Solar UPS Module V2

The device can serve constant uninterruptible power supply (UPS) in low consumption equipment where mains power supply could not be or is difficult to be solved. Power may come from a 10W solar panel, but it is also possible to charge from the AC adapter. The device stores the energy in a 8800mAh Li-ion battery pack. Charging of the battery pack is performed intelligently with a Maximum Power Point Tracking function, using the power fed from the solar panel very efficiently. The circuit shuts off in dark operation, so the own consumption of the device remains below 10uA.

> **Maximum Power Point Tracking:** the charger circuit regulates charging - and at the same time current of DC input – automatically, so that the solar panel would work always at the maximum performance. So the most energy could be gained from the solar panel with the lowest losses of charging. The value of nominal voltage belonging to the maximum performance of the solar panel can be adjusted with a trimmer potentiometer in the device, thus the maximum charging efficiency can be reached with any type of solar panels.

www.solar-ups.eu

Power Supply

Direct connection from the battery pack is also possible with a higher current output (max 2A) and 2,9...4,2 V voltage. It is useful for instance in case a GPRS or 3G modem must be fed and it can be directly connected. The device also involves a built in buck-boost power supply, it produces optionally 3,3V or 5V system power, with at least 500mA of maximum loadability (in Buck mode it can be either 900mA). Permitted loading as per the battery voltage is exactly:

Protection

The device is having battery protection functions, e.g. the built-in supply unit does not let the cells discharge below 2,9V. It switches off in this case and reconnection is only performed if the terminal voltage of the battery reaches 3,3V again. Further charging protection function is the built-in thermal protection: this can be activated optionally with an inside jumper and it permits charging of the battery pack only in the ambient temperature range of 0....45 degrees. In addition the output of the built-in supply unit is protected against short circuit and the DC input against polarity error..

Functions

There is a charge current monitor circuit in the device, it measures the charging current of the battery pack. Its voltage output releases maximum 2V and the charging current can be measured with 1V/1A conversion. Charging may be disabled also from outside, SHUTDOWN input should be pushed to GND. The signals of charging status (charging, fault) are led to the 3,3V level TTL output. Voltage can be selected at VCC SEL input: The built-in supply unit produces system voltage of 5V when pushed on GND and 3,3 V in non-connected condition. There is a LED on the front plate showing two colours for charging (green) and fault (red).

Formation

The device can be put on DIN rail (35 mm) with a snap lock. Placement is possible in any DIN rail electric box or separately on the wall. In the latter case only a piece of 35 mm DIN rail has to be mounted on the wall. Electric outlet is made through pcb terminal blocks, which are mechanically integrated in the device housing. The connections can receive cables of maximum 1,5mm2. Pin assignment:

GND	Power Ground (0V)	
DCIN+	DC power (solar panel) positive input (034V)	
BATT+	Battery pack direct positive output (2,94,2V / max 2A!)	
VCC+	System power output (3,3V or 5V / 500mA)	
VCC SEL	System power selector (to GND: 5V, open: 3,3V)	
CHARGE	Charging sign, TTL 3,3V level output (low= charging)	
FAULT	Fault sign, TTL 3,3V level output (low= fault)	
SHUTDOWN	Charge shutdown input (to GND: charge circuit in shutdown state)	
CHG CURR	Charging current output (voltage output, 1V/1A, max 2V)	

Battery pack

The device includes a double 4400mAh Li-ion battery pack with 3,6 V nominal voltage. The batteries have wide range of operating temperature and longer full charging cycle (life time) than the usual. More exact data:

Charging characteristics

Full charge characteristics with 10W cheap polycrystalline solar panel (type MF-10W, maximum performance: 17.5 V/ 0.58A). The measurement was performed from full discharged to full charged condition of the battery pack in undisturbed sunny weather (ideal case of charging). Time elapsed in minutes on the horizontal axle.

Device availability

The device availability and discharge capacity of almost one-to-one can be calculated from the nominal capacity of the battery pack. Availability time can be calculated by averaging the consumption profile. For instance the consumer will be operable from the device for about 8800mAh/200mA = 44 hours with an average current consumption of 200mA, starting from fully charged condition (-10%, ~40 hours in worst case).

Specification

December ded ester cell ester city	10.14
Recommended solar cell capacity	10 W
DC power input voltage	0 34 V
DC power input max current	1 A
Battery pack direct output voltage	2,9 4,2 V
Battery pack direct output max current	2 A
Battery pack max charging current	2 A
Power supply output voltage	3,3 V or 5 V
Power supply output max current	500 – 900 mA
Battery pack type	Li-ion
Battery pack capacity	8800 mAh
Charging environmental temperature	-10 +60 degree
Discharging / Storage environmental temp.	-40 +60 degree
Device size	110 (d) * 75 (h) * 45 (w) mm
Device weight	320 g

www.solar-ups.eu