
A Framework For Motion
Analysis Of Anthropomimetic

Robots

MASTER THESIS IN INFORMATICS

submitted by
Simon Trendel

DEPARTMENT OF INFORMATICS

ROBOTICS AND EMBEDDED SYSTEMS
Technische Universität München

Prof. Dr. Alois Knoll

Abstract

Musculoskeletal robots are a unique variant of soft-robots that imitate biological
musculoskeletal systems by replicating the overall structure of muscles with tendons
attached to bones with passive joints. While such robots exhibit interesting dynamic
properties, they are hard to control. The non-linearities resulting from their actu-
ation call for new adaptive control strategies as purely model-based control hardly
copes with the complexities of effects such as muscle-wrapping, hysteresis from fric-
tion and the co-actuation of several muscles per joint - at times even bi-articular,
influencing several bones per muscle. Amalgamating the results of the original robot
Roboy as well as the EU FP7 project MYOROBOTICS, a humanoid robot called
Roboy 2.0 was developed at TUM. This thesis describes the development and eval-
uation of the low level control infrastructure, necessary to achieve high-frequency,
high-fidelity control of the robot. Towards this goal, an external tracking system
based on the consumer virtual reality system HTC Vive was reverse engineered. It
can be used to track arbitrary objects in a room-scale setup. The external tracking
provides a cheap, yet accurate alternative to expensive commercial tracking systems
like camera-based infrared retro-reflective marker tracking systems. Conclusively,
the combination of the new control infrastructure coupled with this external visual
tracking allowed for external verification and calibration of the robots’ propriocep-
tive control system.

2

I would like to thank my supervisor Rafael Hostettler, for the opportunity to work
on such an interesting and multifaceted project and for his support and advice

throughout.

Additionally I would like to thank Jörg Zelenka from B&R Automation for his
continuous support on the openPowerLink implementation.

I would also like to thank my parents. Without their endless loving support this
thesis would not exist.

CONTENTS 3

Contents

1 Introduction 5
1.1 Musculoskeletal Robots . 5
1.2 Low-level Motor Control System . 6
1.3 External Tracking System . 7

2 Theoretical Background 9
2.1 Myorobotics and Roboy 2.0 . 9

2.1.1 Hardware . 9
2.1.2 Communication and Control 11

2.2 OpenPOWERLINK . 12
2.2.1 Communication . 13
2.2.2 Hardware . 15

2.3 Lighthouse Tracking . 15
2.3.1 Hardware . 15
2.3.2 Software . 19

3 System Design 23
3.1 Overview . 24
3.2 MyoControl . 25

3.2.1 Communication . 26
3.2.2 PID control . 28

3.3 openPOWERLINK . 29
3.3.1 Porting to DE10-Nano-SoC 29
3.3.2 Network Profile . 30

3.4 Lighthouse Tracking . 31
3.4.1 Lighhouse Sensor Protocol . 31
3.4.2 DarkRoom . 34
3.4.3 DarkRoom graphical user interface (GUI) 41

4 Results 45
4.1 MyoControl . 45
4.2 Lighthouse Tracking . 46

4 CONTENTS

5 Discussion 59
5.1 openPOWERLINK . 59
5.2 Lighthouse tracking . 59

6 Conclusion 63

Appendices 65

A DarkRoom GUI panels 67

B Roboy 2.0 DE10-Nano-SoC Pinout 73

List of Acronyms 77

List of Figures 79

Bibliography 83

5

Chapter 1

Introduction

1.1 Musculoskeletal Robots

Building robots that exhibit comparable dexterity and flexibility to animals and
humans are a longstanding goal of robotics. Already, our economy hinges centrally
on the automation of manual tasks that made mass-production of goods - from
cars to consumer electronics - possible. However, to date we still heavily rely on
human labor whenever the task is not repetitive to an extent where the robot’s
end-effector trajectory can be programmed statically.[1] Similarly, robots that cope
with our everyday environment are still out of scope, albeit with recent promising
results in robots with legged locomotion.[2, 3] In contrast, every animal is able to
survive in its native environment, even when the control system is simplistic such
as in cockroaches.[4]

To shed light on this gap in capabilities and extract the essential control paradigms
that allow for such versatile interaction with the environment, a useful approach is
to mimic the structure of the capable system and build a model that implements
key similarities.[5] To this end, musculoskeletal robots comprise a skeleton, passive
joints and actuators that exhibit a behavior similar to biological muscles.[6]

The robot project Roboy Junior[7] is such a musculoskeletal robot and was built as
a successor to the ECCE robots[8], developed in the EU-FP7 Project ECCEROBOT,
between 2012 and 2013 at the Artificial Intelligence Laboratory of Prof. Dr. Rolf
Pfeifer in Zürich, Switzerland. MYOROBOTICS - an EU-FP7 project succeeding
the ECCEROBOT projects as well - is based on the same results, however with the
goal to provide researchers with a modular toolkit for musculoskeletal robotics[9]
rather than creating an integrated humanoid robot.

6 CHAPTER 1. INTRODUCTION

1.2 Low-level Motor Control System

Roboy 2.0 unites the learnings from both of these projects and advances the tech-
nology. One of the key limiting factors of Roboy Junior was that its CAN based bus
system was severely limited to below 10 Hz overall control frequency due to the 48
motors that had to be controlled concurrently[7]. MYOROBOTICS addressed this
by replacing the daisy-chained motor driver boards with an intermediary control
board, termed MyoGanglion, that directly controlled four motor boards through an
SPI bus and was connected to other MyoGanglia as well as the controlling PC by
the industrial field bus FlexRay. This allowed for a 500Hz overall control frequency
of up to 24 Motors. [9]

However, as the FlexRay network was statically configured and MYOROBOTICS
only implemented and exposed a subset of the FlexRay standard to users, the net-
work was difficult to extend. Furthermore, Roboy 2.0 has more than 24 motors -
which is not addressable by the previous system.

As FlexRay has lost importance in recent years due to the advent of Ethernet
based buses such as EtherCAT[10] or Powerlink[10] that provide higher data rates
and flexibility, replacing the infrastructure with a more flexible low-level control
system was one of the central goals for the project.

The technical requirements for the low-level control of Roboy 2.0, deduced from
the experience with MYOROBOTICS and Roboy Junior were:

1. Deterministic control - ensuring repeatability of experiment

2. At least 1kHz control frequency over all motors - allowing for fast, centralized
control from the controlling PC and therefore for easy controller development.

3. At least 50 motors addressable - allowing to control all motors of Roboy con-
currently

4. Simple extensibility and integration of additional sensors - addressing the re-
search nature of the system

5. Co-existence with Robot Operating System (ROS) User Datagram Protocol
(UDP)/Transmission Control Protocol (TCP) packages - allowing the non-
real-time communication for higher-level control to use the same cabling as
the real-time bus

6. Open-source, royalty free protocol - keeping the development of Roboy unre-
stricted

The first and fifth requirement together enforce Ethernet based bus systems, leav-
ing EtherCAT as well as PowerLink as possible candidates that fulfill all the re-
quirements 1 - 5. However, there are no free EtherCAT implementations, leaving
PowerLink as the sole candidate short of implementing a custom bus system. The

1.3. EXTERNAL TRACKING SYSTEM 7

development of a PowerLink based low-level motor control system is outlined in
Section 2.2 and 3.3.

1.3 External Tracking System

Furthermore, another key aspect to evaluate the performance of a musculoskeletal
robotics toolkit is to verify its performance in terms of repeatability, control precision
and accuracy. Additionally, having an external reference of a robots state in space
is highly useful for control development.

Generally, external tracking can be divided into two variants, model-based and
marker-based tracking. In model-based tracking, a 3D model of an object of in-
terest is required. Algorithms such as Efficient Perspective-n-Point Camera Pose
Estimation (EPnP) [11] or Dense Articulated Real-Time Tracking (DART) [12] can
be used to estimate the 6-degrees of freedom (DOF) pose of a model from 2D monoc-
ular images or depth maps, respectively.

In marker-based tracking, an object of interest is physically augmented with some
form of markers, that are distinguishable by the tracking system. The markers can
be colored balls in combination with monocular cameras. Commercially available
systems typically use retro-reflective markers in combination with infrared spotlights
and infrared sensitive cameras. These systems enable very accurate tracking down
to several millimeters accuracy [13]. Depending on the tracking area size, many
infrared cameras with spotlights are required, which makes theses systems very
expensive (ten thousands of Euros). Another disadvantage is the required calibration
of these systems. Whenever a camera is moved, even slightly, the systems needs to
be recalibrated. The price and the static nature of those systems restrict their usage
to research labs with a dedicated tracking space.

In robotics and especially for Roboy, it is necessary to change the tracking envi-
ronment frequently, for example when testing new behaviors and interactions with
changing environments. Therefore, a static system like the camera based marker
systems was not very appealing. Recently, HTC in a cooperation with Valve has
released a commercially available virtual reality (VR) equipment called Vive [14].
The Vive provides a VR experience, where in contrast to so far available systems,
the user can freely move around in a designated room-scale area. The tracking is
very accurate, which the Vive achieves by using specialized hardware consisting of
infrared emitters and infrared sensitive sensors. The Vive tracking system needed
to be highly mobile, since it is a commercially available VR equipment for the con-
sumer market, the customer could not be bothered with time intensive calibration
routines whenever the system is set up. The Vive system circumvents the calibra-
tion elegantly, which was the reason we chose to reverse engineer this system for
application in Roboy and robotics in general.

8 CHAPTER 1. INTRODUCTION

9

Chapter 2

Theoretical Background

2.1 Myorobotics and Roboy 2.0

In summer semester 2017 the second version of Roboy was developed by the Roboy
student team at TUM. Significant improvements compared to Roboy Junior have
been implemented. The upgrades cover the mechanical design, electronic hardware,
and control which will be outlined in the following sections.

2.1.1 Hardware

Roboy 2.0 uses hardware and electronics from the MYOROBOTICS toolkit (MyoToolKit)[15].
The MyoToolKit was designed as a modular toolkit for tendon based robots. The
actuators are called muscle units. The muscle unit depicted in Figure 2.1a shows
its main components. A Brush-less Direct Current Motor (BLDC) is connected to
a motor board which controls the motor. The motor rolls up a tendon, which is
routed via a pulley connected to the spring shaft. When load is applied on the
tendon, the spring is compressed. On one hand, this protects the motor gear box
from destruction by jerks, on the other hand this gives the muscle unit an inherent
elasticity and recuperation characteristics, similar to a mammal muscle. The spring
displacement is measured with a sensor and gives a direct feedback on the force
applied on the tendon.

Apart from the muscle unit, the MyoToolKit consists of the following components,
ordered the way they are connected from the host PC to the robot, as depicted in
Figure 2.1b.

• USB-FlexRay Bridge: A custom PCB that can be connected to the host PC
via USB. It features a FlexRay bus (common in the automobile industry) pro-
viding hard real-time communication with the MyoGanglia at up to 10Mbit/s.

10 CHAPTER 2. THEORETICAL BACKGROUND

(a) muscle unit with motor board

(b) system overview

Figure 2.1: MYOROBOTICS muscle unit and system overview (images from [9])

Additionally, it has a CAN bus. The board is depicted in Figure 2.2a.

• MyoGanglion: A custom PCB featuring a TMS570LS20216 from Texas Instru-
ments running at 140Mhz. This floating point processor implements commu-
nication and control for up to four muscle units connected to it. It handles the
FlexRay communication and runs four PID controller. The communication
with the motor board is via SPI. The MyoGanglion is shown in Figure 2.2b
on the bottom.

• Motor board: Another custom PCB that drives the BLDC motor of the muscle
units. The motor board is depicted in Figure 2.2b on the top. The motor board
reads the following pieces of information about the muscle unit:

– motor position: An optical encoder attached to the back of the BLDC
motor measures the motor position in encoder ticks.

2.1. MYOROBOTICS AND ROBOY 2.0 11

– motor velocity: The motor positions between two consecutive queries
from the SPI master are used to calculate the motor velocity in encoder
ticks per second.

– motor current: The current consumption is measured via shunt resistors.
The minimal measurable current is 16mA.

– spring displacement: the displacement of the muscle unit spring is mea-
sured via a hall sensor with a magnetic encoder attached to the spring
shaft.

2.1.2 Communication and Control

Communication: The communication between the motor board and the MyoGan-
glion is the fastest in the overall system and runs at 2.5kHz. The communication
with the FlexRay bridge runs at 1kHz. The bottleneck in the system communi-
cation is the USB connection to the FlexRay bridge which has a nondeterministic
nominal speed of 500Hz. This sets the maximal achievable control frequency of a
robot controlled with this system to 500Hz.

Control: The MyoGanglion implements four PID controller, one four each muscle
unit connected to it. The PID block diagram is shown in Fig. 2.3. The setpoint sp
coming from the host control PC is compared to a measurement pv. The resulting
error is fed through a standard PID scheme. An optional feedforward FF gain can
be added. Optionally a deadband and output saturation can be applied before the
resulting pulse width modulation (PWM) command is sent to the motor board.

Figure 2.3: MyoGanglion PID controller block diagram (image from [9])

The MyoGanglion supports four control modes. Depending on the control mode,
the measurement pv fed to the PID controller is changed accordingly:

12 CHAPTER 2. THEORETICAL BACKGROUND

• raw: open-loop raw PWM control

• position: the motor position is controlled

• velocity: the motor velocity is controlled

• force: the displacement of the spring is controlled. The force can only be
controlled if the spring parameters are known or have been measured. The
parameters are communicated to the MyoGanglion via FlexRay using a high-
level config file, where these parameters are stored.

The control capabilities were investigated using a control frequency between motor
board and MyoGanglion of 100Hz, driving the motor from 0 to 10 rad in position
control mode. The only load acting on the motor, in this case, is the gearbox. In
Fig. 2.4a the chosen P gain causes secondary oscillations around the target setpoint.
An additional D gain was added which reduces the secondary oscillation as can be
observed in Fig. 2.4b.

(a) P gain causing overshoot
(b) Additional D gain reduces the secondary
oscillations

Figure 2.4: MyoGanglion motor position control response at 100Hz update fre-
quency, starting from 0 rad with target setpoint 10 rad (images from [9])

2.2 OpenPOWERLINK

OpenPOWERLINK is a communication profile that extends the IEEE 802.3 Ether-
net standard [16] to enable hard real-time communication. Hard real-time communi-
cation means that data is transferred with ”predictable timing and precise synchro-
nization” [17]. OpenPOWERLINK is used primarily in the automation industry for
control of sometimes hundreds of distributed motors with very high precision and
speed requirements.

2.2. OPENPOWERLINK 13

2.2.1 Communication

An openPOWERLINK network can consist of up to 240 nodes. An openPOWER-
LINK network always consists of one Managing Node (MN) and typically several
Controlled Node (CN)s. Figure 2.5 shows two separate openPOWERLINK net-
works. The nodes inside the networks are internally connected via a hub. The
two openPOWERLINK networks are connected via routers to a high-level network.
Communication with the openPOWERLINK networks is established via legacy Eth-
ernet, such as TCP and UDP.

Figure 2.5: Typical openPOWERLINK network topology (image from [17])

The openPOWERLINK stack can be described in the ISO OSI reference model
structure as depicted in Figure 2.6. The physical layer (PHY) uses standard Re-
duced Media-Independent Interface (RMII) or Media-Independent Interface (MII)
Ethernet transceivers and RJ-45 magnetic coupling hubs connected with Category 7
Ethernet cables to the network. The openPOWERLINK stack implements modules
directly on the data link layer, which parse the incoming data packets. Automated
direct response packets enable ultra-low jitter down to < 1µs at this stage. The
process data is typically exchanged with an application running on the application
layer via some form of shared memory. Because openPOWERLINK extends the
IEEE 802.3 Ethernet standard, UDP and TCP are supported and also used for
initialization of the nodes by the MN.

14 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.6: OpenPowerLink ISO-OSI Reference Model (image from [17])

The communication inside an openPOWERLINK network is orchestrated by the
single MN. The MN keeps track of all connected CNs in the network. In an open-
POWERLINK network, the CNs can be hot plugged, meaning that any CN can de
disconnected or connected to the network at run time. The MN detects if a CN
is connected to the network and initializes the CN according to a device profile.
The device profile defines the data that is exchanged between all nodes. This is de-
fined in the so-called Object Dictionary, which ”is essentially a grouping of objects
accessible via the network in an ordered, pre-defined fashion. Each object within
the dictionary is addressed using a 16-bit index” [17]. The Object Dictionary de-
fines data types and required objects for the openPOWERLINK communication,
but also reserves index ranges for specifying the data that should be exchanged for
each participating nodes in an openPOWERLINK network. The device profile can
be edited with a plug-in for the eclipse Integrated development environment (IDE)
called openCONFIGURATOR.

A typical communication cycle in an openPOWERLINK network is illustrated in

2.3. LIGHTHOUSE TRACKING 15

Figure 2.7. The MN starts the isochronous phase of the cycle with a start of cycle
(SoC) frame. In the isochronous phase, the individual CNs are then sequentially
polled with a poll request (PReq) frame and each CN has to respond within a
specified time with its poll response (PRes) frame. After all CNs are queried, the
MN starts the asynchronous phase with a start of asynchronous phase (SoA) frame.
In the asynchronous phase, legacy Ethernet packets can be transmitted, such as
UDP and TCP.

Figure 2.7: OpenPowerLink communication cycle (image from [17])

2.2.2 Hardware

OpenPOWERLINK builds on top of the standard Ethernet and therefore does not
require specialized hardware. However, high-performance applications require spe-
cialized hardware. Commonly, field programmable gate array (FPGA) are used.
These are connected directly to the Ethernet transceiver PHY. The cycle length can
then be as low as 400µs with ultra-low jitter < 1µs. Additionally, a hub should
be used to connect the individual nodes of the openPOWERLINK network. The
reason for this is the reduced frame jitter and path delay value compared to switches
or routers.

2.3 Lighthouse Tracking

2.3.1 Hardware

The HTC Vive is a VR equipment available commercially. It consists of a head
mounted display (HMD), two controllers (one for each hand) and two base stations.
Its main application is for gaming, where a user, wearing the HMD, can be tracked
in space within the visible area covered by the two base stations. This tracking
information can be used to render a virtual reality in the HMD. Because the users’

16 CHAPTER 2. THEORETICAL BACKGROUND

movements can be accurately tracked, the VR feeling is quite immersive. Addi-
tionally, the two controllers can be tracked by the system, enabling interactions
in the virtual environment. Recently, additional tracking donuts where released.
These can be mounted on arbitrary objects, which in turn can then be tracked in
space by the SteamVR system. In the following sections, the tracking hardware is
examined in more detail. The tracking system is patented [18], therefore most of
the informations presented in this section stem from the publicly available patent,
while the protocols described in 2.3.2 were reverse engineered by the open-source
community.

Lighthouse

The two base stations, from here on referred to as lighthouses, are positioned
around the tracking area, typically mounted on the room walls or camera stands
to face each other. Figure 2.8 shows a disassembled first generation lighthouse.

A

B

C

D

Figure 2.8: A disassembled lighthouse with the
main components: A - LED grid, B and C - cylin-
ders with fresnel lenses attached to motors, D -
optical sensor

Each lighthouse contains two
infrared lasers. The lasers are
mounted at 90 degrees with
respect to each other. Each
laser beam is focused onto a
45 degree mirror inside a cylin-
der. This is depicted in Figure
2.9.

The cylinder has a Fresnel
lens mounted on its circumfer-
ence (Figure 2.8, B, and C).
The Fresnel lens transforms the
laser beam coming from the
mirror into a plane. Each
cylinder is connected to a mo-
tor, such that the infrared laser
plane is sweeping the tracking
area. Additionally, the light-
houses contain a grid of power-
ful infrared LEDs (Figure 2.8,
A). The emitted infrared light
is modulated with several MHz,
which makes the system more
robust against parasitic radia-
tion from sunlight or other infrared sources. However, the system can not be used
outside in full sunlight.

2.3. LIGHTHOUSE TRACKING 17

infrared

laser

diode

focus lens

mirror

Fresnel

line lens

motor

Figure 2.9: Lighthouse optical model

The coordinate system as depicted in Figure 2.10a is used as the local coordinate
frame of each lighthouse. The azimuth ϕ is valid from 0 − 180 degrees and starts
from the x-axis. The elevation θ is valid from 0 − 180 degrees and starts from the
negative z-axis. Because of the housing of the lighthouse, the actual field of view
(FOV) is smaller.

xr

yr

zr

ϕ

θ

(a) Lighthouse local coordinate frame

xa

ya

za

ya
RA

xb

zb

yb

RB

zw

yw
xw

RW

xrn

zrn

yrn

RN

(b) Global coordinate frame. RA and RB

represent the pose of the lighthouses in the
world coordinate frame RW , while RN rep-
resents the pose of the N -th object

Figure 2.10: Lighthouse tracking coordinate frames

The world coordinate frame RW is depicted in Fig. 2.10b. It is assumed that

18 CHAPTER 2. THEORETICAL BACKGROUND

one or two lighthouses are used with coordinate frame RA and RB, respectively.
The coordinate frame of a tracked object is referred to as RN , where N defines the
number of an object that is tracked by the system. RTargetOrigin shall denote the
transformation from one coordinate frame to another. Thereby, as an example the
transformation from the local coordinate frame of lighthouse A to object five would
be R5A.

Sensor

Every component of the HTC Vive system contains specialized optical sensors.
These are able to detect the infrared signals emitted by the lighthouses. While
each lighthouse contains only a single sensor (Figure 2.8, D), the HMD and con-
trollers contain up to 24 sensors each. The sensors consist of an infrared sensitive
photodiode plus circuitry to filter and amplify the infrared signals emitted by the
lighthouses. The infrared signals are received by the photo-diode. This signal is
bandpass filtered with the filter tuned to the modulation frequency of the infrared
light. The filtered signal is then amplified in multiple stages. The result is a digital
signal which is transmitted over a wire to a microcontroller.

(a) Lighthouse sensor disassembled from
HTC Vive controller and interfaced us-
ing copper wires (b) Custom lighthouse sensor

Figure 2.11: Original HTC Vive lighthouse sensor and the custom lighthouse sensors
used for our tracking system

Extracting and preparing the disassembled sensors from the Vive controller as
depicted in Figure 2.11a was very time-consuming. Another student in Roboy team
(Luis Vergara) therefore developed a custom version of the sensor which we were able
to produce on our own. The custom sensors are depicted in Figure 2.11b. They are
double-sided printed circuit design (PCB)s, with an operational amplifier, filtering
and amplifying the signal of the photo-diode in multiple stages.

2.3. LIGHTHOUSE TRACKING 19

2.3.2 Software

The tracking software, called SteamVR is proprietary, and the code is not publicly
accessible. Development with the SteamVR system is typically done in Unity on
Windows using the HMD and controllers tracking information to build VR appli-
cations. However, the open source community has reverse engineered the protocol
[19] the lighthouses communicate with and how the sensor locations in space are
measured. The following section describes the protocols used by the Vive tracking
system in detail.

Lighthouse Sensor Protocol

The motors inside a lighthouse rotate at a constant speed of 60 Hz, with a phase
offset of 180 degrees between the two motors. Every time the line lens of a motor
passes the zero degrees mark, the infrared LED grid is flashed for a specific amount
of time. The length of this pulse, in the following referred to as sync pulse, encodes
three bits of information. The values are listed in Table 2.1.

sync pulse width [µs] skip data axis

62.5 0 0 0
72.9 0 0 1
83.3 0 1 0
93.8 0 1 1
104 1 0 0
115 1 0 1
125 1 1 0
135 1 1 1

Table 2.1: lighthouse sync pulse encoding [19]

The skip bit encodes whether the current motor skips the current cycle or is ac-
tive. The axis bit encodes which motor is currently active (vertical: 0, horizontal:
1).

20 CHAPTER 2. THEORETICAL BACKGROUND

t

si
gn

al t s
y
n
cA

t s
y
n
cB

tsweepB tsweepA

t s
y
n
cA

t s
y
n
cB

t s
w
ee
p

t s
w
ee
p

1 2

Figure 2.12: Lighthouse sensor signal protocol

A typical signal trace for a lighthouse sensor is illustrated in Figure 2.12. In Figure
2.12 two lighthouses are present. One after the other they flood the room with
infrared light. The pulse width tsyncA and tsyncB encodes which lighthouse is active
and with which motor (as described in Table 2.1). In cycle 1, lighthouse B is active
and starts sweeping the room with its’ infrared laser plane. After tsweepB time, the
sensor is hit by the sweep plane, which is indicated by a very short signal pulse
tsweep. The time tsweepB can be directly used to calculate the motor bearing angle
when the sensor was hit by the infrared plane. In cycle 2, lighthouse A is active.
The lighthouses sequentially scan the room with their laser planes.

The sweep times tsweepA and tsweepB can be used to calculate the bearing angle for
the currently active motor (elevation θ for vertical motor, azimuth ϕ for horizontal
motor). Equation 2.1 and 2.2 show how this is calculated from the constant 60 Hz
motor velocity, which equals ≈ 8.333ms for 180 degree rotation of a motor.

θ = tsweep/0.008333s ∗ π (2.1)

ϕ = tsweep/0.008333s ∗ π (2.2)

Since the motors rotate at 60 Hz and there are two lighthouses, this gives an update
rate of 30 Hz for each lighthouse with the vertical and horizontal angles interleaved
sequentially.

The data bit is an additional bit sent with every sync pulse. The data bits, consec-
utively sent by each lighthouse, form the so-called Omnidirectional Optical Trans-
mitter (OOTX) frame. The OOTX frame is shown in Figure 2.13.

2.3. LIGHTHOUSE TRACKING 21

Figure 2.13: OOTX frame (according to [19])

The payload of the OOTX frame contains information about each base station as
listed in Table 2.2.

offset type name description

0x00 uint16 fw version Firmware version and protocol version
0x02 uint32 ID Unique identifier of the base station
0x06 float16 fcal.0.phase ”phase” for rotor 0
0x08 float16 fcal.1.phase ”phase” for rotor 1
0x0A float16 fcal.0.tilt ”tilt” for rotor 0
0x0C float16 fcal.1.tilt ”tilt” for rotor 1
0x0E uint8 sys.unlock count rotor desynchronization counter
0x0F uint8 hw version Hardware version
0x10 float16 fcal.0.curve ”curve” for rotor 0
0x12 float16 fcal.1.curve ”curve” for rotor 1
0x14 int8 accel.dir x ”orientation vector”
0x16 int8 accel.dir y ”orientation vector”
0x16 int8 accel.dir z ”orientation vector”
0x17 float16 fcal.0.gibphase ”gibbous phase” for rotor 0
0x19 float16 fcal.1.gibphase ”gibbous phase” for rotor 1
0x1B float16 fcal.0.gibmag ”gibbous magnitude” for rotor 0
0x1D float16 fcal.1.gibmag ”gibbous magnitude” for rotor 1
0x1F uint8 mode.current selected mode (0=A, 1=B, 2=C)
0x20 uint8 sys.faults ”fault detect flags” (should be 0)

Table 2.2: Lighthouse OOTX info block (according to [20])

22 CHAPTER 2. THEORETICAL BACKGROUND

(a) USB-FlexRay Bridge

(b) MyoGanglion (bottom) with BLDC motor board (top)

Figure 2.2: MyoRobotics hardware (images from [9])

23

Chapter 3

System Design

This chapter describes the system design for MyoControl (Section 3.2), PowerLink
(Section 3.3) and LighthouseTracking (Section 3.4). Every system implemented for
this thesis makes extensive use of FPGAs. The DE10-Nano-SoC [21] is a FPGA
development board (depicted in Figure 3.1) from Altera. It was chosen for this
thesis for the following reasons:

• versatility: The Intel Cyclone V SE5CSEBA6U23I7 chip combines a 800MHz
Dual-core Advanced RISC Machine (ARM) Cortex-A9 with a FPGA (with
110000 logical elements (LEs), 120 digital signal processing blocks (DSPs)).
This combination allows very flexible system designs

• availability: The development board is available off the shelf

• prize: The price is around 100 Euro per board

• size: Compared to other FPGA development boards it is quite small, measur-
ing 100mm x 70mm x 25mm

Figure 3.1: DE10-Nano-SoC board (image from [22])

The ARM cores and the FPGA portion of the Cyclone V chip are connected via

24 CHAPTER 3. SYSTEM DESIGN

Alteras’ high-speed Advanced eXtensible Interface (AXI). Thereby, the modules
synthesized for the FPGA can be controlled from user applications running on the
ARM cores. Hence, low-level hardware control can be outsourced to the FPGA. The
ARM cores are alleviated from this workload and can be used for high-level control
and communication with the host PC.

3.1 Overview

This section gives an overview of the overall system architecture for Roboy 2.0.
Roboy consists of six body parts, and each body part contains a DE10-Nano-SoC
FPGA. The communication architecture is illustrated in Figure 3.2. The FPGAs
of each body part are connected to an Ethernet hub and form a hard real-time
openPOWERLINK network. External control of Roboy is established via a legacy
Ethernet connection from a PC/laptop using ROS messages and services. Each
body part contains specialized electronics hardware as required by its’ function.
The following list summarizes the main components:

• head: Contains a laser projector for projecting his face, a stereo ZED camera,
two loudspeakers, a microphone and an Odroid development board for control
of these multimedia devices. Four muscle units are used to actuate his head.

• torso: A flexible spine actuated by six muscle units.

• left/right arm: the shoulder is a 3-DOF ball in socket joint which is actuated
by nine muscle units. The elbow is a 1-DOF joint and actuated by two muscle
units. The forearm can be rotated via two muscle units attached to his upper
arm. The forearm contains 20 servo motors for actuating the hand.

• left/right leg: Roboy 2.0 is supposed to ride an electric bike; therefore the legs
have been designed to enable the pedaling movements. Each leg contains six
muscle units.

The low-level control of the muscle units was named MyoControl and Section 3.2 de-
scribes the implementation. The six FPGAs of Roboy 2.0 were connected using the
hard real-time Ethernet extension openPOWERLINK. High-level control of Roboy
is established using ROS via legacy Ethernet connection to the openPOWERLINK
network. The implementation of the openPOWERLINK network is described in
Section 3.3. An external tracking system was implemented, called DarkRoom light-
house tracking. The implementation is described in Section 3.4. The pin assignment
for the DE10-Nano-SoC FPGAs of Roboy 2.0 is shown in Appendix B.

3.2. MYOCONTROL 25

PowerLink

Head Torso Left Arm

Right Arm Left Leg Right Leg

L
egacy

E
th

ern
et

Figure 3.2: Roboy 2.0 communication architecture (Image from [22])

3.2 MyoControl

The goal of the MyoControl subsystem was to replace the MyoGanglion from the
MyoToolKit. There are three main reasons, why this was favorable:

1. One MyoGanglion could only control up to four muscle units.

2. A total of six MyoGanglions could be used on one FlexRay bus. This totals
to 24 muscle units that could be controlled on one FlexRay bus. Roboy 2.0
contains more than 50 motors, therefore at least two FlexRay buses would
have been necessary.

3. The custom PCB was not available off the shelves, since the PCB needed to be
manufactured and then assembled. This together with the low volumes made
these boards prohibitively expensive.

The MyoControl system can be divided into two main components, the communi-
cation with a motor board and the PID control. The first step was to establish
communication with a motor board using a FPGA.

26 CHAPTER 3. SYSTEM DESIGN

3.2.1 Communication

The communication with the motor boards works via Serial Peripheral Interface
(SPI). An open-source Verilog SPI implementation was therefore used from open-
cores.org [23]. The motor boards have specific timing requirements for the SPI
communication which include the custom parameters listed in Table 3.1.

clk frequency clk polarity clk phase word length target delay

2 Mhz 0 1 16 bit MSB 1.2µs

Table 3.1: Motor board SPI requirements

(a) SPI frame for communication with motor board (image from [9])

(b) SPI communication frame with a single motor board

(c) SPI communication with six motor boards

Figure 3.3: MyoControl SPI communication frame and live data recorded with a
logic analyser

A distinct SPI frame was defined in the MyoToolKit which is shown in Figure
3.3a. Data is transmitted in 16-bit blocks as specified in Table 3.1. Each 16-bit
word contains one piece of information, except for the motor position which is a

3.2. MYOCONTROL 27

concatenation of two 16 bit words. An example communication with one motor
board is shown in Figure 3.3b which was recorded using a logic analyser. The
FPGA starts the communication with the motor board by pulling the respective
slave select line low (in Figure 3.3b this is the yellow channel four), then starts
clocking in the data via the master out slave in (MOSI) line (in Figure 3.3b this is
the red channel two). The start of a MyoToolKit SPI frame is always initiated with
a 0x8000, signaling the start of the frame. After transmission of a 16 bit word, the
slave select line is pulled high for the target delay of 1.2µs. Then the slave select
line is pulled low again and the next 16 bit word of the SPI frame is transmitted.
This is repeated until the 12 words of the frame have been transmitted. The SPI
transmission is defacto half-duplex, because the master first transmits four words
(message type, PWM, ctrl flags 1, ctrl flags 2), then the motor board transmits it’s
data to the FPGA (motor position/velocity, current, displacement, sensor 1, sensor
2, error flags) using the master in slave out (MISO) line (in Figure 3.3b this is the
orange channel three).

(a) SPI bus and two red slave select cables
connected to general-purpose input/output
(GPIO)s of DE10-Nano-SoC

(b) two muscle units sharing the SPI bus

Figure 3.4: MyoControl SPI bus connecting two muscle units to the DE10-Nano-SoC

The logic for the transmission of the MyoToolKit SPI frame was implemented in
Verilog in SpiControl.v. The target delay is handled by a delay counter between
consecutive SPI transmissions. The sequential transmission of the frame was imple-
mented using a word counter which is latching in or out the current data to the SPI
module. For the legacy MyoGanglion, each motor board was connected to a sep-
arate SPI bus. For the new communication, an arbitrary amount of motor boards
can be connected to a single SPI bus and separate slave select lines connected to the
GPIOs of the FPGA. Figure 3.4a shows the DE10-Nano-SoC with the SPI bus and
two red slave select cables connected to its’ GPIOs. Figure 3.4b shows the other
end of the SPI bus, where two muscle units are connected to the same SPI bus and
the slave select cables, one for each motor board.

28 CHAPTER 3. SYSTEM DESIGN

The control logic for the sequential communication with each motor board was
implemented in Verilog in MYOControl.v. The MyoControl module has the following
features:

1. motor number: It parametrizes the number of motors connected to one mod-
ule. The MyoControl module is implemented as an Altera Qsys intellectual
property (IP), such that the number of motors can be easily configured when
the Qsys design is generated, without having to change the Verilog code di-
rectly.

2. Avalon interface: It exposes the PID parameters and motor values via the
lightweight AXI bridge. The PID parameters for each motor can be read and
written.

3. control frequency: The maximal cycle frequency is limited by the number of
motor boards connected to one SPI bus. For six motors this was approx. 3250
Hz, which can be seen in Figure 3.3c. While generally, the fastest possible
cycle frequency is desirable, MyoControl was augmented with a delay counter,
such that the cycle frequency can be set to any value below this maximal
frequency.

3.2.2 PID control

The legacy MyoGanglion from the MyoToolKit implements four PID controller for
controlling each motor board in different control modes (as described in Section
2.1.2). The PID controller, implemented in C++ for the MyoGanglion, was ported
to a Verilog version in PIDController.v. One major difference between the legacy
PID controller and the new controller synthesized on the FPGA was the usage of
integer arithmetic only. The overhead of fixed point or even floating point arithmetic
for the FPGA seemed unreasonable because the values to be controlled were integers
anyway. The motor position is measured in encoder ticks, the motor velocity in
encoder ticks/s and the displacement is also measured in ticks.

The new PID controller features the following control modes:

• position: motor position control in encoder ticks

• velocity: motor velocity control in encoder ticks/s

• displacement: spring displacement control in encoder ticks, where one tick
equals a displacement of 0.1 mm

The force control mode was omitted, because it can be easily dealt with in high-level
control, where the spring parameters are used to estimate the necessary displacement
for a given force.

3.3. OPENPOWERLINK 29

One particular requirement was to send the data in the big-endian format because
the legacy MyoGanglion is big-endian. This was easily done in Verilog because for
the FPGA there is, in fact, no difference between little or big-endian. The difference
in the code was a mere switch of indexing.

3.3 openPOWERLINK

The openPOWERLINK stack can be built for Ubuntu 16.04 using libpcap. This
limits the minimum cycle length to approx. 20 ms, which is not fast enough for
accurate motion control of 50 motors. Alternatively, the kernel part of the open-
POWERLINK stack can be synthesized in FPGA. This enables very small cycle
lengths with ultra-low jitter, down to 400µs and < 1µs, respectively.

3.3.1 Porting to DE10-Nano-SoC

The openPOWERLINK examples available for Cyclone V are for different FPGA
development boards. Adapting the modules for our DE10-Nano-SoC was neces-
sary. Specifically, the hardware peripheral system (HPS) and the connections to the
peripherals of the DE10-Nano-SoC had to be adapted.

The lowest layer in the ISO/OSI network standard is the PHY. In the openPOW-
ERLINK stack, a FPGA module called OpenMac is directly connected to an Ether-
net transceiver PHY. For the DE10-Nano-SoC this is the KSZ9031RNX chip from
Micrel. This chip is connected to the HPS and has no direct connection to the
FPGA portion of the Cyclone V. It is possible to multiplex the Reduced Giga-
bit Media-Independent Interface (RGMII) and Management Data Input/Output
(MDIO) interface of the Ethernet transceiver to the FPGA portion, using so-called
loanios. Unfortunately, the OpenMac module only supports MII or RMII. These
are not compatible with RGMII. There exists an Altera IP for converting RGMII to
RMII, called ”Intel FPGA GMII to RGMII Converter Core”. This did not function
as expected, and the communication failed. It was, therefore, necessary to use an
external RMII Ethernet transceiver. We chose a small external board from Wave-
share with a DP83848 transceiver chip from Texas Instruments, a RJ45 connector
and an on-board 50 MHz oscillator. The transceiver board was directly connected
to the GPIOs of the FPGA. The external transceiver board is shown in Figure 3.5
with its RMII and power connections to the GPIOs of the FPGA.

The 50 MHz for the RMII transmission needed to be in sync with the OpenMac
module synthesized for the FPGA, therefore the on-board oscillator was desoldered
from the transceiver board and the 50 MHz system clock of the FPGA was routed
to the oscillator pin of the external transceiver.

30 CHAPTER 3. SYSTEM DESIGN

Figure 3.5: DE10-Nano-SoC board with the external Ethernet transceiver and the
connections to the GPIOs of the FPGA

The kernel part of openPOWERLINK is implemented in the FPGA portion using
a reduced instruction set computer (RISC) called Nios2, which is a licensed IP from
Altera. The license for the fastest version of this RISC has to be obtained from a
regional distributor. For evaluation, the Nios2 core can be used as long as the Joint
Test Action Group (JTAG) connection with the host is established. The Nios2
handles the low-level initialization and communication for openPOWERLINK. The
user application is implemented as a bare-metal program running on one of the
ARM cores. The communication data, received by the Nios2, is shared with the
ARM core using a shared memory region.

3.3.2 Network Profile

The next step was to define a communication profile for Roboy 2.0. openCONFIGU-
RATOR (a plugin for the eclipse IDE) was used to configure the openPOWERLINK
network. The network was configured to contain one MN and five CNs as required
by the design of Roboy 2.0 (cf. Figure 3.2).

The Object Dictionary was augmented with entries for control of 12 motors con-
nected to each FPGA. Since an external transceiver was unavoidable, the integrated
Ethernet transceiver of the DE10-Nano-SoC could be used to transmit lighthouse
sensor data, visual data from the stereo camera and data from any other future

3.4. LIGHTHOUSE TRACKING 31

sensors of Roboy 2.0. Also, the high-level cognition control could be sent via the
integrated Ethernet transceiver of the DE10-Nano-SoC. The communication profile
was therefore exclusively reserved for motor control.

3.4 Lighthouse Tracking

This section describes the implementation of our lighthouse tracking system from
low-level sensor decoding to high-level pose estimation.

3.4.1 Lighhouse Sensor Protocol

The lighthouse sensor protocol can be decoded with a standard microcontroller.
The signal line of a lighthouse sensor is connected to a GPIO of the microcontroller.
Interrupts on rising and falling edges of the signal trigger an interrupt service routine
(ISR) which uses a timer to timestamp the changes in the signal. Unfortunately, this
works only for a limited amount of sensors, because the microcontroller is interrupted
too much if a critical amount of sensors is exceeded. The critical amount depends
on the microcontrollers interrupt capabilities and speed. For estimating the 6-DOF
pose of an object, at least four 3D positions are necessary. This already exceeded
the compute capabilities of the boards we tested (Intel Edison, Arduino MKR1000).
This was the reason we chose to implement the lighthouse protocol decoding in
FPGA.

The incoming sensor signal is illustrated in Figure 3.6. This shows the typical
scenario when two lighthouses are active. However, the mechanism is the same when
only one lighthouse is used. As can be observed in Figure 3.6, the two lighthouses
sequentially flood the room with infrared light, and the sync pulse width encodes
if a lighthouse will skip or will be active in the current cycle. The time span tb0
between the sync pulse of lighthouse B and the moment the sweeping laser plane
hits the sensor can be used to calculate the bearing angle of the currently active
motor for lighthouse B (as described in Section 2.3.2). The time span tsync between
two pulse widths signaling an active motor can be used to differentiate between the
two lighthouses. This is illustrated in Figure 3.6 by the green and red arrows. If
a lighthouse stays active, the time span tsync is approx. 8333µs (which is the cycle
time when the motors run at 60 Hz). In Figure 3.6, lighthouse B stays active in
cycle 1, which is marked with a green tsync arrow. In cycle 2 the time span tsync will
be smaller than 8333µs by a constant time, which signals that lighthouse A becomes
active (which is marked with a red arrow). In cycle 3, lighthouse A stays active.
In the next cycle lighthouse B will become active again, which is indicated by tsync
being longer than 8333µs by a constant time.

32 CHAPTER 3. SYSTEM DESIGN

t

si
gn

al

tb0 tb1 ta0 ta1

tsync tsync tsync

1 2 3

Figure 3.6: Lighthouse sensor signal protocol illustration

The logic for decoding this protocol was implemented in Very High Speed Integrated
Circuit Hardware Description Language (VHDL) in lighthouse sensor.vhdl. Each
lighthouse sensor module decodes the signal of one sensor. All synthesized modules
run in parallel on the FPGA, which means the number of sensors, that can be de-
coded is merely limited by the size of the FPGA and the amount of GPIOs it has. At
50 MHz system clock, each clock tick is 1/50µs. For 8333µs for the 180 degrees at 60
Hz motor speed, this gives a resolution of approximately 0.00043 degree/tick.

The decoded sensor value is packed into a 32-bit field. This is illustrated in Figure
3.7. The field values encode the following data:

• bits 18-0: The decoded bearing angle in ticks of the clock at which the light-
house sensor module runs. For the DE10-Nano-SoC we connected the system
clock running at 50 MHz.

• bits 28-19: The sensor ID which is a number starting from 0 to the number of
sensors that were chosen to be generated. Each sensor has its own unique ID.

• bit 29: Indicates if the decoding is valid. The lighthouse sensor module checks
if the sweep duration is in the range (15000, 400000), which equals a valid
bearing angle in the range of approx. (6, 172) degrees. A zero indicates invalid
bearing angle, and a one indicates valid bearing angle.

• bit 30: Motor axis, zero for the horizontal motor, one for the vertical motor.

• bit 31: lighthouse ID, zero for lighthouse A and one for lighthouse B

A module called DarkRoom was implemented in Verilog in DarkRoom.v, which
serves three purposes:

3.4. LIGHTHOUSE TRACKING 33

ligh
th

ou
seID

m
otor

ax
is

validsensorIDbearing angle in clock ticks

0 1819 31302928

Figure 3.7: lighthouse sensor result 32-bit field

1. lighthouse sensor generation: It parametrizes the number of sensors, that
should be synthesized. The DarkRoom module is implemented as an Altera
Qsys IP, such that the number of sensors can be easily configured when the
Qsys design is generated, without having to change the Verilog code directly.

2. Avalon interface: It exposes the decoded signals of the lighthouse sensor mod-
ules via the lightweight AXI bridge. A single read can retrieve each sensor
result 32-bit field via this interface.

3. ESP8266 SPI interface: For mobile applications, the DarkRoom module im-
plements a SPI master that triggers the SPI transmission of all sensor values
when any sensor detects a non-skipping sync pulse. The SPI transmission is
compatible with the low-cost and small ESP8266 chip. The SPI timing was
chosen accordingly. Each SPI frame consists of 256 bits, which equals up to
eight 32-bit sensor results. All sensor values are transmitted in consecutive
frames. An Arduino sketch called darkroom esp8266.ino was written for the
ESP8266, which packs the values into UDP packets and transmits them wire-
lessly to a target PC. The SPI transmission is optional and can be selected in
the DarkRoom IP properties in Qsys.

A module called lighthouse ootx decoder was implemented in VHDL in
lighthouse ootx decoder.vhdl, which decodes the OOTX frame for two light-
houses. It was implemented using a finite state machine (FSM). As described in
Section 2.3.2, the data bits encoded in consecutive sync pulses form the OOTX
frame. The lighthouse ootx decoder module first detects the OOTX preamble, then
makes sure the frame format is valid. The decoder uses a single sensor channel for
decoding. If decoding was unsuccessful, because of occlusion or a defective sensor,
the sensor channel can be changed.

A module called DarkRoomOOTXdecoder was implemented in Verilog in
DarkRoomOOTXdecoder.v, which serves two purposes:

1. Avalon interface: It exposes the decoded OOTX frame values via the Avalon
lightweight AXI bridge. The sensor signal channel used for decoding the
OOTX frame can be changed via this Avalon interface as well.

2. universal asynchronous receiver-transmitter (UART): A UART module was

34 CHAPTER 3. SYSTEM DESIGN

downloaded from nandland.com [24]. The DarkRoomOOTXdecoder module
implements control logic, that transmits the decoded OOTX frame in 8-bit big-
endian chunks via UART. An arduino sketch called ootx frame uart.ino was
implemented that receives the frames via UART and checks with the cyclic re-
dundancy check (CRC)32 checksum if they were correctly decoded. The UART
transmission is optional and can be selected in the DarkRoomOOTXdecoder
IP properties in Qsys.

3.4.2 DarkRoom

Lighthouse ray calculation

The normal vectors of the horizontal and vertical sweep planes (nh and nv) can be
calculated from the bearing angles using the axis offset daxis for the respective motor
as described in Equation 3.1 and 3.2. The parameters tiltθ and tiltϕ are lighthouse
calibration parameters.

nh =

 daxis
sin(θ)
− cos(θ)

×
cos(tiltθ)

0
sin(tiltθ)

 (3.1)

nv =

cos(ϕ)
sin(ϕ)
daxis

×
sin(tiltϕ)

0
cos(tiltϕ)

 (3.2)

The ray p pointing at the sensor can be calculated from the intersection of these
two plane normals:

p = (nv × nh)/ ‖nv × nh‖2 (3.3)

The position of the sensor P in 3D space with respect to a lighthouse can be repre-
sented using the ray p:

P = R ∗ p (3.4)

In Equation 3.4 R represents the distance of the sensor to the virtual optical center
of a lighthouse as constructed by the two intersecting sweep planes. The rays of two
lighthouses seeing the same sensor can be used to triangulate the 3D position of the
sensor.

Pose estimation

Two methods were implemented to estimate the 6-DOF pose of a tracked object.
Both methods require the knowledge of the lighthouse sensor locations on a tracked
object, relative to an arbitrarily defined local coordinate system. The construction of
a tracked object can be done in computer aided design (CAD). The CAD program

3.4. LIGHTHOUSE TRACKING 35

of choice was Fusion 360 from Autodesk. It is the same program Roboy 2.0 was
designed with. Fusion 360 exposes most of it’s functionality in a python application
programming interface (API). Custom plugins can be implemented for Fusion 360.
For this thesis two plugins were implemented/augmented:

1. DarkRoomGenerator: Enables the user to define construction points with a
specific naming scheme, by simply selecting the desired lighthouse sensor lo-
cation on a mesh constructed in Fusion 360.

2. SDFusion: A plugin for exporting a constructed robot from Fusion 360 into a
format compatible with the open-source simulator Gazebo. This plugin was
developed in previous semesters. It was augmented for exporting a configu-
ration file containing the relative lighthouse sensor locations by parsing the
construction point names as generated by the DarkRoomGenerator plugin or
by hand. Our lighthouse tracking system can directly load this configuration
file and use it for pose estimation.

The first method referred to as triangulation pose estimation (TPE) from here
on, depends on a minimum of four sensors to be visible by two lighthouses. The
sensor positions are triangulated. A non-linear optimizer is used to estimate a
transformation matrix which maps the relative sensor positions, as exported from
Fusion, onto the triangulated sensor positions. The objective function is shown in
Equation 3.5, where T represents the transformation matrix of interest, Pr contains
the relative and Pt the triangulated sensor positions.

0 = (T ∗ Pr − Pt) (3.5)

Both Pr and Pt contain the 3D positions as homogeneous coordinates, such that the
dimensions are 4xM , where M represents the number of visible, triangulated sensors.
The transformation matrix T is a 4x4 homogeneous matrix, with 3x3 rotational ma-
trix and 3x1 translation vector. In the objective function of the non-linear optimizer,
the rotational part is represented by a rotation vector with enforced constraints using
quaternion unit sphere projection as described in [25]. The Levenberg-Marquardt
non-linear optimizer from the C++ Eigen library was used.

The second method referred to as multi lighthouse pose estimation (MLPE) from
here on, was adapted from [26]. As described in [26], the relation between the 3D
position of a sensor in the world coordinate frame and the pseudo pixel coordinates
of a respective lighthouse satisfy:

Zc

ui1
vi

 = Kk

[
RkW T kW

0T 1

] [
RWN TWN

0T 1

] [
xrN yrN zrN 1

]T
(3.6)

The transformation of interest is represented by RWN and TWN in Equation 3.6
which is the transformation from the local coordinate system of the N -th tracked

36 CHAPTER 3. SYSTEM DESIGN

object to the world coordinate frame (as defined in Figure 2.10b). In Equation 3.6
xrN , yrN and zrN are the relative sensor locations as exported from Fusion 360.
The transformation represented by RkW and T kW define the world pose of the k-
th lighthouse. In Equation 3.6, uiN and viN represent the pseudo pixel of the i-th
sensor for the respective N -th tracked object in the x-z-plane of the k-th lighthouse
(as defined in Figure 2.10a) and can be calculated from the bearing angles in the
following way:

uiN = tan(π/2− ϕiN) (3.7)

viN = tan(θiN − π/2) (3.8)

The focal length is set to one and no distortion is assumed which gives the unit
matrix for the intrinsic camera matrices Kk for all lighthouses. Equation 3.6 can
then be simplified (for brevity only one tracked object is considered):

Zc

ui1
vi

 = RkM
[
xr yr zr 1

]T
(3.9)

=

P T
k0

P T
k1

P T
k2

 [M0 M1 M2 M3

] [
xr yr zr 1

]T
(3.10)

=

P T
k0M1 P T

k0M2 P T
k0M3 P T

k0M4

P T
k1M1 P T

k1M2 P T
k1M3 P T

k1M4

P T
k2M1 P T

k2M2 P T
k2M3 P T

k2M4

 [xr yr zr 1
]T

(3.11)

In Equation 3.9, Pk represents the pose matrix of lighthouse k and M represents
the pose of interest of the tracked object. In Equation 3.10 and 3.11 P T

kl denotes the
l-th row of Pk and Mj represents the j-th column of M . Eliminating Zc in the first
and third row of Equation 3.11 results in:

0 = (P T
k1ui − P T

k0)(M0xr +M1yr +M2zr +M3) (3.12)

0 = (P T
k1ui − P T

k2)(M0xr +M1yr +M2zr +M3) (3.13)

Denoting P T
k1ui − P T

k0 by Ci and P T
k1ui − P T

k2 by Di, Equations 3.12 and 3.13 can be

3.4. LIGHTHOUSE TRACKING 37

expressed in the form of a non-homogeneous linear equation Ax = b:

Ci[0]xr Di[0]xr
Ci[1]xr Di[1]xr
Ci[2]xr Di[2]xr
Ci[0]yr Di[0]yr
Ci[1]yr Di[1]yr
Ci[2]yr Di[2]yr
Ci[0]zr Di[0]zr
Ci[1]zr Di[1]zr
Ci[2]zr Di[2]zr
Ci[0] Di[0]
Ci[1] Di[1]
Ci[2] Di[2]



T 

r00
r10
r20
r01
r11
r21
r02
r12
r22
t0
t1
t2



=

[
−C[3]
−D[3]

]

The 2x12 A matrices and 2x1 b vectors can be stacked for all sensors visible to any
amount of lighthouses. For an unambigous result, at least six sensor values must be
available. The same non-linear optimizer was used as above to find the pose vector
x with respect to Ax − b = 0. Again quaternions with unit-sphere projection as
described in [25] were used to enforce valid rotations.

The advantage of this approach over the first is that a sensor does not need to be
visible by two lighthouses. Additionally, sensor values from one to possibly many
lighthouses can be fused into one coherent pose estimate. The only prerequisite for
both approaches is that the global lighthouse poses are known.

Calibration

Due to fabrication tolerances, the optical system as depicted in Figure 2.9 is far from
perfect. The influences are different for every lighthouse and must be compensated.
The uncompensated bearing angles will be referred to as pseudo bearing angles.
There are four main influences:

1. phase offset: The moment the LED grid is flashing to signal the zero crossing
of a motor has a constant offset from the true moment in time

2. tilt: Due to manufacturing tolerances, the motors are not perfectly perpendic-
ular to each other

3. sweep plane curvature: The sweep plane is not a straight line but curves to
the sides, which is caused by the low quality of the Fresnel lens

4. lens eccentricity: The lenses are not perfectly aligned, which causes a varying
sweep plane offset depending on the current motor position

38 CHAPTER 3. SYSTEM DESIGN

In the OOTX frame, transmitted by the lighthouses regularly, there are ten fo-
cal parameters. These were assumed to represent the factory calibration values.
Although the exact meaning was not known, there existed some hypothesis about
what they might mean. The following non-linear correction functions were chosen
for this thesis.

The correction function used for compensation of the phase offsets are simple offset
angles phaseθ and phaseϕ for the vertical and horizontal motor, respectively:

θ′ = θ + phaseθ (3.14)

ϕ′ = ϕ+ phaseϕ (3.15)

For compensating the curvature of the sweep planes, a quadratic function was
chosen, which curves from the optical center to the sides using the offset corrected
bearing angles from Equations 3.14 and 3.15:

βθ = curveθ ∗ (cos(ϕ′) ∗ sin(θ′))2 (3.16)

βϕ = curveϕ ∗ (− sin(ϕ′) ∗ cos(θ′))2 (3.17)

The eccentricity can be compensated using the following equations, where the bear-
ing offsets vary depending on the current bearing angle of a motor:

γθ = gibmagθ ∗ cos(θ′ + gibphaseθ) (3.18)

γϕ = gibmagϕ ∗ cos(ϕ′ + gibphaseϕ) (3.19)

The tilt of the motors is corrected using the parameters tiltθ and tiltϕ in Equations
3.1 and 3.2.

The parameters phaseθ, phaseϕ, tiltθ, tiltϕ, curveθ, curveϕ, gibmagθ, gibphaseθ,
gibmagϕ and gibphaseϕ are different for every lighthouse and have to be esti-
mated.

Two strategies were implemented for estimating these calibration parameters. The
first strategy involved the creation of a calibration object with many sensors, where
all sensors lie in a common plane. Figure 3.8a shows the sensor placement with
dimensions in meter. Figure 3.8b shows the manufactured calibration object made
from medium-density fibreboard (MDF). The sensor slots where laser cut. The
calibration object was then placed at a known distance relative to a lighthouse using
a laser distance ruler. The calibration object and the lighthouse were facing each
other. Using the seams on the floor, we were trying to position them as parallel as
possible with respect to each other. This way the true sensor positions and therefore
the true bearing angles were known. A non-linear optimizer was used to estimate
the calibration parameters for both lighthouses, such that the pseudo bearing angles
were approaching the true bearing angles in the least squares sense.

3.4. LIGHTHOUSE TRACKING 39

(a) sensor placement (b) laser cut from MDF

Figure 3.8: lighthouse calibration object

Instead of trying to position the calibration object relative to a lighthouse as good as
possible, the idea behind the second strategy was to collect an extended set of sensor
values, where the calibration object was randomly moved in front of a lighthouse.
We were then using MLPE to estimate the relative pose of the calibration object to
our lighthouse for every recorded frame. The pseudo bearing angles were used for the
pose estimation. Using the estimated poses, the bearing angles were calculated for
every frame, and the calibration values were estimated such that the pseudo bearing
angles would match the calculated ones. More sets were recorded, and over time we
were hoping, the pseudo bearing angles would approach the calculated angles, and
the estimate for the calibration values would become more accurate. This was only
implemented in Matlab for simulated sensor data and has not been tested with real
sensor data, yet.

Implementation

The lighthouse tracking was implemented as a ROS package in C++. The following
lists all classes and their functionalities:

• TrackedObject:

– Receive sensor values via ROS message or UDP

– Load calibrated trackedObject configurations

• Transform:

– implements helper functions for receiving and sending ROS tf frames

40 CHAPTER 3. SYSTEM DESIGN

– implements helper functions for converting ROS tf frames to and from
transformation matrices or pose vectors

• Triangulation:

– implements helper functions for triangulation of sensor positions from
bearing angles

– applies lighthouse tilt calibration values

• Sensor:

– container class for the lighthouse bearing angles, relative sensor location,
triangulated 3D position and distance to a lighthouse of a tracked object
sensor

– implements helper functions for determining if a sensor is active, cali-
brated or has new data

• Utilities:

– implements helper functions for reading and writing trackedObject infor-
mation from and to file

– implements helper functions for reading and writing lighthouse calibra-
tion values from and to file

• LighthouseSimulator:

– publishes simulated sensor values the same way as the FPGA

– the pose of a simulated object can be changed at run time

– calibration values can be changed at run time

– loads the mesh of a trackedObject and checks if the sensor is visible by
the simulated lighthouse

• LighthouseEstimator:

– all functions for lighthouse tracking, such as triangulation and pose esti-
mation strategies

– applies lighthouse calibration values

• PoseEstimatorSensorCloud:

– TPE strategy

• PoseEstimatorMultiLighthouse:

– MLPE strategy

• InYourGibbousPhase:

3.4. LIGHTHOUSE TRACKING 41

– lighthouse calibration value estimator

Extensive usage of ROS visualization messages visualizes the tracking status in the
ROS visualizer (rviz). Every pose is published as a ROS tf frame. This was very
helpful in the development process of the different tracking and pose estimation
algorithms. The resulting pose from our lighthouse tracking system is published to
another standard ROS package called robot localization. The TrackedObject class
inherits from the extended kalman filter (EKF) class of this package. The results of
our tracking system can, therefore, be fused with additional sensory data, such as
interial measurement unit (IMU) data in a future project.

Figure 3.9 shows a prototype of the shoulder of Roboy 2.0 with a custom sphere
tracker attached to its end-effector. The sphere tracker was designed in Fusion 360
and the relative sensor positions exported with the respective plug-ins. This sphere
tracker or any other custom object can be tracked by our system.

3.4.3 DarkRoom GUI

The lighthouse tracking code as described in Section 3.4.2 implements the tracking
functionality. For high-level control, it was necessary to design a GUI. The following
features where implemented:

• adding/removing tracked objects

• simulate tracked objects and make them move in virtual space

• start/stop tracking algorithms

• monitor information about sensors, such as the current bearing angles and the
update frequency

• start/stop calibration, monitor parameters, change parameters for simulated
calibration

• display information about lighthouses as decoded from OOTX frames

The GUI was written in C++ using the Qt framework. The DarkRoom GUI is a
ROS package as well and a rqt plugin. Rqt is a window manager from the standard
ROS installation. Plugins written for rqt can be added and arranged in the rqt
GUI.

Figure 3.10 shows the control panel of the DarkRoom GUI. It provides access to
the main control of our lighthouse tracking system. The individual elements provide
the following functions:

A Convenience function for adding all tracked objects Roboy 2.0 consists of

42 CHAPTER 3. SYSTEM DESIGN

B Creates a UDP socket for receiving sensor data broadcast messages on the
given broadcast IP and port

C lighthouse rays are visualized in rviz if toggled

D distances between sensors are visualized in rviz if toggled

E clears all visualization markers in rviz

F switches lighthouses

G the lighthouse poses are reset to their initial values

H relative pose estimation for a tracked object is used to correct the pose of the
second lighthouse

I instead of using our lighthouse poses, use the poses from SteamVR

J toggles recording of pose estimations from our system and the SteamVR sys-
tem

K aligns the coordinate frame of a tracked object to that of a Vive controller

L toggles recording of lighthouse bearing angles

M toggles pose estimation using TPE

N toggles lighthouse pose correction using relative distance estimates (slow, in-
accurate)

O toggles pose estimation of a tracked object using EPnP

P toggles pose estimation using MLPE

Q toggles triangulation of sensor positions (will be automatically activated when
using TPE)

R estimates the distance of all visible sensors to each lighthouse individually

S measures the triangulated sensor positions for a couple of seconds. Rejects
outliers and generates relative sensor positions which are written to a config-
uration file

T Any tracked object can be simulated using this panel. When adding a tracked
object, tick the simulate box. The object will be moved in space when ran-
dom pose is ticked. The movements can be accelerated using the slider and
constrained using the respective tick boxes.

The rest of the DarkRoom GUI panels are described in Appendix A.

3.4. LIGHTHOUSE TRACKING 43

Figure 3.9: A custom sphere tracker attached to a prototype of the shoulder of
Roboy 2.0

44 CHAPTER 3. SYSTEM DESIGN

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

Figure 3.10: Control panel of DarkRoom GUI

45

Chapter 4

Results

4.1 MyoControl

The PID controller response was evaluated in position control. The only load acting
on the motor was the gearbox. The control frequency of MyoControl was reduced
to 100 Hz, to make the PID controller response visible. The motor started from
position 0 and a set point of 9000 was commanded (this equals approx. 30 degrees).
In Figure 4.1a the motor reaches the target position at about 85 ms. The motor
overshoots and the secondary oscillations decay until the motor settles at about 150
ms to the target set point. Adding D-gain to the controller can compensate the
secondary oscillations. This is shown in Figure 4.1b.

(a) P-gain only (b) P-gain and D-gain

Figure 4.1: MyoControl PID controller evaluation with different gains, commanding
a motor position of 9000 encoder ticks

46 CHAPTER 4. RESULTS

4.2 Lighthouse Tracking

Figure 4.2: calibration object with mounted Vive controller

For the evaluation of our lighthouse tracking system, a direct comparison with the
HTC Vive tracking system was chosen. A Vive controller was mounted onto our
calibration object, which can be seen in Figure 4.2. The SteamVR system, running
on Ubuntu, was used to get the poses of the lighthouses and the Vive controller. For
evaluation of the position and orientation errors, the pose of the first sample was
used to align our coordinate system with that of the Vive controller. The root mean
square error (RMSE) was used to compare the position and angle errors.

Figure 4.3 shows recorded trajectories using our pose estimation algorithms TPE
and MLPE with uncalibrated and calibrated lighthouses in a direct comparison with
the position estimates from the Vive system. Figure 4.8 shows different views of the
trajectories shown in Figure 4.3. The solid lines are the result from our tracking
using calibrated lighthouses, while the dashed lines show the position estimates
using uncalibrated lighthouses. The position errors between the two results are
summarized in Table 4.1.

method RMSE [m] x-axis RMSE [m] y-axis RMSE [m] z-axis

TPE uncalibrated 0.0633 0.1097 0.0326
TPE calibrated 0.0276 0.0446 0.0211
MLPE uncalibrated 0.0850 0.1386 0.0677
MLPE calibrated 0.0402 0.0896 0.0376

Table 4.1: Position errors for trajectories in Figure 4.3

For evaluation of the orientation, the orientation in quaternion representation was
converted to euler angles. Figure 4.5 show the euler angles of our system using TPE
(dashed line calibrated, dash-dot line uncalibrated) and the Vive system (solid line).
The calibration object was rotated around its’ x-, y- and z-axis individually. The
angle errors are summarized in Table 4.2 using RMSE in [degree].

4.2. LIGHTHOUSE TRACKING 47

Figure 4.3: Comparison between HTC Vive position tracking (magenta lines) and
our position tracking (blue TPE, green MLPE) with uncalibrated (dashed) and
calibrated (solid) lighthouses

MLPE was tested in a direct comparison with SteamVR tracking the Vive controller
in single lighthouse mode. The same experimental setup as above was applied but
using only one lighthouse. Figure 4.7 shows the trajectories for the movement of the
calibration object in x-, y- and z-axis. The position errors are summarized in Table
4.3.

Figure 4.9 shows the orientation of the Vive controller (solid line) and the orienta-
tion estimates using MLPE (dash-dot line). The orientation errors are summarized
in Table 4.4.

48 CHAPTER 4. RESULTS

−2 −1.8−1.6−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8

2

2.5

x[m]

y
[m

]

VIVE
VIVE
MLPE
TPE
MLPE
TPE

(a) XY-view of trajectories in Figure 4.3

−2 −1.8−1.6−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

x[m]

z[
m

]

VIVE
VIVE
MLPE
TPE
MLPE
TPE

(b) XZ-view of trajectories in Figure 4.3

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

2

2.5

z[m]

y
[m

]

VIVE
VIVE
MLPE
TPE
MLPE
TPE

(c) ZY-view of trajectories in Figure 4.3

Figure 4.4: Comparison between HTC Vive position tracking (magenta lines) and
our position tracking (solid line calibrated lighthouses, dashed line uncalibrated
lighthouses)

4.2. LIGHTHOUSE TRACKING 49

method rotation RMSE pitch RMSE roll RMSE yaw

TPE uncalibrated x 1.3324 2.9058 1.2022
MLPE uncalibrated x 8.1578 3.2872 1.2208
TPE calibrated x 0.8529 0.2765 0.2358
MLPE calibrated x 4.8689 0.7650 0.4417

TPE uncalibrated y 0.3004 3.2919 0.4199
MLPE uncalibrated y 1.2706 5.4928 0.9116
TPE calibrated y 0.2609 0.8213 0.2230
MLPE calibrated y 0.8622 2.3605 0.4162

TPE uncalibrated z 1.2140 4.1603 0.8138
MLPE uncalibrated z 1.3045 4.4979 5.1384
TPE calibrated z 1.1776 1.2260 0.6407
MLPE calibrated z 1.1575 1.5522 2.5226

Table 4.2: Orientation errors in degree for trajectories in Figure 4.5 and 4.6

method RMSE [m] x-axis RMSE [m] y-axis RMSE [m] z-axis

MLPE uncalibrated 0.1803 0.5065 0.2585
MLPE calibrated 0.0588 0.1742 0.0249

Table 4.3: Position errors for trajectories in Figure 4.7

method rotation RMSE pitch RMSE roll RMSE yaw

MLPE uncalibrated x 13.6079 4.0370 1.4443
MLPE calibrated x 13.8810 3.2597 1.0838
MLPE uncalibrated y 5.5131 33.4763 2.2119
MLPE calibrated y 5.6269 34.2024 2.5119
MLPE uncalibrated z 8.0032 10.1888 11.1724
MLPE calibrated z 9.0688 15.0548 2.9446

Table 4.4: Orientation errors in degree for trajectories in Figure 4.9

The position tracking for fast movements was analyzed for each axis. The cali-
bration object was moved along its’ x-, y- and z-axis in separate recordings. The
recorded positions are shown in Figure 4.10. The nominal velocity of the Vive
controller together with the RMSE between our position estimates and the Vive
positions are shown in Fig. 4.11-4.13.

50 CHAPTER 4. RESULTS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·104

−100

0

100

t[ms]

eu
le

r[
d
eg

re
e]

pitch
roll
yaw
pitch
roll
yaw
pitch
roll
yaw

(a) Rotation around x-axis of the calibration object

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

−100

0

100

t[ms]

eu
le

r[
d
eg

re
e]

pitch
roll
yaw
pitch
roll
yaw
pitch
roll
yaw

(b) Rotation around y-axis of the calibration object

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·104

−100

0

100

t[ms]

eu
le

r[
d
eg

re
e]

pitch
roll
yaw
pitch
roll
yaw
pitch
roll
yaw

(c) Rotation around z-axis of the calibration object

Figure 4.5: Orientation comparison between our system using TPE (dashed line
calibrated, dashed-dot uncalibrated) and the Vive system (solid line)

4.2. LIGHTHOUSE TRACKING 51

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·104

−100

0

100

t[ms]

eu
le

r[
d
eg

re
e]

pitch
roll
yaw
pitch
roll
yaw
pitch
roll
yaw

(a) Rotation around x-axis of the calibration object

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

−100

0

100

t[ms]

eu
le

r[
d
eg

re
e]

pitch
roll
yaw
pitch
roll
yaw
pitch
roll
yaw

(b) Rotation around y-axis of the calibration object

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·104

−100

0

100

t[ms]

eu
le

r[
d
eg

re
e]

pitch
roll
yaw
pitch
roll
yaw
pitch
roll
yaw

(c) Rotation around z-axis of the calibration object

Figure 4.6: Orientation comparison between our system using MLPE (dashed line
calibrated, dashed-dot uncalibrated) and the Vive system (solid line)

52 CHAPTER 4. RESULTS

Figure 4.7: Direct comparison between HTC Vive position tracking (dashed magenta
line) and our position tracking (solid line, green MLPE) with a single calibrated
lighthouse

4.2. LIGHTHOUSE TRACKING 53

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

2

2.5

3

x[m]

y
[m

]

VIVE
VIVE
MLPE
MLPE

(a) XY-view of trajectories in Figure 4.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

−1

−0.5

0

0.5

x[m]

z[
m

]

VIVE
VIVE
MLPE
MLPE

(b) XZ-view of trajectories in Figure 4.7

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

2

2.5

3

z[m]

y
[m

]

VIVE
VIVE
MLPE
MLPE

(c) ZY-view of trajectories in Figure 4.7

Figure 4.8: Comparison between HTC Vive position tracking (magenta lines) and
our position tracking (solid line calibrated lighthouses, dashed line uncalibrated
lighthouses)

54 CHAPTER 4. RESULTS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·104

−100

−50

0

50

100

150

t[ms]

eu
le

r[
d
eg

re
e]

pitch
roll
yaw
pitch
roll
yaw
pitch
roll
yaw

(a) Rotation around x-axis of the calibration object

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

·104

−100

0

100

t[ms]

eu
le

r[
d
eg

re
e]

pitch
roll
yaw
pitch
roll
yaw
pitch
roll
yaw

(b) Rotation around y-axis of the calibration object

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

·104

−100

0

100

t[ms]

eu
le

r[
d
eg

re
e]

pitch
roll
yaw
pitch
roll
yaw
pitch
roll
yaw

(c) Rotation around z-axis of the calibration object

Figure 4.9: Orientation comparison between our system using MLPE (dash-dot line)
using a single calibrated lighthouse and the Vive system (solid line)

4.2. LIGHTHOUSE TRACKING 55

−1.5−1.4−1.3−1.2−1.1 −1 −0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0
1.5

2

2.5

x[m]

y
[m

]

VIVE
MLPE
TPE

(a) fast movements along x-axis of the calibration object

−1.6−1.5−1.4−1.3−1.2−1.1 −1 −0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1

1.5

2

2.5

x[m]

y
[m

]

VIVE
MLPE
TPE

(b) fast movements along y-axis of the calibration object

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−1

−0.5

0

0.5

x[m]

z[
m

]

VIVE
MLPE
TPE

(c) fast movements along z-axis of the calibration object

Figure 4.10: Position comparison between our system (TPE blue line, MLPE green
line) using a single calibrated lighthouse and the Vive system (magenta line)

56 CHAPTER 4. RESULTS

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
0

5

10

t[ms]

ve
lo

ci
ty

[m
/s

]

Vive

(a) Vive controller velocity

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
0

0.1

0.2

0.3

t[ms]

R
M

S
E

[m
] MLPE

TPE

(b) position RMSE

Figure 4.11: Vive controller nominal velocity (top), position RMSE (bottom) be-
tween the Vive positions and our system for x-trajectory in Figure 4.10a

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

5

10

15

t[ms]

ve
lo

ci
ty

[m
/s

]

Vive

(a) Vive controller velocity

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

0.1

0.2

t[ms]

R
M

S
E

[m
] MLPE

TPE

(b) position RMSE

Figure 4.12: Vive controller nominal velocity (top), position RMSE (bottom) be-
tween the Vive positions and our system for y-trajectory in Figure 4.10b

4.2. LIGHTHOUSE TRACKING 57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

5

10

15

t[ms]

ve
lo

ci
ty

[m
/s

]

Vive

(a) Vive controller velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

0.1

0.2

0.3

t[ms]

R
M

S
E

[m
] MLPE

TPE

(b) position RMSE

Figure 4.13: Vive controller nominal velocity (top), position RMSE (bottom) be-
tween the Vive positions and our system for z-trajectory in Figure 4.10c

58 CHAPTER 4. RESULTS

59

Chapter 5

Discussion

5.1 openPOWERLINK

The communication in general was functional. However, it was only possible when
the CN in the openPOWERLINK network was run from a standard Linux PC. When
the FPGAs where connected without the Linux PC, the CN would not respond to the
initialization from the MN running on another FPGA. The network could therefor
not be tested to its’ full capabilities, because a slow CN running on the Linux PC
was setting the lowest limit for the cycle time. The communication was stable for a
cycle time of 20 ms.

5.2 Lighthouse tracking

Our custom calibration failed to find suitable calibration parameters that would be
valid outside the small FOV that was covered by the calibration object. For an
accurate estimation of calibration parameters that would also be valid outside the
FOV covered by the calibration object, the FOV was not big enough.

As it turned out, the calibration functions as described in Section 3.4.2 were prob-
ably very close to the ones used in the Vive system. The direct comparison between
our tracking system and the HTC Vive system was crucial for testing our hypothesis
on the calibration functions. Although the presented functions correct the pseudo
bearing angles to some extent, the HTC Vive system probably uses some func-
tions that are close but not identical with our correction functions. One significant
advantage using the Vive calibration parameters is the ability to directly use any
lighthouse from HTC Vive without the necessity to calibrate, because our system
decodes the OOTX frame transmitted by each lighthouse.

60 CHAPTER 5. DISCUSSION

The results presented in Figure 4.3 clearly show how important it is to use calibrated
lighthouses. All axis show significant differences between the original Vive position
tracking and our system when using uncalibrated bearing angles, which can be
examined in Figure 4.8a-4.8c. This is also reflected in the position errors in Table
4.1. MLPE seems a lot more sensitive towards outliers than TPE, which can be
seen in the jerky position estimates in Figure 4.8a and 4.8c. The reason why TPE
suffers less from this, is the fact that TPE uses triangulated sensor positions. The
lighthouse rays, therefore, have to be valid for both lighthouses which implicitly
filters the sensor signals.

The sensitivity of MLPE towards sensor signal outliers is even more apparent in
the orientation comparisons in Figure 4.6a. At around 13 seconds the pitch estimate
of MLPE jumps because of wrong measurements from some of the sensors. Wrong
measurements appear for the following reasons:

1. The infrared light intensity is not sufficient, for example when the sensor is
too far away from a lighthouse (for our custom sensors above 4 meters)

2. The infrared light intensity is too big, for example when the sensor is too close
to a lighthouse (the minimal distance for our custom sensors was about 1.5
meters)

3. The angle of the sweep plane incidence is too steep on the photo-diode. This
can be avoided if the sensors are sank into the object, such that the maximal
incidence angle is cut off by the physical barrier.

The overall orientation estimates for both algorithms of our tracking system is close
to the original Vive system, even when using uncalibrated lighthouses, which is also
reflected in Table 4.2.

Using the calibration values, as transmitted by each lighthouse in the OOTX frame,
in the calibration functions proposed in Section 3.4.2 and 3.4.2, clearly improves
the position estimates for the trajectories in Figure 4.3. Especially the position
errors for the y-axis is reduced, which is reflected in Table 4.1. In fact, all position
and orientation estimates improve when using the proposed calibration functions
together with the HTC Vive calibration values.

In a direct comparison between MLPE and the Vive system using only a single
lighthouse, MLPE suffers massively from sensor outliers. In single lighthouse mode
it seems even more crucial to use calibrated lighthouses, which can be seen in Table
4.3. The position errors for the calibrated lighthouses are relatively low, except for
the y-axis. This is probably related to the calibration, but might also be affected
by inaccuracies of the sensor placement on the calibration object. Small errors in
the relative sensor placement jeopardize the distance estimate in the y-axis to a
lighthouse. Analogously to a monocular camera, where the distance of an object of
known size can be estimated using the focal length of the camera. Small errors in

5.2. LIGHTHOUSE TRACKING 61

the measured size of the object affect the distance estimate here as well. One idea
to circumvent this problem would be to calibrate the relative sensor positions on
the tracked object as well.

The orientation estimates of MLPE in a direct comparison with the Vive system
as depicted in Figure 4.9 exhibit enormous errors. This is related to the symmetry
of the calibration object for which the sensors were arranged in a plane. For the
pose estimation in MLPE there are ambiguous solutions to certain orientations of
the calibration object. This can be seen in Figure 4.9b from 9 to 13 and 21 to 23
seconds where the roll angle estimates suddenly jump to negated values.

Our tracking system was directly compared to the HTC Vive system for fast move-
ments of the calibration object in its x-, y- and z-axis in separate experiments. The
resulting position estimates are shown in Figure 4.10. The position estimation error
was directly related to the velocity of the calibration object, which can be observed
in Figure 4.11-4.13. The reason for the relationship between the position error and
the nominal velocity of the tracking object lies in the sensor data processing. As
described in Section 3.6 the two lighthouses scan the room sequentially with their
horizontal and vertical motors. The sensor measurements as decoded by our system
are therefore in general from different moments in time. The effect of the sensor
measurements being misaligned in time becomes apparent when the tracked object
is moved and is directly dependent on its velocity. For the x-axis the errors were
particularly big because the two lighthouses were standing on the same level parallel
to each other and facing the calibration object. Therefore the x-axis was aligned
with the x-axis of both lighthouses and the errors introduced by the interleaved
sensor measurements were maximized.

62 CHAPTER 5. DISCUSSION

63

Chapter 6

Conclusion

This thesis describes the development of next level hardware control for Roboy 2.0.
It was implemented for FPGAs, which makes it reliable and fast. The expensive
MyoGanglion was replaced by off the shelves available FPGA development boards.
An arbitrary number of motors can now be connected to one common SPI bus,
as opposed to the individual SPI connections to a maximum of four motor boards
connected to one MyoGanglion. The control frequency for six connected motors
could be increased to approx. 3.2kHz, which means it is faster than the MyoToolKit
MyoGanglion which controls four motors at 2.5kHz. The implemented MyoControl
modules can be run in parallel on the FPGA, which means more SPI buses can
be synthesized, and all MyoControl modules control the connected motors at the
same frequency. The controllers have proven to be very reliable. The reason for
this is two fold. On one hand the FPGA portion is running independent from the
ARM cores, such that even on system failure of the program running in the ARM
cores, the muscle units are still under control by the FPGA. The other reason is
that the communication with the motor boards is independent from the next stage
communication (Ethernet). This was not the case for the legacy MyoGanglion,
where a muscle unit could not be hot plugged into the system without FlexRay
to be restarted. Therefore, muscle units can be added and removed from the new
system without having to restart the whole communication network.

This thesis describes how an affordable and off-the-shelf available FPGA develop-
ment board can be used to run the high-performance hard real-time communication
network openPOWERLINK. OpenPOWERLINK as a more reliable and faster com-
munication bus for Roboy 2.0 was introduced. The functionality of the network was
proven. Unfortunately, a bug in software/hardware causing the CN to refuse ini-
tialization could not be fixed by the end of this thesis. Therefore the performance
evaluation of the network needs to be postponed. We are confident that the close
cooperation with B&R will alleviate this cavity soon and Roboy 2.0 shall be run
with openPOWERLINK. However, in the course of the development some disad-

64 CHAPTER 6. CONCLUSION

vantages of openPOWERLINK for application on Roboy 2.0 became apparent. The
first disadvantage is the fact, that the on-board RGMII Ethernet transceiver of the
DE10-Nano-SoC could not be used for the communication. An external Ethernet
transceiver had to be connected to the GPIOs of the FPGA. The on-board Ethernet
transceiver could be used for heavy-load data of Roboy 2.0, such as audio and video
streaming. Consequently, a separate Ethernet line would be necessary. But because
of size constraints this would be undesirable. Recent developments in automation
industries have evolved a new extension for hard real-time Ethernet called time sen-
sitive networks. Here a specialized switch controls the transmission of prioritized
Ethernet packets. The first prototypes are available now, which enable hard real-
time communication up to 10 kHz using giga-bit Ethernet with parallel streaming
of media content. The time sensitive network could be an alternative for a future
design of the communication infrastructure.

This thesis also shows how the virtual reality tracking system from the HTC Vive
can be used for pose estimation of arbitrary objects. The original HTC Vive tracking
was reverse engineered and a complete pipe-line was designed with the following
features:

• CAD plugins allowing the export of arbitrary objects from Fusion 360, which
can be imported into the tracking system

• FPGA modules written in VHDL and Verilog decoding the HTC Vive sensor
protocols

• a pose estimation system with two different pose estimation algorithms was
implemented, for estimating the 6-DOF pose of an arbitrary object visible by
two or a single lighthouse

• many objects can be tracked simultaneously with our system

The tracking system was compared directly to the original HTC Vive system. Po-
sition errors down to two centimeters were achieved and angle errors below one
degree. A more accurate calibration of the system will reduce these errors fur-
ther. The tracking system also features simulation of lighthouses and extensively
visualizes the tracking in rviz. This simplifies the development of future tracking
algorithms.

The implemented pose estimation algorithms show good performance for static and
slow motions of a tracked object. For faster movements the sequential nature of the
incoming lighthouse bearing angles needs to be dealt with in a future project. The
pose estimates from our system can be fused with IMU data, which will further
improve the tracking performance.

65

Appendices

67

Appendix A

DarkRoom GUI panels

68 APPENDIX A. DARKROOM GUI PANELS

A B

Figure A.1: Lighthouse panel of DarkRoom GUI displaying the decoded OOTX
values. The application of different lighthouse calibration values can be acti-
vated/deactivated using the respective push buttons.

69

Figure A.2: Angles panel of DarkRoom GUI which plots live angle data for a chosen
sensor for both lighthouses

70 APPENDIX A. DARKROOM GUI PANELS

Figure A.3: Statistics panel of DarkRoom GUI, which plots the angle update fre-
quencies for all sensors

71

Figure A.4: Tracked objects panel of DarkRoom GUI. Here the user can select a
tracked object configuration file and add the object using the plus button. Any
selected object in the list on the right can be removed using the minus button.

72 APPENDIX A. DARKROOM GUI PANELS

A

B

C

D

Figure A.5: Calibration panel of DarkRoom GUI. The slider can be used to change
the calibration values. The different push buttons implement the following functions:
A estimates the calibration parameters based on a point estimate as described in 3.4;
B resets any applied calibration values; C estimates the calibration parameters using
a continuous recording and pose estimates from EPnP; D estimates the calibration
parameters using a continuous recording and pose estimates from MLPE

73

Appendix B

Roboy 2.0 DE10-Nano-SoC
Pinout

74 APPENDIX B. ROBOY 2.0 DE10-NANO-SOC PINOUT

Figure B.1: Pinout of Roboy 2.0 DE10-Nano-SoC FPGA

LIST OF ACRONYMS 75

List of Acronyms

API application programming interface 35

ARM Advanced RISC Machine 23, 24, 30, 63

AXI Advanced eXtensible Interface 24, 28, 33

BLDC Brush-less Direct Current Motor 9

CAD computer aided design 34, 64

CN Controlled Node 13–15, 30, 59, 63

CRC cyclic redundancy check 34

DART Dense Articulated Real-Time Tracking 7

DOF degrees of freedom 7, 24, 31, 34, 64

EKF extended kalman filter 41

EPnP Efficient Perspective-n-Point Camera Pose Estimation 7, 42, 72, 81

FOV field of view 17, 59

FPGA field programmable gate array 15, 23–25, 27–32, 40, 59, 63, 64, 74, 79, 81

FSM finite state machine 33

GPIO general-purpose input/output 27, 29–32, 64, 79

GUI graphical user interface 3, 41, 42, 44, 68–72, 79–81

HMD head mounted display 15

HPS hardware peripheral system 29

IDE Integrated development environment 14, 30

76 LIST OF ACRONYMS

IMU interial measurement unit 41

IP intellectual property 28–30, 33, 34

ISR interrupt service routine 31

JTAG Joint Test Action Group 30

MDF medium-density fibreboard 38, 39

MDIO Management Data Input/Output 29

MII Media-Independent Interface 13, 29

MISO master in slave out 27

MLPE multi lighthouse pose estimation 35, 39, 40, 42, 46, 47, 49, 51, 52, 54, 55,
60, 61, 72, 80, 81

MN Managing Node 13–15, 30, 59

MOSI master out slave in 27

MyoToolKit MYOROBOTICS toolkit 9, 25–28, 63

OOTX Omnidirectional Optical Transmitter 20, 21, 33, 34, 38, 41, 59, 60, 68, 79,
80

PCB printed circuit design 18, 25

PHY physical layer 13, 15, 29

PReq poll request 15

PRes poll response 15

PWM pulse width modulation 11, 27

RGMII Reduced Gigabit Media-Independent Interface 29, 64

RISC reduced instruction set computer 30

RMII Reduced Media-Independent Interface 13, 29

RMSE root mean square error 46, 49, 56, 57, 80

ROS Robot Operating System 6, 24, 39–41

rviz ROS visualizer 41, 42

SoA start of asynchronous phase 15

LIST OF ACRONYMS 77

SoC start of cycle 15

SPI Serial Peripheral Interface 26–28, 33, 63, 79

TCP Transmission Control Protocol 6, 13, 15

TPE triangulation pose estimation 35, 40, 42, 46, 47, 49, 50, 55, 60, 80

UART universal asynchronous receiver-transmitter 33, 34

UDP User Datagram Protocol 6, 13, 15, 33, 39, 42

VHDL Very High Speed Integrated Circuit Hardware Description Language 32,
33, 64

VR virtual reality 7, 15, 16

78 LIST OF ACRONYMS

LIST OF FIGURES 79

List of Figures

2.1 MYOROBOTICS muscle unit and system overview (images from [9]) 10
2.3 MyoGanglion PID controller block diagram (image from [9]) 11
2.4 MyoGanglion motor position control response at 100Hz update fre-

quency, starting from 0 rad with target setpoint 10 rad (images from
[9]) . 12

2.5 Typical openPOWERLINK network topology (image from [17]) . . . 13
2.6 OpenPowerLink ISO-OSI Reference Model (image from [17]) 14
2.7 OpenPowerLink communication cycle (image from [17]) 15
2.8 A disassembled lighthouse with the main components: A - LED grid,

B and C - cylinders with fresnel lenses attached to motors, D - optical
sensor . 16

2.9 Lighthouse optical model . 17
2.10 Lighthouse tracking coordinate frames 17
2.11 Original HTC Vive lighthouse sensor and the custom lighthouse sen-

sors used for our tracking system . 18
2.12 Lighthouse sensor signal protocol . 20
2.13 OOTX frame (according to [19]) . 21
2.2 MyoRobotics hardware (images from [9]) 22

3.1 DE10-Nano-SoC board (image from [22]) 23
3.2 Roboy 2.0 communication architecture (Image from [22]) 25
3.3 MyoControl SPI communication frame and live data recorded with a

logic analyser . 26
3.4 MyoControl SPI bus connecting two muscle units to the DE10-Nano-

SoC . 27
3.5 DE10-Nano-SoC board with the external Ethernet transceiver and

the connections to the GPIOs of the FPGA 30
3.6 Lighthouse sensor signal protocol illustration 32
3.7 lighthouse sensor result 32-bit field 33
3.8 lighthouse calibration object . 39
3.9 A custom sphere tracker attached to a prototype of the shoulder of

Roboy 2.0 . 43
3.10 Control panel of DarkRoom GUI . 44

80 LIST OF FIGURES

4.1 MyoControl PID controller evaluation with different gains, command-
ing a motor position of 9000 encoder ticks 45

4.2 calibration object with mounted Vive controller 46

4.3 Comparison between HTC Vive position tracking (magenta lines) and
our position tracking (blue TPE, green MLPE) with uncalibrated
(dashed) and calibrated (solid) lighthouses 47

4.4 Comparison between HTC Vive position tracking (magenta lines) and
our position tracking (solid line calibrated lighthouses, dashed line
uncalibrated lighthouses) . 48

4.5 Orientation comparison between our system using TPE (dashed line
calibrated, dashed-dot uncalibrated) and the Vive system (solid line) 50

4.6 Orientation comparison between our system using MLPE (dashed line
calibrated, dashed-dot uncalibrated) and the Vive system (solid line) 51

4.7 Direct comparison between HTC Vive position tracking (dashed ma-
genta line) and our position tracking (solid line, green MLPE) with
a single calibrated lighthouse . 52

4.8 Comparison between HTC Vive position tracking (magenta lines) and
our position tracking (solid line calibrated lighthouses, dashed line
uncalibrated lighthouses) . 53

4.9 Orientation comparison between our system using MLPE (dash-dot
line) using a single calibrated lighthouse and the Vive system (solid
line) . 54

4.10 Position comparison between our system (TPE blue line, MLPE green
line) using a single calibrated lighthouse and the Vive system (ma-
genta line) . 55

4.11 Vive controller nominal velocity (top), position RMSE (bottom) be-
tween the Vive positions and our system for x-trajectory in Figure
4.10a . 56

4.12 Vive controller nominal velocity (top), position RMSE (bottom) be-
tween the Vive positions and our system for y-trajectory in Figure
4.10b . 56

4.13 Vive controller nominal velocity (top), position RMSE (bottom) be-
tween the Vive positions and our system for z-trajectory in Figure
4.10c . 57

A.1 Lighthouse panel of DarkRoom GUI displaying the decoded OOTX
values. The application of different lighthouse calibration values can
be activated/deactivated using the respective push buttons. 68

A.2 Angles panel of DarkRoom GUI which plots live angle data for a
chosen sensor for both lighthouses . 69

A.3 Statistics panel of DarkRoom GUI, which plots the angle update fre-
quencies for all sensors . 70

LIST OF FIGURES 81

A.4 Tracked objects panel of DarkRoom GUI. Here the user can select
a tracked object configuration file and add the object using the plus
button. Any selected object in the list on the right can be removed
using the minus button. 71

A.5 Calibration panel of DarkRoom GUI. The slider can be used to change
the calibration values. The different push buttons implement the
following functions: A estimates the calibration parameters based on
a point estimate as described in 3.4; B resets any applied calibration
values; C estimates the calibration parameters using a continuous
recording and pose estimates from EPnP; D estimates the calibration
parameters using a continuous recording and pose estimates from MLPE 72

B.1 Pinout of Roboy 2.0 DE10-Nano-SoC FPGA 74

82 LIST OF FIGURES

BIBLIOGRAPHY 83

Bibliography

[1] T. BrogÃrdh, “Present and future robot control developmentâan industrial
perspective,” Annual Reviews in Control, vol. 31, no. 1, pp. 69 – 79,
2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1367578807000077

[2] C. Gehring, S. Coros, M. Hutler, C. D. Bellicoso, H. Heijnen, R. Diethelm,
M. Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger, and R. Siegwart,
“Practice makes perfect: An optimization-based approach to controlling agile
motions for a quadruped robot,” IEEE Robotics Automation Magazine, vol. 23,
no. 1, pp. 34–43, March 2016.

[3] X. Da, R. Hartley, and J. W. Grizzle, “Supervised learning for stabilizing un-
deractuated bipedal robot locomotion, with outdoor experiments on the wave
field,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA), May 2017, pp. 3476–3483.

[4] K. G. PEARSON, “Central programming and reflex control of walking in the
cockroach,” Journal of Experimental Biology, vol. 56, no. 1, pp. 173–193, 1972.
[Online]. Available: http://jeb.biologists.org/content/56/1/173

[5] M. Hoffmann, H. Marques, A. Arieta, H. Sumioka, M. Lungarella, and
R. Pfeifer, “Body schema in robotics: A review,” IEEE Transactions on Au-
tonomous Mental Development, vol. 2, no. 4, pp. 304–324, Dec 2010.

[6] V. Potkonjak, B. Svetozarevic, K. Jovanovic, and O. Holland, “The
puller-follower control of compliant and noncompliant antagonistic tendon
drives in robotic systems,” International Journal of Advanced Robotic Systems,
vol. 8, no. 5, p. 69, 2011. [Online]. Available: https://doi.org/10.5772/10690

[7] R. Pfeifer, P. Y. Tao, H. Gravato Marques, S. Weydert, D. Brum, M. Weyland,
R. Hostettler, F. Volkert, V. GmÃ1

4
nder, and D. Halbeisen, “Roboy

anthropomimetic robot,” Andreasstrasse 15, 8051 Zurich, 2013. [Online].
Available: www.roboy.org

[8] H. G. Marques, M. JÃntsch, S. Wittmeier, O. Holland, C. Alessandro, A. Di-
amond, M. Lungarella, and R. Knight, “Ecce1: The first of a series of an-

http://www.sciencedirect.com/science/article/pii/S1367578807000077
http://www.sciencedirect.com/science/article/pii/S1367578807000077
http://jeb.biologists.org/content/56/1/173
https://doi.org/10.5772/10690
www.roboy.org

84 BIBLIOGRAPHY

thropomimetic musculoskeletal upper torsos,” in 2010 10th IEEE-RAS Inter-
national Conference on Humanoid Robots, Dec 2010, pp. 391–396.

[9] “Documentation page of the myorobotics myotoolkit,” http://myorobotics.
readthedocs.io/en/latest/, accessed: 2018-03-04.

[10] I. E. Committee, “Iec 61158-2, industrial communication networks - fieldbus
specifications - part 2: Physical layer specification and service definition,” 2014.

[11] V. Lepetit, F.Moreno-Noguer, and P.Fua, “Epnp: An accurate o(n) solution to
the pnp problem,” International Journal Computer Vision, vol. 81, no. 2, 2009.

[12] T. Schmidt, R. Newcombe, and D. Fox, “Dart: dense articulated real-time
tracking with consumer depth cameras,” vol. 39, 07 2015.

[13] “Vicon infrared retro-reflective marker tracking system,” https://www.vicon.
com/, accessed: 2018-03-14.

[14] “Htc vive virtual reality equipment,” https://www.vive.com/eu/, accessed:
2018-03-14.

[15] H. G. Marques, M. Christophe, A. Lenz, K. Dalamagkidis, U. Culha, M. Siee,
P. Bremner, and the MYOROBOTICS Project Team, “Myorobotics: a modular
toolkit for legged locomotion research using musculoskeletal designs,” in Proc.
6th International Symposium on Adaptive Motion of Animals and Machines
(AMAM’13), Darmstadt, Germany, 2013.

[16] H. Frazier, “The 802.3z gigabit ethernet standard,” Netwrk. Mag. of Global
Internetwkg., vol. 12, no. 3, pp. 6–7, May 1998. [Online]. Available:
http://dx.doi.org/10.1109/65.690946

[17] “Epsg ds 301 v1.2.0 - powerlink communication profile specification,” https://
www.ethernet-powerlink.org/downloads/technical-documents, accessed: 2018-
03-04.

[18] “Positional tracking systems and methods patent,” http://www.
freepatentsonline.com/y2016/0131761.html, accessed: 2018-03-04.

[19] “Reverse engineered ootx frame,” https://github.com/nairol/
LighthouseRedox/blob/master/docs/Light%20Emissions.md, accessed: 2018-
03-04.

[20] “Reverse engineered lighthouse info block,” https://github.com/
nairol/LighthouseRedox/blob/master/docs/Base%20Station.md#
base-station-info-block, accessed: 2018-03-04.

[21] “De10-nano-soc user manual,” https://www.altera.com/
content/dam/altera-www/global/en US/portal/dsn/42/

http://myorobotics.readthedocs.io/en/latest/
http://myorobotics.readthedocs.io/en/latest/
https://www.vicon.com/
https://www.vicon.com/
https://www.vive.com/eu/
http://dx.doi.org/10.1109/65.690946
https://www.ethernet-powerlink.org/downloads/technical-documents
https://www.ethernet-powerlink.org/downloads/technical-documents
http://www.freepatentsonline.com/y2016/0131761.html
http://www.freepatentsonline.com/y2016/0131761.html
https://github.com/nairol/LighthouseRedox/blob/master/docs/Light%20Emissions.md
https://github.com/nairol/LighthouseRedox/blob/master/docs/Light%20Emissions.md
https://github.com/nairol/LighthouseRedox/blob/master/docs/Base%20Station.md#base-station-info-block
https://github.com/nairol/LighthouseRedox/blob/master/docs/Base%20Station.md#base-station-info-block
https://github.com/nairol/LighthouseRedox/blob/master/docs/Base%20Station.md#base-station-info-block
https://www.altera.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-4302081511597-de10-nano-user-manual.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-4302081511597-de10-nano-user-manual.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-4302081511597-de10-nano-user-manual.pdf

BIBLIOGRAPHY 85

doc-us-dsnbk-42-4302081511597-de10-nano-user-manual.pdf, accessed: 2018-
03-14.

[22] “Product page of de10-nano-soc from altera,” http://www.terasic.com.tw/
cgi-bin/page/archive.pl?Language=English&No=1046, accessed: 2018-03-04.

[23] “Open-source verilog spi core,” https://opencores.org/project,spi master slave,
accessed: 2018-03-04.

[24] “Open-source verilog uart core,” https://www.nandland.com/vhdl/modules/
module-uart-serial-port-rs232.html, accessed: 2018-03-04.

[25] G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma, and R. Sutton, “On
quaternion based parameterization of orientation in computer vision and
robotics,” Journal of Engineering Science and Technology Review (JESTR),
vol. 7, no. 1, pp. 82–93, 2014.

[26] C. Ancey, P. Coussot, and P. Evesque, “An improved method of pose
estimation for lighthouse base station extension,” NCBI online. [Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677447/

https://www.altera.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-4302081511597-de10-nano-user-manual.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-4302081511597-de10-nano-user-manual.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046
https://opencores.org/project,spi_master_slave
https://www.nandland.com/vhdl/modules/module-uart-serial-port-rs232.html
https://www.nandland.com/vhdl/modules/module-uart-serial-port-rs232.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677447/

86 BIBLIOGRAPHY

LICENSE 87

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

