ESP32 Hardware Design Guidelines

Espressif Systems

June 28, 2017

About This Guide

The guidelines outline recommended design practices when developing standalone or add-on systems based on the ESP32 series of products, including ESP32, the ESP-WROOM-32 module, and ESP32-DevKitC — the development board.

Related Resources

For additional documentation and resources on ESP32, please visit Espressif website: ESP32 Resources.

Date	Version	Release notes		
2016.12	V1.0	First release.		
2016.12	V1.1	Updated Table 4.		
		Updated Chapter Overview;		
		Updated Figure Function Block Diagram;		
		Updated Chapter Pin Definitions;		
2017.03	V1.2	Updated Section Power Supply;		
2017.03	V1.2	Updated Section RF;		
		Updated Figure ESP-WROOM-32 Pin Layout;		
		Updated Table ESP-WROOM-32 Pin Definitions;		
		Updated Section Notes.		
2017.03	V1.3	Updated the notice to Table ESP32 Pin Description;		
2017.03	V1.3	Added a note to Table ESP-WROOM-32 Pin Definitions.		
2017.04	V1.4	Updated Section Strapping Pins;		
		Updated Figure ESP32 Pin Layout (for QFN 5*5);		
		Updated Figure ESP-WROOM-32 Module;		
		Updated Figure ESP32-DevKitC Pin Layout.		
2017.04V1.5Added the ESP-WROOOM-32 module's dimensional tolerance.		Added the ESP-WROOOM-32 module's dimensional tolerance.		
2017.05	V1.6	Updated Figure ESP-WROOM-32 Pin Layout;		
2017.05	V1.0	Added a note in Section 2.3 Strapping Pins.		
2017.05	V1.7	Added a note to Section 4.1.1 ESP-WROOM-32 Overview.		
		Updated Section 3.1.2.1 Power-on Sequence;		
2017.06	V1.8	Updated Section 3.1.4.1 External Clock Source (Compulsory);		
2017.00	V1.0	Added a link to ESP32 Pin Lists;		
		Added Documentation Change Notification.		
2017.06	V1.9	Changed the input power supply range of CPU/RTC IO to 1.8V ~ 3.6V;		
2017.00	VI.9	Updated Section 3.1.1.1 Digital Power Supply.		

Release Notes

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation. Please subscribe here.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABIL-ITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein. The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2017 Espressif Inc. All rights reserved.

Contents

1	Overview	7
1.1	Basic Protocols	7
	1.1.1 Wi-Fi	7
	1.1.2 Bluetooth	7
1.2	Application	8
1.3		9
2	Pin Definitions	10
2.1	Pin Layout	10
2.2		11
2.3		13
3	Schematic Checklist and PCB Layout Design	15
3.1	Schematic Checklist	15
	3.1.1 Power Supply	16
	3.1.1.1 Digital Power Supply	16
	3.1.1.2 Analog Power Supply	17
	3.1.2 Power-on Sequence and System Reset	17
	3.1.2.1 Power-on Sequence	17
	3.1.2.2 Reset	18
	3.1.3 Flash	18
	3.1.4 Crystal Oscillator	18
	3.1.4.1 External Clock Source (Compulsory)	18
	3.1.4.2 RTC (Optional)	19
	3.1.5 RF	19
	3.1.6 Sensor External Sampling Capacitor	20
	3.1.7 External Capacitor	20
3.2	PCB Layout Design	20
	3.2.1 Standalone ESP32 Module	21
	3.2.1.1 General Principles of PCB Layout	21
	3.2.1.2 Power Supply	21
	3.2.1.3 Crystal Oscillator	21
	3.2.1.4 RF	22
	3.2.2 ESP32 as a Slave Device	23
	3.2.3 Typical Layout Problems and Solutions	23
	3.2.3.1 Q: The current ripple is not large, but the Tx performance of RF is rather poor.	23
	3.2.3.2 Q: The power ripple is small, but RF Tx performance is poor.	24
	3.2.3.3 Q: When ESP32 sends data packages, the power value is much higher or lower than the	
	target power value, and the EVM is relatively poor.	24
	3.2.3.4 Q: Tx performance is not bad, but the Rx sensitivity is low.	24
4	Hardware Development	26
4.1	ESP-WROOM-32 Module	26
	4.1.1 Overview	26

	4.1.2 Pin Definition	27
	4.1.3 Notes	29
4.2	ESP32-DevKitC	30
	4.2.1 Overview	30
	4.2.2 Schematics	31
	4.2.2.1 Power Schematics	31
	4.2.2.2 USB-UART Schematics	31
5	Applications	32
5.1	UART to Wi-Fi Smart Device	32
5.2	ESP32-Lyra Smart Audio Platform	32

List of Tables

1	Pin Description	11
2	Strapping Pins	14
3	ESP-WROOM-32 Pin Definitions	27
4	Pin Definition of UART Interfaces	32

List of Figures

1	Function Block Diagram	9
2	ESP32 Pin Layout (for QFN 6*6)	10
3	ESP32 Pin Layout (for QFN 5*5)	11
4	ESP32 Schematics	15
5	ESP32 Digital Power Supply Pins	16
6	ESP32 Analog Power Supply Pins	17
7	ESP32 Flash	18
8	ESP32 Crystal Oscillator	19
9	ESP32 Crystal Oscillator (RTC)	19
10	ESP32 RF Matching Schematics	19
11	ESP32 Sensor External Sampling Capacitor	20
12	ESP32 External Capacitor	20
13	ESP32 PCB Layout	21
14	ESP32 Crystal Oscillator Layout	22
15	ESP32 RF Layout	22
16	PAD/TV Box Layout	23
17	ESP-WROOM-32 Module	26
18	ESP-WROOM-32 Pin Layout	27
19	Top view of ESP32-DevKitC	30
20	ESP32-DevKitC Pin Layout	30
21	Power Schematics of ESP32-DevKitC	31
22	USB-UART Schematics	31

1. Overview

ESP32 is a single 2.4 GHz Wi-Fi and Bluetooth combo chip designed with TSMC ultra-low power 40 nm technology. It is designed to achieve the best power performance and RF performance in a wide variety of applications and different power profiles, with robustness, versatility and reliability.

ESP32 is a Wi-Fi plus Bluetooth System-on-a-Chip (SoC). With only 18 external components, it has the optimal level of integration in the industry. It integrates the complete transmit/receive RF functionality including the antenna switches, RF balun, power amplifier, low noise receive amplifier, filters, power management, and advanced calibration circuitries that allow the solution to dynamically adjust itself to external circuit imperfections. As such, the mass production of ESP32-based solutions does not require expensive and specialized Wi-Fi testing equipment.

The ESP32 series of chips include ESP32-D0WDQ6, ESP32-D0WD, ESP32-D2WD and ESP32-S0WD. For details of part number and ordering information, please refer to *ESP32 Datasheet*.

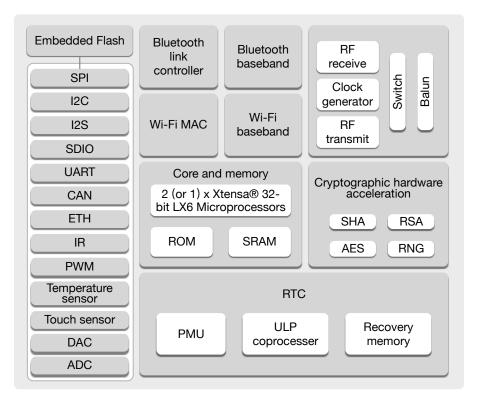
1.1 Basic Protocols

1.1.1 Wi-Fi

- 802.11 b/g/n/e/i
- 802.11 n (2.4 GHz), up to 150 Mbps
- 802.11 e: QoS for wireless multimedia technology
- WMM-PS, UAPSD
- A-MPDU and A-MSDU aggregation
- Block ACK
- Fragmentation and defragmentation
- Automatic Beacon monitoring/scanning
- 802.11 i security features: pre-authentication and TSN
- Wi-Fi Protected Access (WPA)/WPA2/WPA2-Enterprise/Wi-Fi Protected Setup (WPS)
- Infrastructure BSS Station mode/SoftAP mode
- Wi-Fi Direct (P2P), P2P Discovery, P2P Group Owner mode and P2P Power Management
- UMA compliant and certified
- Antenna diversity and selection

1.1.2 Bluetooth

- Compliant with Bluetooth v4.2 BR/EDR and BLE specification
- Class-1, class-2 and class-3 transmitter without external power amplifier
- Enhanced power control
- +10 dBm transmitting power
- NZIF receiver with -98 dBm sensitivity


- Adaptive Frequency Hopping (AFH)
- Standard HCI based on SDIO/SPI/UART
- High-speed UART HCI, up to 4 Mbps
- BT 4.2 controller and host stack
- Service Discover Protocol (SDP)
- General Access Profile (GAP)
- Security Manage Protocol (SMP)
- Bluetooth Low Energy (BLE)
- ATT/GATT
- HID
- All GATT-based profile supported
- SPP-Like GATT-based profile
- BLE Beacon
- A2DP/AVRCP/SPP, HSP/HFP, RFCOMM
- CVSD and SBC for audio codec
- Bluetooth Piconet and Scatternet

1.2 Application

- Generic low-power IoT sensor hub
- Generic low-power IoT loggers
- Video streaming from camera
- Over The Top (OTT) devices
- Music players
 - Internet music players
 - Audio streaming devices
- Wi-Fi-enabled toys
 - Loggers
 - Proximity sensing toys
- Wi-Fi-enabled speech recognition devices
- Audio headsets
- Smart power plugs
- Home automation
- Mesh network
- Industrial wireless control

- Baby monitors
- Wearable electronics
- Wi-Fi location-aware devices
- Security ID tags
- Healthcare
 - Proximity and movement monitoring trigger devices
 - Temperature sensing loggers

1.3 Function Block Diagram

Figure 1: Function Block Diagram

Note:

Products in the ESP32 series differ from each other in terms of the number of CPUs they have and their support for embedded flash. For details, please refer to *ESP32 Datasheet*.

2. Pin Definitions

2.1 Pin Layout

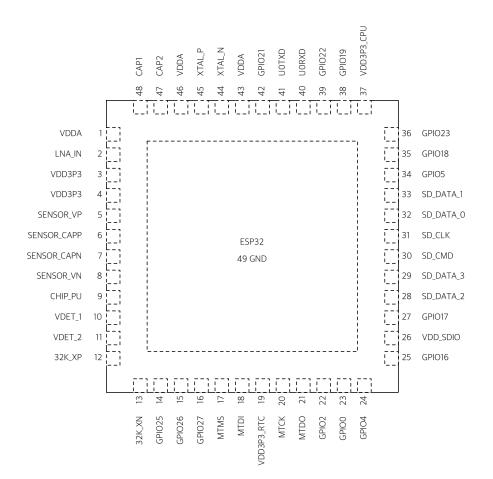


Figure 2: ESP32 Pin Layout (for QFN 6*6)

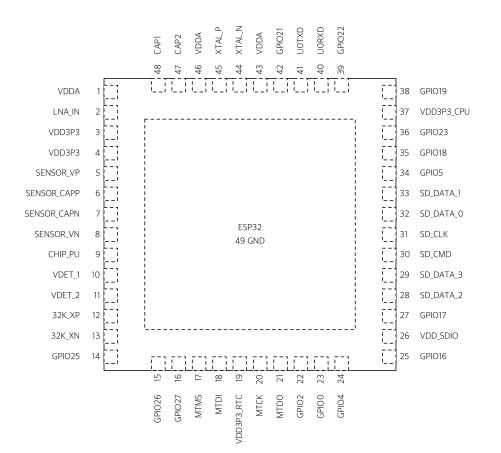


Figure 3: ESP32 Pin Layout (for QFN 5*5)

Note:

For details on ESP32's part number and the corresponding packaging information, please refer to ESP32 Datasheet.

2.2 Pin Description

Name	No.	Туре	Function		
	·		Analog		
VDDA	1	Р	Analog power supply (2.3V ~ 3.6V)		
LNA_IN	2	I/O	RF input and output		
VDD3P3	3	Р	Amplifier power supply (2.3V \sim 3.6V)		
VDD3P3 4 P Amplifie		Р	Amplifier power supply (2.3V ~ 3.6V)		
	VDD3P3_RTC				
			GPIO36, ADC_PRE_AMP, ADC1_CH0, RTC_GPIO0		
SENSOR_VP	5	1	Note: Connects 270 pF capacitor from SENSOR_VP to SEN-		
			SOR_CAPP when used as ADC_PRE_AMP.		

Table 1: Pin Description

Name	No.	Туре	Function	
			GPIO37, ADC_PRE_AMP, ADC1_CH1, RTC_GPIO1	
SENSOR_CAPP	6	1	Note: Connects 270 pF capacitor from SENSOR_VP to SEN-	
			SOR_CAPP when used as ADC_PRE_AMP.	
			GPIO38, ADC1_CH2, ADC_PRE_AMP, RTC_GPIO2	
SENSOR_CAPN	7	1	Note: Connects 270 pF capacitor from SENSOR_VN to SEN-	
			SOR_CAPN when used as ADC_PRE_AMP.	
			GPIO39, ADC1_CH3, ADC_PRE_AMP, RTC_GPIO3	
SENSOR_VN	8	1	Note: Connects 270 pF capacitor from SENSOR_VN to SEN-	
			SOR_CAPN when used as ADC_PRE_AMP.	
			Chip Enable (Active High)	
CHIP_PU	9		High: On, chip works properly	
	9		Low: Off, chip works at the minimum power	
			Note: Do not leave CHIP_PU pin floating	
VDET_1	10	Ι	GPIO34, ADC1_CH6, RTC_GPIO4	
VDET_2	11	I	GPIO35, ADC1_CH7, RTC_GPIO5	
	10		GPIO32, 32K_XP (32.768 kHz crystal oscillator input),	
32K_XP	12	I/O	ADC1_CH4, TOUCH9, RTC_GPIO9	
	10	1/0	GPIO33, 32K_XN (32.768 kHz crystal oscillator output),	
32K_XN	13	I/O	ADC1_CH5, TOUCH8, RTC_GPIO8	
GPIO25	14	I/O	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0	
GPIO26	15	I/O	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1	
GPIO27	16	I/O	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV	
MTMS	17	I/O	GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPI-	
		1/0	CLK, HS2_CLK, SD_CLK, EMAC_TXD2	
MTDI 18 I/O GPIO12, ADC2_CH5, TOUCH		GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ,		
	10	1/0	HS2_DATA2, SD_DATA2, EMAC_TXD3	
VDD3P3_RTC	19	Р	Input power supply for RTC IO (1.8V ~ 3.6V)	
MTCK	20	I/O	GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID,	
	20	1/0	HS2_DATA3, SD_DATA3, EMAC_RX_ER	
MTDO	21	I/O	GPIO15, ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO,	
	21	1/0	HSPICS0, HS2_CMD, SD_CMD, EMAC_RXD3	
GPIO2	22	I/O	GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP,	
		1/0	HS2_DATA0, SD_DATA0	
GPIO0	23	I/O	GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1,	
	20	"	EMAC_TX_CLK	
GPIO4	24	I/O	GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD,	
		., C	HS2_DATA1, SD_DATA1, EMAC_TX_ER	
	VDD_SDIO			
GPIO16	25	I/O	GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT	
VDD_SDIO	26	P	Output power supply: 1.8V or the same voltage as	
VDD3P3_RTC				
GPIO17	27	I/O	GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180	
SD_DATA_2	28	I/O GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD		
SD_DATA_329I/OGPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD				
SD_CMD	30	I/O	GPIO11, SD_CMD, SPICS0, HS1_CMD, U1RTS	

Name	No.	Туре	Function		
SD_CLK	31	I/O	GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS		
SD_DATA_0	32	I/O	GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS		
SD_DATA_1	33	I/O	GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS		
	VDD3P3_CPU				
GPIO5	34	I/O	GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK		
GPIO18	35	I/O	GPIO18, VSPICLK, HS1_DATA7		
GPIO23	36	I/O	GPIO23, VSPID, HS1_STROBE		
VDD3P3_CPU	37	Р	Input power supply for CPU IO (1.8V ~ 3.6V)		
GPIO19	38	I/O	GPIO19, VSPIQ, U0CTS, EMAC_TXD0		
GPIO22	39	I/O	GPIO22, VSPIWP, U0RTS, EMAC_TXD1		
UORXD	40	I/O	GPIO3, U0RXD, CLK_OUT2		
UOTXD	41	I/O	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2		
GPIO21	GPIO2142I/OGPIO21, VSPIHD, EMAC_TX_EN		GPIO21, VSPIHD, EMAC_TX_EN		
	Analog				
VDDA	43	Р	Analog power supply (2.3V ~ 3.6V)		
XTAL_N	44	0	External crystal output		
XTAL_P	45	1	External crystal input		
VDDA	46	Р	Digital power supply for PLL (2.3V ~ 3.6V)		
CAP2	47	1	Connects with a 3 nF capacitor and 20 k Ω resistor in parallel to		
	47		CAP1		
CAP1	48	I	Connects with a 10 nF series capacitor to ground		
GND	49	Р	Ground		

Notice:

- GPIO36, GPIO37, GPIO38, GPIO39, GPIO34 and GPIO35 can only be used for input.
- ESP32-D2WD's pins GPIO16, GPIO17, SD_CMD, SD_CLK, SD_DATA_0 and SD_DATA_1 are used for connecting the embedding flash, and are not recommended for other uses.
- For complete ESP32 pin lists, please refer to the appendix in *ESP32 Datasheet*.

2.3 Strapping Pins

ESP32 has five strapping pins:

- MTDI/GPIO12: internal pull-down
- GPIOO: internal pull-up
- GPIO2: internal pull-down
- MTDO/GPIO15: internal pull-up
- GPIO5: internal pull-up

Software can read the value of these five bits from the register "GPIO_STRAPPING".

During the chip power-on reset, the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down. The strapping bits configure the device boot mode, the operating voltage of VDD_SDIO and other system initial settings.

Each strapping pin is connected with its internal pull-up/pull-down during the chip reset. Consequently, if a strapping pin is unconnected or the connected external circuit is high-impendence, the internal weak pull-up/pull-down will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or apply the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32.

After reset, the strapping pins work as the normal functions pins.

Refer to Table 2 for detailed boot modes configuration by strapping pins.

Voltage of Internal LDO (VDD_SDIO)							
Pin	Default	3.3	3V	1.8V			
MTDI	Pull-down	()	1			
			Booting Mode				
Pin	Default	SPI	Boot	Downlo	ad Boot		
GPIO0	Pull-up	-	1	()		
GPIO2	Pull-down	Don't	-care	()		
		Debugging	y Log on U0TXD During	Booting			
Pin	Default	U0TXD -	Toggling	UOTXE) Silent		
MTDO	Pull-up	-	1	()		
			Timing of SDIO Slave				
Pin	Default	Falling-edge Input	Falling-edge Input	Rising-edge Input	Rising-edge Input		
	Delault	Falling-edge Output	Rising-edge Output	Falling-edge Output	Rising-edge Output		
MTDO	Pull-up	0	0	1	1		
GPIO5	Pull-up	0	1	0	1		

Table 2: Strapping Pins

Note:

- Firmware can configure register bits to change the setting of "Voltage of Internal LDO (VDD_SDIO)" and "Timing of SDIO Slave" after booting.
- The embedded flash operates at 1.8V. For the ESP32 series of chips that contain embedded flash, the MTDI/G-PIO12 should be pulled high.

3. Schematic Checklist and PCB Layout Design

ESP32's integrated circuitry requires only 18 resistors, capacitors and inductors, one crystal and one SPI flash memory chip. ESP32 integrates the complete transmit/receive RF functionality including the antenna switches, RF balun, power amplifier, low noise receive amplifier, filters, power management module, and advanced calibration circuitries.

While the high level of integration makes the PCB design and layout process simple, the performance of the system strongly depends on system design aspects. To achieve the best overall system performance, please follow the guidelines specified in this document for circuit design and PCB layout. All the common rules associated with good PCB design still apply and this document is not an exhaustive list of good design practices.

3.1 Schematic Checklist

ESP32 schematics is as shown in Figure 4.

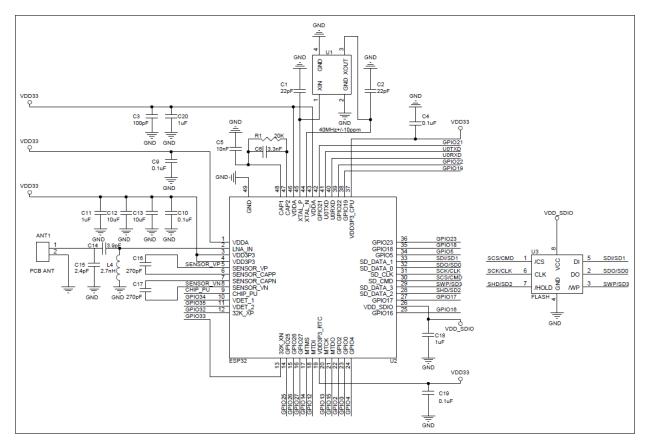


Figure 4: ESP32 Schematics

Any basic ESP32 circuit design may be broken down into seven major sections:

- Power supply
- Power-on sequence and system reset
- Flash
- Crystal oscillator
- RF

- Sensor external sampling capacitor
- External capacitors

A detailed description of these aspects follows.

3.1.1 Power Supply

3.1.1.1 Digital Power Supply

Pin19 and Pin37 are the power supply pins for RTC and CPU, respectively. The digital power supply operates in a voltage range of 1.8V ~ 3.6V. We recommend adding extra filter capacitors close to the digital power supply pins.

The internal LDO of VDD_SDIO can be used as the power supply (1.8V or the same voltage as VDD3P3_RTC) for the external circuitry, with a maximum current of about 40 mA. The user can add a 1μ F filter capacitor close to VDD_SDIO. When VDD_SDIO is tied to VDD3P3_RTC, the LDO will be disabled.

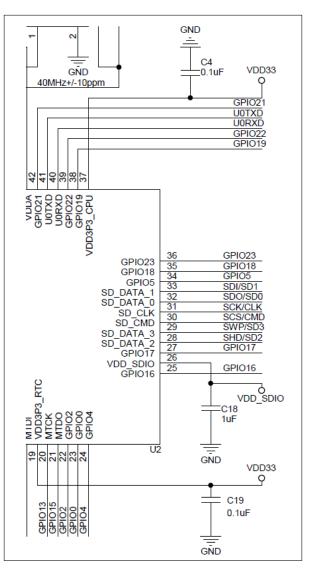


Figure 5: ESP32 Digital Power Supply Pins

3.1.1.2 Analog Power Supply

Pin1, Pin43 and Pin46 are the analog power supply pins. Pin3 and Pin4 are the power supply pins for the power amplifiers. It should be noted that the sudden increase in current draw, when ESP32 is in transmission mode, may cause a power rail collapse. Therefore, it is highly recommended to add another 0603 10 μ F capacitor to the power trace, which can work in conjunction with the 0402 0.1 μ F capacitor.

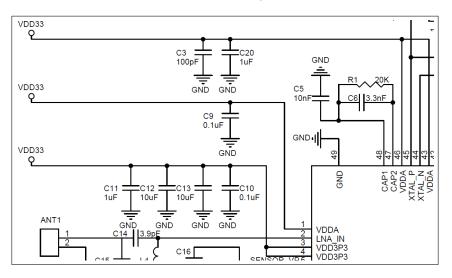


Figure 6: ESP32 Analog Power Supply Pins

Notice:

The operating voltage for ESP32 ranges from 2.3V to 3.6V. When using a single power supply, the recommended voltage of the power supply is 3.3V, and its recommended output current is 500 mA or more.

3.1.2 Power-on Sequence and System Reset

3.1.2.1 Power-on Sequence

ESP32 uses a 3.3V system power supply. The chip should be activated after the power rails have stabilized. This is achieved by delaying the activation of CHIP_PU (Pin9) by time T after the 3.3V rails have been brought up. The recommended delay time (T) is given by the parameter of the RC circuit. For reference design, please refer to Figure **ESP-WROOM-32 Peripheral Schematics** in the *ESP-WROOM-32 Datasheet*.

Notice:

If CHIP_PU is driven by a power management chip, then the power management chip controls the ESP32 power state. When the power management chip turns on/off Wi-Fi through the high/low level on GPIO, a pulse current may be generated. To avoid level instability on CHIP_PU, an RC delay (R=10 $k\Omega$, C=100 nF) circuit is required.

3.1.2.2 Reset

CHIP_PU serves as the reset pin of ESP32. ESP32 will power off when CHIP_PU is held low and the input level is below 0.6V and stays for at least 200 μ s. To avoid reboots caused by external interferences, the CHIP_PU trace should be as short as possible and routed away from the clock lines. A pull-up resistor and a ground capacitor are highly recommended.

Notice:

CHIP_PU pin must not be left floating.

3.1.3 Flash

ESP32 can support up to four 16 MB external QSPI flash and SRAM chips. The demo flash used currently is an SPI flash with 4 MB ROM, in an SOIC-8 (SOP-8) package. The VDD_SDIO acts as the power supply pin. Make sure you select the appropriate flash according to the power voltage on VDD_SDIO. Users can add a 0402 serial resistor to Pin21 SD_CLK and connect it to the Flash CLK pin. The resistor can reduce drive current, thus minimizing crosstalk and external interference. The resistor may also be used to tweak the bus timing and sequence.

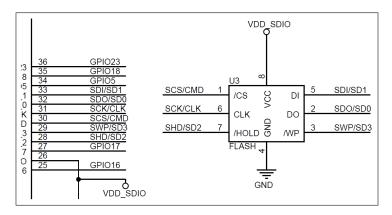


Figure 7: ESP32 Flash

3.1.4 Crystal Oscillator

There are two clock sources for the ESP32, that is, an external crystal oscillator clock source and an RTC clock source.

3.1.4.1 External Clock Source (Compulsory)

The ESP32 Wi-Fi/BT firmware can only support 40 MHz crystal oscillator for now.

Notice:

Defects in the craftsmanship of the crystal oscillators (for example, high frequency deviation) and unstable operating temperature may lead to the malfunction of ESP32, resulting in a decrease of the overall performance.

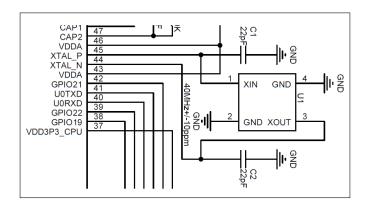


Figure 8: ESP32 Crystal Oscillator

3.1.4.2 RTC (Optional)

VDE1_2 32K_XP C13 12pF GND U4 NX Z 32kHz 32K XTAL32 32 13 GPIO32 R5 NC/OR XTAL32_OUT GPIO33 R6 NC/OR

ESP32 supports an external 32 kHz crystal oscillator to act as the RTC sleep clock.

Figure 9: ESP32 Crystal Oscillator (RTC)

3.1.5 RF

In the circuit design, a π -type matching network is essential for antenna matching.

C17 12pF

GND

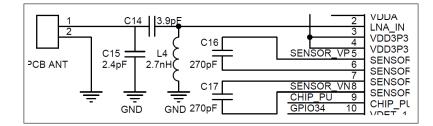


Figure 10: ESP32 RF Matching Schematics

```
Note:
```

The parameters of the components in the matching network are subject to the actual antenna and PCB layout.

3.1.6 Sensor External Sampling Capacitor

The capacitors (270 pF) between SENSOR_VP and SENSOR_CAPP, SENSOR_CAPN and SENSOR_VN are used as the sampling capacitors for the internal switch amplifier. If the two capacitors are removed, SENSOR_VP, SENSOR_CAPP, SENSOR_CAPN and SENSOR_VN can be used as normal ADCs.

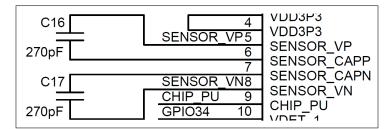


Figure 11: ESP32 Sensor External Sampling Capacitor

3.1.7 External Capacitor

The schematics of Pin47 CAP2 and Pin48 CAP1 is shown in Figure 12. C5 (10 nF) that connects to CAP1 should be of high precision. For the RC circuit between CAP1 and CAP2 pins, please refer to Figure 12. Removing the RC circuit may slightly affect ESP32 in Deep-sleep mode.

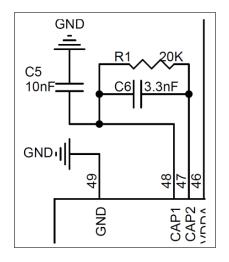


Figure 12: ESP32 External Capacitor

3.2 PCB Layout Design

The PCB layout design guidelines are applicable to cases when the

- ESP32 module functions as a standalone device, and when the
- ESP32 functions as a slave device.

3.2.1 Standalone ESP32 Module

3.2.1.1 General Principles of PCB Layout

We recommend a four-layer PCB design.

- The first layer is the TOP layer for signal traces and components.
- The second layer is the GND layer without signal traces being routed so as to ensure a complete GND plane.
- The third layer is the POWER layer. It is acceptable to route signal traces on this layer, provided that there is a complete GND plane under the RF and crystal oscillator.
- The fourth layer is the BOTTOM layer, where power traces are routed. Placing any components on this layer is not recommended.

3.2.1.2 Power Supply

The 3.3V power traces are highlighted in yellow in Figure 13. The width of these power traces should be larger than 20 mil. Before power traces reach the analog power-supply pins (Pin 1, 3, 4, 43, 46), a 0603 10 μ F capacitor and a 0402 0.1 μ F capacitor are required. As Figure 13 shows, C13 (10 μ F capacitor) is placed by the 3.3V stamp hole, and C10 is placed as close as possible to the analog power-supply pin.

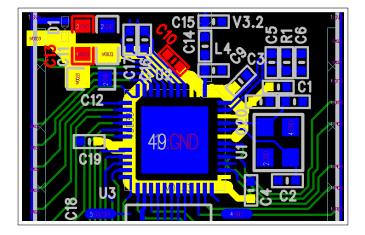


Figure 13: ESP32 PCB Layout

It is good practice to route the power traces on the fourth (bottom) layer. Vias are required for the power traces to go through the layers and get connected to the pins on the top layer. The diameter of the drill should exceed the width of the power traces. The diameter of the via pad should be 1.5 times that of the drill.

3.2.1.3 Crystal Oscillator

For the design of the crystal oscillator section, please refer to Figure 14. In addition, the following should be noted:

- The crystal oscillator should be placed far from the clock pin. The recommended gap is 2.7 mm. It is good practice to add high-density ground via stitching around the clock trace for containing the high-frequency clock signal.
- There should be no vias for the clock input and output traces, which means that the traces cannot cross layers.

- The external regulating capacitor should be placed on the near left or right side of the crystal oscillator and at the end of the clock trace.
- Do not route high-frequency digital signal traces under the crystal oscillator. It is best not to route any signal trace under the crystal oscillator. The larger the copper area on the top layer is, the better.
- As the crystal oscillator is a sensitive component, do not place any magnetic components nearby that may cause interference, for example, power-switching converter components or unshielded inductors.

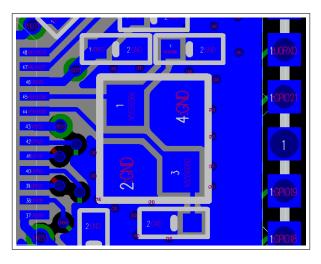


Figure 14: ESP32 Crystal Oscillator Layout

3.2.1.4 RF

The characteristic RF impedance must be 50Ω . The ground plane on the adjacent layer needs to be complete. Make sure you keep the width of the RF trace consistent, and do not branch the trace. The RF trace should be as short as possible with dense ground via stitching around it for isolation.

However, there should be no vias for the RF trace. The RF trace should be routed at a 135° angle, or with circular arcs if trace bends are required.

 π -type matching circuitry should be reserved on the RF trace and placed close to the chip.

No high-frequency signal traces should be routed close to the RF trace. The RF antenna should be placed away from high-frequency transmitting devices, such as crystal oscillators, DDR, and clocks (SDIO_CLK), etc.

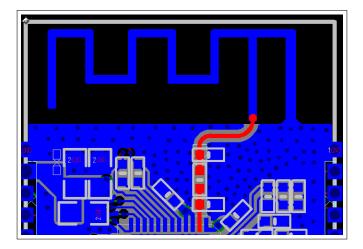


Figure 15: ESP32 RF Layout

3.2.2 ESP32 as a Slave Device

When ESP32 works as a slave device in a system, the user needs to pay more attention to signal integrity in the PCB design. It is important to keep ESP32 away from the interferences caused by the complexity of the system and an increased number of high-frequency signals. We use the mainboard of a PAD or TV Box as an example here to provide guidelines for the PCB layout and design.

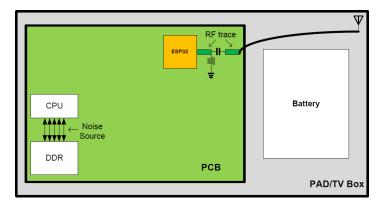


Figure 16: PAD/TV Box Layout

The digital signals between the CPU and DDR are the main producers of the high-frequency noise that interferes with Wi-Fi radio. Therefore, the following should be noted with regards to the PCB design.

- As can be seen in Figure 16, ESP32 should be placed near the edge of the PCB and away from the CPU and DDR, the main high-frequency noise sources. The distance between the chip and the noise sources decreases the interference and reduces the coupled noise.
- It is suggested that a 200Ω series resistor is added to the six signal traces when ESP32 communicates with the CPU via SDIO to decrease the drive current and any interference, and also to eliminate the sequencing problem caused by the inconsistent length of the SDIO traces.
- On-board PCB antenna is not recommended, as it receives much interference and coupling noise, both of which impact the RF performance. We suggest that you use an external antenna which should be directed away from the PCB board via a cable, in order to weaken the high frequency interference with Wi-Fi.
- The high-frequency signal traces between the CPU and associated memory should be routed strictly according to the routing guidelines (please refer to the DDR trace routing guidelines). We recommend that you add ground vias around the CLK traces separately, and around the parallel data or address buses.
- The GND of the Wi-Fi circuit and that of other high-power devices should be separated and connected through wires if there are high-power components, such as motors, in the design.
- The antenna should be kept away from high-frequency noise sources, such as LCD, HDMI, Camera Sensor, USB, etc.

3.2.3 Typical Layout Problems and Solutions

3.2.3.1 Q: The current ripple is not large, but the Tx performance of RF is rather poor.

Analysis:

The current ripple has a strong impact on the RF Tx performance. It should be noted that the ripple must be tested when ESP32 is in the normal working mode. The ripple increases when the power gets high in a different mode.

Generally, the ripple should be <100 mV when ESP32 sends 11n MCS7 packets, and < 120 mV when ESP32 sends 11b 11m packets.

Solution:

Add a 10 μ F filter capacitor to the branch of the power trace (the branch powering the ESP32 analog power pin). The 10 μ F capacitor should be as close to the analog power pin as possible for small and stable current ripples.

3.2.3.2 Q: The power ripple is small, but RF Tx performance is poor.

Analysis:

The RF Tx performance can be affected not only by power ripples, but also by the crystal oscillator itself. Poor quality and big frequency offsets of the crystal oscillator decrease the RF Tx performance. The crystal oscillator clock may be corrupted by other interfering signals, such as high-speed output or input signals. In addition, high-frequency signal traces, such as the SDIO trace and UART trace under the crystal oscillator, could also result in the malfunction of the crystal oscillator. Besides, sensitive components or radiation components, such as inductors and antennas, may also decrease the RF performance.

Solution:

This problem is caused by improper layout and can be solved by re-layout. Please see Chapter 3.2 for details.

3.2.3.3 Q: When ESP32 sends data packages, the power value is much higher or lower than the target power value, and the EVM is relatively poor.

Analysis:

The disparity between the tested value and the target value may be due to signal reflection caused by the impedance mismatch on the transmission line connecting the RF pin and the antenna. Besides, the impedance mismatch will affect the working state of the internal PA, making the PA prematurely access the saturated region in an abnormal way. The EVM becomes poor as the signal distortion happens.

Solution:

Match the antenna's impedance with the reserved π -type circuit on the RF trace, so that impedance of the antenna as seen from the RF pin matches closely with that of the chip. This reduces reflections to the minimum.

3.2.3.4 Q: Tx performance is not bad, but the Rx sensitivity is low.

Analysis:

Good Tx performance indicates proper RF impedance matching. External coupling to the antenna can affect the Rx performance. For instance, the crystal oscillator signal harmonics could couple to the antenna. If the Tx and Rx traces of UART cross over with RF trace, then, they will affect the Rx performance, as well. If ESP32 serves as a slave device, there will be other high-frequency interference sources on the board, which may affect the Rx performance.

Solution:

Keep the antenna away from crystal oscillators. Do not route high-frequency signal traces close to the RF trace. High performance digital circuitry should be placed away from the RF block on large board designs. Please see Chapter 3.2 for details.

4. Hardware Development

4.1 ESP-WROOM-32 Module

4.1.1 Overview

Espressif provides users with an SMD module, the ESP-WROOM-32. At the core of this module is the ESP32-D0WDQ6 chip*. This module has been adjusted to achieve the optimum RF performance.

Note:

* For details on the part number of the ESP32 series, please refer to ESP32 Datasheet.

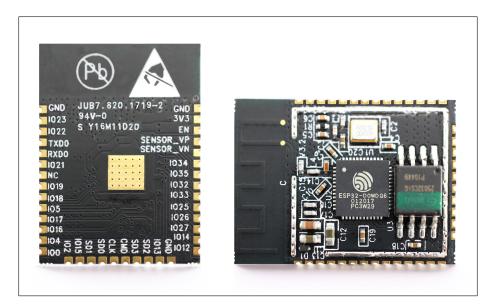


Figure 17: ESP-WROOM-32 Module

The size of the module is $18\pm0.2 \text{ mm} \times 25.5\pm0.2 \text{ mm} \times 2.8\pm0.15 \text{ mm}$. The flash used is in an SOP8-208 mil package. The on-board PCB antenna has a gain of 2 dBi. Figure 18 shows the dimensions and pin layout of this module.

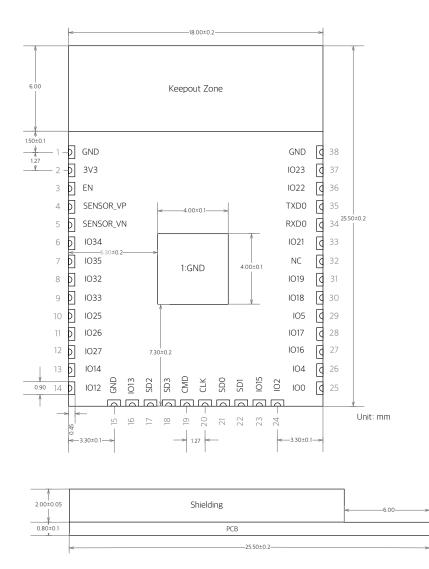


Figure 18: ESP-WROOM-32 Pin Layout

Note:

There is a large ground pad on the bottom of ESP-WROOM-32 and it is recommended that users connect it to ground for better heat dissipation.

4.1.2 Pin Definition

There are 39 pins led out onto the module. The pin descriptions are listed in Table 3 below:

Name	No.	Туре	Function	
GND	1	Р	Ground	
3V3	2	Р	Power supply.	
EN	3	I	Chip-enable signal. Active high.	
SENSOR_VP	4	I	GPIO36, SENSOR_VP, ADC_H, ADC1_CH0, RTC_GPIO0	
SENSOR_VN	5	I	GPIO39, SENSOR_VN, ADC1_CH3, ADC_H, RTC_GPIO3	
IO34	6	I	GPIO34, ADC1_CH6, RTC_GPIO4	
IO35	7	I	GPIO35, ADC1_CH7, RTC_GPIO5	

Table 3: ESP-WROOM-32 Pin Definitions

Name	No.	Туре	Function	
IO32	8	I/O	GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4, TOUCH9, RTC_GPIO9	
1033	9	I/O	GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5,	
IO25	10	I/O	TOUCH8, RTC_GPI08	
IO25 IO26	11	1/0	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0 GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1	
1020	12	1/0	GPI027, ADC2_CH7, TOUCH7, RTC_GPI017, EMAC_RX_DV	
IO14	13	1/O	GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK, SD_CLK, EMAC_TXD2	
IO12	14	I/O	GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ, HS2_DATA2, SD_DATA2, EMAC_TXD3	
GND	15	Р	Ground	
IO13	16	I/O	GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID, HS2_DATA3, SD_DATA3, EMAC_RX_ER	
SHD/SD2*	17	I/O	GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD	
SWP/SD3*	18	I/O	GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD	
SCS/CMD*	19	I/O	GPIO11, SD_CMD, SPICS0, HS1_CMD, U1RTS	
SCK/CLK*	20	I/O	GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS	
SDO/SD0*	21	I/O	GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS	
SDI/SD1*	22	I/O	GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS	
IO15	23	I/O	GPIO15, ADC2_CH3, TOUCH3, MTDO, HSPICS0, RTC_GPIO13, HS2_CMD, SD_CMD, EMAC_RXD3	
102	24	I/O	GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0, SD_DATA0	
IOO	25	I/O	GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1, EMAC_TX_CLK	
104	26	I/O	GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1, SD_DATA1, EMAC_TX_ER	
IO16	27	I/O	GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT	
IO17	28	I/O	GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180	
IO5	29	I/O	GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK	
IO18	30	I/O	GPIO18, VSPICLK, HS1_DATA7	
IO19	31	I/O	GPIO19, VSPIQ, UOCTS, EMAC_TXD0	
NC	32	-	-	
IO21	33	I/O	GPIO21, VSPIHD, EMAC_TX_EN	
RXD0	34	I/O	GPIO3, UORXD, CLK_OUT2	
TXD0	35	I/O	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2	
IO22	36	I/O	GPIO22, VSPIWP, UORTS, EMAC_TXD1	
IO23	37	I/O	GPIO23, VSPID, HS1_STROBE	
GND	38	P	Ground	
GND	39	P	Ground	

Note:

* Pins SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD, namely, GPIO6 to GPIO11 are connected to the integrated SPI flash on ESP-WROOM-32 and are not recommended for other uses.

4.1.3 Notes

- The module uses one single pin as the power supply pin. The user can connect the module to a 3.3V power supply. The 3.3V power supply works both for the analog circuit and the digital circuit.
- The EN pin is used for enabling the Wi-Fi functionality. Set the EN pin high for normal working mode.
- The SMD Module features two working modes: the UART Download mode and the Flash Boot mode. In the UART Download mode, firmware can be downloaded into the flash memory or the internal memory by configuring the flash download tool. If the firmware is burnt into the internal memory, it can only run this time when the module is powered on. Once the module is powered down, the internal memory will clear up. However, if the firmware is burnt into the flash, it will be stored and can be recalled at any time.
- Lead the GND RXD TXD pins out and connect them to a USB-to-TTL tool for firmware download, log-printing and communication.

By default the initial firmware has already been downloaded in the flash. If users need to re-download the firmware, they should follow the steps below:

- 1. Set the module to UART Download mode.
- 2. Pull IO0 and IO2 low.
- 3. Power on the module and check through the serial terminal if the UART Download mode is enabled.
- 4. Download the firmware to flash using the ESP Flash Download Tool.
- 5. After downloading, pull IOO high to enable the SPI Boot mode.
- 6. Power on the module again. The chip will read and execute the firmware during initialization.

Notice:

- During the whole process, users can check the status of the chip with the log printed through UART. If the firmware cannot be downloaded or executed, users can check if the working mode is normal during the chip initialization by looking at the log.
- The serial tool cannot be opened for both the log-print and flash-download tools simultaneously.
- Please download the ESP Flash Download Tool from Espressif's website: Flash Download Tool.

4.2 ESP32-DevKitC

4.2.1 Overview

ESP32-DevKitC is a low-footprint, minimal system development board which is powered by our latest ESP-WROOM-32. The dimensions of the board are shown in Figure 19.

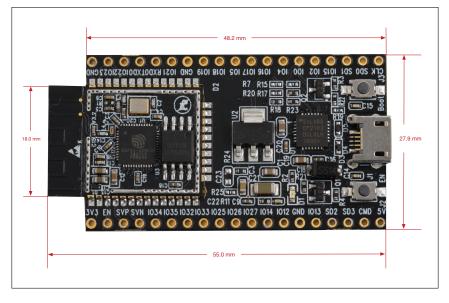


Figure 19: Top view of ESP32-DevKitC

All pins of ESP-WROOM-32 are led out to the pin headers on both sides for easy interfacing. ESP32-DevKitC features all the functions that are supported by ESP32. Users can connect these pins to peripherals as needed. The interfaces are shown in Figure 20. For more details, please see Section 4.1.2 ESP-WROOM-32 Pin Definition.

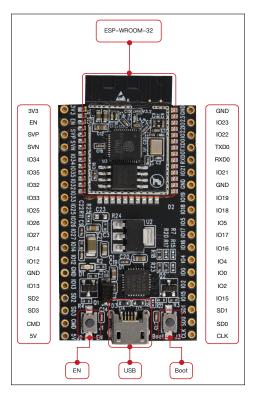


Figure 20: ESP32-DevKitC Pin Layout

4.2.2 Schematics

4.2.2.1 Power Schematics

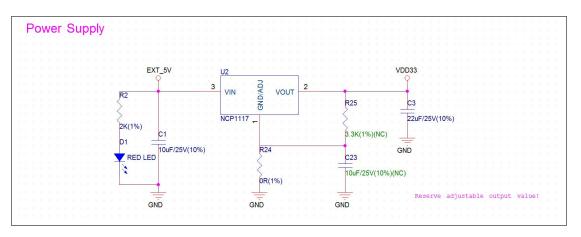


Figure 21: Power Schematics of ESP32-DevKitC

4.2.2.2 USB-UART Schematics

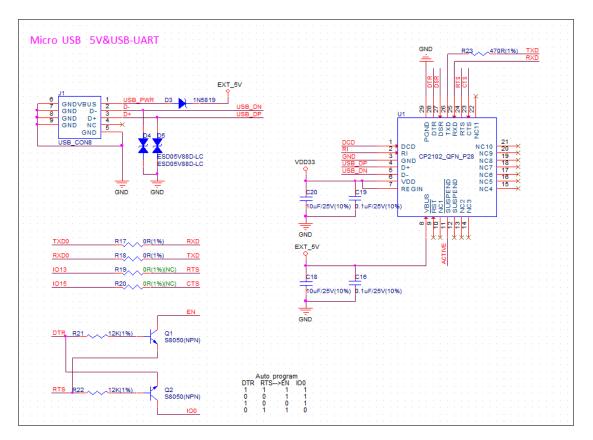


Figure 22: USB-UART Schematics

5. Applications

5.1 UART to Wi-Fi Smart Device

The two UART interfaces are defined in Table 4.

Table 4: Pin Definition of UART Interfaces

Categories	Pin Definition	Function
UART0	(Pin34) U0RXD + (Pin35) U0TXD	Used for printing logs.
UART1	(Pin25) U1RXD + (Pin27) U1TXD	Used for receiving and sending commands.

Application example: ESP32-DevKitC (please see Section 4.2 ESP32-DevKitC).

5.2 ESP32-Lyra Smart Audio Platform

ESP32-Lyra is a cost-effective smart audio platform, which is specifically designed by Espressif for the IoT industry. With its ESP32 dual-core processor and Wi-Fi + BT capability, ESP32-Lyra features voice recognition, audio playing, and access to cloud services. The ESP32-Lyra platform supports systems of artificial intelligence, voice and image recognition, wireless audio systems, as well as smart home networks.

The ESP32-Lyra Smart Audio Platform has the following features:

- Support for multiple audio interfaces with high extensibility
- Support for touch buttons
- Support for multiple audio formats including WMA, ALAC, AAC, FLAC, OPUS, MP3, WAV, and OGG
- Support for multiple wireless audio standards including DLNA, AirPlay and QPlay
- Support for multiple cloud platforms including Ximalaya FM, YunOS and Amazon
- Support for multiple distribution network protocols including ESP-TOUCH, ALINK, JoyLink3.0 and AirKiss