figure 3-3. This is the circuit board on which | wire-wrapped and tested
many of the circuits in this book.

Circuit Construction

This circuit is intended for use as a flexible system for testing and experimenting, rather
than a fixed, unchanging design for a single application. For this reason, | recommend
building it with wire-wrapping or another construction method that allows easy changesand
additions. Figure 3-3 shows an 8052-BASIC circuit wire-wrapped onto perfboard.

Reading the Schematic

In the schematic, | used a couple of different techniques to represent connections between
pins and components. In the reset circuit, connections are drawn as direct point-to-point
lines. For the address and data lines, | used buses for a neater, more compact schematic.
When you wire these connections, use the signal labels as a guide. For example, the label
DO tells you to interconnect these points: pin 39 of U2, pin 3 of U4, pin 11 of U7, and one
end of R2. Other connectionsareindicated by labels. For example, the WRITE label tellsyou
to connect pin 16 of U2 and pin 27 of U7.

Another point to be aware of is the conventions used in the schematics and text of this book
for indicating an active-low signal, or asigna that is valid, or enabled, when low. In this
book, the schematics use a leading hyphen (-WRITE) , while the text uses an overscore
(WRITE). Their meanings are the same.

The Microcontroller Idea Book 31

Chapter 3

DOT INDICATES
PIN | do~ hia
200 013
30 012
PINS COUNT UP 40 011
COUNTER -
CLOCKWISE >0 - 1o
FROM PIN | 60 19
700 8
Lro\t4 TOP VIEW
(PINS POINTING DOWN)
7\ 8

INTEGRATED CIRCUIT
DUAL IN-LINE PACKAGE (DIP)

ANODE CATHODE
(POSITIVE) (NEGATIVE)
TERMINALS ?
FLAT EDGE

INDICATES
ANODE LEAD IS —> CATHODE
N OFTEN LONGER
STRIPE INDICATES S 1DE 80T TOM
CATHODE END VIEW VIEW
DIODE LED
NEGATIVE
TERMINAL
LABELED
- — — 7/
D==2=p=/
+| & POSITIVE
TERMINAL
AXTAL-LEAD LABELED
ALUMINUM
RADIAL -LEAD
ALUMINUM TANTALUM

— POSITIVE LEAD 1S OFTEN LONGER

ELECTROLYTIC CAPACITORS

Figure 3-4. How to determine the correct orientation for ICs, diodes, LEDs,
and electrolytic capacitors.

32 The Microcontroller Idea Book

Powering Up

Construction Tips
These are some things to be aware of as you build the circuit:
¢ Choose a circuit board that has room for additions, at least 4 by 6 inches.

¢ A board with interleaved buses, such as Vector’'s 3677 series, alows easy,
low-impedance connections to +5V and ground. Designate one bus as ground, and the
other as +5V. For power and ground connections, wrap one end of the wire to the
appropriate pin on the chip, and trim and solder the other end directly to the bus.

¢ To connect the power and ground buses to the +5V supply, use thick (AWG #22 or
lower) wires, not #30 wire-wrap wires. Y ou can solder the other ends of the wiresto
banana plugs or screw terminals, or clip your power-supply leads directly to the wires.

¢ The schematic doesn’t show an ON/OFF switch for the circuit, but you can add a SPST
toggle or dide switch in series with the connection to the +5V supply if you wish.

e Place C8 near where the +5V supply connects to the board. Mount decoupling
capacitors C9-C13 so that each chip’s +5V and GND pins are near a capacitor. In other
words, space the capacitors evenly around the board; don’t group them all in one area.
Keep the wires or traces between the capacitor’s leads and the IC’' s +5V and ground
pins as short as possible.

¢ To minimize noisein the oscillator circuits, place XTAL1, C2, and C3 closeto pins 18
and 19 of U2 and connect them with short wires. Wire the ground terminals of C2 and
C3 directly to pin 20 of U2.

¢ When you wire the following components, correct orientation is required: C1, C4-C8,
D1, LED1, and U1-U7. Figure 3-4 shows common polarity indicators for these
components. Notice that C7’ s positive terminal connects to ground, and C6’ s negative
terminal connectsto +5V, since these capacitors connect to the MAX232's-10V and
+10V outputs.

¢ Asyou wire the circuits, remember that everything on the wire-wrap or solder side of
the board is amirror image of the way it looks on the component side of the board. If
pin 1isin the upper left corner on the component side, it’ s in the upper right corner on
the wire-wrap side (assuming that you flip the board over from side to side, not top to
bottom).

e |_abels on the wire-wrap side are helpful. Y ou can place adot of indelible ink near pin

1, or adhesive labels between the pins, or use prelabeled and punched plastic labels that
dide onto the wire-wrap pins.

The Microcontroller Idea Book 33

Chapter 3

(O 4
' a2 (40 ©!
TD (DATA OQUT) |2e o o O02|RS232 IN (U5, PIN 13)
RD (DATA IN) |3e o o O3|RS232 OUT (U5, PIN 14)
° O
) O
° O
) O
° o o O
SIGNAL GROUND (SGND)|7e o o O7|GND (U5, PIN 15)
° O
) O
° O
) O
° O
) O
° O
° * © O
O

RD (DATA IN)
TD (DATA OUT)

RS232 OUT (U5, PIN 14)
RS232 IN (U5, PIN 13)

SIGNAL GROUND (SGND) GND (U5, PIN 15)

9 PINS

MALE (PIN) CONNECTOR FEMALE (SOCKET) CONNECTOR
HOST COMPUTER TARGET COMPUTER
(PC) (8052-BASIC)

Figure 3-5. Pin connections for 25-pin and 9-pin RS-232 connectors.

e Don't plug the ICs into their sockets until you've completed wiring all of the circuits.

Unused Gates

Two gateson U3 and five gateson U1 are unused. To prevent the unused CMOSinputsfrom
floating and possibly drawing excessive currents, wirepins9, 10, 12, and 13 of U3 to ground
or +5V. Do the same for pins 3, 5, 9, 11, and 13 of Ul. Don't forget to remove these
connectionsif youlater usethepins. If youareusing LSTTL chips (74L S08, 74L S14), leave
the unused inputs open.

34 The Microcontroller Idea Book

Powering Up

Serial Connectors

Connections to RS-232 OUT and RS-232 IN depend on the type of serial connector you have
on your personal computer or its seria cable.

Connectors vary, but two common ones are amale 25-pin or 9-pin D-connector. (The outer
shell of a D-connector isroughly in the shape of aD.) For the 8052-BASIC system, you'll
need a mating female 25-pin or 9-pin D-connector. The connection has just three wires. A
solder-cup-type connector alows easy soldering of the wires.

Figure 3-5 showsthewiring for 9- and 25-pin connectors. A few computersrequireadditional
handshaking signals. BASIC-52 doesn’t support these, but you can simulate them by
connecting together pins 5, 6, 8, and 20 at the personal-computer end of the link. (Pin
numbers are for a 25-pin connector.)

Powering Up

The first time you power up an untested circuit, it pays to be cautious. | recommend the
following steps:

First Steps

Visually inspect the circuit. You don’t have to spend alot of time on this, but sometimes a
missing or miswired wire or component or another problem will become obvious.

Install U1-U7 on the board, making sure that pin 1 on each is oriented correctly. Set J1 to
BASIC, and set J2 and J3 to match the size of your RAM at U7.

With an ohmmeter, measure the resistance from +5V to ground, to be sure these aren’t
shorted together by mistake. The exact value you measure isn’t critical, but if you read less
than 100 ohms, something is miswired and you need to find and fix the problem before you
continue.

If you suspect aproblem, check the wiring of the power and ground connections, comparing
the connections to those on the schematic. Be sure all components are oriented correctly.
When all checks out, you're ready to boot up BASIC-52.

Booting BASIC-52

For theinitial check, begin with everything powered down. I'll use the term host computer,

or host system, to refer to the personal computer, and target computer, or target system, to
refer to the 8052-BASIC circuits. Included are some specific tips for users of Datastorm’s

The Microcontroller Idea Book 35

Chapter 3

[=12]

4

File Edit Et.:tli.ngs Phone Transfers ﬂelp .

*MCS-51(tm) BASIC U1.1=
READY

»print mtop

8191

[I+

»print xtal
11859280

>18 print "hello, world"
28 end

»list

18 PRIHNT "hello, world"™
28 EHD

READY
*run

hello, world

READY

b |

[«] 1 [+

Figure 3-6. BASIC-52’s sign-on message and a simple program, using the
Windows Terminal accessory for communications.

Procomm Plus for DOS and Microsoft Windows 3.1's Terminal Accessory, but other
communications software should have similar features and abilities.

Turn on the host computer and run your communications software. Configure the software
for 8 databits, no parity, and 1 stop bit. Thebaudrateyou select isn’'t critical, snce BASIC-52
automatically adjuststo what you are using. To start, use arate of 9600 or less. Don’t enable
any handshaking or flow-control options such as XON/XOFF or RTS/CTS.

Select the appropriate serial, or COM, port, if necessary. If you're using an MS-DOS
(IBM-compatible) computer, you must find a COM port and interrupt-request (IRQ) level
that aren’t being used by your modem, mouse, or another device. Because COM1and COM3
often share an IRQ level, as do COM2 and COM4, you generaly can’'t use COM1 and
COM3 at the same time, or COM2 and COMA4. If you have an external modem, you can
unplug it and use its serial port.

In Procomm Plus, use the line/port setup menu (ALT+P) to configure. In the Windows

Terminal, use the Settings menu. Cable together the serial ports of the host and target
systems.

36 The Microcontroller Idea Book

Powering Up

You're now ready to power up the target system. Turn on its power supply, and press the
SPACE bar at the host’s keyboard. You should see this BASIC-52 sign-on message and
prompt:

MCS-51(tm) BASIC V1.1
READY

Figure 3-6 shows the sign-on message and a ssimple program, using Windows' Termina
accessory for communications.

Troubleshooting

If you don’'t see the prompt, it’stime to troubleshoot. Getting the system to boot up the first
time can be the most challenging part of a project, especially when serial communications
areinvolved. Here are some things that may help you isolate the cause of the problem:

e Try again by pressing and releasing S1 and pressing the space bar. If you are using a
32K RAM for U7, BASIC-52 requires about 1 second to perform its memory check
after areset, before it will respond to the space bar. With an 8K RAM, the delay isa
few tenths of a second (proportionately longer with ower crystals).

¢ Double-check the easy things. Are the communications parameters correct? Did you
select the correct serial port? Are all 1ICsinserted?

o Verify that pin 9 of U2 goes high, then low, when you press and release S1.

¢ Check the power and ground pins of all ICsfor proper voltages.

e Connect alogic probeto pin 10 of U2. When you press the space bar, you should see
thelogic level toggle as U2 receives the ASCII code for a space (20h). If not, you
probably have a problem in the setup of your communications software or in the serial

cabling.

o Verify that pin 30 of U2 istoggling (at 1/6 the crystal frequency, if you have an
oscilloscope to measure). Thisindicates that the oscillator circuit is functioning.

o Verify that pins 21-28 and 32-39 of U2 toggle as BASIC-52 performs its memory
check immediately after powering up or rebooting.

o |f all elsefails, recheck your wiring for missing or misrouted wires. Sometimes there's

no alternative but to go through the schematic connection by connection, checking each
with an ohmmeter.

The Microcontroller Idea Book 37

Chapter 3

Basic tests

When your system boots, you're ready for some basic tests. The BASIC-52 programming
manual is a useful reference at this point.

In some ways, BASIC-52 is similar to BASIC compilers like Microsoft's QuickBASIC.
Many of the keywords and syntax rules are similar. But BASIC-52 is closer to older
interpreted BASICslike GW-BAS C or BAS CA. You can type a statement or command and
execute it immediately when you press ENTER, Or you can type a series of statements and
run them later as a program. When a line begins with aline number, BASIC-52 treatsit as
aprogram line rather than as a command to execute immediately.

Here are some quick tests and experiments you can do:

Memory Check

Type

PRINT MTOP

to learn the amount of external data memory that BA SIC-52 detected on boot-up. With an
8K RAM, MTOP should be 8191, and with 32K, it should be 32,767. If you prefer
hexadecimal notation, type

PHO. MTOP

(In PHO ., be sure to include the period and use a zero, not the letter “O”.)

Crystal Frequency

The specia operator XTAL represents the value of the timing crystal that clocks the
8052-BASIC. Thedefault valueis 11059200, or 11.0592 Mhz. You can verify thisby typing

PRINT XTAL
Most BASIC-52 statements don’t use the X TAL operator, so it doesn’'t matter if the value
isn't accurate. Exceptions are the real-time clock, programming commands, PWM output,
and LPT output. For these, XTAL should match your crystal’s frequency. To set XTAL for a
12Mhz crystal, type

XTAL=12000000

To verify, type

38 The Microcontroller Idea Book

Powering Up

PRINT XTAL

Line Editing

After typing afew commands, you may discover some of BASIC-52'sline-editing abilities.
While typing aline, you can correct mistakes by deleting back to the mistake and retyping.
In Procomm Plus, if you select VT100 terminal emulation (under Setup menu, Terminal
Options), you can use either the DELETE or BACKSPACE key to delete. With the Windows
terminal, you must use the DELETE key (not BACKSPACE). Many communications programs
alow you remap the keyboard, so you can select whatever delete key you wish.

Once you press ENTER, you can't edit a line you' ve typed, unless you retype it from the
beginning.

BASIC-52 treats upper and lower-case characters the same. In most cases, spaces are
ignored, so you can include them or not as you wish.

Running a Program
Hereisavery simple program to try:
10 FOR I=1 to 10

20 PRINT T

30 NEXT I

40 END

Enter each of the lines, including the line numbers. BASIC-52 automatically stores the
program in RAM. To run the program, type RUN. You should see this:

= W 00 JO0 Ul ix WDN -

0
To view the program lines, type
LIST

The Microcontroller Idea Book 39

Chapter 3

To erase the current program, type

NEW

To verify that the program no longer exists, type
LIST

Y ou can change individual program lines by typing the line number, followed by a new
statement:

10 FOR I=1 to 20
To erase aline, type the line number and press ENTER:

20

Getting Out of Trouble
Occasionally, aprogramming error may cause a program to go into an endless|oop or crash
thesystem. If it’'san endlessloop, you can exit it and returnto theREADY prompt by pressing

CONTROL+C. If that doesn’t work, your only choiceis to press S1 to reset the 8052-BASIC
system. Resetting will erase the program in RAM, so you'll have to re-enter it.

Simple Programs to Try

The following sections offer some short programs to try, to help you explore your system
and become familiar with BASIC-52. Don’t worry if you don’t understand every line of the
programs. Later chapters get into programming in more detail.

Reading Port 1

You can use BASIC-52 to read and write to Port 1 (pins 1-8) on the 8052-BASIC.

The command

PHO.PORT1

will display the hex value of the entire port. Listing 3-1 is aprogram that displaysthe value
of each of the bitsin the port.

Enter each line carefully. Be sureto include all of the punctuation shown. When you run the
program, you should see a display like this:

40 The Microcontroller Idea Book

Powering Up

PORT 1 Bit Values:
Bit = 1

Bit =
Bit
Bit
Bit
Bit
Bit
Bit

oUW N RO
PR R RR R R

If aport pin isopen, or unconnected, its internal pull-up resistor will causeit to read as 1.
If you connect a jumper wire from a port pin to ground, or bring the pin low by driving it
with alogic low output, it should read O. Line 10 in Listing 3-1 brings all of Port 1's bits
high, which enables them to be used as inputs.

Writing to Port 1

You can control the bits of Port 1 by writing to them. Listing 3-2 allows you to set or clear
individual bits. Here's an example of what happens when you run the program:

Enter a bit to set or clear (0-2, 4-7) :7
Enter 1 to set, 0 to clear :0

Enter a bit to set or clear (0-2, 4-7) :3
Do not change bit 3!

The program doesn’t allow you to change bit 3 (P1.3), because the 8052-BASIC circuit
requiresthisbit to be high when accessing external memory (assuming that you’ veincluded
U3B inyour circuit). If you do clear bit 3 accidentally, you' |l crash the system and will have
to reboot.

Listing 3-1. Displays the value of each bit in Port 1.

10 PORT1 = OFFH

20 PRINT “PORT 1 Bit Values:”

30 PRINT “Bit (PORT1.AND.1)

40 PRINT “Bit (PORT1.AND.2) /2

50 PRINT “Bit (PORT1.AND.4) /4

60 PRINT “Bit , (PORT1.AND.S8) /8

70 PRINT “Bit , (PORT1.AND.10H) /10H
(
(
(

I
I

I

80 PRINT “Bit PORT1.AND.20H) /20H
90 PRINT “Bit PORT1.AND.40H) /40H
100 PRINT “Bit PORT1.AND.80H) /80H
110 END

I

I

<N oUW NP O

4
4
4
4
4
4
4
”
I

The Microcontroller Idea Book 41

Chapter 3

Listing 3-2. Allows you to set or clear individual bits of Port 1.

10 INPUT “Enter a bit to set or clear (0-2, 4-7) :”,X
20 IF X=3 THEN PRINT "“Do not change bit 3!” : GOTO 10
30 INPUT “Enter 1 to set, 0 to clear :”,Y

40 IF Y=1 THEN PORT1=PORT1.0R.2**X
50 IF Y=0 THEN PORT1=PORT1.AND.OFFH-2**X
60 END

Run the program and follow the on-screen instructions to set or clear abit. To monitor aport
bit asyou set and clear it, you can use alogic probe, voltmeter, or oscilloscope. For example,
to monitor bit O, place alogic probe on pin 1 of U1, or connect the + lead of a voltmeter to
pin 1 and the - lead to ground.

Accessing Memory

Listing 3-3 alows you to read and write to external RAM. Here is an example of what
happens when you run this program:

Enter 0 (read), 1 (write), or 2 (quit): 1
Free memory ranges from 397H to 1FFFH
Enter an address to write to : 1000H

Enter data to be written : 55H

55H has been written to address 1000H
Enter 0 (read), 1 (write), or 2 (quit): O
External RAM ranges from 0 to 1FFFH
Enter an address to read : 1000H

55H is stored in address 1000H

If you write to an address outside the range specified as free memory, you will overwrite
the RAM currently in use to store your program and run BASIC-52. If you do this
accidentally, your system may crash and you’ll have to reset the system and re-enter the
program.

If you prefer decimal numbersto hex notation, changeeach PHO inthe program to PRINT.
(PHO. includes aperiod; PRINT does not.)

Real-time Clock

Listing 3-4 demonstratesBA Sl C-52's real-time clock by displaying an on-screen 60-second
timer.

42 The Microcontroller Idea Book

Powering Up

Listing 3-3. Allows user to read and write to external memory.

10 DO

20 INPUT “Enter 0 (read), 1 (write), or 2 (quit): ”,RW
30 IF RW=0 THEN GOSUB 70

40 IF RW=1] THEN GOSUB 120

50 WHILE RW<>2

60 END
70 PHO."External RAM ranges from 0 to “,MTOP
80 INPUT “Enter an address to read : ”,A

90 B=XBY (A)

100 PHO.B," is stored in address “,A

110 RETURN

120 PHO."Free memory ranges from “,LEN+512,” to “,MTOP
130 INPUT “Enter an address to write to :”,A

140 INPUT “Enter data to be written :7,B

150 XBY(A)=B

160 PHO.B," has been written to address “,A

170 RETURN

For the timer to be accurate, you must set XTAL to match the timing crystal your system
uses.

Further Experiments

Feel free to continue experimenting with BASIC-52 programs, using the programming
reference as aguide. You can do quite abit with just these circuits.

Listing 3-4. Real-time clock.

10 CLOCK 1:TIME=0:SEC=0
20 DO

30 ONTIME 1,60

40 WHILE SEC<60

50 END

60 TIME=TIME-1

70 SEC=SEC+1

80 PRINT SEC

90 RETI

The Microcontroller Idea Book 43

Chapter 3

Listing 3-5. This program uses BASIC-52’s GET instruction to detect when
the user has pressed a key.

10 CLOCK1:TIME=0:SEC=0
20 PRINT “Press any key to quit”

30 DO

40 ONTIME 1,100
50 G=GET

60 UNTIL G<>0
70 END

100 TIME=TIME-1
110 PHO. PORTI1
120 RETI

Exiting Programs

Some programs, such as Listing 3-3's, continue to run until the user requests to end it. In
BASIC-52, there are several ways to detect that the user wants to stop a program.

Set a User Variable

In Listing 3-3, the program displays a menu of choices on the host computer’s screen. The
program continues to run until the user selects QUIT by entering 2, which sets the variable
RW to 2 and causesthe DO . . . WHILE loop and the program to end.

Use GET

Sometimes, selecting a menu option isn’t convenient or appropriate. Listing 3-5 reads and
displays the value of PORT1 once per second until the user presses any key at the host
computer. The program uses BASIC-52'SGET operator to detect akeypress. GET stores
the ASCII code of a keypress at the host computer. Setting a varialble equal to GET (line
50) causesGET toreset to 0. You can detect akeypress by reading GET periodically. If GET

Listing 3-6. This program will end only when the user presses controL+c.

10 CLOCK 1:TIME=0:SEC=0
20 DO

30 ONTIME 1,100

40 WHILE 1=1

50 END

100 TIME=TIME-1

110 PHO. PORT1

120 RETI

44 The Microcontroller Idea Book

Powering Up

Listing 3-7. This program ends when int1 (pin 13) is brought low and causes
an interrupt routine to execute.

10 CLOCK 1:TIME=0:SEC=0

20 A=0

30 PRINT “Bring INT1 (pin 13) low to end program.”
40 DO

50 ONTIME 1,100

60 ONEX1 200

70 WHILE A=0

80 END

100 TIME=TIME-1

110 PHO. PORTI1

120 RETI
200 A=1
210 RETI

doesn’t equal zero, it means that a key was pressed. In Listing 3-5, when GET no longer
eguals O, the program ends.

Wait for CONTROL+C

You can aways end a program by pressing CONTROL+C at the host’s keyboard. The only
exceptions are runaway programs that have crashed the system and force you to reboot.
Listing 3-6 is an expanded version of Listing 3-5. It continues to read and display PORT1
inan endlessloop (DO...WHILE 1=1), until you press CONTROL+C.

Detect a Switch Press

A final method will end aprogram without any input from the host’s keyboard. You can use
this in stand-alone projects that don’t connect to a host computer at al. Listing 3-7 ends
whenthe8052-BA SIC’spin 13 (INTZ1) goeslow, which causesan interrupt routineto execute.
Bring the pinlow by jumperingit briefly to GND, or connect apushbutton switch asdescribed
in Chapter 7.

The Microcontroller Idea Book 45

Chapter 3

46

The Microcontroller Idea Book

Saving Programs

A

Saving Programs

In Chapter 3's experiments, the BASIC-52 programs that you wrote were stored in RAM.
This is fine for temporary use, but every time you power down, your program disappears
and you have to start over.

Thischapter showsyou two waysto save BASIC-52 programs more permanently: by adding
nonvolatile memory to the BASIC-52 system, and by downloading your programs to your
host system’s disk. The nonvolatile memory may be battery-backed RAM, EEPROM, or
EPROM. You can aso use this memory for storing assembly-language programs or data
that you want to save when you power down or reset. Disk storage is a convenient way to
saveprogramsif you want to edit them off-line, upload themto adifferent BASI C-52 system,
or just save back-up copies.

Nonvolatile Memory Options

One of BASIC-52's handiest features isits programming commands that store programsin
nonvolatile (NV) memory: EPROM, EEPROM, or battery-backed RAM. The commands
assume that the NV memory is addressed beginning at 8000h in external data memory.
With the addition of NV memory, you havetwo areasthat may contain BASIC-52 programs:

the NV memory, addressed beginning at 8000h, and the RAM, addressed beginning at 0. To
distinguish between the two areas, you can call the memory beginning at 8000h the EPROM

The Microcontroller Idea Book 47

Chapter 4

DS1225 DS1213B/C
Ne ot Y 28p vec dp: ™ 28db vee
AL2 2 27 WE [2 27@:
A7 O3 260 NC 0 3 267 vcc (DS1213B
A6 4 25|10 A8 o[4 25 b ONLY)
AS 5 2410 A9 i s 24 (1B
A4 6 23 Al] 6 23 b
A3 7 22 OF] 7 22 b
A2 8 21b Alo] 8 21 [
Al o 20 CE 0 9 20 b CE
I . Y Ke] m eV] 10 19 [
peo 11 18]0 DQ6 = IR 18 b
pal 12 17 DQ5 o 12 17 b
pa2 13 16f0 DQ4] 13 16 [
GND []14 1sph pe3 oap O 14 15 [

ACCEPTS 6264 8K X 8 SRAM

Figure 4-1. Pinouts for Dallas Semiconductor’'s 8K NVRAM and SmartSocket.

space (even though it may contain NVRAM, EEPROM, or EPROM), and call the memory
beginning at O, up to 7FFFh or the top of RAM, the RAM space.

BASIC-52's programming commands are designed to meet the requirements for EPROMs,
using either of two programming a gorithms, or procedures. You can usethe samecommands
to store programsin NVRAM or EEPROM. Like EPROMS, these devices provide nonvola
tile storage—in other words, their contents don’t disappear when power is removed. Plus,
they have two advantages over EPROMs. they don't need any special programming
voltages, and they don’'t need ultraviolet exposure to erase. This makes them much more
convenient to use.

For these reasons, thefirst circuit we'll look at offersachoice of NVRAM or EEPROM for
nonvolatile storage. Later, we' |l add circuitsthat allow you to program EPROMS, for those
who want this option.

NVRAM
Dallas Semiconductor offers NVRAM chips that you can usefor nonvolatile storage. These

work exactly like static RAM, except that they contain a lithium cell and backup circuits
that retain the RAM'’s contents when the main power supply is removed. The backup is

48 The Microcontroller Idea Book

Saving Programs

guaranteed for at least ten years. Dallas also makes a product called the SmartSocket, which
consists of an IC socket with an embedded lithium cell and backup circuits. To create a
NVRAM, you plug your own static RAM chip into the SmartSocket.

Eight kilobytesisaconvenient size that will store many short BASIC-52 programs, or fewer
longer ones. For an 8K NVRAM, you can use a DS1225 NVRAM, or a DS1213B or
DS1213C SmartSocket with a 6264 or similar static RAM. Figure 4-1 shows the pinouts.

The 1213B and 1213C SmartSockets differ only in that the 1213B will also accept a 24-pin
2K SRAM, withpins1, 2, 27, and 28 unused, and the 1213C will also accept a32K SRAM,
which has address inputs at pins 1 and 26.

The DS1225 offers a choice of two write-protect voltages. On the -AB version, write
protection is guaranteed when the power supply isless than 4.5V, and write operations are
allowed when the power supply is greater than 4.75V. The SmartSockets use these same
voltages. On the-AD and -Y versions of the DS1225, write protection is guaranteed when
the supply is less than 4.25V, and write operations are allowed when the supply is greater
than 4.5V. Either type should work in a BASIC-52 system with a regulated +5V supply.
Access times of 250 nanoseconds or less are fine for the NVRAM.

Don't be confused by the fact that Dallas describes its devices by the number of bits they
store, rather than the number of bytes. For example, they call the 8-kilobyte DS1225 a 64K
device.

You can order NVRAMsdirectly from Dallas Semiconductor (no minimum order), and from
other vendors.

EEPROM

The other option for program storage is EEPROM. A typica EEPROM is guaranteed for
10,000 to 100,000 write cycles, compared to infinitewrite cyclesfor NVRAM. Accesstimes
for reading an EEPROM are similar to thosefor static RAM, but writing to EEPROM takes
much longer. Most require 2 to 10 milliseconds after awrite operation before you can access
the chip again. In spite of the drawbacks, I’ ve included EEPROM as an option because an
8K EEPROM may cost less than a comparable NVRAM.

A typical part number for an 8K EEPROM is 2864 or 28C64. Figure 4-2 shows the pinout
for a 28(C)64 EEPROM. Notice that its pinout, too, isvery similar to that of a 6264 static
RAM.

EEPROMSs have two common ways of indicating that they are busy performing a write

operation and are unable to be accessed. In one type, when the EPROM s busy, the data
pinshold thelast-written data, but with one or more bitsinverted. BASIC-52's programming

The Microcontroller Idea Book 49

Chapter 4

2864/5
28C64

(2865 oNLY) BUSY i ™ 28h vec
Al2 u Y 27 WE
A7 iz 26[0 NC
AG 4 2sf1 As
AS s 24|71 A9
A4 e 230 ALl
A3 o7 22 OF
A2 s 210 Ale
Al o 200 CE
AQ 1o 1ofp Dpaz
DQO i1 18fg D6
DO 12 17b pas
DQ2 i3 l6j0 DQ4
GND 14 isfg pa3

8K X 8 EEPROM

Figure 4-2. Pinout for 8K EEPROM.

commands verify each byte after programming it, so the inverted data automatically keeps
BASIC-52 from programming another byte until the EEPROM is ready to receiveit.

Other EEPROM s have a busy output, usually at pin 1, which goes low when the EEPROM
isbusy. For thistype, you can tie the busy output to pin 12 of U1. BASIC-52’s programming
commands wait for a high logic level at this pin after programming each byte. Note that
this means that pin 12 of the 8052-BASIC must be high (or not connected) during
programming of any device. However, using the BUSY output is optional, since program-
ming won't continue until the programmed byte verifies.

Whether you choose EEPROM or NVRAM, be sure to ask for a data sheet for the device
you buy, so you can verify its pinout, capacity, and timing characteristics.

Adding NVRAM or EEPROM

Figure4-3 showstheadded circuitsfor theNVRAM or EEPROM at U8. Becausethecircuits
are an addition to Figure 3-1's circuits, the parts continue the same numbering sequence,
beginning with U8. AND gate U3C isthe third gate of Figure 3-1'sU3. Table4-1 isaparts
list of the components needed to add Figure 4-3's circuitsto Figure 3-1.

50 The Microcontroller Idea Book

Saving Programs

DATA BUS (D@-D7)

N
LOW ADDRESS BUS us
DS1225 8K NYRAM
(AQ-A7)
\ OR
2864 8K EEPROM
HIGH ADDRESS BUS AD 10 i1 Do
(AB-AI5) Ao 1701
Al 9 12 DI
— Al 1702
A2 8 13 D2
A2 1703 —~——==~
A3 7 15 D3
A3 1704 ———~
A4 6 16 D4
A4 1705 ——
A5 5 17 DS
A5 1706 — 2~
A6 4 18 D6
A7__3|h° o797
A7 1708
A8 25
AQ 24 /’:g
AlQ 21 Alo
All 23
All {
A2 21, VPP|— NO CONNECTION
| 261\
800QH — Y
| von 3 29 =51
RESET 28
74HCT32 vee
. cl4
+5Yy 27 WE Q. 1uF
22 oF GND 14
o WRITE PROTECT
WRITE 2 NV MEMORY —
" WRITE ENABLE B
-PGM PULSE —
POWER AND GROUND PINS
-RDANY
Ic +5y GND
us 28 1
U9 14 7

Figure 4-3. Circuits for adding NVRAM or EEPROM.

The pinout and wiring of U8 are similar to that of the RAM at U7. The data and address
lines are wired exactly the same as for U7. U8 is accessed from 8000h to 9FFFh. This
location is used because BA SIC-52's programming commands assume that the nonvolatile
memory begins at 8000h.

OR gate U9A prevents the NVRAM or EEPROM from being accidentally overwritten
during power-up. When the 8052-BASIC first powers up, its port pins are in an unknown
state for abrief period, until the reset agorithm in the chip brings them all high. During this

The Microcontroller Idea Book 51

Chapter 4

Table 4-1. Parts list for Figure 4-3.

Semiconductors

U8 8-kilobyte NV memory (DS1225 NVRAM or DS1213 SmartSocket with
6264 SRAM or 2864 EEPROM), access time 250 nanoseconds or less
U9 74HCT32 quad OR gate

Capacitors (16WVDC, 20% tolerance)

Cl4 0.1-microfarad ceramic disc
Miscellaneous

A SIP header, 3-terminal, and shorting block

| C sockets

time, thereisasmall chancethat theright combination of outputswill cause awrite operation
to occur at U8.

Since this could destroy the information stored in the chip, we need a way to prevent U8
from being written to for abrief time after power-up. OR gate U9A prevents accessesto U8
until RESET goes low. The delay caused by the charging of R1 through C1 (in Figure 3-1)
ensures that the reset algorithm has enough time to bring the port pins high.

U8's Chip Select (pin 20) goes low only when both of these are true. RESET islow, and
the 8052-BASIC isreading or writing to an address from 8000h to 9FFFh.

Output-enable (pin 22) connects to RDANY, to allow U8 to be accessed as data or program
memory. This enables U8 to store assembly-language routines as well as BASIC-52
programs.

For writing to U8, AND gate U3C allows a choice of two control signals. WRITE is the
conventional signal for writing to data memory. In addition, BASIC-52 uses a special PGM
PULSE signal to store BASIC-52 programs in NV memory beginning at 8000h. Either of
these signals will bring WE on U8 low.

52 The Microcontroller Idea Book

Saving Programs

Jumper J4 isoptional. It enablesyou to write-protect U8 by jumpering WE to +5V. You might
want to do this if you have critical programs or data stored in U8, and you want to be sure
that you don’t overwrite them accidentally.

Wiring Tips

When you add the circuits for NV memory, use sockets for U8 and U9. If you previoudy
tied unused pins 9 and 10 of U3 to ground or +5V, be sure to remove these connections
before you wire the ones shown in Figure 4-3. Since pins 4, 5, 9, 10, 12, and 13 of U9 are

unused CMOS inputs, you should wire these to +5V or ground. You may instead use a
741L.S32 for U9. If you do so, leave the unused inputs open.

Using the Programming Commands

When Figure 4-3's circuit is added, you're ready to power up and try the programming
commands. Begin by entering any simple BASIC-52 program, such as one of the examples
in Chapter 3.

Setting MTOP

If you have a 32K RAM at U7, you have an additional step to perform before you store a
program in U8. On bootup, BASIC-52 tests contiguous memory and sets MTOP to the
highest value it finds below EOOOh. But BASIC-52’s programming commands won't work
unless MTOP is below 8000h. To enable program storage, type the following command:
MTOP=7FFFh

This ensures that BASIC-52 won't try to store RAM programs, variables, or stringsin the
areathat you' ve reserved for permanent program storage (although it doesn’t prevent you
from writing to the areawith BASIC-52's XBY operator). If U7 isan 8K device, MTOPis
1FFFh, well below 8000h, so you don’t have to worry about changing it.

Saving a Program

To copy the current program from U7 to U8, type

FPROG

The screen will display the number 1, indicating that thisis the first BASIC-52 program to
be stored in the device, and after a short delay, the READY prompt should return.

PROG isan aternate command that uses aslower programming algorithm, and should also
work.

The Microcontroller Idea Book 53

Chapter 4

If BASIC-52 is unable to program the chip, you'll seethis:
ERROR: PROGRAMMING

If you get this error message, double-check your wiring. When the programming command
executes, pins 20, 22, and 27 should toggle, aong with the address and data lines.

Running a Stored Program

When you have a program saved, you can run it from the NV memory. BASIC-52's RAM
and ROM commands switch from RAM mode, where BASIC-52 runs the program stored
in RAM (U7), to ROM mode, where it looks in U8 for programs to run. When you've
programmed successfully, run your program by typing

ROM
RUN

or
RROM

You can store multiple programs, space permitting, and run each by specifying its number.
For example, to run the second program stored, type

RROM2

To return to editing programs in RAM, type

RAM

Another useful command is XFER. In ROM mode, type
XFER

to copy the current program from ROM into RAM, where you can edit it, and then use
FPROG to store the revised version in U8 if you wish.

Adding Bootup Options
The commands FPROG1-FPROG6 enable you to store additional information besides
programs. FPROG1 saves the current baud rate and causes BASIC-52 to boot immediately

to the READY prompt, without waiting to receive a SPACE character. FPROG2 saves the
current baud rate and also tells BASIC-52 to automatically run the first program in NV

54 The Microcontroller Idea Book

Saving Programs

memory on bootup. Thisiswhat allows you to disconnect the system from its host and run
it as a stand-alone system.

You can aso permanently store avaue for MTOP in U8. If you have a 32K RAM at U7,
storing MTOP will ensure that you can use FPROG, and that your stored programs will be
preserved when you reboot or power down.

If U7is32K, type

MTOP=7FFFH
FPROG3

Now, when your system boots up, MTOP will automatically be set to 7FFFh. FPROG3 aso
savesthe baud rate and bootsto the READY prompt without requiring you to pressthe space
bar.

If you want to save M TOPand al so run aprogram on bootup, use FPROG4, which combines
the features of FPROG2 and FPROG3. FPROGS is another useful command. It prevents
BASIC-52 from clearing external data memory on bootup. FPROG6 enables you to add
your own assembly-language reset routine.

If you use FPROG2-FPROG6, BASIC-52 will no longer auto-detect your host’s baud rate.
You must usethe baud rate and crystal valuethat werein use when you executed the FPROG
command.

Erasing NV Memory

Eventually, your NVRAM or EEPROM will fill with programs, or you may just want to
erase what you' ve stored and start fresh. Listing 4-1 is a program that erases U8 by writing
OFFhto all locations.

To use the program, enter the listing and type RUN. The READY prompt will return when
erasing is complete. Line 30 verifies each erasure, and is required only for EEPROM,

Listing 4-1. Erases NVRAM or EEPROM.

10 FOR I=8000H TO 9FFFH

20 XBY (I)=0FFH

30 IF XBY (I)<>0FFH THEN GOTO 30
40 NEXT T

50 END

The Microcontroller Idea Book 55

Chapter 4

because of its longer write times. The program erases all of the stored programs and any
options selected with FPROG1-6 in U8.

Adding more NVRAM or EEPROM

If you want to add an additional 8K of NV RAM or EEPROM, wire another circuit exactly
like Figure 4-3's, except connect pin 20 of the new NVRAM or EEPROM to AOOOh (pin
10 of U4) ORed with RESET, so that the chip will be accessed from A00Oh to BFFFh.

Adding EPROM

Adding EPROM requires more circuitry than NVRAM or EEPROM, because an EPROM
must have a programming voltage at its VPP pin during programming. To use the faster
FPROG commands, which follow Intel’s Intelligent programming algorithm, you should
also raise the EPROM’s supply voltage (VCC) to +6 volts during programming.

Although EPROMSs do require additional components, once you have them in the circuit,
you can use the 8052-BASIC system as a genera-purpose EPROM programmer, as
described in Chapter 13. You can store assembly-language programsor any information that
you want to save in EPROM, whether it's for use by the 8052-BASIC system or another
project.

EPROM Types

Since EPROMs were first developed in the 1970's, each generation of devices has allowed
larger capacities, faster programming, and reduced programming voltages. Although the
recommended programming algorithms, or procedures, for EPROMs are aike in many
ways, the details often vary, depending on the device and manufacturer.

Programming Algorithms

For critical applications, there is no substitute for consulting the EPROM’s data sheet and
following its recommendations exactly. But for general use, you can get reliableresultswith
most EPROM s by using one of the two algorithms supported by BASIC-52.

50-millisecond programming. Thisalgorithm is an older, dower procedure. To program a
location in the EPROM, you apply a programming voltage to the VPP input, set the address
and data lines to the desired values, and apply a 50-millisecond programming pulse at the
PGM input to write the datainto the EPROM at the selected address. You then increment the
address, apply the new data and programming pulse, and continue in this way until all
locations are programmed. After programming, you compare the EPROM’s contents to the
programming datato verify that all locations programmed correctly. (BASIC-52 variesfrom
this standard by verifying each location immediately after programming.)

56 The Microcontroller Idea Book

Saving Programs

Thisisthe recommended algorithm for older, smaller-capacity EPROMs like the 2-kilobyte
2716 and 4-kilobyte 2732, and some 8-kilobyte 2764s. These typically require a program-
ming voltage of 21 or 25 volts at the EPROM’s VPP input.

Intelligent programming. This algorithm uses much shorter programming pulses, and
verifies after each attempt. After each 1-millisecond programming pulse, you read the
EPROM location to seeif the programming succeeded. If not, you try again, up to 25 times.
When the location verifies, you apply afinal pulse equal to three times the total amount of
programming pulses already applied. For example, if it takes five attempts to verify, you
would apply afinal 15-millisecond pulse. Finally, when all locations are programmed, you
verify each once more.

For Intelligent programming, VPP is typically +12.5 volts, and vcc, the EPROM’s main
power supply, is aso raised from +5 to +6V during programming.

Intelligent programming is the recommended algorithm for many 8K EPROMSs. Intel’s 2764
EPROM uses 21V, 5—miillisecond programming, while the 2764A uses 12.5V, Intelligent
programming.

Quick-pulse programming. Some CMOS 8K EPROMSs (27C64) can use an even faster
programming algorithm called Quick-Pulse. In Quick-Pulse programming, VPPistypically
12.75V,vCCis6.25, and the programming pulses are 100 microseconds. BASIC-52 doesn’t
offer Quick-Pulse programming as an option.

Choosing an algorithm. As arule, you can program an EPROM using adower algorithm
than the recommended one, so you should be able to program any 12.5V EPROM with
50-millisecond programming, with VPP at 12.5V and vVCC at +5V. And, any EPROM that
can use Quick-Pulse programming should also program with the Intelligent or 50-millisec-
ond programming algorithm and voltages. But whatever you do, don’'t exceed the recom-
mended programming voltages for the device at vCC and VPP

EPROM Pinouts

Figure 4-4 shows the pinout for a 2764 8K EPROM. Once again, the pin functions and
locations are similar to those in an 8K RAM. During normal operation, the data pins
(DQO0-DQY7) are read-only. Pin 27, which is Write Enable (WE) on RAM, isPGM, or program

pulse, on the EPROM, and pin 1, which has no connection on RAM, iSVPP, or programming
voltage, on the EPROM.

EPROM-programming Circuits

Figure 4-5 shows additions to Figure 4-3's circuits that enable you to program a 12.5V 8K
EPROM instead of NVRAM or EEPROM. Table4-2 isapartslist for Figure 4-5'scircuits.

The Microcontroller Idea Book 57

Chapter 4

2764
27C64
vee i N~ 28h vee
Al2 2 2710 PGM
A7 03 26b NC
A6 14 25pb A8
AS 05 2410 A9
A4 a6 23p ALl
A3 7 222 OE
A2 mE 21p Aloe
Al 9 20pb CE
AQ 10 lop DaQ7
Do I 18 DaQ6
Dol 12 178 DQ5
DQ2 I3 160 DQ4
GND 14 [1sg DQ3

8K X 8 EPROM
Figure 4-4. Pinout for 8K EPROM.

The components continue the numbering sequence begun in Figures 3-1 and 4-4. The
additional circuits for the PROG commands are at pin 1 of U8. Jumper J5 allows you to
configure the memory site for the type of NV memory you' re using.

On NVRAM or EEPROM, pin 1 has no connection (or, on some EEPROMS, it's a BUSY
output). On the EPROM, it's VPP, which is +5V during read operations and 12.5V during
programming. PGM EN (pin 6 on the 8052-BASIC) controls the programming voltage by
going low during programming operations and otherwise remaining high.

To prevent accidental programming during power up, OR gate U10A’s output remains high
until RESET goeslow. U10isnot an ordinary OR gate—it'sa 75453 periphera driver. Unlike
ordinary logic gates, U10’s open-collector output can pull up to 30V without damaging the
chip. The output also has much greater current-sinking ability than other logic gates (up to
300mA), and can easily provide base current to drive transistor Q1.

When pin 3 of U10A ishigh, Q1 isoff, and VPP connectsto +5V through germanium diode
D2. Thediode'svoltagedropisjust 0.3V, so VPPisactually at about 4.7V. Intel’s data sheets
specify that read operations require VPPto be at least 3.8V for the 2764A, or vcc-0.7V for
the 27C64, so 4.7V is within the specifications.

58 The Microcontroller Idea Book

Saving Programs

CIRCUITS FOR EPROM PROGRAMMING WITH PROG COMMANDS (50-MSEC PROGRAMMING)

+12.5v +5y
al N
PN29@7 o1
IN270
75453
PERIPHERAL DRIVER
J5 — Cl4 RI12
TO U8, PIN | EPROM ST~ 0. 1uF LK
(VPP) ©
NVRAM/EEPROM|O] (NO CONNECTION)
+5Y
TO U8, PIN 28 -
(VCC)
ADDITIONAL CIRCUITS FOR EPROM PROGRAMMING WITH FPROG COMMANDS
(INTELLIGENT PROGRAMMING) sy +5Y
p
e gﬁzgw N
D2
RESET V270
75453
PERIPHERAL DRIVER
RIS
EPROM FPROGI—O J6 10K
TO U8, PIN 28 (VCC) 9]
EPROM PROG/NVRAM/EEPROM|O® +5V
Figure 4-5. Additional circuits for programming EPROMSs.
The Microcontroller Idea Book 59

Chapter 4

Table 4-2. Parts list for Figure 4-5.

Semiconductors

D2,D3 1IN270 or similar germanium diode
Q1,Q2 PN2907 or similar PNP general-purpose transi stor
ul10 75453 dual peripheral OR driver

Resistor s (1/4-watt, 5% tolerance)
R11,R14 4.700-ohm

R12,R13 10,000-ohm

R15,R16 10,000-ohm
Capacitors(16WVDC, 20% tolerance)
C15 0.1-microfarad ceramic disc

Miscellaneous

J5-J6 SIP header, 3-terminal, and shorting block

When BASIC-52 executes a programming command, PGM EN goes low, pin 3 of U10 goes
low, and Q1 switches on. This brings VPP to 12.5 volts. Diode D2 prevents current from
flowing into the 5V supply. When programming is finished, PGM EN goes high again, and
VPP returnsto +4.7V.

Resistor R10 limits U10A’s output current, and R11 ensures that pin 3 of U10 pulls up to
12.5V. Capacitor C14 provides power-supply decoupling.

If you happen to have an older 21V EPROM, the circuit should aso work with a +21V
supply in place of +12.5V.

FPROG Circuits

If you want to use the FPROG commands for faster EPROM programming, additional
circuits are required. These are identical to the circuits that switch VPP, except that they
instead switch VCC to +6V during programming.

With the FPROG circuitsshown in Figure4-5, during normal (non-programming) operation,
VCC is actualy dightly less than +5V, due to D3's voltage drop. This should cause no

60 The Microcontroller Idea Book

Saving Programs

problemswith EPROM sthat have a10 percent power-supply tolerance; in other words, ones
that are guaranteed to operate from supplies of 4.5to 5.5V. You do want to be sure that your
main supply isasolid +5V, or even alittle higher.

Thedata sheetsfor some EPROM s specify 5-percent tolerance: the supply must be between
4.75 and 5.25V to guarantee operation within the specifications. In this case, you will be
operating near or just below therecommended supply voltage, especially if your main supply
is slightly under +5V. When you are not programming the EPROM, you can move J6 to
connect pin 28 directly to +5V. But overal, 10-percent-tolerance EPROMSs are a better
choice for this circuit.

If you are using aNVRAM or EEPROM, set J6 to +5V, since VCC must remain at 5V for
these devices.

Power Supplies for Programming

You have severa options for creating the programming power supplies of +12.5V and,
optionally, +6V.

Benchtop Supply

For occasional use, if you have a benchtop supply that can supply the needed outputs, you
can add terminal sto the appropriate connectionsin your BASI C-52 system, and connect the
supply leads to them when needed.

Adjustable Regulator

Figure 4-6 shows a circuit that regulates a DC supply of 15 to 18V to 12.5V or 6V. For the
15V supply, you can use a benchtop supply, awall-transformer AC-to-DC adapter, or even
two 9-volt transistor batteries connected in series. The supply must have a DC output, but
it doesn’'t have to be regulated. You'll need one LM 317 and an R1 and R2 for each output
voltage, but you can power both LM317’s from the same supply.

Typical current requirements for programming an NMOS 2764A are 50 milliamperes at
12.5V and 75 milliamperes at 6V, or 125 milliamperes total. For a CMOS 27C64, it's 30
milliamperes for each, or 60 milliamperes total.

Each regulating circuit uses an LM317 adjustable regulator. You set the output voltage of
the LM317 with R1 and R2, using the formulashown. The LM 317 createsa constant 1.25V
reference across R1. The current through R1 also flows through R2, and the voltage across
the pair of resistors is the regulator’s output.

Intel’s EPROM data sheets specify this range for the programming voltages:

The Microcontroller Idea Book 61

Chapter 4

LM317
+15V TO +18V DCO—IN ouT VouT
REGULATED DC VOLTAGE
ADJUST
R
IADJl 300
A — IN
R2 E — oUT
5K —— ADJusT
LM317
_ R?
VOUT - 1.25(1 + 52) + IADJ(R2)

TYPICAL IADJ = 50uA

ADJUST R2 FOR DESIRED VOUT.
OR, USE THESE VALUES FOR RI AND R2:

‘ TOLERANCE
RESISTOR | VOUT | 5% 1%
R1 ANY | 240 237
R2 12.5]12.2K 2.15K
R2 6 910 931

Figure 4-6. Power supply circuit for EPROM-programming voltages.

VPP: 12V to 13V
VCC: 5.75V t0 6.25V

If you use 5%-tolerance resistors for R1 and R2, you may have to vary the value of R2 for
the proper output, especially to meet the requirement for Vcc. Or, you can use a 5K
potentiometer for R2 and adjust for the desired output, or use 1%-tolerance resistors for a
more precise output.

You can wire the LM 317 circuits to your 8052-BASIC circuit board, and add terminals or
jacksfor connecting a 15V supply. Wirethe LM317’s output to the appropriate connections
in Figure 4-5.

Switching Regulators

A third way to generate programming voltages is to use switching regulators like those

available from Maxim Semiconductor. These can create the programming voltages from
your +5V supply. For example, the MAX633 can create outputs of 6 and 12.5V froma+5V

62 The Microcontroller Idea Book

Saving Programs

supply. The chip requires an additional inductor and capacitor, plus two resistors to set the
output voltage. Maxim’s data books have more details about this and similar chips.

Storing Programs on Disk

WithBA SIC-52' s ahility to store programsin on-board memory, disk storageisn’t necessary.
But storing programs on the host system’s disk is convenient, since you can save as many
programs as you want without worrying about running out of program memory. Since the
programs are stored as ASCI| text, you can write or edit them with any text editor, and then
upload them as needed to the target system.

M ost communi cations software allows you to upload and download files. In Procomm Plus,
you use the PGUP and PGDN keys. In the Windows Terminal Accessory, use the Transfers
menu.

Uploading to the 8052-BASIC System

When you upload aprogram to the 8052-BA SIC system, you haveto ensurethat BASIC-52
has enough time to process each line before the next one arrives. If thereisn’t enough time,
you' [l have missing characters or lines in uploaded programs. There are a couple of ways
to ensure that your uploads are complete.

Most software allows you to add delays after each transmitted line or character. You can
experiment with different valuesto find the shortest delaysthat allow you to upload reliably.
If you keep your program lines short, the delays between lines can be shorter.

If these options aren’t available, try using aslower baud rate, which givesBASIC-52 alittle
more time to process each line before the next one arrives.

Downloading to the Host Computer

To download a BASIC-52 program from the target’s RAM to the host’s disk, type LIST
to list the current program, but before you press ENTER to execute the command, set up your
host’s software to download, or receive, an ASCII file. When prompted, specify afilename.
When the transfer isready to go, press ENTER to send your program to the host. When you
see the READY prompt, end the transfer by whatever means your software requires. (In
Procomm Plus, presseSCAPE.) You should now have afile on disk containing the program
you just listed.

You can test your download by erasing the program inthe 8052-BA SIC system’sRAM, and
then uploading it back into RAM.

The Microcontroller Idea Book 63

Chapter 4

First, type NEW to erase the program. To restore your program by uploading it from disk, set
up your host’s software to upload, or send, an ASCII file, and enter the name of your
previously downloaded file. Asthefile loads, you'll see each program line on screen. The
file will contain a READY prompt after the program listing. This causes BASIC-52 to
display an error message, which you canignore. Type LIST toview the uploaded program,
and type RUN torunit.

With BASIC-52 programs on disk, you can use any text editor to view or modify the
program. Save the file as pure ASCII text, with no formatting commands added. You can
also useyour text editor to create aprogram from scratch, then upload it to BASIC-52, rather
than typing the lines using BASIC-52's line editor.

64 The Microcontroller Idea Book

Programming

5

Programming

When you have your 8052-BA SI C system up and running, you'’ re ready to start writing and
running your own programs. This chapter isan introduction to the BASI C-52 programming
language. It includesasummary of BASIC-52'sabilities, some examplesthat illustrate what
you can do with it, plus tips for writing and debugging programs.

For a complete reference to BASIC-52, see the BASIC-52 programming manual (either
version), which includes many more examples and details about the language and how it
works. You can learn alot about BASIC-52 by browsing through the programming manual
and experimenting on your own.

Programming Basics

Like other BASIC programs, BASIC-52 programs are built around a set of keywords, or
reserved words. Each keyword has a specific meaning to the BASIC-52 interpreter. or
example, the program line PRINT XTAL tells BASIC-52 to find the stored value of the
XTAL operator and send it to the console input device (the serial port of the host computer),
which will then display the value it receives.

If you're familiar with BASIC programming, most of BASIC-52's keywords and conven-
tions will be familiar. If you have little programming experience, or if your experience is
with assembly language, C, Pascal, or another language, you'll have more to learn. But on
the whole, BASIC-52 makes it easy to quickly write and test your programs.

The Microcontroller Idea Book 65

Chapter 5

Writing a short BASIC-52 program involves these steps:

Define what you want to do

Write program lines to accomplish it
Test the results

As necessary, revise and retest

Longer programsinvolve the same basic steps, except that you can divide the program into
a series of smaller tasks, or modules, and program and test each individually. Then, when
the modules are working, you can combine them in one big program and test the resullt.

Modular programming can save a lot of headaches by limiting the amount of untested
program code you have to work with at onetime. A long, untested program almost certainly
contains many errorswill be hard to find and fix. It's much easier in the long run to test the
pieces first, and BASIC-52 makes this easy to do.

Command and Run Modes

BASIC-52 has two modes of operation: command and run. Command mode refers to
anything you type without aline number. BASIC-52 executes these linesimmediately after
you press ENTER. Run mode refers to running stored programs with the RUN command.
A program consists of aseries of program lines, with each line beginning with aline number.

BASIC-52 includes some keywords that you can use only in command mode, but not in
programs. PROG is an example. Most of BASIC-52's other keywords are usable in either
command or run mode. A few, suchasDO. . .WHILE, are usablein RUN mode only.

Tips for Writing BASIC-52 Programs

The following advice is intended to make your programs easier to write and debug, and to
help you avoid some common mistakes:

e Number program lines by 10s. Each linein aBASIC-52 program must begin with a
line number. BASIC-52 uses the numbers to order the statements. Traditionally, BASIC
programs begin at line 10, and count up in multiples of 10: 20, 30, and so on. Thisway,
if you later discover that you need to add afew linesin the middle, you can, using the
unused numbers that remain.

¢ Dividelong programsinto modules. Break up big projects. Use subroutines for
independent functions. A subroutine isablock of statements that the main program
jumps to with aGOSUB statement. At the end of the subroutine, aRETURN statement
causes the program to jump back to the program line following the GOSUB statement.

66 The Microcontroller Idea Book

Programming

Subroutines have two advantages. First, they help you to break up your program code
into discrete units, with each having a specific purpose. This makes the program code
easier to debug and easier to understand in general, especialy if you return to it aweek,
month, or year after writing it when the details are no longer fresh in your mind.
Second, subroutines make it easier to reuse your code if you have asimilar task in
another project. For example, all or most of the code involved with controlling a display
module can usually be written as a subroutine, or perhaps a series of subroutines. This
way, if you want to use the same display module in more than one project, you can
reuse the code without having to pick through your previous programsto find the
program lines that you need.

e Keep program lines short. Short lines are easier to edit with BASIC-52's line editor,
which requires retyping the entire line to make a change. They’re al'so easier to read. If
you upload programs from disk, shorter lines can eliminate problems caused by
BASIC-52' s not having enough time to process each line before the next one arrives.
Although BASIC-52 alows you to place multiple statements on one line, with up to 79
characters per line, shorter is better.

There are two situations where you might want to combine a series of short lines into
fewer, longer program lines: when the program has to execute as fast as possible, or
when you need to store the program in the smallest possible space. Even then, though,
you can develop the program with short lines, and combine them only after the program
is debugged and ready for permanent storage.

¢ Check syntax and spelling carefully. BASIC-52' s syntax consists of the rules of
grammar and punctuation that your program lines must follow. For example, aFOR
loop must include avariable, limits, and aNEXT instruction. Leave any of these out,
and your loop won't work. There’ s no room for spelling errors either. BASIC-52
doesn’t know that you meant LT ST when you typed LSIT.

e Document your programs. Many of BASIC-52' s keywords aren’t too hard to
decipher. For example, it makes sense that the STOP instruction halts program
execution. But your own comments throughout the program can help you remember
why you wrote each program line, and what it’ s supposed to accomplish.

BASIC-52 allows you to add comments, preceded by REM (remark). Try to write
comments that do more than just define the keywords in the line. Also explain the
purpose behind what you are doing. For example, this comment

10 REM read value from external memory
20 A=XBY (OFEOQOOH)

does nothing more than define the BASIC-52 instruction that follows. In contrast,

The Microcontroller Idea Book 67

Chapter 5

10 REM Read the states of switches 1-8
20 A=XBY (OFEOOH)

tells you why you are executing the instruction.

The problem with adding comments to BASIC-52 programs is that they slow program
execution. They also make the program longer, so that it needs more memory. So you
might want to keep comments to a minimum in the final version that you storein NV
memory.

Y ou can, however, store fully documented copies of your program on disk. If you wish,
you can use your personal computer’ s text editor to add comments on unnumbered
lines, likethis:

REM Read the states of switches 1-8
20 A=XBY (OFEOOh)

Then, as you upload the program to your 8052-BASIC system, al of the lines will
display on the host computer, but BASIC-52 will store only the numbered lines,
discarding the unnumbered remarks.

e Use short variable namesfor faster execution speed. BASIC-52 allows variable
names of up to eight characters. Programs with shorter variable names will run faster
and require less memory to store. Even if you limit yourself to 1- and 2-letter variables,
you still have hundreds to choose from. Longer names, such asREVERSE, QUIT, and
so on have the advantage of being more meaningful—it’s easier to guess their meaning
without adding comments. So there are times when you might choose alonger name.
But longer names can cause other problems, as the next paragraph explains.

e Be surethat variable namesdon’t contain keywords. In BASIC-52 you can’t name a
variable ON, because ON is already defined by BASIC-52. You also can’'t name a
variadble MONTH, ONE, ACTION, or any other word that contains ON. Short variable
names are much less likely to contain an embedded keyword. Also be aware that
BASIC-52 identifies a variable only by itsfirst and last characters, plusits length, so,
for example, it considers MAXTMUM and MINIMUM to be the same variable, while MAX
and MIN are different.

e Avoid variablesthat begin or end with theletter F. BASIC-52 has a couple of bugs
relating to variable names that begin or end in F. Specifically, when F isthe last
character in a variable name followed by a space, BASIC-52 drops the F from the
variable name. And, if you should nameavariable Fp, FPR, or FPRO, and follow
the name by a space, BASIC-52 will also drop the F from the name. The easiest way to
avoid problemsisto avoid any variable name that begins or endsin F.

68 The Microcontroller Idea Book

Programming

e Hexadecimal numbersthat begin with A through F must have a leading 0, and all
hexadecimal numbers must end in H. Here are some examples of valid hexadecimal
numbers:

Valid Hex Number Decimal Equivalent
ODH 208

O0AH 10

15H 21

OFFFFH 65,535

OCH 12

Here are some invalid hex numbers, and avalid hex number that doesn’t have its intended
value:

Invalid Hex Number Problem

FFH no leading 0

oC no trailing H

10 (intended as decimal 16) no trailing H. BASIC-52 will interpret at

decimal 10 (OAH)

BASIC-52 Bugs and Things to Watch Out For

This section is a summary of other bugs and other minor problems with BASIC-52 to be
aware of as you program. Many of BASIC-52's bugs and limits have been eliminated in
newer versions of BASIC-52 developed by other sources, described in Chapter 15.

Assembly-language Issues:

In external code memory, if 2002h contains 5Ah and bit 5 at 2048h is set, BASIC-52 will
try to call a user-written token table. If 2001h contains OAAh, BASIC-52 will try to call a
user-written reset routine at 2090h. If the expected table or routineisn’t present, the system
will crash. (See Chapter 13.) Solution: avoid writing to code memory at 2001h, 2002h, and
2048h. (In Figure 3-1's circuit, the RAM in this area (if any) is accessed as data memory
only, so you don’'t have to worry about this.)

The Microcontroller Idea Book 69

Chapter 5

The address following a CALL instruction must be at least 2000h.
Miscellaneous ltems:
Floating-point calculations have errors when the numbers are very large or very small.

The value returned for the ASC (character) operator is incorrect for these seven
characters:

+ - = . 2?2 | *

ONTIME and ONEX1 will not cause interrupts during an INPUT statement. User delay in
responding to an INPUT may cause the program to miss interrupts.

Finding Program Errors

Writing a program that does what you want isn’t always easy. A single missing character or
program line can cause a program to stop in its tracks, or continue to execute but with
unintended results, or, worst of all, crash the system and require rebooting.

BASIC-52 will detect and warn you of many programming errors. If BASIC-52 detects an
error when you try to run a program, it will display the line containing the error, along with
an error message, and will stop the program at that point.

If you get an error message, examine the offending line carefully. Many problems are due
to syntax errors, where missing or incorrect characters make it impossiblefor BASIC-52 to
interpret the program line correctly.

Other times, a program will run without problems, but it won’'t do what you intended. For
example, it'seasy to forget that ahexadecimal number beginning in A-F must havealeading
zero, or that al hexadecima numbers must end in H. Each of these BASIC-52 statements
has a different result, and none will produce an error message:

BASIC-52 Statement Resulting Action

XBY (1000H) =20H Writes 20H to 1000H in external data memory
XBY (1000) =20 Writes 14H to 3E8H in external data memory
XBY (1000H) =20 Writes 14H to 1000H in external data memory
XBY (1000) =20H Writes 20H to 3E8H in external data memory

70 The Microcontroller Idea Book

Programming

It can be hard to find an error that gives no error message. The best way to narrow the search
is to write and test your programs in small modules, so that the amount of code to search
through remains manageable.

The Microcontroller Idea Book 71

Chapter 5

BASIC-52 Keywords by Function

Thefollowingisaquick referenceto BASIC-52's keywords, grouped by function. After this
is a more detailed list, arranged alphabetically, with the syntax and a brief description of
what each keyword does. Some of thekeywords, likeRUN, LIST, and PRINT, areones
that you'll use constantly. A few, like NULL or UIO0, have specialized uses that you may
never need. Again, for amore complete reference, seethe BASIC-52 programming manual .

Running and Listing Programs

CONT
LIST
NEW
RAM
REM
ROM
RROM
RUN
STOP
XFER

Storing Programsin NV Memory

FPROG
FPROG1-FPROG6
PGM

PROG
PROG1-PROG6

Program Control Structures
(loops and subroutines)

DO UNTIL

DO WHILE

END

FOR TO [STEP] NEXT]
GOSUB

GOTO

IF THEN [ELSE]

ON GOSUB

ON GOTO

RETURN

72

Printing and Displaying I nformation on
the Host Computer

PHO .
PHI1.
PRINT, P., °?

Additional PRINT Formatting

CR
SPC
TAB
USING, U.

I nput/Output

CBY
DBY
GET
INPUT
LIST#
NULL
PORT1
PHO. #
PH1 . #
PRINT#, P#, 2#
XBY

System Control Values

BAUD
FREE
LEN
MTOP
STRING

The Microcontroller Idea Book

Programming

Math Operators Data Storage

= ASC

+ CHR

- CLEAR
CLEARS
DATA

* % DIM

> LD@

< POP

<> PUSH

>= READ

<= RESTORE

ABS sT@

ATN

Cos Timersand Interrupts

EXP

INT CLEARI

LET CLOCKO

LOG CLOCK1

NOT IDLE

PI IE

RND P

SGN ONERR

SIN ONEX1

SOR ONTIME

TAN PCON
PWM

Logical Operators RCAP2
RETI

.AND. T2CON

.OR. TCON

.XOR. TIME
TIMERO

Assembly-language I nterfacing TIMER1
TIMER2

CALL TMOD

LIST@

PHO.d

PH1.@

PRINT@, P@, 2@

UI0

UIl

Uuoo0

Uo1l

The Microcontroller Idea Book

73

Chapter 5

Quick Reference to BASIC-52

This quick reference to the BASIC-52 programming language lists the keywords al phabeti-
cally, along with brief descriptions of function and use.

Conventions
The reference uses the following typographic conventions:

KEYWORDS (boldface uppercase)
BASIC-52 keywords

placeholders (italics)
Variables, expressions, constants, or other information that you must supply

[optional items] (enclosed in square brackets)
Items that are not required

repeating elements... (followed by ellipsis (three dots))
You may add more items with the same form as the preceding item.

C = command mode

R =run mode
variable = expression CR
Assignsavaueto avariable
expression = expression CR
Equivalence test (relationa operator)
expression + expression CR
Add
expression - expression CR
Subtract
expression * expression CR
Multiply

74 The Microcontroller Idea Book

Programming

expression / expression CR
Divide
expression ** expression CR

Raises first expression to value of second expression (exponent)

expression <> expression CR
Inequality test (relational operator)

expression < expression CR
L ess than test (relational operator)

expression > expression CR
Greater than test (relational operator)

expression <= expression CR
Less than or equal test (relational operator)

expression >= expression CR
Greater than or equal test (relational operator)

?
Same as PRINT

ABS (expression) CR
Returns the absolute value of expression

expression .AND. expression CR
Logical AND
AscC(character) CR

Returns the value of ASCII character

ATN(expression) CR
Returns the arctangent of expression

BAUD expression CR
Sets the baud rate for LPT (pin 8). For proper operation, X TAL must match the
system’s crystal frequency.

CALL integer CR
Cdlls an assembly-language routine at the specified address in program memory.

The Microcontroller Idea Book 75

Chapter 5

CBY/(expression) CR
Retrieves the value at expression in program, or code, memory.

CHR(expression) CR
Converts expression to its ASCII character.

CLEAR CR
Setsall variablesto O, resets al stacks and interrupts evoked by BASIC.

CLEARI CR
Clears dll interrupts evoked by BASIC. Disables ONTIME, ONEX1.

CLEARS CR
Resets BASIC-52's stacks. Sets control stack = OFEh, argument stack = 1FEh, in-
ternal stack = valuein 3Ehininterna RAM.

CLOCKO CR
Disables the real-time clock.

CLOCK1 CR
Enables the real-time clock.

CONT C
Continues executing program after STOP or CONTROL+C.

Cos(expression) CR
Returns the cosine of expression

CR
PRINT option. Causes a carriage return, but no line feed, on the host display.

DATA expression [,...,expression] R
Specifies expressions to be retrieved by aREAD statement.

DBY/(expression) CR
Retrieves or assigns a value at expression in internal data memory.

DIM array name[(Size)] [,...array name(size)] CR
Reserves storage for an array. Default sizeis 11 (0-10). Size limits are 0-254.
Example:

DIM B(100)

Reserves storage for 100-element array B

76 The Microcontroller Idea Book

Programming

DO: [program statements|: UNTIL relational expression R
Executes all statements between DO and UNTIL until relational expressionis
true.

DO: [program statements| : WHILE relational expression R
Executes all statements between DO and WHILE until relational expression is
false.

END R
Terminates program execution.

EXP (expression) CR
Raises e (2.7182818) to the power of expression

FOR counter variable = start-count expression CR
TO end-count expression [
STEP count-increment expression] : [program statements] :
NEXT [counter variable]

Executes all statements between FOR and NEXT the number of times specified by

the counter and step expressions.

FPROG, FPROG1-FPROG6 C
Like PROG, PROG1-PROG6, but using Intelligent programming algorithm.

FREE CR
Returns the number of bytes of unused external data RAM.

GET R
Contains the ASCII code of acharacter received from the host computer’s key-
board. After a program reads the value of GET (For example, G=GET), GET re-
turnsto O until a new character arrives.

GOSUB line number R
Causes BASIC-52 to transfer program control to a subroutine beginning at line
number. A RETURN statement returns control to the line number following the
GOSUB statement.

GOTO line number CR
Causes BASIC-52 to jump to line number in the current program.

IDLE R
Forces BASIC-52 to wait for ONTIME oOr ONEX1 interrupt.

The Microcontroller Idea Book 77

Chapter 5

= CR
Retrieves or assigns a value to the 8052’s special function register |E.

IF relational expression R
THEN program statements
[ELSE] [program statements]
If relational expression istrue, executes program statements following THEN. If
relational expression is false, executes program statements following ELSE, if
used.

INPUT [“Prompt message”][,] variable[,variable] [,...variable] R
Displays a question mark and optional prompt message on the host computer and
waits for keyboard input. Storesinput in variable(s). A commabefore the first
variable suppresses the question mark.

INT(expression) CR
Returns integer portion of expression.

IP CR
Retrieves or assigns a value to the 8052’s special function register 1P,

LD@ expression CR
Retrieves a 6-byte floating-point number and places it on the argument stack. Ex-
pression points to the most significant byte of the number.

LEN CR
Returns the number of bytesin the current program

[LET] variable = expression CR
Assigns avariable to the value of expression. Use of LET is optional.

LIST[line number][-line number] CR
Displays the current program on the host compuiter.

LIST# [line numb