# Flora Fauna UROV Sprint 2 Review

Grace, Meera, Brooke, Ashlin





#### Need Statement and Recap from Last week

We need to devise a method for the research team to utilize the provided ROV to collect Antarctic under-ice flora and fauna. This will enable them to enhance the current capabilities of the sub-zero ROV.





# Main concept working on this week

- Storage carousel
- Canister tube + filter
- Suction nozzle
- Output attachment



### Content

- Tube
  - $\circ \quad \text{Tube length} \\$
  - Tube's material
  - $\circ$  Arm attach on the tube
- Carousel Mechanism
  - Storage
  - $\circ$  Motion
  - $\circ$  Connection
- Thruster
  - Motor
  - $\circ$  Connection
  - Outlet
- Filter





# Preliminary design

How does it work?





# Preliminary design

#### **Planned materials**







# **Concept Generation-Storage Carousel**

Rotating base plates- Doesn't work with fixed inlet/outlet locations, too many parts

Independent rotating plate

Clamp mechanism- unnecessary parts



#### Friction fit

#### Null location ("off position")









### Preliminary design Scratch - Storage





#### **Prototyping - Carousel**









# **Prototyping - Filter**





#### Preliminary design Scratch - Tube







#### **Prototyping - Tube & Nozzle**







#### Vacuum Outlet





# **Specifications**

| Retrieve samples                      | Suction for acquiring samples and canisters for storage                                    |
|---------------------------------------|--------------------------------------------------------------------------------------------|
| Operates from 20-30 cm above seafloor | Suction tube 30 cm in length – however will<br>likely require modifying the UROV arm       |
| Fit through 40cm hole                 | Design fits within the UROV's silhouette                                                   |
| Withstand water pressure              | Materials chosen are commonly used in undersea applications                                |
| Integrate smoothly with UROV          | Uses preexisting space and features. Have approval for the holes to be drilled in the hull |



### **Feasibility assessment**

Remaining Risks:

- Integrity of materials under water pressure + suction pressure
- Buoyancy/CoM
- Is the vacuum strong enough?
- Airtight design vs movable parts
  - How tight can we make our tolerances without causing unnecessary wear and tear
  - Smooth rotation of canisters while supporting suction power



# Next sprint

Make changes based on data from testing

Buy more materials as needed

Further our prototype builds

- Finish carousel
- Build more storage canisters
- Design modified baseplates for UROV for attachment mechanism, determine specific points of attachment and test ease of removal
- Implement servo motor attachment into carousel
- Work on vacuum arm articulation and attachment

Test our current prototype(s) - see what works and what has room to improve

• Pool? Big bin of water?



#### **Questions**?

Do you like it?

Does it make sense?

Is there anything unreasonable?