Project Aims

Over the course of the next few hours you will be learning how to make a line following robot. The
aims of this project are:

* Learn how a line following robot works
* Learn basic programming skills

* Learn basic Arduino skills

* Construct a line following robot

Pack Contents

1x Arduino 3x Wheels

1x Motor shield 1x Long zip tie

1x 9v battery clip 8x Short zip ties

1x 6xAA battery holder 10x 20mm M3 bolts

6x AA Batteries 4x 30mm M3 bolts

1x Base plate 17x M3 nuts

2x Motor mounts 1x Senor PCB

2x Rear axle mounts 5x IR LEDs

2x Sensor holders 5x IR Photodiodes

2x Geared motors 5x 330 Ohm resistors (Orange Orange Brown)
1x Axle shaft 5x 10k Ohm resistors (Brown Black Red)

What is a line following robot and how does it work?

As you might have already guessed, a line follower is a robot that follows a marked line. In this
project the goal will be to design a robot that can navigate a track with multiple turns made from
black electrical tape. The way the robot will be able to detect its position relative to the track will be
via an array of 3-5 Infrared (IR) reflectance sensors. These sensors consist of two parts, an IR LED and
an IR photodiode. The LED emits light, which is then reflected by the surface into the photodiode:

Photo Photo
Diode

IRLED R LED

Diode

Depending on the colour of the surface the amount of light reflected will vary. In our case we will be
using a white surface with a black line. As can be seen in the previous diagram, the black surface
absorbs all the IR light while the white reflects it all. The photodiode will produce a current
proportional to the amount of IR light it receives. Using this we can build the following circuit to
detect whether the sensor is above a white or black surface:

5V

1

R1 R2
330 10K
— Output
D1 D2
\\

L

While ideally the black line will absorb all IR emitted by the LED, in reality this isn’t the case. The
reflected IR and ambient light will mean that the sensor will output a small amount of current even
on the black line. It will be your task to figure out how to solve this in your code later on.

The minimum number of sensors needed to successfully follow a line is two. One on either side of
the track (you can get away with one sensor but its unreliable). Using two sensors tends to lead to a
lot of wobbling so it is recommended to use three, one on the line and one either side.

\ LEFT Outice \J\

%,

LEFT: Insde

LEFT: Outside
— R!GHT:Imde' \ MIDDLE: Outsicie
ACTION: Tumright - . L RIGHT: Insicle

ACTION: Tumright (FAST)

; ‘ LEFT: Outside

RIGHT: Insde \ MDDLE sde
/ ACITION: Forward \ v RIGHT: Insicie

n ACTION: Tumight (SOFT)
' LEFT: Insde

@ RGHT.Ouisd LEFT: Outside

: = \ MIDDLE: Insicde

ACTION: Tum ket T RIGHT: Outsice

' \\ ACITION: Forward

Once you have an array of sensors you can then steer the robot based on how much light each one

receives.

Writing your first Arduino program

1. On the desktop you should find the following icon, double click it to open the Arduino
software:

©.0)

&

Arduino

2. You should then have following window appear:
sketch_sep30a | Arduino 1.6.5 - O X

File Edit Sketch Tools Help

sketch_sep30a

I,":'_i setup() {
// put your setup code here, to run once:

}

void loop() {
// put your main code here, to run repeatedly:

Arduino Uno on COMS

Please take note of the two functions called “setup()” and “loop()”. The setup function is run
once when the Arduino starts, after this the loop function runs indefinitely. Also Arduino

programs are called sketches.

3. If you look at the Arduino pinout diagram provided, you will notice it has 14 digital pins
numbered 0 to 13. These pins can be set as either inputs or outputs. In this example we will
set pin 13 to an output. Pin 13 is connected to an on-board LED. To do this simply add the

following line of code into the setup function:
pinMode (13, OUTPUT) ;

Code is case sensitive so make sure you copy it exactly as shown.

4. Now that pin 13 is set as an output, we can either output “HIGH” or “LOW". Setting a pin
HIGH will make it output 5 volts, while setting a pin LOW will make it output 0 volts.

To change the state of a pin we use the “digitalWrite” function. In this example we will blink
the LED connected to pin 13 once a second (1000 milliseconds). Type the following code into
the loop function:

digitalWrite (13, HIGH);

delay (1000) ;

digitalWrite (13, LOW);
delay (1000);

5. Now that we have written our code it’s time to upload it to the Arduino. The first thing we
need to do is to make sure the Arduino IDE is set to the correct board type. To do this go to
Tools>Board and ensure Arduino Uno is selected:

sketch_sep30a | Arduino 1.6.5 — O X
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
Ekaich_sep 30} Fix Encoding & Reload
void setup() Serial Monitor Ctrl+Shift+M n
// put your| [A
Board: "Arduino Uno" ; =
} Boards Manager...
Port 1
Arduino AVR Boards
void loop() { Programmer: "USBtinylSP" : Arduino Yiin
// put your|
Burn Bootloader E Arduino Uno
} Arduino Duemilanove or Diecimila

Next we need to ensure the Arduino IDE is using the correct COM port. Depending on your
PC configuration there may be more than one. The COM port can be changed by going to
Tools>Port. In the latest version of the Arduino IDE it should show you which COM port is
the Arduino (If you have any problems just ask a demonstrator for help).

6. The last step is to actually upload the code to the Arduino. This can be done by pressing the
arrow button at the top of the Arduino IDE:

File Edit

77‘]° |

If everything has been successful, the bottom part of the window should say “Done
uploading.” (If you get an error call over a demonstrator for assistance).

7. Once the uploading is complete you should notice an LED near the USB plug blinking roughly
once a second.

8. See if you can change the speed at which it blinks, or make the Arduino blink a pattern.

Reading analog inputs (You will need to have soldered your PCB to complete this section)

In the previous section we used the digital I/O (Input/Output) pins as outputs to blink an LED. In your
robot these outputs will be used to drive motors. The next thing we need to learn is how use the
analog inputs. In electronics you will find two types of signals, digital and analog:

Digital signal

Analog signal

Digital signals have only two states: HIGH/1 or LOW/0, information is sent as a series of Os and 1s in
digital signals. Analog signals on the other hand can have any number of states, therefore they
cannot be expressed using only two values. The Arduino has special inputs for reading analog signals.
These inputs have an analog to digital convert attached to them. The converter will turn a signal in
the range of 0 volts to 5 volts into a value between 0 and 1024.

1. Once you have built the circuit open the Arduino IDE and go to:
File>Examples>03.Analog>AnalogInOutSerial

@ sketch_sep30a | Arduino 1.6.5 - [m] X
File Edit Sketch Tools Help

New Ctrl+N m
Open... Ctrl+0
Open Recent > u

~

Sketchbook >
Examples b 01.Basics >
Close Ctrl+W 02.Digital >
Save Ctrl+S 03.Analog 3 AnalogInOutSerial
Save As... Ctrl+Shift+S 04.Communication 3 Analoglnput
3 05.Control : AnalogWriteMega
Page Setup Ctrl+Shift+P
) 06.5ensors 3 Calibration
Print Ctrl+P
07.Display b Fading
Preferences Ctrl+Comma 08.Strings b Smoothing
>
Quit Ctrl+Q 9.6
10.StarterKit >

This file contains some ready made code to allow you to send data to the PC.

2. Toread analog inputs we need to use the analogRead() function. This function takes an
analog pin as a parameter. If you look on the Arduino, you will notice the analog pins are
labelled AO to A5. You can see in the file we just open this is done on the following line:

sensorValue = analogRead(analogInPin);
Notice there are two things special about this, firstly we did not have to set the pin mode, this
is because all analog pins are input only. Secondly we assigned the value to a variable called
“sensorValue”. Variables are used in code when you wish to save a value to later manipulate
or recall it. In this case we declared sensorValue as an “int” at the top of the code, this means
we expect sensorValue to be an integer (whole number).

3. Next we will need to connect one of the IR sensors to the Arduino. Connect the power and
ground connections from the sensor board to the corresponding pins on the Arduino. Along
with one of the sensor cables to an analog input AO (a pinout of the Arduino can be found at
the end of this guide).

4. Now upload your code to the Arduino.

5. Once the uploading has successfully completed, you will need to open the serial monitor. This
is a window that will allow you to see data the Arduino is sending back to the PC. It can be
accessed by clicking the following icon in the top right of the Arduino IDE:

When this has opened you should see something like this (ignore the output value):

€ come - O X

| Send
sensor = 139 output = 34 A
sensor = 137 output = 34

sensor = 138 output = 34

sensor = 139 output = 34

sensor = 136 output = 33

sensor = 141 output = 35

sensor = 137 output = 34

sensor = 139 output = 34

sensor = 141 output = 35

sensor = 138 output = 34

sensor = 142 output = 35

sensor = 139 output = 34

sensor = 141 output = 35

sensor = 141 output = 35

sensor v
[Autoscroll Noline ending | '9600baud

6. Now try passing the line test sheet you were given over the sensor, you should notice the
values change
7. Take note of the sensor values you get when you hold the sheet about 1cm from the sensor

White:

Black:

Conditional branches

Now that we are able to get an input, you may be wondering how we can react to the inputs. This
can be done using by conditional branching, the simplest of which is an if statement. An if statement
is formatted as follows:

if (condition)
{

//Code that will run if condition is true

}

else 1f (otherCondition)

{

//Code that will run if condition was false but otherCondition is true

}

else

{

//Code that will run if both condition and otherCondition are false

}

The condition can be comprised of many different logical operators below is a table of all the ones
you might need:

Operator Name Description
> Greater than True when the left is greater than the right
< Less that True when the left is less than the right
== Equals True when the numbers are equal
[OR True when either condition is true
&& AND True when both conditions are true

E.g. 1if(sensorValue>300)

We will now modify the code from the previous section, to light the on-board LED depending on if
the sensor is over the track or not.

1. Add the following code below the sensorValue = analogRead(analogInPin); line

if (sensorValue>VALUE)

Change VALUE to be a number somewhere in between the two values you wrote down
earlier.

2. Now adding the code you wrote in part one into the if statement, make the on board LED
light up when the track is over the sensor (Don’t forget to set the pinMode in the setup
function!).

Motor Shield

Before we can start using the motor shields, we have to install an Arduino library for it. A Library is a
set of ready made code that will make using the motor shield easier.

1. First we need to open the Library manager by going to Sketch>Include Library>Manage
Libraries...

& sketch_sep30a | Arduino 1.6.5 - m] X
File Edit Sketch Tools Help
Verify / Compile Ctrl+R
Upload Ctrl+U

sketch) Upload Using Programmer Ctrl+Shift+U

Export compiled Binary Ctrl+Alt+S

Show Sketch Folder Ctrl+K

Include Library : Manage Libraries...
veid 1o Add File... .
***** Add .ZIP Library...
// put your main code here, to run repeate
Arduino libraries
Bridge
EEPROM

2. You should then have following window appear:

€® Library Manager X
Type Topic |All ~ | |Filter your search.
AD5330 Breakout by SparkFun Electronics ~
AD5330 Breakout AD5330 Breakout
More info

Adafruit ADS1X15 by Adafruit

Driver for TI's ADS1015: 12-bit Differential or Single-Ended ADC with PGA and Comparator Driver for TI's ADS1015: 12-bit
Differential or Single-Ended ADC with PGA and Comparator

More info

Adafruit ADXL345 by Adafruit
Unified driver for the ADXL345 Accelerometer Unified driver for the ADXL245 Accelerometer
More info

Adafruit AHRS by Adafruit

AHRS (Altitude and Heading Reference System) for Adafruit's 9DOF and 10DOF breakouts AHRS (Altitude and Heading
Reference System) for Adafruit's SDOF and 10DOF breakouts

More info

Close
s . . ” .
3. Inthe search box type in “Adafruit motor shield v1” and you should see:
& Library Manager X
Type Al ~ | Topic |All + | |adafruit motor shield v1
Adafruit Motor Shield library by Adafruit A
Adafruit Motor shield V1 firmware with basic Microstepping support. Works with all Arduinos and the Mega Adafruit Motor shield
V1 firmware vith basic Microstepping support. Works wvith all Arduinos and the Mega
More info
v
Close

4. Click the install button to install the library onto your computer

Once you have the motor shield library installed, please fully close and re-open the Arduino IDE to
ensure it will work correctly. Once you have a fresh Arduino sketch open, add the following line as
the first line in your sketch:

#include <AFMotor.h>
This line will allow us to use the functions provided in the motor shield library. After this line we will
need to add the following code:

AF DCMotor motor(2);

This creates an object called motor that will allows us to control motor 2. If you look on your motor
shield you will see pairs of terminals along the edges labelled M1, M2, M3 and M4.

In this example the code will control M2. Now we need to set a speed for the motor by adding the
following line into the setup function:

motor.setSpeed (255) ;
The motor speed can be varied in 255 increments with 0 being off and 255 being full speed. For this
project there is no need to vary the speed of the motors unless you want to get fancy. Now in our
loop function we simply need to tell the motor shield how we want our motor to move. There are

three options: FORWARD, BACKWARD or RELEASE. To set the direction of the motor simply use the
following code:

motor.run (FORWARD) ;

See if you can write code to alternate the direction of the motor once every second. After that see if
you can control two motors at once!

Note: When using a second motor remember to change the name of the second motor e.g.

AF DCMotor left(1l);

Line following robot

By using what you have learnt in the previous sections, you should now be able to program a simple
line following robot. You will need to read in values from all 5 sensors and then decide how the
robot should react. (If you have any queries or you code isn’t compiling and you can’t figure out why
just ask for help from one you your demonstrators). Good luck and most importantly, have fun!

Pinouts

n~ o w x m
[13

DIGITAL (PWM=~)

ANODE CATHODE

ANALOG IN .

N om T own
< <

