#include "opencv2/core.hpp" #include #include "opencv2/imgproc.hpp" #include "opencv2/calib3d.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/videoio.hpp" #include "opencv2/highgui.hpp" #include #include #include #include using namespace cv; using namespace std; const char * usage = " \nexample command line for calibration from a live feed.\n" " calibration -w=4 -h=5 -s=0.025 -o=camera.yml -op -oe\n" " \n" " example command line for calibration from a list of stored images:\n" " imagelist_creator image_list.xml *.png\n" " calibration -w=4 -h=5 -s=0.025 -o=camera.yml -op -oe image_list.xml\n" " where image_list.xml is the standard OpenCV XML/YAML\n" " use imagelist_creator to create the xml or yaml list\n" " file consisting of the list of strings, e.g.:\n" " \n" "\n" "\n" "\n" "view000.png\n" "view001.png\n" "\n" "view003.png\n" "view010.png\n" "one_extra_view.jpg\n" "\n" "\n"; const char* liveCaptureHelp = "When the live video from camera is used as input, the following hot-keys may be used:\n" " , 'q' - quit the program\n" " 'g' - start capturing images\n" " 'u' - switch undistortion on/off\n"; static void help() { printf("This is a camera calibration sample.\n" "Usage: calibration\n" " -w= # the number of inner corners per one of board dimension\n" " -h= # the number of inner corners per another board dimension\n" " [-pt=] # the type of pattern: chessboard or circles' grid\n" " [-n=] # the number of frames to use for calibration\n" " # (if not specified, it will be set to the number\n" " # of board views actually available)\n" " [-d=] # a minimum delay in ms between subsequent attempts to capture a next view\n" " # (used only for video capturing)\n" " [-s=] # square size in some user-defined units (1 by default)\n" " [-o=] # the output filename for intrinsic [and extrinsic] parameters\n" " [-op] # write detected feature points\n" " [-oe] # write extrinsic parameters\n" " [-zt] # assume zero tangential distortion\n" " [-a=] # fix aspect ratio (fx/fy)\n" " [-p] # fix the principal point at the center\n" " [-v] # flip the captured images around the horizontal axis\n" " [-V] # use a video file, and not an image list, uses\n" " # [input_data] string for the video file name\n" " [-su] # show undistorted images after calibration\n" " [input_data] # input data, one of the following:\n" " # - text file with a list of the images of the board\n" " # the text file can be generated with imagelist_creator\n" " # - name of video file with a video of the board\n" " # if input_data not specified, a live view from the camera is used\n" "\n"); printf("\n%s", usage); printf("\n%s", liveCaptureHelp); } enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 }; enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID }; static double computeReprojectionErrors( const vector >& objectPoints, const vector >& imagePoints, const vector& rvecs, const vector& tvecs, const Mat& cameraMatrix, const Mat& distCoeffs, vector& perViewErrors) { vector imagePoints2; int i, totalPoints = 0; double totalErr = 0, err; perViewErrors.resize(objectPoints.size()); for (i = 0; i < (int)objectPoints.size(); i++) { fisheye::projectPoints(Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix, distCoeffs, imagePoints2); err = norm(Mat(imagePoints[i]), Mat(imagePoints2), NORM_L2); int n = (int)objectPoints[i].size(); perViewErrors[i] = (float)std::sqrt(err*err / n); totalErr += err*err; totalPoints += n; } return std::sqrt(totalErr / totalPoints); } static void calcChessboardCorners(Size boardSize, float squareSize, vector& corners, Pattern patternType = CHESSBOARD) { corners.resize(0); switch (patternType) { case CHESSBOARD: case CIRCLES_GRID: for (int i = 0; i < boardSize.height; i++) for (int j = 0; j < boardSize.width; j++) corners.push_back(Point3f(float(j*squareSize), float(i*squareSize), 0)); break; case ASYMMETRIC_CIRCLES_GRID: for (int i = 0; i < boardSize.height; i++) for (int j = 0; j < boardSize.width; j++) corners.push_back(Point3f(float((2 * j + i % 2)*squareSize), float(i*squareSize), 0)); break; default: CV_Error(Error::StsBadArg, "Unknown pattern type\n"); } } static bool runCalibration(vector > imagePoints, Size imageSize, Size boardSize, Pattern patternType, float squareSize, float aspectRatio, int flags, Mat& cameraMatrix, Mat& distCoeffs, vector& rvecs, vector& tvecs, vector& reprojErrs, double& totalAvgErr) { //cameraMatrix = Mat::zeros(3, 3, CV_64F); cameraMatrix = Mat::eye(3, 3, CV_64F); if (flags & CALIB_FIX_ASPECT_RATIO) cameraMatrix.at(0, 0) = aspectRatio; //distCoeffs = Mat::zeros(8, 1, CV_64F); distCoeffs = Mat::zeros(4, 1, CV_64F); vector > objectPoints(1); calcChessboardCorners(boardSize, squareSize, objectPoints[0], patternType); objectPoints.resize(imagePoints.size(), objectPoints[0]); //double rms = fisheye::calibrate(objectPoints, imagePoints, imageSize, cameraMatrix, // distCoeffs, rvecs, tvecs, flags | CALIB_FIX_K4 | CALIB_FIX_K5); ///*|CALIB_FIX_K3*/|CALIB_FIX_K4|CALIB_FIX_K5); double rms = fisheye::calibrate(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, fisheye::CALIB_CHECK_COND | fisheye::CALIB_RECOMPUTE_EXTRINSIC | fisheye::CALIB_FIX_SKEW);// | fisheye::CALIB_FIX_K1 | fisheye::CALIB_FIX_K2 | fisheye::CALIB_FIX_K3 | fisheye::CALIB_FIX_K4); ///*|CALIB_FIX_K3*/|CALIB_FIX_K4|CALIB_FIX_K5); printf("RMS error reported by calibrateCamera: %g\n", rms); bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs); //totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints, // rvecs, tvecs, cameraMatrix, distCoeffs, reprojErrs); return ok; } static void saveCameraParams(const string& filename, Size imageSize, Size boardSize, float squareSize, float aspectRatio, int flags, const Mat& cameraMatrix, const Mat& distCoeffs, const vector& rvecs, const vector& tvecs, const vector& reprojErrs, const vector >& imagePoints, double totalAvgErr) { FileStorage fs(filename, FileStorage::WRITE); time_t tt; time(&tt); struct tm *t2 = localtime(&tt); char buf[1024]; strftime(buf, sizeof(buf) - 1, "%c", t2); fs << "calibration_time" << buf; if (!rvecs.empty() || !reprojErrs.empty()) fs << "nframes" << (int)std::max(rvecs.size(), reprojErrs.size()); fs << "image_width" << imageSize.width; fs << "image_height" << imageSize.height; fs << "board_width" << boardSize.width; fs << "board_height" << boardSize.height; fs << "square_size" << squareSize; if (flags & CALIB_FIX_ASPECT_RATIO) fs << "aspectRatio" << aspectRatio; if (flags != 0) { sprintf(buf, "flags: %s%s%s%s", flags & CALIB_USE_INTRINSIC_GUESS ? "+use_intrinsic_guess" : "", flags & CALIB_FIX_ASPECT_RATIO ? "+fix_aspectRatio" : "", flags & CALIB_FIX_PRINCIPAL_POINT ? "+fix_principal_point" : "", flags & CALIB_ZERO_TANGENT_DIST ? "+zero_tangent_dist" : ""); //cvWriteComment( *fs, buf, 0 ); } fs << "flags" << flags; fs << "camera_matrix" << cameraMatrix; fs << "distortion_coefficients" << distCoeffs; fs << "avg_reprojection_error" << totalAvgErr; if (!reprojErrs.empty()) fs << "per_view_reprojection_errors" << Mat(reprojErrs); if (!rvecs.empty() && !tvecs.empty()) { CV_Assert(rvecs[0].type() == tvecs[0].type()); Mat bigmat((int)rvecs.size(), 6, rvecs[0].type()); for (int i = 0; i < (int)rvecs.size(); i++) { Mat r = bigmat(Range(i, i + 1), Range(0, 3)); Mat t = bigmat(Range(i, i + 1), Range(3, 6)); CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1); CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1); //*.t() is MatExpr (not Mat) so we can use assignment operator r = rvecs[i].t(); t = tvecs[i].t(); } //cvWriteComment( *fs, "a set of 6-tuples (rotation vector + translation vector) for each view", 0 ); fs << "extrinsic_parameters" << bigmat; } if (!imagePoints.empty()) { Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2); for (int i = 0; i < (int)imagePoints.size(); i++) { Mat r = imagePtMat.row(i).reshape(2, imagePtMat.cols); Mat imgpti(imagePoints[i]); imgpti.copyTo(r); } fs << "image_points" << imagePtMat; } } static bool readStringList(const string& filename, vector& l) { l.resize(0); FileStorage fs(filename, FileStorage::READ); if (!fs.isOpened()) return false; FileNode n = fs.getFirstTopLevelNode(); if (n.type() != FileNode::SEQ) return false; FileNodeIterator it = n.begin(), it_end = n.end(); for (; it != it_end; ++it) l.push_back((string)*it); return true; } static bool runAndSave(const string& outputFilename, const vector >& imagePoints, Size imageSize, Size boardSize, Pattern patternType, float squareSize, float aspectRatio, int flags, Mat& cameraMatrix, Mat& distCoeffs, bool writeExtrinsics, bool writePoints) { vector rvecs, tvecs; vector reprojErrs; double totalAvgErr = 0; bool ok = runCalibration(imagePoints, imageSize, boardSize, patternType, squareSize, aspectRatio, flags, cameraMatrix, distCoeffs, rvecs, tvecs, reprojErrs, totalAvgErr); printf("%s. avg reprojection error = %.2f\n", ok ? "Calibration succeeded" : "Calibration failed", totalAvgErr); if (ok) saveCameraParams(outputFilename, imageSize, boardSize, squareSize, aspectRatio, flags, cameraMatrix, distCoeffs, writeExtrinsics ? rvecs : vector(), writeExtrinsics ? tvecs : vector(), writeExtrinsics ? reprojErrs : vector(), writePoints ? imagePoints : vector >(), totalAvgErr); return ok; } int main(int argc, char** argv) { Size boardSize, imageSize; float squareSize, aspectRatio; Mat cameraMatrix, distCoeffs; string outputFilename; string inputFilename = ""; int i, nframes; bool writeExtrinsics, writePoints; bool undistortImage = false; int flags = 0; VideoCapture capture; bool flipVertical; bool showUndistorted; bool videofile; int delay; clock_t prevTimestamp = 0; int mode = DETECTION; int cameraId = 0; vector > imagePoints; vector imageList; Pattern pattern = CHESSBOARD; cv::CommandLineParser parser(argc, argv, "{help ||}{w||}{h||}{pt|chessboard|}{n|10|}{d|1000|}{s|1|}{o|out_camera_data.yml|}" "{op||}{oe||}{zt||}{a|1|}{p||}{v||}{V||}{su||}" "{@input_data|0|}"); if (parser.has("help")) { help(); return 0; } boardSize.width = parser.get("w"); boardSize.height = parser.get("h"); if (parser.has("pt")) { string val = parser.get("pt"); if (val == "circles") pattern = CIRCLES_GRID; else if (val == "acircles") pattern = ASYMMETRIC_CIRCLES_GRID; else if (val == "chessboard") pattern = CHESSBOARD; else return fprintf(stderr, "Invalid pattern type: must be chessboard or circles\n"), -1; } squareSize = parser.get("s"); nframes = parser.get("n"); aspectRatio = parser.get("a"); delay = parser.get("d"); writePoints = parser.has("op"); writeExtrinsics = parser.has("oe"); if (parser.has("a")) flags |= CALIB_FIX_ASPECT_RATIO; if (parser.has("zt")) flags |= CALIB_ZERO_TANGENT_DIST; if (parser.has("p")) flags |= CALIB_FIX_PRINCIPAL_POINT; flipVertical = parser.has("v"); videofile = parser.has("V"); if (parser.has("o")) outputFilename = parser.get("o"); showUndistorted = parser.has("su"); if (isdigit(parser.get("@input_data")[0])) cameraId = parser.get("@input_data"); else inputFilename = parser.get("@input_data"); if (!parser.check()) { help(); parser.printErrors(); return -1; } if (squareSize <= 0) return fprintf(stderr, "Invalid board square width\n"), -1; if (nframes <= 3) return printf("Invalid number of images\n"), -1; if (aspectRatio <= 0) return printf("Invalid aspect ratio\n"), -1; if (delay <= 0) return printf("Invalid delay\n"), -1; if (boardSize.width <= 0) return fprintf(stderr, "Invalid board width\n"), -1; if (boardSize.height <= 0) return fprintf(stderr, "Invalid board height\n"), -1; if (!inputFilename.empty()) { if (!videofile && readStringList(inputFilename, imageList)) mode = CAPTURING; else capture.open(inputFilename); } else capture.open(cameraId); if (!capture.isOpened() && imageList.empty()) return fprintf(stderr, "Could not initialize video (%d) capture\n", cameraId), -2; if (!imageList.empty()) nframes = (int)imageList.size(); if (capture.isOpened()) printf("%s", liveCaptureHelp); namedWindow("Image View", 1); for (i = 0;; i++) { Mat view, viewGray; bool blink = false; if (capture.isOpened()) { Mat view0; capture >> view0; view0.copyTo(view); } else if (i < (int)imageList.size()) view = imread(imageList[i], 1); if (view.empty()) { if (imagePoints.size() > 0) runAndSave(outputFilename, imagePoints, imageSize, boardSize, pattern, squareSize, aspectRatio, flags, cameraMatrix, distCoeffs, writeExtrinsics, writePoints); break; } imageSize = view.size(); if (flipVertical) flip(view, view, 0); vector pointbuf; cvtColor(view, viewGray, COLOR_BGR2GRAY); bool found; switch (pattern) { case CHESSBOARD: found = findChessboardCorners(view, boardSize, pointbuf, CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_FAST_CHECK | CALIB_CB_NORMALIZE_IMAGE); break; case CIRCLES_GRID: found = findCirclesGrid(view, boardSize, pointbuf); break; case ASYMMETRIC_CIRCLES_GRID: found = findCirclesGrid(view, boardSize, pointbuf, CALIB_CB_ASYMMETRIC_GRID); break; default: return fprintf(stderr, "Unknown pattern type\n"), -1; } // improve the found corners' coordinate accuracy if (pattern == CHESSBOARD && found) cornerSubPix(viewGray, pointbuf, Size(11, 11), Size(-1, -1), TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 30, 0.1)); if (mode == CAPTURING && found && (!capture.isOpened() || clock() - prevTimestamp > delay*1e-3*CLOCKS_PER_SEC)) { imagePoints.push_back(pointbuf); prevTimestamp = clock(); blink = capture.isOpened(); } if (found) drawChessboardCorners(view, boardSize, Mat(pointbuf), found); string msg = mode == CAPTURING ? "100/100" : mode == CALIBRATED ? "Calibrated" : "Press 'g' to start"; int baseLine = 0; Size textSize = getTextSize(msg, 1, 1, 1, &baseLine); Point textOrigin(view.cols - 2 * textSize.width - 10, view.rows - 2 * baseLine - 10); if (mode == CAPTURING) { if (undistortImage) msg = format("%d/%d Undist", (int)imagePoints.size(), nframes); else msg = format("%d/%d", (int)imagePoints.size(), nframes); } putText(view, msg, textOrigin, 1, 1, mode != CALIBRATED ? Scalar(0, 0, 255) : Scalar(0, 255, 0)); if (blink) bitwise_not(view, view); if (mode == CALIBRATED && undistortImage) { Mat temp = view.clone(); undistort(temp, view, cameraMatrix, distCoeffs); } imshow("Image View", view); char key = (char)waitKey(capture.isOpened() ? 50 : 500); if (key == 27) break; if (key == 'u' && mode == CALIBRATED) undistortImage = !undistortImage; if (capture.isOpened() && key == 'g') { mode = CAPTURING; imagePoints.clear(); } if (mode == CAPTURING && imagePoints.size() >= (unsigned)nframes) { if (runAndSave(outputFilename, imagePoints, imageSize, boardSize, pattern, squareSize, aspectRatio, flags, cameraMatrix, distCoeffs, writeExtrinsics, writePoints)) mode = CALIBRATED; else mode = DETECTION; if (!capture.isOpened()) break; } } if (!capture.isOpened() && showUndistorted) { Mat view, rview, map1, map2; fisheye::initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(), getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 2, imageSize, 0, true), imageSize, CV_16SC2, map1, map2); //Mat newCameraMatrix; //fisheye::estimateNewCameraMatrixForUndistortRectify(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0) //fisheye::initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(), //, //imageSize, CV_16SC2, map1, map2); for (i = 0; i < (int)imageList.size(); i++) { view = imread(imageList[i], 1); if (view.empty()) continue; //undistort( view, rview, cameraMatrix, distCoeffs, cameraMatrix ); remap(view, rview, map1, map2, INTER_LINEAR); imshow("Image View", rview); char c = (char)waitKey(); if (c == 27 || c == 'q' || c == 'Q') break; } } return 0; }