
Gigatron	TTL	microcomputer	
“Brand	new	vintage”	

VCF	Zürich	2018	
Marcel	van	Kervinck	

About	us	

First	idea:	build	our	own	CPU	that	can	play	Tic-Tac-Toe	

https://www.homebrewcpuring.org	

Before	you	begin	

What	core	building	blocks?	
	FPGA,	SSI	logic	chips,	NAND	
	gates,	discrete	transistors,	
	tubes,	relays,	steam	punk,	…	

	

Data	path	size?	
	64	bits,	32	bits,	16	bits,	
	8	bits,	4	bits,	1	bit,	other…	

	

Standard	ALU	chips	or	custom?	
	74181	chips	(4-bit	ALU)? 		

7400	
series	
logic	
“TTL”	

No	
complex	
chips	

8-bit	
system	

16-bit	

8-bit	 8-bit	

Our	choices:	

Much	more	to	consider	

Harvard	or	Von	Neumann?	
		Microprogramming	or	RISC?	
				Pipelining	yes	or	no?	
							Existing	instruction	set	or	own?	
										Peripherals,	extendibility,	power,	..	
											

Time	and	budget?	
	1-2-3	days	per	week	for	3m-6m-1yr	
	700–1000	euro	to	first	PCB	
	It	better	be	fun	

Most	important:	what	makes	yours	unique?	

🍏🍏🍏🍏🍏🍏🍏🍌	

Buy	books,	tools	and	hundreds	of	7400-series	chips	…	

…	learn	how	the	components	work	…	

…	and	you	can	build	a	4-bit	computer!	

…	and	you	can	build	a	4-bit	computer!	

Look	around	for	inspiration	

Breadboard	computer	based	on	textbook	
SAP-1	design	(“Simple	As	Possible”).	
	
Great	educational	YouTube	series	
for	the	7400-series	
	
This	might	be	pushed	to	play	
Tic	Tac	Toe	on	a	8x8	LED	matrix	

Ben	Eater	

But	then	we	also	saw	this!	Quark-85	

A	simple	ATtiny85	microcontroller	with	
8-bits	with	5	usable	I/O	lines,	
8	kB	EEPROM,	512	bytes	RAM	:	

	
Can	do	color	VGA,	with	

stereo	sound	and	
joystick	input	

	
	
	
	
	

Software	can	bit-bang	VGA?!?!?	Quark-85	

A	crazy	idea	is	born:	can	we	combine	these?	

Quark-85	 Ben	Eater	

Our	new	quest:	our	computer	as	an	exercise	in	minimalism	

Rule	1 	No	complex	logic	chips	
	 	74HC595	shift-register	is	“borderline	OK”:	ALUs,	UARTs,	are	a	no-go	

	

Rule	2 	Single	board,	30-40	chip	count	
	 	Same	ballpark	as	Wozniak’s	Break	Out,	early	PC	video	
	 	cards	or	the	“Ben	Eater”	breadboard	type	of	computers	

	

Rule	3 	Capable	of	video	games	with	sound	
	 	Let	software	do	the	job	of	complex	video	and	sound	ICs	

VGA	first.	Test	signals	from	Arduino	Uno	

B/W	

RGBI	

74LS163	
4-bit	counter	

Arduino	
Uno	

Documenting	helps	you	think	

1	oscillator	(25.175	MHz),	6	counters	(4-bits),	
2	EEPROM	(8K	+	32K)	and	1	register	(8-bits)	

Now	remove	the	microcontroller	

Look	ma,	no	microcontroller!	

Hackaday	took	notice	

Try	the	same	with	a	RAM	(and	a	microcontroller	again)	

8	MHz	breadboard	dynamic	VGA	
from	TTL	logic	and	a	32K	RAM.	

A	microcontroller	to	setup	the	RAM	

32K	
RAM	

µC	 VGA	

Bus	

Counters	

This	is	basically	a	video	card	

Data	

The	next	design	step	defines	the	Gigatron	

TTL	video	
circuit	

TTL	
processor	

To	achieve	a	low	chip	count,	we	must	
attempt	to	merge	both	functions	into	one	

This	is	what	we	wanted	to	avoid	ending	up	with:	

Data	

Remember	Quark-85:	video	signals	and	dead	time	

1	video	frame	
drawn	60	times	per	second	

52
1	
sc
an
lin
es
	

200	Gigatron	cycles	(=VGA/4)	

480	visible	

160	pixels	visible	

CPU	that	can	do	all	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

OUT	

Y	

ALU	

CLK	

BUS-IN	

EL	 EH	

/OE	

/WE	

/IE	

/AE	

/DE	

/LD	

/XL	

/OL	

/PL	

/PH	

AC7	 CLK	

/YL	

AL	AR0	…	AR3	

CO	

CO	

AC7	

/16	

/16	

/8	

/8	

/8	

/8	

/8	

/8	

X	

IR	 /19	

AC	

MAU	

D	

ROM	

BUS-AC	

BUS-D	

PC	

CU	

RAM	 /8	

XOUT	

OUT6	

Video	

Blinkenlights	

Audio	

/8	

/4	

/4	

Input	

IX	

/8	/8	

OUT6	

Data	bus	Result	bus	

RESET	

AC	bus	

Reference	CPU	design	(SAP-1)	
•  Von	Neumann	architecture	
•  1	central	bus	is	bottleneck:	complexityé	
•  Must	be	microcoded:	speedêê	

Our	design	
•  Harvard	architecture	
•  Split	bus	for	efficiency:	chip	countê	
•  Can	do	1	instruction	per	cycle:	speedéé	

PC	

MAR	

Memory	

IR	

BUS	

A	

ADD/
SUB	

OUT	

B	

CU	

4	

8	

8	

8	

8	

4	

4	

8	

8	

4	

..12..	

8	

8	

										8	

										8	

SAP1	reference:	famous	but	(much)	too	simple	
Bus	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

/8	

OUT	

Y	

ALU	

CLK	

BUS-IN	

EL	 EH	

/OE	

/WE	

/IE	

/AE	

/DE	

/LD	

/XL	

/OL	

/PL	

/PH	

AC7	 CLK	

/YL	

AL	AR0	…	AR3	

CO	

CO	

AC7	

/16	

/16	

/8	

/8	

/8	

/8	

/8	

/8	

X	

IR	 /19	

AC	

MAU	

D	

ROM	

BUS-AC	

BUS-D	

PC	

CU	

RAM	 /8	

XOUT	

OUT6	

Video	

Blinkenlights	

Audio	

/8	

/4	

/4	

Input	

IX	

/8	/8	

OUT6	

Data	bus	Result	bus	

RESET	

AC	bus	

2017-03-31:	Start	building	it	on	a	breadboard	

Data	paths	are	known.	The	design	details	can	be	worked	out	as	we	go	

2017-04-08:	ALU	from	multiplexers	and	adders	

The	last	detail	is	…	the	instruction	set	
Control	Unit	

IR1	

/DE	/OL	

IR4	

AL		AR0		AR1		AR2		AR3	 /WEφ2	

AC7	CLK	

INV	

		B	
A&B	
A|B	
A^B	

	
A+B	
A-B	
A	
-A	

[D],	AC	
[X],	AC	

[Y,D],	AC	
[Y,X],	AC	

	
[D],	X	
[D],	Y	

[D],OUT	
[Y,X++],OUT	

Mapping	8	instruction	bits	to	
19	control	signals	with	6	chips	
1.  ALU	decoder	 	 	74138/55	
2.  Addressing	decoder 	 	74138	
3.  Conditional	jumps	 	 	74153	
4.  Bus	decoder	&	far	jumps 	74139	
5.  Inverters 	 	 	74240	
6.  OR	gates 	 	 	7432	

IX	

OR	

/LD	

IR7	

/J	

/XL	

INV	

/PH	

/W	

OR	

IR0	IR3	 IR2	IR6	 IR5	

	/YL	 EH	 EL	 /OE	 /AE		/IE	

CO	

=	
diode	on	
junction	

=	

E	

OR	 OR	

	
I0					Ao									A1	

I1	
I2	
I3	
	
	
	
	
/E	
	

/PL	

INV	

/E	

O0			O1			O2			O3	

NC	 NC	 NC	

O0			O1			O2			O3	

½	74139	

74153	

74138	74155	
or	74138	

0.	LD	
1.	AND	
2.	OR	
3.	XOR	
	
4.	ADD	
5.	SUB	
6.	ST	
7.	JMP	

0.	
1.	
2.	
3.	
	
4.	
5.	
6.	
7.	

Notes:	
1.	AC	and	OUT	must	be	‘377	to	support	consecutive	updates		
2.	Y	can	be	a	‘273	because	consecutive	loads	can	ignore	all	
but	the	last	value.	For	AC	and	OUT	this	is	different.	
3.	X	is	made	out	of	‘161	or	‘163	chips	

Wired	
AND	

=	
Pull	
up	

W	
INV	

2017-05-21	Marcel	van	Kervinck	

½	74139	

0.	JMP	
1.	BGT	
2.	BLT	
3.	BNE	
4.	BEQ	
5.	BGE	
6.	BLE	
7.	BRA	

N/A	

NOP
LD
AND
OR
XOR
ADD
SUB
ST

16	native	instructions,	
32	modes	(not	all	are	useful)	

JMP
BGT
BLT
BNE
BEQ
BGE
BLE
BRA

…	to	19	control	signals	with	
6	logic	chips	and	30	diodes	

Map	8	instruction	bits	…	

Instruction	and	mode	
define	what	all	units	do	

2017-05-02:	First	simple	program	loop	

address	
|				encoding	
|				|					opcode	
|				|					|				operand	
|				|					|				|	
V				V					V				V	
0000	0000		ld			$00	
0001	0001		ld			$01	
0002	0002		ld			$02	
0003	0003		ld			$03	
0004	0004		ld			$04	
0005	0005		ld			$05	
0006	0006		ld			$06	
0007	fc00		bra		$00	
0008	0008		ld			$08	

Fibonacci	program	
0000	0000		ld			$00				;	outer	loop	
0001	c200		st			[$00]		;	a=0	
0002	0001		ld			$01				;	b=1	
0003	fc0a		bra		$0a	
0004	0200		nop									;	(pipelining)	
0005	0100		ld			[$00]		;	inner	loop	
0006	c202		st			[$02]		;	tmp=a	
0007	0101		ld			[$01]	
0008	c200		st			[$00]		;	a=b	
0009	8102		adda	[$02]	
000a	c201		st			[$01]		;	b+=tmp	
000b	1a00		ld			ac,out	;	emit	next	Fibonacci	number	
000c	f405		bge		$05				;	repeat	if	bit7	is	still	0	
000d	0200		nop									;	(pipelining)	
000e	fc00		bra		$00				;	start	over	again	
000f	0200		nop									;	(pipelining)	

F(n)	=	F(n-2)	+	F(n-1)	
0	
1	
1	
2	
3	
5	
8	
13	
21	
34	
55	
89	
144	
…	

2017-05-11:	First	Fibonacci	series	computed	

2017-05-13:	First	video	signals	from	software	

2017-05-25:	First	pixels	from	RAM	

https://www.youtube.com/watch?v=MHs7bQgqABM	

First	moving	video	from	my	breadboard	TTL	color	computer.	Again,	the	test	image	is	just	
initialized	SRAM	garbage	with	some	lines	drawn	over	it.	

2017-05-28:	First	moving	video	

2017-06-13:	The	breadboard	becomes	self-aware	

34	TTL	chips	/	930	logic	gates	
2x	EEPROM	and	32K	SRAM	

And	it	blinks	
an	LED	

And	Hackaday	covers	it	again	J	

Minimalism	at	work	

No	standard	instruction	set	
No	interface	adapter	chips	
No	linear	address	space	
No	relative	addressing	

No	flags	register	

No	register	file	
No	timer	chips	
No	sound	chip	
No	video	chip	
No	interrupts	

	
	“If	it	can	be	done	in	software,	

you	don’t	need	hardware	for	it”	

But	how	do	you	program	that?	

Native	code	for	hardware	functions	
	Bit-bang	VGA	compatible	signals,	
	4	channel	sound,	I/O,	blinkenlights,	
	reset,	ROM	as		disk,	
	and	applications	…	

Use	Python	as	offline	assembler	
	E.g.:	def	nop():	ROM.append((0x02,	0x00))	
	Not	an	assembler	in	Python!	
	🤭	Python	syntax	for	assembly	
	😀	Get	a	macro	assembler	for	free	

Memory	load/store:					 	ld	st	
Logical	operations:				 	anda	ora	xora	
Arithmetic	operations:	 	adda	suba	
Unconditional	jumps:			 	jmp	bra	
Conditional	jumps:					 	bgt	beq	bge	

	 	 	 	blt	bne	ble	
No	operation:						nop	

16	instructions,	8-bits	

EPROM	

In	reality	we	could	only	do	very	simple	demos	this	way	

Application	logic	mixed	with	video	generation	loop.	
No	interrupts,	so	we	must	count	every	instruction	to	keep	VGA	in	sync.	This	is	tedious.	

Game	with	bricks,	ball	and	bat	

Need	a	higher	abstraction	level:	16-bit	virtual	CPU	

Native	code	for	hardware	functions	
	Bit-bang	VGA	compatible	signals,	
	4	channel	sound,	I/O,	blinkenlights,	
	reset,	ROM	as		disk,	and	…	
	an	interpreted	virtual	CPU:	vCPU	

High	
level	

vCPU	runs	application	code	from	RAM	
	SWEET16	inspired,	Von	Neumann!	
	34	self-timed	instructions	
	Can	mix	with	native	8-bit	code	
	Load	from	ROM	disk	or	input	port	

	

On	system	

Low	
level	

ADDI	ADDW	ALLOC	
ANDI	ANDW	BCC	
BRA		CALL	DEEK	
DEF		DOKE	INC	
LD			LDI		LDLW	
LDW		LDWI	LSLW	
LUP		ORI		ORW	
PEEK	POKE	POP	
PUSH	RET		ST	
STLW	STW		SUBI	
SUBW	SYS		XORI	
XORW	

34	instructions,	16-bits	

2017-11-12:	vCPU	interpreter	works	

Some	first	programs	we	wrote	with	vCPU	

Snake	 Racer	Scroller	

Wise	people	stop	here	

So	we	make	it	a	kit!	It	sounds	like	fun	and	our	friends	ask	for	one…	
	Focus	all	efforts	on	1st	time	right	builds:	assembly	manual,	videos,	website	
	The	hardest	part:	stop	working	on	new	features	for	a	while		
	Talk	a	lot	with	other	kit	makers	and	potential	users	
	Find	suppliers	for	quality	parts	
	All	details	matter	
	Run	beta-tests	

	

“There	is	no	product	obscure	enough	that	
people	are	not	interested	in	it.”	

Oscar	“Obsolescence	Guaranteed”	Vermeulen	

PiDP-11	PiDP-8	

Next	phase:	learn	to	make	a	printed	circuit	board	
First	one	could	be	brought	to	life	\o/	

PCB	displaying	an	image	of	its	prototype	

About	10	weeks	work	

Done	in	Kicad4	

Manually	routing	for	interesting	layout	

LD AND OR XOR ADD SUB

AB B A∧B A∨B A≠B B ~B

11 1 1 1 0 1 0

01 1 0 1 1 1 0

10 0 0 1 1 0 1

00 0 0 0 0 0 1

For	example:	here	the	
diodes	visualize	the	truth	
tables	for	each	operation	
No	diode	=	0,	Diode	=	1	

Nice	enclosure	

Fool	proof	manual	

Buying	parts	

Tedious	logistics	

Computer	as	a	DIY	soldering	kit	

Just	need	a	soldering	iron,	a	multi-meter	and	3-4	hours	of	time	to	build.	No	oscilloscope	needed	

A	new	one	is	born	every	day	now	

Community	after	first	month	

Lines	demo	

Fast	sprites	

Gigatris	

Game	of	Life	

YouTube	spreads	the	word	

The	8-Bit	Guy	

EEVblog	

Not	all	ideals	made	it	into	“v1”	

	
There	was	no	keyboard	hookup	

	 	Even	the	PS/2	protocol	turns	out	to	be	an	ugly	beast.	

	
	
There	was	no	built-in	BASIC	

	 	Bill	Gates	doesn’t	respond	to	our	e-mails	and	it	takes	many	weeks	to	write	a	BASIC.	

🤷	

2018-06-05	So	we	carried	on	

Can	you	can	guess	what	this	is?	

2017-06-07	Prototype	PS/2	keyboard	adapter	

2018-07-24	Pluggy	McPlugface	

This	summer	we	ported	Tiny	BASIC	to	the	Gigatron	

Fibonacci	(again),	in	BASIC	

This	time	with	bignums	

In	the	meantime,	users	have	written	more	cool	games	

Another	episode	by	the	8-Bit	Guy	just	released	

What’s	at	the	horizon?	

Gigatron	team	
•  Tutorials	
•  Support	
•  Bug	fixes	
•  …	
	

Community	
•  Games	(Galaga?)	
•  More	tooling?	
•  Hardware	hacks?	
•  6502	emulator?	
•  FORTH?	
•  …	
	

And	oh,	remember	our	original	goal?	

Source:	http://www.talkingelectronics.com	

Tom	Pittman’s	1977	Tic-Tac-Toe	BASIC	program	works	

Thank	you	
for	your	
attention!	

