bt "‘W" -

(s
e
iy
ity
&
&
=n

Steve Toner
(solo)
Fall 1978

Course G-1{2 Te/m Pf'oleé*_

T

|
|

Abstract
:

STUPID (Simple Twelve-bit Unadorned Programmed Instruction
Decoder) is a twelve bit microprogrammed single address, single

accumulator computer which does not resemble the PDP-8.

Introduction & Overview

The STUPID
"Little Man Computer" of 15.564. Instructions have a 4-bit op
code and 8-bit address. STUPID is a binary machine, while the

Little Man Computer is a decimal machine.

set is (all numbers in hexadecimal):

000
1XX
2XX
3XX
4xx
5XX

6XX

7XX
8XX
9XX
AXX
BXX
CXX
DXX
EXX
F@X
F1X
F2X

F3X

HALT

ADD: Add the contents of memory location XX to the AC

SUB: Subtract the contents of location XX from the AC

AND: Logical bit-wise and (XX) with AC
OR: Logical bit-wise or (XX) with AC
CLEAR: Clear memory location XX

ISZ: Increment XX and skip the next instruction if
the result = @

DSZ: Decrement XX and skip if result=g
LOAD: Load the AC with the contents of XX
STORE - Deposit the AC in location XX
HANG: Hang the processor
BRANCH: Branch to location XX
BZ: Branch if (AC)=0
BN: Branch if (AC)<®
BP: Branch if (AC)>@

* '
NOP
GCHAR: ReadAa character from the TTY

PCHAR: Type the character in AC on the TTY

RSWR: Read contents of switch register into AC

*
F4X-FFX - NOP

instruction set closely resembles that of the

The STUPID instruction

*
These are "reserved for future expansion"

The address space of STUPID is only 8 bits and there is no

indirect addressing.

There are 5 registers in the STUPID machine: AC, PC, MAR,
MBR, MWR. There is also a switch register (SWR) and Teletype out
(TTY) "register". AC is the accumulator, where all arithmetic
and logical operations leave their result and through which all
I/0 is performed. PC is the program counter, which functions in
the obvious way. MAR is the memory address register, which holds
the memory address for all reads from and writes to memory. MBR
is the memory buffer register, which receives the data which is
read out of memory (and so is a "read only" register). MWR is
the memory write register, which holds the data which is to be
written into the location specified by the MAR. It is a "write
only" register. A block diagram of the system is shown in figure
18. The MBR appears on both the A and B busses, as when we do an
"ADD" we will read the value to be added to the AC into the MBR,
and then add this to the AC. Therefore the MBR must be on the B
bus. But it must also be on the A bus, because we need to be
able to add or subtract one from it when doing an ISZ or DSZ.
The 74181 ALU gives A plus 1 and A minus 1 directly, but not B
plus 1 or B minus 1.

The STUPID control box 1is microprogrammed. The microcode
instruction format is shown in'figure 15. There are three types
of operations: ALU operations, which move data between regis-

ters; branch operations, which control the microprogram

sequencing; and "OP"s, which include everything not covered by
the ALU and branch operations. These (0P) operations include
reading from memory, writing to memory, dispatching on op code

and lighting the "magic mode" light.

|
The STUPID microcode
f
The microcode for STUPID is included in Appendix A. Oper-

ation 1is fairly straightforward. When the RESET button is
pressed, the microprogram sequencer 1is cleared and the micro
instru;tion register is set to =zero. This assures that the
microcbde starts at location @ (a micro instruction of @ = br 9)
At this point the magic mode switch is checked. If it is set,
STUPID runs some simple diagnostics. If one of these diagnosticé
fails, the machine will hang and an address will be displayed in
the micro pc lights. Appendix B 1lists all possible hangs and
possible causes for each. 1If the diagnostics run through without
error, STUPID examines the location specified by the SWR and
displays it in the AC lights. 1If the data in this location is to
be changed, the new value can be set into the SWR at this point
and START pressed. STUPID will deposit the SWR data into *+he
location and increment the PC (In magic mode the PC always shows
the current location - that location which will e modified if
START is pressed). The new location is displayed and can be mod-
ified as before. At this point, if the magic mode switch is
turned off, or if it is not on when RESET is pressed, STUPID
waits for START to be pressed. When START is pressed, the SWR is
loaded 1into the PC and instruction execution begins. The
instruction is fetched, and STUPID dispatches on the op code to
the routine which does the particular instruction. That's all
there is to the microcode. The only instructions which are not

entirely straightforward are 1SZ, DSZ and the instructions with

I

{
op co$e F. ISZ and DSZ must test tc see if the result of the .
increment or decrement is zero. Since the MWR i a write only
register, it cannot be tested for zero without a lot of special
logic. Therefore, ISZ ann DSZ do a simultaneous write and read
when writing the result back. This puts the resulé in the MBR
whichfcan be tested. But the =0 signal comes from a flip flop
which‘is set only on ALU operations (see figure 2), so isn't it
still valid after a write? Yes, but sometimes we don't see the
obvious until it's too late. The =@ condition started out as a
general A=B condition, but only result=0 was ever used, so it be-
came = (the original idea was to use the A=B output of the ALU,
but as it turns out that signal is only valid if “he right oper-
ation is specified, so that got the "deep six"™ as they say.) 1In
the op F instructions, the second nibble indicates the particular
instruction. It is necessary to dispatch on this value, so it
must be put into the high order 4 bits of the MBR (where DISP
gets its argument). This is accomplished by putting it in the AC
and shifting left 4 bits. The original value of the AC is saved
in location @ and read back if the instruction does not put a new
value in it (GCHAR, RSWR). Since the instruction bits must be in
the MBR to do a dispatch, the shifted value is written into
location FF and read back (simultaneously, to save time). Thus,
locations 0@ and FF should not be used by a program. This awful-
ness could be alleviated somewhat by adding some temporary regis-
ters to the machine, but space limitations dictate that this not

be done.

The A and B busses are implemented as multiplexors - A a 4
input mux and B a 2 input mux (see figs 11 & 12). Bits 1 and 2
of an ALU incstruction specify which A input to select.
Similarly, bits 3 and 4 specify the B input. Two bits here allow
for easy expansion, and in fact B3 is already definéd to be the
TTY in register. Space constraints limit B to be a 2-input
multiplexor, however. Each ALU operation also specifies the
carry and function in bits 5-1¢. These are fed directly to the
appropriate inputs on the ALU card (see figure 2 for ALU). This
means that a carry in of 1 is specified by a # in bit 5, since
the MSI 181 has inverted carry signals. The destination register
is specified by bits 11-15, Each output register has a bit
associated with it, though three bits could be used and these
three bits decoded to one of 8. But a decoder is another card
and ROM bits are free, provided we don't use more than 16 of
them. If the machine were to be expanded to include an index
register or other registers, the decoding scheme would have to be

used. The destination bit is NANDed with (BITH-¢2)

clock input to the MSI 161, which is used for all these registers

to give the

(except TTY). (see figs 3, 4 & 108) BITQ® tells it that this is an
ALU operation, so that bit which looks 1like a destination bit
really is. The two phase clock (see figure 5) is used because
the 74161 counter uses master-slave flip flops, and the load in-

put cannot change when the clock line to these is 1low. There-

fore, the micro sequence counter is incremented/loaded on the
leading edge of ¢2 (see figure 14 for ¢1, ¢2 timing) and the ROM

outputs (which are what cause the 1load 1line to change) are

clocked into a register on the leading edge of ¢1.. This assures
that the sequencer's load line changes only when its clock line
is high. Since the data at the ALU outputs is valid sometime
after ¢l until the next rising edge of ¢1,-$; is as good as any-
thing to clock the registers. I am not convinced that the 2-
phase clock is necessary, but since the LSI 1762 outputs can
drive only 1 load, there has to be something buffering them. The
two-phase clock is safe (like it works, so don't knock it). The
question is whether the output of the 1702 glitches (can BITO go
g->1->¢, for example?) when a new address is selected. I don't

know, so I assume the worst.

Branches are implemented by putting the inverted value of the
condition on the load line of the micro sequencer and the branch
address on the data inputs. .On the next rising edge of ¢2, the
counter will be loaded with the address if the condition was
true. Simple. The condition bits (BIT2-4) address a multiplexor
and if BITO=BIT1=8, the condition (inverted) is let through (see
figure 1). Otherwise (no branch), the load line is held high so

the counter will incremented.

OPs are decoded by detecting BIT@#=@, BIT1=1 (actually BIT@=0
and not BR). This signal is ANDed with the appropriate_bit to
decode the instructions. This causes a timing problem on a WRITE
(you should now be léoking at figure 6). Since OP must go
through 2 NOR gates, it is delayed from the write signal, which
comes directly from BIT15. Thus, if a READ is followed by an

instruction which happens to have BIT15 set, BIT15 comes on, OP

is delayed by a couple of gate delays and w goes low, which makes
the memory think it supposed to do a write. To fix this problem,
gate delays are put on BIT15 (the *'d gqguys in figure 6) so that
it cannot change wuntil after OP has changed. Crude but
effective.

A dispatch also causes a branch, so causes‘the load input of
the sequencer to go low. However, this time the address comes
only partly from the instruction. The low order 4 bits are
specified by the high order 4 bits of the MBR. Only the high
order 4 bits of the address are specified by the dispatch

instruction.
The Memory

The basic memory box is the same one used in the memory
dumper/loader (saves plugging wires if I just use what's already
there - there's no point in reinventing the world when you've got
something that works...). It is shown in figure 9. Each memory
operation (read or write 4 bits) takes 7 clock cycles (memory
timing shown in figure 13). 1If the mwrite line is high, the T/w
line will go higl during states writel-writed. Otherwise (on a
read) T/w is heldrlow. The memory is controlled by a shift reg-
ister in which a single 1 is shifted right 1 bit on each clock
pulse. 574 flip flops were used to construct this shift regis-
ter, as they can be éieared or set asynchronously, so resetting
the register to the idle state can be accomplished painlessly.
The register is set to 100000 (leftmost bit corresponds to left-

most FF in figure 9) whenever the RESET button is pressed (as

will hopefully be done on power-up, when the states of the flip
flops are unknown). Since the 574 outputs change from L->H fast-
er than H->L, the T/w line cannot glitch, which might otherwise
cause problems when writing. To read a word (4 bi?s) from the
memory, an address is put on the addr lines and mread is brought
high. When resetr/w transitions from H->L, the data on the read
data lines is valid. resetr/w is normally used to clock the read
data into a register. A write is done by setting up the address
and the data to be written and raising mwrite. mread and mwrite
must stay high at least until the shift register leaves the idle
state. The rising edge of resetr/w may be used to clear mread

and mwrite.

STUPID words are 12 bits long, which means that we must read
or write 3 4-bit words for each STUPID word (this is necessary
because of the restriction of 1 LSI 2102 per person). The memory
controller shown in figure 6 accomplishes this monumental task.
Wwhen a read instruction is executed, ?‘goes low. This clears the
A and B flip flops and sets the mread FF. The r signal is NANDed
with Temdone to assure that the clock signal changes after
memdone goes high - otherwise the clock transition would be lost.
Setting mread causes the memory to read a single 4-bit word as
described above. resetr/w is used to clock the A and B flip
flops, which count in the sequence 90, 18, 11, ¢1 (AB). On the
@0->106, 10->11 and 11->@1 transitions, the read data is latched
into the MBR (see figure 7). This means that the read data must

stay valid until it can be latched. The LSI 1702 data is valid

.
|

for agout 106 nsec after the address change, which is plenty of
time.f In state @#1, memdone is asserted and this clears mread.
QA and;QB are used as the low order 2 bits of the memory address.
A write is similar to a read in the way it clears the A and B FFs
and sets mwrite. This time, however, QA and QB are used to sel-
ect wh&ch nibble of the MWR to apply to the write data lines (see

figure 8).
ALU

The ALU is a standard 74181 and the microcode specifies the
carry in, M and SZ-SB’ so any cf the ALU functions may be used.

Table 1 in figure 16 shows the possible ALU Juncticrs.

Rack Layout

The rack layout is shown in figure 99. It didn't fit in a
single rack. Figure 99a shows the various lights and swicches

used...

- 11 -

Summary and conclusions

Well, it works. A demonstration program (which uses all the
STUPID instructions except the NOPs, GCHAR and HANG) is included
in Appendix C. Read the comments for documentation. At this
point, many possible improvements and modifications cry out to be
considered. STUPID has a teletype for output, but only a switch
register for input. How about adding a TTY in? Origiﬂally it
apveared that this would require extending the B bus by using 4
input multiplexors instead of 2. However, 1looking at it now
(that it's too late), I see that the zero input on the B bus is
not used. The ALU has functions A, A plus 1, etc, which do not
rejyuire B to be zero, and the A=B instruction was changed to =0.
So the TTy in register could replace the zero "register"™ on the B
bus. Once this was done, the microcpde could be changed to allow
memory to be loaded from a paper tape in the TTY reader. that
would make life much easier for the poor soul who has to load a
program into memory. Since A=B was changed to =@, the microcode
could also be changed so that it doesn't do unnecessary compar-
isons with zero. Or, since no register has to be specified to
receive the result of an operation, the zero comparison could be
done by complementing the register which is being tested, spec-
ifying no destination, and using the A=B outputs of the ALU in-
stead of the NOR gates that are there now. One way saves time,
the other hardware. Other possible changes include changing the
instruction set to allow indirect addressing (no change in the

hardware is necessary to allow single level indirection - just

- 12 -

]

some instructions would have to be thrown out) and, if somebody
were to decide that he actually wanted to use this (STUPID)
machine for something, he might want more memory and more than
one 1/0 device. There are 4 bits which are unused in the GCHAR
and PCHAR instructions - these could be turned into more general
DATA IN and DATA OUT instructions with the low order 4 bits spec-
ifying the device. More condition branching might have to be
added to the micro machine to allow this. Finally, what about
the HANG instruction and all those NOPs? Some intelligent person
ought to be able to come up with something to do with them.

Right now they're not very useful.

- 13 -

do-=

ETRA
Tty
H>1vdSig
St unoth g 19SkEZIO g
i _A_v
hiab)) ﬂ
WL tas) g ozu_wﬁs
121 254 o«SrYl\uV) QOJL
e =]
= ___
]
(Wor 21X 951) | _
ToLIXy =
ty WSy Ty v o
(857)
Jayn0d g8 2
19 1ISW n‘m Av
Vg 2973 Q.v H
U
I _ —
A X X .
g ﬁ,_nv s A.”Z“v % Ax_m..mv 5 h-
g Vv 8 v g v
HO1V4S1Q

v S

1.8

b piivg

oryow tig We u

1
R

1

hig

¥y

RAVR
ony
(BT}]
hiig L
€1g
v e »
i Oz
xazv 9 251"
\-8) s—SS
A b 1Yv1s
S e s ITEL
15+ ¢ EREE
sW =Yg
wa@:o ¢

Ny

O———1$.0119

1 ov | 8 1 9 S h € z 1t o My
A A I B A A A
A
N
{ ™
[
L
L1
M [
— @ -
S’ S'v $'W
181 1su 181 1w \8) 1Sw
G- g Y LO———————(e ¢ v .yOl.'lOQw @ v -
we b WY har) 8 xely LISHY Y Lashieyy €21%xyg €110 Xayy

91-98

Sus

tno &,

irtny
(siTi15)

5—0-4

MUY 109 ¢

1]

1 >

({8

Mst 4]
P (244 (o))

¢ Ss493 21

1ll]

&=
D> (gt lakeh)
e

ms) Lbi

Ac
(mnr)

vvyy

wiofgtg

P

*65432 10

Eaue d

Acc\/mv\ﬁ*": MWR

R0 @

AL b

I

-]

Il

r go LoAD
MY (6]
G-t tateh)
0—0

BiT1v)
Pc 365 210
Figpee
P{csmm Co.,.&&r, MAR
’_—Q—— 8o : : 8o e
+s *s
53K 53k
0% a —
! -001 ooy *
7 T
E Q—l: Q -op ®
) i — LK Z
T [
o Ll
- 1
‘ b A 4:'
—
(1]

wre—>>P>—)y s

oP
By =
?
W
Couwy sEuescE
Q o)
TSl ——P “a Qg A _B
—{K Q ? L A Q@ a; i 0
t |
° \
° » & P mcead
K3 _—_Do__
o ¢
U — .
3 - > mem one
Qg — PV puys
$0
D QA muwrite
*—
W Dc .
Eigure &

Nemery Cornrol

read data

(msx)
wmread
T]
-))
Qa T-—____J
G : Nf:ﬁ.h\.\
& ‘ J
wryy ARA Yvyy
ngR ww 1 ¢ I 6 S Y 32 10 E 1
Memery Butfer Register
MwR Wwogy TS J210
Hl[
3
Qa zxrm 153
QB SEL (qg‘l n\pw* MVX) m D'_%

(msb) (ish)

write dota

Ciquee 1]

l 1 3 2 2 2 2 2
D 30) sD)) 56
P Q D Q D Q b Q D @ 0 Q b Q - cesetefu
(A% 3 ’
- > D D
1 e ditdl e d e e e,
2 9 ? 0 o] T ‘r—‘

weted wri"‘q

waitd

rivel

RESET
idle wait] weiel

mweite

"’ L [T] HE
(med) read

naR.q, R .

wrike (meb) adde enbe 3fy Y 4=_

LSt 2102 o
da{’q % (exy t&n) bet 2 ke
Hamry

RESET %
<X SIS RI-V.\'
ps
Bmod, _____ { o~ e oe
8Ty TRRL LS1 1b02
(vART) 00 — g (Y0 TTY)
—gvse
DA"Q Tn (Lsg)

He Fiquee 19

ALy 654312
TTY

8R

el i
) 1 2 3

cm——

:}551, X mst 153 endble

(W-X "{—fnf:.-* Mux)

Hib

Alvx wiwqgg 6 S43 21 0 (1sh)

ll

[T [T
B3 g (!;;?';:Z*M

vx) endle b—@

T

b L e

S R O R N A

G

i
]
T

|
I
“
)
H
_
|

t

e
N . PN B

i
¢
P

T
!
T i

[

b,

ALY insteuctions:

L e 1 L 1 d 1 1 1 [}
l A B CARRY FUNCTION PESTINATN
IN .
. M S5 5. Si . Se AC PC MAR TTY . mwR
BT O | 2 3 4 5 & F & 9 w0 u oo oy ow A

AL=00 nBA=00
Pc=0l o=
WeRx 10 ™=l
WAz

BRANCH insheuctions:

+ + + W‘,//‘///‘;% } + —-— ¢ $ + -
CONDITION / g g ADDRESS
BT o 1 2 3 Yy § ¢ 3 g 5 o 2 a3 g e

000 = TRUE - Always braack
001 =DR «Braad, F no TTY character feceived
OV0=YTE - Branch i TTY otput butter not emp"y

O11 = REfviux - Branch if memery rtadfucile nob Finished
100 = TTARE - Bramek s S7oa oonia 2 ¥E nof i

101= s = Branch 3t Magie Mode. switch net SQ.}I'
110TALO - Brandh if (Ac)eo {Acu =)

111220 - Branchil lagt ALy opmh.., procheA azerw resolt

OP incheuwct ionS:

O | loise |Rreser| Lite /////j;% D\sP'AbDRE‘ss ' %//2 READ [wRITE
N Z. . . . LA
8T o (2 3 4 s ¢4 3 v 9 e l;,(\z WS

E:‘qvfcls

/] = onsed, “eesereed S Fihueovse ™ Microcode. Focmat
//, vsed, $erd -0¢ Tviv e Therocode o,
A

or
ull
ve
he

er,
be

as

he
All

: TYPES SK54181, SH5418191, SN543181,
SHT4131, S717415181, Sii748181
ARITHIAETIC LOGIC UNITS/FURCTION GeilERATORS

description (continued)

ALU Signat Designations

The "181, 'LS181, and 'S181 can be used with the signai designations of either Figure 1 or Figure 2.

The logic functions and arithmetic operations obtained with signal designations as in Figure 1 are given in Table 1;
those obtained with the signal designations of Figure 2 are given in Table 2.

“Each bit is shifted 10 the next more significant position.

TEXASI INSTRUMENTS 383

NCORFPORATED
POST OFFICE BOX 3012 o OALLAS, TEXAS 73222

ngure 16

2y 23) 22 21) 2m 191 (18) 2) (1) {23} (22) {21) 1204 (19)(18)
A By A 8y A7 8, A3 83 . Ao Bp Ar By A2 82 A3 83
(/] —T—c €n n Ca
181, ‘LS181, or "S181 LX) SN 181, 'LS181, or 'S181 A b 1q)
(L H M = M
Fo F1 F2 F3 o, Y x Fo_F1 Fa F3 G G P
LT T T 7 7 T Y Yy T 9%
@t an gy (16) anasy 9 o nn gy 16} 17} (15)
'
| ' I ’
[I
3} 4} [L1+] 114) (18 (S) (6) Q) {4 in (2 (4118} 51 i6)
o i
L1 1] 1] & R |
Yo Xg Y1 Xy Y2 X3 Y3 X3 Go Py Gy Py G2 Py G3 Py v
X = 7) P O—
—J Cn ‘182 or 'S182 =1 Cpy ‘182 or 'S182
(3 k1) (13)
Y p—— {10} G LO— 110}
Crex Crey Cpes Chex Croy Coee
02) (321 9 12) [13]] 9
FIGURE 1 FIGURE 2
(FOR TABLE 1) : (FOR TABLE 2)
TABLE 1 TABLE 2
ACTIVE HIGH DATA] ACTIVE LOW DATA
SELECTION TP M+ L ARITHMETIC OPERATIONS SELECTION Men M= L. ARITHMETIC OPERATIONS
LoGIC Covtl — Cart toGic | Caml CnmM
(oo carry} fwith carry 5152 8150 |FuncTions | o carry} twith carry)
——
(SIS Foa [F-arusie LLee)elx F - AMINUS 1 Faa
LLuow Feaeg FoiaemipLysy L L LKW |F.XB Frapminus F:ag
[Foas§ FeABrLus LL MWL) F-Re8 [FeaBmmust LY]
LLHwn FrMINUS 1125 CoMPLIG F - ZERO @ LU W MRy FoMINUS 125 comp) | kL zerg
LMooy F = aPLus A FrAPLUS ABPLUS ¢ LMoL Fra.g F-APLUSIA « 1) F=APLUSIA+B)PLYS Y
LKt ow Fria-8ious al Feta-81PLUS AB PLUS) L HLHiF§ FrABPLUS 1A - T} FrABPLUS A o miPLust
LoHoN K-AMlNuS.MlMus! F-AMLMUSQ. L H MWL F-AE:SB F-AMlNusEMINuS! FraMNUS 5
LH oMo F - aBmiNgS 1 F-al LW HHIFial |Faney FeiacBpLusy
MoL Lo F.aPLUS AR FoAPLUS AR PLUS 1 i H Lt | Fr:Rs Fe«APLUS (a +B) FeAPLUS 1A +8)PLUS |
L R FraPLusae FraPLUSE PLUS 1 HLLKH]FiaDs Frapiuse FrafLusaprLus
H LW - F-(a+BipLus ag FriaeBirius asrys H L W F:8 FeaBPLusias g FrABPLUS (A + 81 PLYS)
NoLomon . £ AR MINUS 1 Frag HLUHH|Fag [Fonug Fxia+BIPLUS |
ML L Fay F-apLusae F e APLUS A PLUS § H ML L|Frap FrAPLUS A* FeaPLUSAPLUS 1
MM Ll Faa.l FaArPLUs A £oiALBIALUS A PLUS 1 H H L M) F.al FeABPLUS A feABPLUS A PLUS Y
H My |s AvBe | Fela Biousa Fria-Birusariysy HH ML Faag F-aBrPLusa FraBPLus aoLusy
Mooy Frag, Framinust g Faa H M H M| Fea Fea F-~APLUSY

v
2 Wy
s
X]

)

PN Y s e rap et o,
AR ot 0 b §

i

o

i e am o Vvl oy Rt LT PR

PP

0 e

St b e s

R RN
LI N R

)
2‘.

—
'

| SWR my| O .
ABvs x - l I BBus
A 8
¢
I
MAR MwR
MUr dﬂ!‘l n
MNemer
(2 x 1)
Ata“& Dvi'
MBR
AT\ 'T\sd
———> ALY Funckion
CoNTRoOL
——— destindtion . ,
condthions— _‘jy_&_g.
P STUPID block dthimm
next adde

|

—
-
-ﬂ'

x?

»ctﬁoésg

SyFawanN

20 141 TsW AW Jasza wowrod) SN

o3y JoLING | sk | ¢ W 191 Tsw
<. ZarTIow | ~ 300w 210w [T L)
A e R T R

SV IM | & o eigean | 25,
<. TGl I | o Ay7dx o .MMM‘WHNW)
> |B5TIW e T 3sw

= &5 IW | o {9 Tow
< TSI 15w | - T Iew
TSI I5W | = z T T

~ s Tl | QMA TOst W

-\ e | 2 oW
J— l‘ (2 IsW | - _ zoxrvxi!) 101 TS |

Ank Joldsaq | £5) YW ! o $o5 oo
oo | 12 Tew @ T | i
K 13w | 6) = S5
3 (91 Tew M o > Tz Hw_,

o EZIESIE Y o ST

- 2041357 | o S Y099
2 |l 1 = 02>

; R e

Q 75 AB w 3 I%l.wnm, il
O LSt H&& < = nts

NOLILOuRA

(¥Y04

NOILO 73

.

Qdvuy

OO0 O0OOO®H 1 I Ly o®PLOOMO

F
L {
)
S
T
[
.SlllvAv
m Iy - -
A....Nﬁe% J«W?.m 755"
4
= I
e LTI IR
ﬂ.;,-.\)..-..,...ﬂ.w,_sw‘l.f{mv —g
Yy o= | 179
1oyp o= w 575
YA Soep 22yd-7) htS
wapudy ,m-i Teas
O
LAYV YOI | |
NOTLINGA # Q¥vog -

=

F:%u/c‘ c‘i

P

N0
£
b

2

M

N3

C(
SO
BZLQ

1397

MAGIC
+oDE

OO0 PYYPYY

Micco—
PC

PC

B8 8 BT & BT &3 dMM BINIE

OJONONONOROXONONONOC)

Maqic mode

sTuPLD display

Fn'aure, 315

; STUPID microcode

1%
Pl
B2
g3
04

85
g6
87
g8
29
A
gB
gc
gD
AE
gF

10
11
12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
1F
20
21
22
23
24
25
26

27
28
29
27
2B

2C
2D

2802
290
2082
F7E8
2009

2809
2008
poa6
2008
B7C4
4002
B@@8
18@C
6010
POoE
gooF

G2ED
o217
#ge2cC
2831
2036
083B
9040
po4B
2056
¢a58
gela
p060
2062
2265
go67
97E1
9664
4001
D599
9590
9599
9590
go6D

C7E4
4002
1829
8530
geB5s5

C7E4
4002

gnorf:

wait:

bnss .+2
br test
bnstart .
pc<-swr
br inst

e Wms w™s we

Magic mode?
Yes! Go load memory
No. Wait for START
Start at addr in switches

’

; Get next instruction and execute it:

next:

inst:

add:

sub:

bnss inst
bnstart .+2
br .-1
bnstart .
mar<-pc
read
pc<-pc+l
bmnr .
disp 14
br .

br .

br halt

br add

br sub

br and

br or

br clr

br isz

br dsz

br load

br store

br .

br branch

br bz

br bn

br bp
mwr<-ac
mar<-g

write
ac<{-shift(mbr)
ac<-shift (ac)
ac<-shift(ac)
ac<~shift(ac)
br patch

mar<-mbr
read

bmnr .
ac<{-ac+mbr
br next

mar<-mbr
read

NS we e W W

we wp we

~e

WO NE M NI ME ME N N N % Ne N NE Wy W Ny

e Wy W

-e

Single stepping?

Yes - make sure START is off
It wasn't
Now wait for him to press it
Get the instruction

Get ready for next
Now wait for the bloody thing
Dispatch on op code

Bad news

OP 9 = HALT

OP 1 = ADD mem to AC

OP 2 = SUBtract mem from AC

OP 3 = AND mem with AC

OP 4 = OR mem with AC

OP 5 = CLeaR mem

OP 6 = Inc mem, Skip if result=9
OP 7 = Dec mem, skip if result=0
OP 8 = LOAD AC from mem

OP 9 = STORE AC in mem

OP A = HANG

OP B = Branch to mem

OP C = Branch if (AC)=g

OP D = Branch if (AC)<g

OP E = Branch if (AC)>g

Op F = Special functions (like I/0)

Save AC in location @
Shift left 4 bits
to get the operation

00PS!

2E
2F
30

31
32
33

35

36
37
38
39
3A

3B
3C
3D
3E
3F

40
41
42
43
44
45
46
47
48
49
4A

4B
4C
4D
4E
4F
50
51
52
53
54
55

56
57
58
59
5A

182E
80DY
2005

C7EA4
4002
1833
8770
0025

C7E4
4902
1838
87D0
2oa5

C7EA4
8661
4001
183E
aaa5

C7E4
4002
1842
D@gal
4903
1845
D7C1
3849
6a065
Bo@8
2805

C7E4
4002
184D
D5E1
4003
1850
D7C1
3854
0oe5
BO@8
#0835

C7E4
4002
1858
D7F@
@085

and:

or:

clr:

isz:

dsz:

load:

bmnr .
ac<—~ac-mbr
br next

mar<{-mbr
read

bmnr .
ac<{-ac&mbr
br next

mar<-mbr
read

bmnr .
ac<-ac!mbr
br next

mar<-mbr
mwr<-9
write
bmnr .
br next

mar<-mbr
read

bmnr .
mwr{-mbr+1l
write,read
bmnr .
mwr<-mbr!g
b=g .+2

br next
pc<-pc+l
br next

mar<-mbr
read

bmnr .
mwr<-mbr-1
write,read
bmnr .
mwr<-mbr!@
b=¢g .+2

br next
pc<-pc+l
br next

mar<-mbr
read
bmnr .
ac<-mbr
br next

“y W “e w0

Compare

Resul t=0?
Nope. skip the skip
Yes - skip next instr

5B
5C
5D
5E
SF

60
61

62
63
64

65
66

67
68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

80
81
82
83
84

85
86
87

C7E4
97E1
4001
185E
go@s

D7ES8
@05

9709
3869
2005

3060
8005

3005
97D@
3805
D7ES8
poo5
ga6C
186D
gaca

GO6F

2080
9085
2088
geci
2089
0a80
po80
0089
o080
0089
po89
g080
p386
po80
pa89
pa8e

9664
4092
1882
D7F@
80805

885
9F50
2085

store: mar<-mbr
mwr<-ac
write
bmnr .
br next
branch: pc<-mbr
br next ; Simplicity personified
bz: ac<-ac!g
b=@ branch
br next
bn: bac<@ branch
br next
bp: bac<g next ; If <@ it can't be positive
ac<-ac!g s If @ it's not either
b=@ next
pc<-mbr ; It's positivel!l
br next
br .
patch: bmnr .
br pl ; Go figger out what instr is
br .
; Dispatch table for OP F insiructions
br getbak ; FgX = NOP
br gchar ; F1X = Get char from TTY
br pchar ; F2X = Type (AC) on TTY
br rswr ; F3X = Read Switch register
br getbak ; F4X = NOP
br getbak ; F5X = NOP
br getbak ; F6X = NOP
br getbak ; F7X = NOP
br getbak ; F8X = NOP
br getbak ; F9X = NOP
br getbak ; FAX = NOP
br getbak ; FBX = NOP
br getbak ; FCX = NOP
br getbak ; FDX = NOP
br getbak ; FEX = NOP
br getbak ; FFX = NOP
getbak: mar<-0 ; Get AC back from loc ¢
read
bmnr .
ac<-mbr
br next
gchar: bnchr . ; Char in buffer?
ac<-tty : Yes. Read it in
br next

88
89
8A
8B
8C
8D
8E
8F

99
91
92
93
94
95
96
97
98
929
oA
SB
ac
9D
9E
oF

AQ
Al
A2
A3
A4
AS
A6
a7
A8
A9
AA
AB
AC
AD
AE
AF

BO
Bl
B2
B3
B4
BS
B6
B7
B8

9664
4002
188A
D7F@
198C
97E2
@005
Po8F

96780
97C8
3894
093
B7C4
3897
20896
9661
4001
1899
4002
189B
87Da
38C5
GO9E
PAOF

o0BO
AoAl
BOA2
BOA3
goa4d
goAS
POA6
goA7
BOA8
gaa9
g0AA
JOAB
gaAC
POAD
g2AE
@OAF

9461
4901
18B2
4002
18B4
D758
3¢B8
3087
9210

pchar:

test:

; Dispatch

ok:

mar<-9@
read
bmnr .
ac<{-mbr
bnobe .
tty<-ac
br next
br .

ac<-9¢
pc<-ac!gd
b=@ .+2
br .

mar<-pc!g

b=@g .+2
br .
mwr<-@
write
bmnr .
read
bmnr .

ac<-ac!imbr
b=8 gotcha

br .
br .

br ok
br
br
br
br
br
br
br
br
br
br
br
br
br
br
br

mwr<- -1
write
bmnr .
read
bmnr .
ac<-mbr

bac<@g .+2

br .
ac<-ac+1l

-

s “ w

we We wy

-0

e

~e

14

-y

-y W

Get the char back

Output buffer empty?
Yes - send the char

A little test to see if the machine

maybe possibly might work
It don't.

pc is broken

Location 0 = 0

Hang here and memory is kaput

Did we read back a @?
NO! memory is no good

Maybe the memory is stuck on zero

table for simple dispatch test
Looks like disp might work

Is it negative?

No.

Something's broken

B9
BA
BB
BC
BD
BE
BF
Cco
Cl
Cc2
C3
C4

C5
Cé6

Cc7
Cc8
CS
CA
CB
cC
CD
CE
CF

D@
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

Ed
El
E2
E3
E4
E5
E6
E7
E8
E9

97D@
38BC
AoBB
9010
97E1
4001
18BF
4002
18C1
D5F@
38F#2
poc4a

60AQ
2aCo

F7F0
paa5
@8C9o
97E1
9464
4003
18CD
6070
gaCF

2802
4809
290D0
B7C4
F7E1
4001
Bo@8
18D7
20F1
goD8
g9DA
@6DB
geDcC
@eDD
@ODE
gaDF

2002
0OEQ
PPE2
@OE3
POE4
AGES
@OE6
@OE7
0PES
0BE9

gotcha:

rswr:

memlod:

halt:

ac<-ac!p
b=@ .+2
br .
ac<-ac+l
mwr<{-ac
write
bmnr .
read
bmnr .

ac<-mbr-1

b=0 exam
br .

disp 0
br .

ac<-swr
br next
br .

mwr<—ac
mar<-~ -1

write,read

bmnr . -
disp 70
br .

bnss halt

lite
bnstart
mar<-pc
mwr<—swr
write
pc<-pc+1l
bmnr .

bnstart displ

br
br
br
br
br
br
br

-1

bnstart wait

br .-1
br
br
br
br
br
br
br
br

e Ny Wy wme W

~e

e

e N wy we -y “e

~e

-

Was it in fact -17?
well...?

arrrrgh!

Now try something with not all
the nibbles the same

Looks maybe like it works

Read switches

Need a location to write thru
so we can get cpcode back into MBR

Magic mode off?
No - light the light

and wait for 1 or the other
Deposit

/must unpress START

On HALT, must unpress START

EA
EB
EC
ED
EE
EF

Fo
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

@2EA
BOEB
@BEC
@0ED
GAEE
@OEF

F7E8
B7C4
4002
18F3
D750
#0DQd
gOF6
goF7
goFs8
BoF9
ZaFA
@OFB
garFcC
BOFD
GPFE
GOFF

exam:
displ:

br
br
br
br
br
br

pcl-swr
mar<-pc
read
bmnr .
ac<-mbr

br
br
br
br
br
br
br
br
br
br
br

memlod

. L] L] * * L[] L L[] L L]

-
s

e W we

. . i
Magic Mode: Examine loc 1in swr

Display it
and let him change it
if he wants to

addr Cause?

g2 START broken

gc Mem hang cn read

OE DISPATCH doesn't do branch

gF 22222222

1A HANG instruction executed '
29 Mem hang on read

2E Mem hang on read

33 Mem hang on read

38 Mem hang on read

3E Mem hang on write

42 Mem hang on read

45 Mem hang on simul write,read

4D Mem hang on read

56 Mem hang on simul write,read

58 Mem hang on read

5E Mem hang on write

6C 222222727

6D Mem hang on write

6F 222222727

82 Mem hang on read

85 TTY in not raising DA

8Aa Mem hang on read

8C TTY out not raising TBE/

8F 2?22?2222

93 AC not loading or result=g FF kaput

96 -PC not loading properly

99 Mem hang on write

9B Mem hang on read

9E val read from mem is not same as val written
9F 2222227272

Al-AF DISPATCH or memory kaput

B2 Mem hang on write

B4 Mem hang on read

B7 Either read does not get written data or AC<K@ is broken
BB read data not same as written data (Mem stuck on zero?)
BF Mem hang on write

Cl Mem hang on read

c4 Mem writes same thing to all 3 nibbles?
Ccé DISPATCH broken

Cc9 22222227

CF

D7
DA-DF

E2-EF

F3
F6-FF

22222222

Mem hang on write
222222272

222222222

mem hang on read

oooooo

25
16
37
18
39

JA
2B
AC
3D

JE
iF
L @
11
1 2
1 3
1 4
1S
1 6
1 7
1 8
19
1A
1B
1C
1D
1E
lF
20
21

22
23
24
25
26
277
28
29

587
588
87E
98B
98C

F30
37B

cAE

BOA

F30

989
37B
COE
889
382
989
181
F20
887
187
98a
18A
987
187
18A
189
987
78B
BOA

87F
F20
884
F20
F30
37B
Cc2a
B26

we We WMe N W Wy o

- we

gnorf:

grok:

igor:

korg:

.loc

clear
clear
load

store
store

reads
and

bz
branch

reads
store
and
bz
load
and
store
add
pchar
load
add
store
add
store
add
add
add
store
dsz
branch

load
pchar
load
pchar
reads
and

bz
branch

STUPID demonstration program
Accepts two BCD numbers (4 digits each)
from the switches, typing them out

on the TTY as they are read in. Then
goes into operation mode, where the two
numbers can be added, subtracted,
and the result printed in octal on the TTY.

resl
res?2
four
count
tnuoc

hibit
igor
grok

hibit
igor

zero

resl
resl
temp
temp
resl
resl
temp

resl
count
grok
cr

1f
hibit

rogi
korg

anded or ored

~y W wp

we wo -

-e

LY

e N we N

“e s

“e wo “e we we -e

-y

-e

-

Start at location 9E. Antisocial people start
at location @5

Will hold 1lst operand
2nd operand ‘
4 BCD digits per word

read the ol' switches

Make suve Hi order bit is off
Otherwise must wait

Get the value

High bit=1 => take it
Get num back

Mask to digit

s has BCD digit

Type it out

0l1d result
old*2

old*4

0ld*8

0ld*1g

old*1@d+new

Got 4 digits?
Not yet

Ker

chink

Wait for it to go low again

F30
989
37B
c2a
889
382
989
181

F20

888
188
98a
18A
988
188
18A
189
2988
78C
B26
87F
F20

207
~ N L

F29

F30
37B
D42

F39
989
378
C45

889
383
E56
889
384
E59
889
385
E5C
889
386
ESF
009

887
188
B62

rogi:

crlf:

loop:

pool:

addem:

r2ads
store
and
bz
load
and
store
add
pchar
load

.add

store
add
store
add
add
add
store
dsz
branch
load
pchar
load
pchar

reads
and
bn

reads
store
and
bz

load
and
bp
load
and
bp
load
and
bp
load
and
bp
halt

load
add
branch

hibit
rogi

2ero

res?2
res?2
temp
temp
res2
res?2
temp

res?2
thouc
korg
cr

1f

hibit
loop

hibit
pool

sum
addem

diff
subem

.and
andem

«Or
orem

resl
res?2

type

’

~e we

s wp we

.
,

LT3

e

Do it all agin

Hey, I don't need this instr!
Because it's negative anyway

Look for operation now
He wanna add?
Yup.

Subtract?
and?
or?

None of the above. Quit,

Go type out the result

W PO

MmO O

F
0
1

2
3
4

5
6
7
8
9
A
B
C
D
E

'@
1
2
'3
4
5

6
7
'8
9
‘A

'B
'C
'D
'E
23
30
31
32
33
34
35
36
37

887
288
B62

887
388
B62

887
488
B62

98A
87E
98C

87D
98B
58D
88A
37B
c6C
87¢C
98E
88a
18A
98A
88D
18D
18E
98D
78B
B68

181
F20
78C
B65
B3E

800
ol
003
go4
2oD
BoA
230
gorF
gol
p82
po4
g8
Boa

subem:

andem:

orem:

type:

there:

here:

skip:

hibit:
one:
three:
four:
cr:
1f:
zZero:
f:
sum:
diff:
.and:
.0r:
resl:

load
sub
branch

load
and
branch

load
or
branch

store
load
store

load
store
clear
load
and
bz
load
store
load
add
store
load
add
add
store
dsz
branch

add
pchar
dsz
branch
branch

00

8
1
3
4
D
B
3¢
F
1
2
4
8
@

resl
res?

type

resl
res2

type

resl
res?

type

temp
four
tnuoc

three
count
digit
temp
hibit
skip
one
XXX
temp
temp
temp
digit
digit
XXX
digit
count
here

zZero
tnuoc

there
crlf

-e e ~e we

we W™ WMy E Wy W N “e ws W

we W8 Wme “e W

-e we

e W WE WM Wy W Wy W

Save result
Four octal digits per word

3 bits per octal digit

Get word back

g or 1?2
1 - make it 1 instead of 1Bl1l
Save the bit

Shift result word
Running sum...
*2
+ bit
And that's the new one.,..
Got a whole octal digit yet?
Nope. Keep going -
ASCII-ize it
Type the digit
Finished?.
Not vet
Yes. Go get another op

Most signif bit
Yup.

Carriage return

Line feed

ASCII "g"

Low order 4 bit mask
Bit which means "add"
"subtract"

"and"

|lc)r-"

JE
SF
\g
4

\2
A3
A4
AS
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF
30
31
32
33
34

209
000
o0
oo
000
000
000

8AS8
98B
8A9
9A2
8AA
F2¢
6A2
78B
BA2
B@5

goB
8AA
48
249
020
254
48
g45
852
245
oD
g9B
29B

res?:

.8t
~temp:

count:
tnhuoc:
digit:
XXX
.loc

start:

inst:

lenth:
kludge:
msqg :

.end

SR aW

O
m

load
store
load
stc e
load
pchar
isz
dsz
br

br

load
"H
"I

T
"H
"E
"R
"E

lenth
count
kludge
inst
msg

inst
count
inst
gnorf

| msqg

e WmE WMe "

-e W

Typa out something
Next char...
Done?

Notchet

11 chars in mess
typer nodifies inst...

