
retro 1 design/learning log 
 

1. Setup Circuit like here (except don’t use SO pin): 
http://www.grappendorf.net/projects/6502-home-computer/eeprom-and-a-first-program 

2. Add a 3.3k resistor between BE pin and vcc (this is needed for 65c02) 
3. hook up logic analyzer to data pins and check that data is correct ie: 

A9,12,4C,00,80 etc… 
 

Code (note I changed fff0 address to 1ff0):  
00008000  a9 12 4c 00 80 00 00 00  00 00 00 00 00 00 00 00 

00008010  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 

* 

00001ff0  00 00 00 00 00 00 00 00  00 00 00 80 00 80 00 80 

00010000 

What’s happening?  
When the 65C02 starts up it first will execute whatever code is at the reset vector. 

Therefore it’ll put 1ffc and 1ffd (the reset vector location. Actually the real location seems to be 
fffc and fffd) out on its address bus. It’s up to the glue logic to make sure the rom is setup to 
respond to this address. The above reset vector points to address 8000 (remember that this is 
written in little endian so the 80 will be before 00). In this particular circuit, there is no glue logic. 
We wire up rom oe/ce to ground and we to vcc. This essentially just makes the rom spit out 
whatever data is on the address bus. Next we will try to add some glue logic.  
 

http://www.grappendorf.net/projects/6502-home-computer/eeprom-and-a-first-program


 



 
 
Basic Glue Logic 
 
Keep 65c02 setup as above. Setup via/decoder as explained here 
:​http://www.reocities.com/SiliconValley/2072/6502prj1.htm​.  
 

1. For program, since we’re using the AT28C256 ROM, our reset vector is at 7FFC/7FFD. 
And our code will have to start at address 6000 to work without modifying anything else. 

a. I figured out reset vector since the cpu will look for the vector at FFFC/FFFD - but since 
the AT28C256 only has 15 address lines, it won’t see the last binary 1. So instead of 
1111111111111100(FFFC) the ROM will see 11111111111110(7FFC).  

b. if our reset vector contains E000, that will translate to address 6000 by the ROM since it 
will only see the lower 15 address lines (ie instead of 1110000000000000 it sees 
110000000000000) 

 
 
 

 

http://www.reocities.com/SiliconValley/2072/6502prj1.htm


 
 
 
Better glue logic 
 
keep BE set high as well as RDY, IRQ, and NMI to vcc. Setup 74ls00 for address decoding as 
shown here:  
http://zx80.netai.net/grant/6502/Simple6502.html 
https://web.archive.org/web/20130816003149/http://searle.hostei.com/grant/6502/Simple6502.h
tml 

 
This creates the following memory map: 
0000-7FFF 32K RAM 
8000-9FFF FREE SPACE (8K) 
A000-BFFF SERIAL INTERFACE (minimally decoded) 
C000-FFFF 16K ROM (BASIC from C000 TO DED3, serial routines FF00 to FFFF, so a large 
amount of free space suitable for a monitor etc) 
 

As you can see this memory map has the RAM at the beginning of the map, the IO in the 
middle, and the ROM placed at the end. This is fairly typical of computers built around the 80s. 
We typically place the ROM at the end of the map because that’s the address that the reset 

http://zx80.netai.net/grant/6502/Simple6502.html
https://web.archive.org/web/20130816003149/http://searle.hostei.com/grant/6502/Simple6502.html
https://web.archive.org/web/20130816003149/http://searle.hostei.com/grant/6502/Simple6502.html


vector will try to access. Having the RAM at the beginning gives us options of having the zero 
page stored in RAM.  

This address decoding is superior to the one presented with the 738 decoder because 
it’s actually using the rw and phase 2 lines to correctly assign the read and write cycles for both 
the ROM and RAM. Doing the address decoding this way should make the system more stable 
as well as provide a better framework for future IO expansion. This is explained a little better 
here: 
http://forum.6502.org/viewtopic.php?f=12&t=3214 
http://forum.6502.org/viewtopic.php?t=168 
http://forum.6502.org/viewtopic.php?t=511 
 
 
For another address decoding example you can check out: 
http://www.6502.org/users/garth/projects.php?project=1&schematic=2 
http://wilsonminesco.com/6502primer/addr_decoding.html 
 
In future revisions I may consider swapping out the 74ls00 with something that can 
accommodate higher speeds, like maybe something from the 74hc or even better 74ac 
family(​http://www.digikey.com/product-search/en?mpart=CD74AC00E&vendor=296​ ). 
 
With this setup our reset vector is at 7FFC/7FFD and contains address C000. Since our ROM 
only sees the lower 15 lines, this address gets translated to 4000 on the ROM, so that’s where 
we place our code. You can use the same program as above to test the ROM again, only 
replace the  jump to 8000 with C000. ie 
00004000  a9 12 4c 00 c0 00 00 00  00 00 00 00 00 00 00 00 

 
I made this little program to test the RAM: 
 
LDX #$FF 
STX $3000     ;$3000 = #$FF 
 
main: LDX $3000 
DEX 
STX $3000 
JMP main 
 
essentially this stores FF at RAM location 3000 and then decrements it and stores the value in 
back in the x register. After assembling this code I made sure the address for main after jmp 
was pointing to C005 which is the address where the instruction LDX $3000 begins. 
 
00004000  a2 ff 8e 00 30 ae 00 30 ca 8e 00 30 4c 05 c0 00 

 

http://www.6502.org/users/garth/projects.php?project=1&schematic=2
http://forum.6502.org/viewtopic.php?f=12&t=3214
http://wilsonminesco.com/6502primer/addr_decoding.html
http://forum.6502.org/viewtopic.php?t=511
http://forum.6502.org/viewtopic.php?t=168
http://www.digikey.com/product-search/en?mpart=CD74AC00E&vendor=296


then all that was left to do was hook up the logic analyzer to the data bus and see if the 
decrement was happening, which it was! yay! 
 

 



 
 

 ​Connecting an ACIA (MC6850) 
 
A good rundown of how the 6850 is setup is found here:  ​http://alanclements.org/serialio.html 
datasheet for MC6850: ​http://dev-docs.atariforge.org/files/MC6850.pdf 
https://books.google.com/books?id=YMyjBQAAQBAJ&pg=PA157&lpg=PA157&dq=acia+6850+
example&source=bl&ots=LQs-rqLlVx&sig=wY1piDFI7EmCYBK8JsvLpax8dBI&hl=en&sa=X&ve
d=0ahUKEwjX-Mi50vnJAhUK7mMKHWdACEI4ChDoAQgoMAI#v=onepage&q=acia%206850%
20example&f=false​ (some example 6502 code to interface with the 6850) 
 
Connecting an ACIA (65c51) 
 
http://forum.6502.org/viewtopic.php?f=4&t=2543&start=30​ (shows workaround for errata wdc 
version) 
connect 65c51 as described here (ignore address decoding logic though): 
http://www.grappendorf.net/projects/6502-home-computer/acia-serial-interface-hello-world 

https://books.google.com/books?id=YMyjBQAAQBAJ&pg=PA157&lpg=PA157&dq=acia+6850+example&source=bl&ots=LQs-rqLlVx&sig=wY1piDFI7EmCYBK8JsvLpax8dBI&hl=en&sa=X&ved=0ahUKEwjX-Mi50vnJAhUK7mMKHWdACEI4ChDoAQgoMAI#v=onepage&q=acia%206850%20example&f=false
https://books.google.com/books?id=YMyjBQAAQBAJ&pg=PA157&lpg=PA157&dq=acia+6850+example&source=bl&ots=LQs-rqLlVx&sig=wY1piDFI7EmCYBK8JsvLpax8dBI&hl=en&sa=X&ved=0ahUKEwjX-Mi50vnJAhUK7mMKHWdACEI4ChDoAQgoMAI#v=onepage&q=acia%206850%20example&f=false
http://alanclements.org/serialio.html
https://books.google.com/books?id=YMyjBQAAQBAJ&pg=PA157&lpg=PA157&dq=acia+6850+example&source=bl&ots=LQs-rqLlVx&sig=wY1piDFI7EmCYBK8JsvLpax8dBI&hl=en&sa=X&ved=0ahUKEwjX-Mi50vnJAhUK7mMKHWdACEI4ChDoAQgoMAI#v=onepage&q=acia%206850%20example&f=false
http://dev-docs.atariforge.org/files/MC6850.pdf
https://books.google.com/books?id=YMyjBQAAQBAJ&pg=PA157&lpg=PA157&dq=acia+6850+example&source=bl&ots=LQs-rqLlVx&sig=wY1piDFI7EmCYBK8JsvLpax8dBI&hl=en&sa=X&ved=0ahUKEwjX-Mi50vnJAhUK7mMKHWdACEI4ChDoAQgoMAI#v=onepage&q=acia%206850%20example&f=false
http://forum.6502.org/viewtopic.php?f=4&t=2543&start=30
http://www.grappendorf.net/projects/6502-home-computer/acia-serial-interface-hello-world


 
Instead of the 1.8432 crystal I used a can oscillator attached to xtl1 only. A0 is hooked to rs0, 
A1 is hooked to rs1. cs1 is hooked to A14, and A15 is hooked to CS0. This way when the cpu 
accesses A000 the binary looks like 1010 for A, A15 is high and A14 is low, thereby selecting 
the chip.  
 
NOTE: I discovered some problems with the above address decoding. The problem is 
that the address space for the acia was conflicting with the rest of the IO address space. 
So for instance, if I had the acia initialized, and tried to set a register on one of the VIAs, 
the acia would lose connection. To solve this issue I had to connect the acia cs to the 
74ls138 demultiplexer. 
 
In programming the 65c51 put out by wdc, I discovered that there’s a flaw in the transmit 
function of the chip. This is explained better here, as well as a workaround: 
http://forum.6502.org/viewtopic.php?f=4&t=2543&start=30 
 

http://forum.6502.org/viewtopic.php?f=4&t=2543&start=30


Here’s the finished code which writes Hello World out on the serial line @ 19200 baud. 
 

.setcpu "65C02" 
 

ACIA_DATA = $A000 
ACIA_STATUS = $A001 
ACIA_COMMAND = $A002 
ACIA_CONTROL = $A003 

 
;.segment "VECTORS" 

 
;.word   nmi 
;.word   reset 
;.word   irq 

 
.code 

 
;reset: jmp main 
 
;nmi: rti 
 
;irq: rti 
 
main: 
init_acia: lda #%00001011 ;No parity, no echo, 
no interrupt 

sta ACIA_COMMAND 
lda #%00011111 ;1 stop bit, 8 

data bits, 19200 baud 
sta ACIA_CONTROL 

 
write: ldx #0 
next_char: 
wait_txd_empty: lda ACIA_STATUS 

;and #$10 
;beq wait_txd_empty 
lda text,x 
beq read 
sta ACIA_DATA 
inx 

                                        jsr DELAY_6551 
jmp next_char 

 



read: 
wait_rxd_full: lda ACIA_STATUS 

and #$08 
beq wait_rxd_full 
lda ACIA_DATA 
jmp write 

 
text: .byte "Hello World!", $0d, $0a, $00 
 
DELAY_6551:   PHY      ;Save Y Reg 
         PHX      ;Save X Reg 
DELAY_LOOP:   LDY   #2    ;Get delay value (clock rate in MHz 2 clock cycles) 
; 
MINIDLY:   LDX   #$68      ;Seed X reg 
DELAY_1:      DEX         ;Decrement low index 
         BNE   DELAY_1   ;Loop back until done 
; 
         DEY         ;Decrease by one 
         BNE   MINIDLY   ;Loop until done 
         PLX         ;Restore X Reg 
         PLY         ;Restore Y Reg 
DELAY_DONE:   RTS  
 
And here’s the compiled binary 
 

 
 
 
And the reset vector: 
 

 
 



 

 
 



Todo: should I wire acias rtsb to its own ctsb? Also need to probably have parity checking etc. 
 
IO Expansion 
 
might use something like these 3-8 decoders: 
http://www.digikey.com/product-search/en?mpart=74AC11138N&vendor=296​ (faster but more 
expensive.) 
http://www.digikey.com/product-search/en?mpart=CD74AC138E&vendor=296​ (slower but 
cheaper.) 
 
I’m thinking of shifting around the memory map a bit possibly to expand my rom a bit and still 
provide plenty of IO, see post here: ​http://forum.6502.org/viewtopic.php?f=4&t=3211&start=0 
 
 
I may try to get a faster eeprom: 
http://www.digikey.com/product-search/en?pv143=17&FV=fff40027%2Cfff80434%2C23c0005%
2C23c0011%2Cf040002&mnonly=0&newproducts=0&ColumnSort=0&page=1&stock=1&quantit
y=0&ptm=0&fid=0&pageSize=25 
http://www.digikey.com/product-detail/en/AT28HC64B-70JU/AT28HC64B-70JU-ND/1914233 
 
To prototype this section of the computer I’m sticking with the sn74ls138 3 to 8 demultiplexer, 
which is a pin compatible although slower version of the CD74AC138E chip. My current memory 
map includes approximately 8k of free space between $8000-$9FFF, which will encompass my 
IO ports. Using the sn74ls138 allows me to add up to 8 IO devices with just a single chip. To get 
a better understanding of where the sn74ls138 will go and how it will divide up the memory for 
our IO devices, let’s take a look at our current memory map: 
 

  
RAM START ($0000)        = 0000 0000 0000 0000 

RAM END ($7FFF)          = 0111 1111 1111 1111 

FREE SPACE START ($8000) = 1000 0000 0000 0000 

FREE SPACE END ($9FFF)   = 1001 1111 1111 1111 

SERIAL START ($A000)     = 1010 0000 0000 0000 

SERIAL END ($BFFF)       = 1011 1111 1111 1111 

ROM START ($C000)        = 1100 0000 0000 0000 

ROM END ($FFFF)          = 1111 1111 1111 1111 

 

To begin thinking about how we’re going to provide address decoding to our 

free space ($8000-$9FFF) we need to take a look at how the address lines that 

make up that space are unique. Typically you want to hook up your address 

decoding to the last 3 or 4 address lines on the bus, so A15-A12, so let’s 

look specifically at those values. To do this we’ll look at the address space 

http://www.digikey.com/product-search/en?pv143=17&FV=fff40027%2Cfff80434%2C23c0005%2C23c0011%2Cf040002&mnonly=0&newproducts=0&ColumnSort=0&page=1&stock=1&quantity=0&ptm=0&fid=0&pageSize=25
http://forum.6502.org/viewtopic.php?f=4&t=3211&start=0
http://www.digikey.com/product-detail/en/AT28HC64B-70JU/AT28HC64B-70JU-ND/1914233
http://www.digikey.com/product-search/en?pv143=17&FV=fff40027%2Cfff80434%2C23c0005%2C23c0011%2Cf040002&mnonly=0&newproducts=0&ColumnSort=0&page=1&stock=1&quantity=0&ptm=0&fid=0&pageSize=25
http://www.digikey.com/product-search/en?mpart=74AC11138N&vendor=296
http://www.digikey.com/product-search/en?pv143=17&FV=fff40027%2Cfff80434%2C23c0005%2C23c0011%2Cf040002&mnonly=0&newproducts=0&ColumnSort=0&page=1&stock=1&quantity=0&ptm=0&fid=0&pageSize=25
http://www.digikey.com/product-search/en?mpart=CD74AC138E&vendor=296


immediately preceding the free space, as well as the one immediately 

following it.  

 
A15 A14 A13 A12 

RAM END ($7FFF) 0 1 1 1 
FREE START ($8000) 1 0 0 0 
FREE END ($9FFF) 1 0 0 1 
SERIAL START ($A000) 1 0 1 0 
 
Now, looking at these address lines, what can we see that would differentiate our free space 
that we want to decode versus the space surrounding it? First off we notice that A15 in our free 
space always is a 1, whereas our RAM section holds a 0 at A15. This isn’t enough to completely 
differentiate free space from our serial start address though, since serial also has a 1 in A15. 
Next we can see that A13 for free space is always 0, whereas the other 2 sections are 1. In 
addition, A14 in free space is always 0. Using this information we can see that in order to 
decode our free space memory, we need our address decoder to check that A15 is 1, as well as 
A14 and A13 are 0. So, how do we accomplish this? Checking the datasheet for the 
SN74LS138, we can see that there are 3 enable pins which can create the glue logic we need.  

 



 
 
As you can see, G1, G2A, and G2B are used to enable the output of the SN74LS138. We can 
use these pins to come up with the logic needed to decode our free space. First off the outputs 
are only enabled when G1 is high (logic 1), so we can tie A15 to G1 since we know that needs 
to always be a 1 for our free space section. Now we just need to ensure that A14 and A13 are 
both 0. We can see from the function table above that G2A and G2B need to both be low in 
order for the outputs to be enabled. This works out perfectly for us if we tie A14 to G2A and A13 
to G2B, since both those address lines will be low in our address map. Using this address 
decoding method, we now have everything we need to decode our free space.  
 
Now that we have our enable pins figured out on our SN74LS138, we need to figure out where 
to hook up the A,B,C inputs in order to enable the specific Y0-Y7 chip select pin that we need. 
From the function table above we can see that the A,B, and C pins determine which one of the 8 
Y output pins will be set low. By connecting A8 to A, A9 to B, and A10 to C, we can come up 
with the following IO Decoding table: 

C B A 
A10 A9 A8 

VIA1 IO1($8000) 0 0 0 
VIA2 IO2($8100) 0 0 1 
SID IO3($8200) 0 1 0 

IO4($8300) 0 1 1 
IO5($8400) 1 0 0 
IO6($8500) 1 0 1 
IO7($8600) 1 1 0 
IO8($8700) 1 1 1 

 
 
With this knowledge we are ready to hook up our vias. For both vias, connect them as shown 
here: 



 
For CS2, run them to the appropriate Y connector of the SN74LS138 (Y0 to Via1 and Y1 to 
Via2). 
On the final board I want to add jumpers from the irq pin of the 6522 to choose to connect the 
pin to either the nmi or irq pin of the 6502. Note, that I should be able to chain these irq lines 
together, as long as I choose the right kind of 65c52 (I think it’s 65c52s …?).  
 
Next I wrote this little program to test the 2 vias. It should cause PB0(pin10) and PB1(pin11) to 
blink. 
 
          .setcpu "65C02" 
 
          VIA1_DDRB = $8022 
          VIA1_ORB  = $8020 
          VIA1_DDRA = $8023 
          VIA1_ORA  = $8021 
          VIA2_DDRB = $8122 
          VIA2_ORB  = $8120 
          VIA2_DDRA = $8123 
          VIA2_ORA  = $8121 
  
 
          .segment "VECTORS" 
 
          .word   nmi 
          .word   reset 



          .word   irq 
 
          .code 
 
reset:    jmp main 
 
nmi:      rti 
 
irq:      rti 
 
main:     lda #$ff 
          sta VIA1_DDRB 
          sta VIA2_DDRB 
 
loop:     lda #$01 
          sta VIA1_ORB 
          sta VIA2_ORB 
          jsr delay 
          lda #$02 
          sta VIA1_ORB 
          sta VIA2_ORB 
          jsr delay 
          jmp loop 
 
delay:    ldx #200 
@delay2:  ldy #0 
@delay1:  dey 
          bne @delay1 
          dex 
          bne @delay2 
          rts 
 
 
And here’s the config file: 
 
#check out http://www.cc65.org/doc/ld65-5.html for info on this config 
 
MEMORY 
{ 
  ROM: start=$8000, size=$8000, type=ro, define=yes, fill=yes, file=%O; 
} 
 
SEGMENTS 



{ 
  CODE: load=ROM, type=ro, offset=$4000; 
  VECTORS: load=ROM, type=ro, offset=$7FFA; 
} 
 

 
 
 
Adding an LCD 
 
Now that we have the IO figured out and the 2 VIAs connected, we can move on to adding an 
lcd!  
I chose the HD44780 lcd chipset, since I already had a couple lying around. The one I hooked 
up was from an old 90s printer I salvaged! These lcds are also fairly common today. I included 
links to datasheets and other sites that helped me interface with it in the resources section.  
 



To start out with I connected VIA2 to the lcds data, register select, and enable lines as shown 
here: 

 
Note that in my case I didn’t need to connect an E2(Enable 2) pin, since my lcd only has 2 lines, 
and therefore only had one enable pin. So just ignore the connection going from PA6(pin 8) of 
the via. 
 
Here’s a little program I wrote to show how to initialize the lcd and write out “Hello World” on the 
screen:  
 
 ​               .setcpu "65c02" 
                .include "macros.inc65" 

  

                .include "io.inc65" 

  

 

                LCD_D4  = VIA_PA0 

                LCD_D5  = VIA_PA1 

                LCD_D6  = VIA_PA2 

                LCD_D7  = VIA_PA3 

                LCD_RS  = VIA_PA4 

                LCD_EN1 = VIA_PA5 

                LCD_EN2 = VIA_PA6 

 

 

  

 

enable_bits:    .byte 0 

 

                .segment "VECTORS" 



 

          .word   nmi 

          .word   reset 

          .word   irq 

 

          .code 

 

reset: jmp main 

 

nmi: rti 

 

irq: rti 

 

main: 

 

                      jmp lcd_init2 

  

  

loop: 

  

                jmp loop 

lcd_init2:  

                lda #$ff 

                sta VIA2_ORA 

                sta VIA2_DDRA 

                ldx #50 

                jsr delay_ms 

  

                ;set register select bit to 0 for command/control 

  

                ;start init sequence 

                lda #$03 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$03 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$03 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$02 

                jsr strobe_enable 



                ldx #3 

                jsr delay_ms 

  

                ;now in 4 bit mode 

  

                ;function set 

                lda #$02 ;set data length to 4 bits 

                jsr strobe_enable 

  

  

                ;no delay needed here 

  

  

                lda #$08 ;2 lines 5x8 pixels 

                jsr strobe_enable 

                ldx #3 

                jsr delay_ms 

  

                lda #$00 ;turn display off 

                jsr strobe_enable 

                lda #$08  

                jsr strobe_enable 

                ldx #3 

                jsr delay_ms 

  

                lda #$00 ;clear display 

                jsr strobe_enable 

                lda #$01 

                jsr strobe_enable 

                ldx #3 

                jsr delay_ms 

  

                lda #$00 ;entry mode set 

                jsr strobe_enable 

                lda #$06 

                jsr strobe_enable 

                ldx #3 

                jsr delay_ms 

                ;end of initialization 

  

                lda #$00 ;turn display on 

                jsr strobe_enable 

                lda #$0f ;display on, cursor on, blink on 

                jsr strobe_enable 

                ldx #3 

                jsr delay_ms 

  

                lda #$00 ;CURSOR HOME 



                jsr strobe_enable 

                lda #$02 ;cursor home 

                jsr strobe_enable 

                ldx #3 

                jsr delay_ms 

  

                jmp write_hello_world 

  

write_hello_world: 

                 ;send H 

                lda #$14 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$18 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                ;send E 

                lda #$14 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$15 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                ;add in extra strobe for reading 8 status bits 

                lda #00 

                jsr strobe_enable 

                lda #00 

                jsr strobe_enable 

  

                ;send L 

                lda #$14 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$1C 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  



                ;send L 

                lda #$14 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$1C 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                ;send O 

                lda #$14 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$1F 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                ;send space 

                lda #$12 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$10 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                ;send W 

                lda #$15 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$17 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                ;send O 

                lda #$14 

                jsr strobe_enable 

                ldx #5 



                jsr delay_ms 

  

                lda #$1F 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                ;send R 

                lda #$15 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$12 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                ;send L 

                lda #$14 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$1C 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                ;send D 

                lda #$14 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$14 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                ;send ! 

                lda #$12 

                jsr strobe_enable 

                ldx #5 

                jsr delay_ms 

  

                lda #$11 

                jsr strobe_enable 



                ldx #5 

                jsr delay_ms 

  

                jmp loop 

  

strobe_enable:  

                ora #$20        ;add enable bit 

                sta VIA2_ORA    ;send value out to via 

                ldx #10 

                jsr delay_ms 

                and #$DF        ;mask to take out enable 

                sta VIA2_ORA    ;take out enable bit and send to via 

  

                rts 

  

; Delay the number of miliseconds specified by X 

; This is hardcoded for a 1 MHz system clock 

delay_ms:   pha       ; 3 

            txa       ; 2 

            pha       ; 3 

            tya       ; 2 

            pha       ; 3 

 

            ldy $00     ; 3 (dummy operation) 

            ldy #190    ; 2 

@loop1:     dey       ; 190 * 2 

            bne @loop1    ; 190 * 3 - 1 

 

@loop2:     dex       ; 2 

            beq @return   ; (x - 1) * 2 + 3 

 

            nop       ; 2 

            ldy #198    ; 2 

@loop3:     dey       ; 198 * 2 

            bne @loop3    ; 198 * 3 - 1 

 

            jmp @loop2    ; 3 

 

@return:    pla       ; 4 

            tay       ; 2 

            pla       ; 4 

            tax       ; 2 

            pla       ; 4 

            rts       ; 6 (+ 6 for JSR) 

 



 
 
resources: 
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf 
http://web.stanford.edu/class/ee281/handouts/lcd_tutorial.pdf 
https://www.arduino.cc/en/Tutorial/HelloWorld 
http://www.bipom.com/documents/appnotes/LCD%20Interfacing%20using%20HD44780%20Hit
achi%20chipset%20compatible%20LCD.pdf 
http://web.alfredstate.edu/weimandn/lcd/lcd_initialization/lcd_initialization_index.html 
 
 
 
 
 
 
 
 
 
 
 

http://www.bipom.com/documents/appnotes/LCD%20Interfacing%20using%20HD44780%20Hitachi%20chipset%20compatible%20LCD.pdf
http://www.bipom.com/documents/appnotes/LCD%20Interfacing%20using%20HD44780%20Hitachi%20chipset%20compatible%20LCD.pdf
http://web.alfredstate.edu/weimandn/lcd/lcd_initialization/lcd_initialization_index.html
https://www.arduino.cc/en/Tutorial/HelloWorld
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf
http://web.stanford.edu/class/ee281/handouts/lcd_tutorial.pdf


Adding SID (sound interface device) Chip 
 

 
For the audio out circuitry I stuck a 1k resistor from the 6581 pin 27 to ground and then ran the 
signal over to an amplifier built from an lm386 circuit found here: 
https://www.youtube.com/watch?v=PPQ87kjEgBA​ . I was thinking on the eventual board I could 
stick a switch between the gain boost 10uf cap and the resistor between pins 1 and 8 of the 
lm386. This would allow me to turn the gain on for driving large speakers, but then turn it off 
when listening to headphones etc. Instead of an lm386, since those are now obsolete, I could 
use this chip: ​http://www.digikey.com/product-detail/en/NJM386D/NJM386D-ND/805736​, which 
is a drop in replacement for the lm386. 
 
resources: 
http://www.grappendorf.net/projects/6502-home-computer/sid-sound.html 
http://www.acsu.buffalo.edu/~robertsz/projects/SID/index.html 
 

https://www.youtube.com/watch?v=PPQ87kjEgBA
http://www.acsu.buffalo.edu/~robertsz/projects/SID/index.html
http://www.digikey.com/product-detail/en/NJM386D/NJM386D-ND/805736
http://www.grappendorf.net/projects/6502-home-computer/sid-sound.html


http://archive.6502.org/datasheets/mos_6581_sid.pdf 
http://www.deblauweschicht.nl/tinkering/mos6581_1.html 
http://www.sidmusic.org/sid/sidtech3.html​ (​For best results, the ground line between SID and the 
power supply should be separate from ground lines to other digital circuitry. This will minimize 
digital noise at the audio output.) 
 
On another forum I read that you should ground the ext-in pin of the sid if it was not being used. 
This should prevent extra noise from entering the system. 
 
http://csdb.dk/forums/index.php?roomid=7&topicid=36766&showallposts=1 
 
This method is pretty effective atleast on 6581 chips, it insulates 6581 from the data and 
address busses when CS (Chip select) line for sid is not active. 
 
Combined with filtered and separate +12v and +5v voltages and own separate grounding it 
improves output quality alot. Also grounding potx, poty and ext-in lines with small (1nF) 
capasitor helps littlebit on the way. Also building separate audio out buffer (pre amp) and 
making own audio out connector helps on the way too. 
 
http://www.lemon64.com/forum/viewtopic.php?t=47932&sid=5920081b88b25de7e4688e5
584dcfafe 
 
http://www.commodore64site.nl/schematics/251469-1of2.gif  
 
https://www.c64-wiki.com/images/5/5b/PRG_Schematic_%28right%29.gif 
(c64 schematic showing sid circuitry) 
 
 
also 8580 sid chip (later version of 6581) 
another possible sound chip: ​https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910 
AY-3-8910, AY-3-8912, YM2149 

YM2203  
 
 
 
 
Adding Compact Flash 
 
resources: 
https://www.sparkfun.com/datasheets/BreakoutBoards/c0201mspdf.pdf 
http://read.pudn.com/downloads52/ebook/178846/S72032.pdf 
http://forum.6502.org/viewtopic.php?f=4&t=2877 
http://www.msarnoff.org/6809/ 
https://www.sparkfun.com/datasheets/BreakoutBoards/c0201mspdf.pdf 

http://www.msarnoff.org/6809/
https://www.sparkfun.com/datasheets/BreakoutBoards/c0201mspdf.pdf
https://www.c64-wiki.com/images/5/5b/PRG_Schematic_%28right%29.gif
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910
http://archive.6502.org/datasheets/mos_6581_sid.pdf
http://www.sidmusic.org/sid/sidtech3.html
http://www.lemon64.com/forum/viewtopic.php?t=47932&sid=5920081b88b25de7e4688e5584dcfafe
http://www.deblauweschicht.nl/tinkering/mos6581_1.html
https://www.sparkfun.com/datasheets/BreakoutBoards/c0201mspdf.pdf
http://www.lemon64.com/forum/viewtopic.php?t=47932&sid=5920081b88b25de7e4688e5584dcfafe
http://read.pudn.com/downloads52/ebook/178846/S72032.pdf
http://forum.6502.org/viewtopic.php?f=4&t=2877
http://www.commodore64site.nl/schematics/251469-1of2.gif
http://csdb.dk/forums/index.php?roomid=7&topicid=36766&showallposts=1


http://rumkin.com/reference/aquapad/media/cfspc3_0.pdf 
http://sbc.rictor.org/io/IDE.html 
http://dreher.net/?s=projects/CFforApple1&c=projects/CFforApple1/main.php 
https://cowgod.org/replica1/applesoft/ 
http://www.microchip.com/forums/m364311.aspx 
http://elm-chan.org/fsw/ff/00index_e.html 
 
 
 
 
Adding a Keyboard 
 
Should I use a decade counter? 
https://mechanicalkeyboards.com/shop/index.php?l=product_list&c=40&show=100 
 
 
Adding a Case 
polycase.com 
https://www.shapeways.com/model/upload-and-buy/4251306#materials 
http://www.makexyz.com/help/faq 
https://www.3dhubs.com/3dprint#?place=639%20Weaver%20Hill%20Ln,%20Colfax,%20CA%2
095713,%20USA&latitude=39.012399599999995&longitude=-120.97612729999997&distanceU
nit=miles 
http://www.ponoko.com/home 
http://lasergist.com/ 
protocase.com 
emachineshop.com 
bigbluesaw.com 
https://learn.adafruit.com/laser-cut-enclosure-design/overview 
http://parts-badger.com/ 
 
 
something like this: ​https://www.adafruit.com/products/859  

https://mechanicalkeyboards.com/shop/index.php?l=product_list&c=40&show=100
https://www.shapeways.com/model/upload-and-buy/4251306#materials
http://rumkin.com/reference/aquapad/media/cfspc3_0.pdf
http://www.ponoko.com/home
https://cowgod.org/replica1/applesoft/
http://www.microchip.com/forums/m364311.aspx
http://sbc.rictor.org/io/IDE.html
https://www.3dhubs.com/3dprint#?place=639%20Weaver%20Hill%20Ln,%20Colfax,%20CA%2095713,%20USA&latitude=39.012399599999995&longitude=-120.97612729999997&distanceUnit=miles
http://lasergist.com/
https://www.3dhubs.com/3dprint#?place=639%20Weaver%20Hill%20Ln,%20Colfax,%20CA%2095713,%20USA&latitude=39.012399599999995&longitude=-120.97612729999997&distanceUnit=miles
http://www.makexyz.com/help/faq
http://dreher.net/?s=projects/CFforApple1&c=projects/CFforApple1/main.php
https://learn.adafruit.com/laser-cut-enclosure-design/overview
https://www.adafruit.com/products/859
https://www.3dhubs.com/3dprint#?place=639%20Weaver%20Hill%20Ln,%20Colfax,%20CA%2095713,%20USA&latitude=39.012399599999995&longitude=-120.97612729999997&distanceUnit=miles
http://parts-badger.com/
http://elm-chan.org/fsw/ff/00index_e.html


 
 
I’m thinking of naming it STACHE I. And making the lettering in 8 bit with a 3d texture (like 
http://orig05.deviantart.net/ae1f/f/2013/265/1/8/8_bit_moustaches__the_wario_by_mattcantdraw
-d6ncbh5.jpg).  
Or another name might be RETRO I. or retro 1 (all lowercase like apple ii) 
 
 
 
 
 
Adding BASIC 
http://www.asciimation.co.nz/bb/2013/10/02/orwell-keyboard-input-and-basic 
 
Adding real time clock 
https://github.com/ytmytm/c64-ds12c887 
https://courses.engr.illinois.edu/ece391/references/mc146818.pdf 
 
 

https://github.com/ytmytm/c64-ds12c887
https://courses.engr.illinois.edu/ece391/references/mc146818.pdf
http://www.asciimation.co.nz/bb/2013/10/02/orwell-keyboard-input-and-basic

