
Building	a	TTL	microcomputer	without	a	
microprocessor	

Hackaday	Conference	Belgrade	2018	
Marcel	van	Kervinck	

Walter	Belgers	



About	us	



Building	your	own	CPU	

https://www.homebrewcpuring.org	



Before	you	begin	

What	core	building	blocks?	
	FPGA,	SSI	logic	chips,	NAND	
	gates,	discrete	transistors,	
	tubes,	relays,	steam	punk,	…	

	

Data	path	size?	
	64	bits,	32	bits,	16	bits,	
	8	bits,	4	bits,	1	bit,	other…	

	

Standard	ALU	chips	or	custom?	
	74181	chips	(4-bit	ALU)? 		

7400	
series	
logic	
“TTL”	

No	
complex	
chips	

8-bit	
system	

16-bit	

8-bit	 8-bit	

Our	choices:	



Much	more	to	consider	

Harvard	or	Von	Neumann?	
		Microprogramming	or	RISC?	
				Pipelining	yes	or	no?	
							Existing	instruction	set	or	own?	
										Peripherals,	extendibility,	power,	..	
											

Time	and	budget?	
	1-2-3	days	per	week	for	3m-6m-1yr	
	700–1000	euro	to	first	PCB	
	It	better	be	fun	

Most	important:	what	makes	yours	unique?	

🍏🍏🍏🍏🍏🍏🍏🍌	



Ours	is	an	exercise	in	minimalism	

Rule	1 	Absolutely	no	complex	logic	chips	
	 	74HC595	shift-register	is	“borderline	OK”:	ALUs,	UARTs,	are	a	no-go	

Rule	2 	Single	board	with	30-40	chip	count	
	 	Same	ballpark	as	Wozniak’s	Break	Out,	early	PC	video	
	 	cards	or	the	“Ben	Eater”	breadboard	type	of	computers	

Rule	3 	Still	capable	of	video	games	with	sound	
	 	Let	software	do	the	job	of	complex	video	and	sound	ICs	

	

Bonus 	Nice	retro	look	and	hopefully	still	somewhat	useful	
	 	Green	2-layer	PCB,	thick	easy-to-follow	traces,	manual	routing,	
	 	through-hole	components,	some	built-in	games	and	can	at	least	be	a	clock	J	

	



Pragmatism	beats	idealism	

Be	replicable	and	fit	in	the	world	of	today	
No	obscure	1970s	DRAM	from	E-Bay	but	standard	62256	SRAM	
	

VGA	video	out	and	power	over	USB	
	Both	are	simple	and	commonly	available	

	

Switch	from	74LS	to	74HCT	series	for	lower	power	
	Operates	on	TTL	levels	using	FETs	inside	à	safe	for	USB	ports	
	But	also	stay	fully	compatible	with	74LS	

	

Get	results:	postpone	stuff	that	threatens	to	drain	your	time	
	Accept	to	drop	some	ideals	(later	more	on	those)	

©	Bill	Watterson	



Buy	books,	tools	and	hundreds	of	7400-series	chips	…	



…	and	you	can	build	a	4-bit	computer!	



…	and	you	can	build	a	4-bit	computer!	



Document	to	help	you	think	



Look	around	for	inspiration	

ATtiny85	with	3	usable	I/O	lines,	512	bytes	
RAM	does	color	VGA,	4	voice	sound	and	
joystick	input.	Software	can	bit-bang	VGA!	

Breadboard	computer	based	on	text	book	
SAP-1	design	(“Simple	As	Possible”).	Great	
educational	YouTube	series	for	7400-series	

Quark-85	 Ben	Eater	

+	
?	



1	oscillator	(25.175	MHz),	6	counters	(4-bits),	
2	EEPROM	(8K	+	32K)	and	1	register	(8-bits)	

Restart	and	make	small	concepts	work	first	



Then	design	the	data	flow	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

OUT	

Y	

ALU	

CLK	

BUS-IN	

EL	 EH	

/OE	

/WE	

/IE	

/AE	

/DE	

/LD	

/XL	

/OL	

/PL	

/PH	

AC7	 CLK	

/YL	

AL	AR0	…	AR3	

CO	

CO	

AC7	

/16	

/16	

/8	

/8	

/8	

/8	

/8	

/8	

X	

IR	 /19	

AC	

MAU	

D	

ROM	

BUS-AC	

BUS-D	

PC	

CU	

RAM	 /8	

XOUT	

OUT6	

Video	

Blinkenlights	

Audio	

/8	

/4	

/4	

Input	

IX	

/8	/8	

OUT6	

Data	bus	Result	bus	

RESET	

AC	bus	

Reference	design	
•  Von	Neumann	architecture	
•  1	central	bus	is	bottleneck:	complexityé	
•  Must	be	microcoded:	speedêê	

Our	design	
•  Harvard	architecture	
•  Split	bus	for	efficiency:	chip	countê	
•  Can	do	1	instruction	per	cycle:	speedéé	

PC	

MAR	

Memory	

IR	

BUS	

A	

ADD/
SUB	

OUT	

B	

CU	

4	

8	

8	

8	

8	

4	

4	

8	

8	

4	

..12..	

8	

8	

										8	

										8	

SAP1	reference:	famous	but	(much)	too	simple	
Bus	



Control	Unit	last	to	define	an	instruction	set	
Control	Unit	

IR1	

/DE	/OL	

IR4	

AL		AR0		AR1		AR2		AR3	 /WEφ2	

AC7	CLK	

INV	

		B	
A&B	
A|B	
A^B	

	
A+B	
A-B	
A	
-A	

[D],	AC	
[X],	AC	

[Y,D],	AC	
[Y,X],	AC	

	
[D],	X	
[D],	Y	

[D],OUT	
[Y,X++],OUT	

Mapping	8	instruction	bits	to	
19	control	signals	with	6	chips	
1.  ALU	decoder	 	 	74138/55	
2.  Addressing	decoder 	 	74138	
3.  Conditional	jumps	 	 	74153	
4.  Bus	decoder	&	far	jumps 	74139	
5.  Inverters 	 	 	74240	
6.  OR	gates 	 	 	7432	

IX	

OR	

/LD	

IR7	

/J	

/XL	

INV	

/PH	

/W	

OR	

IR0	IR3	 IR2	IR6	 IR5	

	/YL	 EH	 EL	 /OE	 /AE		/IE	

CO	

=	
diode	on	
junction	

=	

E	

OR	 OR	

	
I0					Ao									A1	

I1	
I2	
I3	
	
	
	
	
/E	
	

/PL	

INV	

/E	

O0			O1			O2			O3	

NC	 NC	 NC	

O0			O1			O2			O3	

½	74139	

74153	

74138	74155	
or	74138	

0.	LD	
1.	AND	
2.	OR	
3.	XOR	
	
4.	ADD	
5.	SUB	
6.	ST	
7.	JMP	

0.	
1.	
2.	
3.	
	
4.	
5.	
6.	
7.	

Notes:	
1.	AC	and	OUT	must	be	‘377	to	support	consecutive	updates		
2.	Y	can	be	a	‘273	because	consecutive	loads	can	ignore	all	
but	the	last	value.	For	AC	and	OUT	this	is	different.	
3.	X	is	made	out	of	‘161	or	‘163	chips	

Wired	
AND	

=	
Pull	
up	

W	
INV	

2017-05-21	Marcel	van	Kervinck	

½	74139	

0.	JMP	
1.	BGT	
2.	BLT	
3.	BNE	
4.	BEQ	
5.	BGE	
6.	BLE	
7.	BRA	

N/A	

NOP
LD
AND
OR
XOR
ADD
SUB
ST

16	native	instructions,	
32	modes	(not	all	are	useful)	

JMP
BGT
BLT
BNE
BEQ
BGE
BLE
BRA

…	to	19	control	signals	with	
6	logic	chips	and	30	diodes	

Map	8	instruction	bits	…	

Instruction	and	mode	
define	what	all	units	do	



Gradually	extend	scope	when	building	

RAM	

µC	

8	MHz	breadboard	dynamic	VGA	
from	TTL	logic	and	a	32K	RAM.	

A	microcontroller	to	setup	the	RAM	

Self-aware	breadboard	CPU	at	6.3	MHz	
with	scrolling	text	(and	a	blinking	LED).	

“Look	ma,	no	microcontroller!”	

VGA	

Bus	

Counters	

34	TTL	chips	/	930	logic	gates	
2x	EEPROM	and	32K	SRAM	



Learn	to	make	a	printed	circuit	board	
First	one	could	be	brought	to	life	\o/	

PCB	displaying	an	image	of	its	prototype	

About	10	weeks	work	

Done	in	Kicad4	



Manually	routing	for	interesting	layout	

A B A∧B A∨B A≠B B ~B

0 0 0 0 0 0 1

1 0 0 1 1 0 1

0 1 0 1 1 1 0

1 1 1 1 0 1 0

For	example:	here	the	
diodes	visualize	the	truth	
tables	for	each	operation	
	



Do	simple	demos	

Application	logic	mixed	with	video	generation	loop.	
No	interrupts,	so	must	count	every	instruction	to	keep	VGA	in	sync.	This	is	tedious.	

Game	with	bricks,	ball	and	bat	



Need	a	software	stack	

Native	code	for	hardware	functions	
	Bit-bang	VGA	compatible	signals,	
	4	channel	sound,	I/O,	blinkenlights,	
	reset,	ROM	as		disk,	and	…	
	an	interpreted	virtual	CPU:	vCPU	

Use	Python	itself	as	assembler	
	Not	an	assembler	in	Python!	
	😀	Get	a	powerful	macro	assembler	for	free	
	🤭	Python	syntax	for	assembly	

+	Emulators	
	

High	
level	

vCPU	runs	application	code	from	RAM	
	SWEET16	inspired,	Von	Neumann!	
	34	self-timed	instructions	
	Can	mix	with	native	code	

GCL	notation	for	vCPU	programs	
	FALSE	inspired	(esoteric	1024-byte	compiler)	
	😀	Variables,	if-then-else,	loops,	functions	
	😀	Single	pass,	no	linking	stage:	simple!	

	

On	system	 Offline	

Loader	

ROM	
disk	

EPROM	

Low	
level	



Some	programs	we	made	with	this	

Snake	 Racer	



Minimalism	at	work	

No	standard	instruction	set	
No	interface	adapter	chips	
No	linear	address	space	
No	relative	addressing	

No	flags	register	
No	register	file	
No	interrupts	

No	reset	button	
No	timer	chips	
No	sound	chip	
No	video	chip	
No	assembler	
No	compiler	
No	linker	

	



Wise	people	stop	here	

So	we	make	it	a	kit!	It	sounds	like	fun	and	our	friends	ask	for	one…	
	Focus	all	efforts	on	1st	time	right	builds:	assembly	manual,	videos,	website	
	The	hardest	part:	stop	working	on	new	features	for	a	while		
	Talk	a	lot	with	other	kit	makers	and	potential	users	
	Find	suppliers	for	quality	parts	
	All	details	matter	
	Run	beta-tests	

	

“There	is	no	product	obscure	enough	that	
people	are	not	interested	in	it.”	

Oscar	“Obsolescence	Guaranteed”	Vermeulen	

PiDP-11	PiDP-8	



Computer	as	a	DIY	soldering	kit	

Just	need	a	soldering	iron,	a	multi-meter	and	3-4	hours	of	time	to	build.	No	oscilloscope	needed	





Not	all	ideals	made	it	into	“v1”	

We	wanted	absolutely	no	rectangular	PCB	and	no	case	from	wood	
	 	We	ended	up	with	both	and	we’re	quite	happy	with	the	result.	

	
There	is	no	direct	keyboard	hookup	(yet)	

	 	Even	the	PS/2	protocol	turns	out	to	be	an	ugly	beast.	
	 	So	you	must	cheat	a	bit	with	hookup	through	a	tiny	µC.	That	works	just	fine.	

	
There	is	no	built-in	BASIC	(yet)	

	 	Bill	Gates	doesn’t	respond	to	our	e-mails	and	it	takes	many	weeks	to	write	a	BASIC.	

	
We	would	have	liked	a	whole	lot	more	blinkenlights	

	 	It	makes	sense	at	1	millionth	of	the	speed.	Quite	a	few	new	parts	needed	for	slow	mode.	

🤷	



One	thing	we	almost	overlooked	

Pirates	of	Silicon	Valley	(movie)	
Loader	is	the	escape	hatch!	



Much	potential	for	true	oldskool	hacking!	

Making	programs	 Keyboard	hookup	

Low-level	hacking	Emulation	



A	new	one	is	born	every	day	



YouTube	spreads	the	word	

The	8-Bit	Guy	

EEVblog	



Buying	more	parts	



Tedious	logistics	



Community	after	first	month	

Lines	demo	

Fast	sprites	

Gigatris	

Game	of	Life	



What’s	at	the	horizon?	

1.  Tutorials	
§  Programming	by	simple	examples	
§  Hooking	up	a	keyboard	
§  Easy	with	tiny	external	µC	to	handle	protocols	

Tougher	nut	to	crack	when	allowing	yourself	at	most	1	or	2	extra	TTL	chips	

§  Consolidating	your	programs	into	an	EPROM	

2.	Live	hacking	
Monitor	program.	Onboard	GCL	interpreter?	

3.	Embedded	BASIC?	



Thank	you	
for	your	
attention!	


