
Weather station
This is an arduino UNO home weather station with e-ink display.

The hardware used for this project is:

• Waveshare 4.3 e-ink display

• Arduino Uno

• Adafruit BME280 combined temperature, humidity and atmospheric pressure

• DS3231 based hardware clock

Functionality

• time

• date

• temperature

• station atmospheric pressure

• sea level atmospheric pressure

• humidity

• short-time local weather forecast

• pressure tendency

http://fpages.info/blogs/felipe/wp-content/uploads/sites/2/2017/09/IMG_2466-2.jpg

Schematics

Challenges

The main challenges of this projects were:

• using a font, different than the one build-in in the display

• creating images without using too much memory

• choosing and implementing the forecast algorithm

Font

The display has build-in fonts. The problems are, they are raster, non-scalable, have only Latin

and Chinese symbols and have only 3 sizes. Even worse, typographic-wise the three sizes are

different. I wanted a good-looking interface and mixture of serif and sans fonts makes this

impossible. The solution was to define a font in the code as a 3-D array, where every symbol

consists of a matrix of 5x7 pixels. At first I used one byte per pixel, but that almost topped up the

available memory. So I decided to use 1 byte for every column and to access the pixel info with

bit-wise operators. In this way I loose only one bit for column.

The display API library has primitives for drawing filled circle and I use this to draw the symbols.

The numbers look like this:

0123456789
The function I have created expects as a parameter the diameter of the circle and by it the

diameter of the circle and space between the circles is controlled. As a result I got a variable-

size font, not dependent of the fixed-sized fonts embedded in the screen.

Weather icons

The display supports uploading images to its internal memory, but they are again raster images

and thus not scalable. So I decided to create functions in the code for drawing the icons, based

on the available graphic functions in the display API and to be able to control the size of the

image in the same way as the font characters. At the end I made images for sun, cloud and rain,

that can be combined in different ways. I used the primitives for filled circle and rectangle for

most of the image parts. Unfortunately the API function for drawing a line does not have

parameter for the thickness. So I had to implement my own line drawing function based on the

Bresenham algorithm, but instead of pixels I draw filled circles. The size of the circles is the

thickness of the line.

Forecast algorithm

I quickly realize that the manufacturers of the existing home weather station does not publish

any information about the algorithm they use for choosing what weather prediction icon to

show. The only algorithm for that purpose with a description that I found was the Zambretti

algorithm, named after its creators Negretti and Zambra and published in the year 1915 (Long

live the copyright culture!). The input parameters of the algorithm are season, sea-level

pressure, barometric tendency, hemisphere and wind direction. The algorithm is empirical and

created for the northern hemisphere and more specifically Great Britain. Analysis made on the

algorithm conclude, that wind direction has little effect to the final result, which is a good thing

because wind direction sensor in urban environment is hard to use. I get the temperature,

humidity and station pressure from the sensor, but the relative pressure should be derived

from the station pressure. There are many formulas for that, but the one I use is the following:

P0=P(1− 0.0065∗h
T +0.0065∗h+273.15)

−5.257

where

P0 is the relative sea-level pressure

P is the station pressure in hPa

h is the altitude in meters

T is the temperature in Celsius.

The problem is how to get the altitude. The sensor I use returns the approximate altitude, but it

is based on the barometric pressure and it is affected by it. It is like chicken-and-egg problem. I

order to get the exact relative pressure I need the station pressure and the altitude, but in order

to get the altitude I need the exact pressure. After some experiments it turned out that if I use

the sensor for getting the altitude the calculated sea-level pressure stays almost the same – this

is because when the pressure changes the altitude changes too. To solve this problem I came up

with the following two ideas:

• to gather data for the barometric pressure for prolonged period of time and use some

average value

• to use pressure, entered by the user

Both approaches have some limitations – the first one needs long time to gather the data and

some memory for it, and the second needs the user to know the altitude and the device to have

some input interface for it. Unfortunately this is the price that have to be paid to get an

adequate short-time forecast.

Determining the tendency of barometric pressure turned out to be a challenge, because the

materials only say “rising”, “falling” and “stable”, but these terms are not defined. In other

sources, not connected to the Zambretti algorithm the tendency is defined as the change of

pressure with one (or two or three at most) units in hectopascals for the period of one to three

ours. Armed with this knowledge I made the following: I save the sea-level pressure every 10

minutes in an array. When the array is filled I calculate the tendency as the difference between

the average of the first three elements and the last three. The array is used as a queue, where

the 11th value goes to the 10th position and the first one is discarded and so on.

The Zambretti algorithm returns a number, that have to compared to a table with the text

description of the forecast. Some computer implementations of the algorithm try to derive a

formula that gives the number of the row in the description table based on the Zambretti

number. I decided to use the approach, used by the developers of the Javascript

implementation, where number intervals are used, defined with if-else if operators.

The mappings of the text descriptions to the images is given below:

Falling pressure

Settled fine Sun

Fine weather Sun

Fine becoming less settled Sun, cloud

Fairly fine showery later Sun, cloud

Showery becoming more unserttled cloud

Unsettled, rain later Sun, cloud, rain

Rain at times, worse later Sun, cloud, rain

Rain at times, becoming very unsettled cloud, rain

Very unsettled, rain cloud, rain

Settled pressure

Settled fine Sun

Fine weather Sun

Fine possibly showers Sun, cloud

Fairly fine showery later Sun, cloud

Showery bright intervals Sun, cloud, rain

Changeable, some rain Sun, cloud, rain

Unsettled, rain at times Cloud, rain

Very unsettled, rain Cloud, rain

Very unsettled, rain Cloud, rain

Stormy, much rain Cloud, rain

Raising pressure

Settled fine Sun

Fine weather Sun

Becoming fine Sun, Cloud

fairly fine, improving Sun, Cloud

fairly fine, possibly showers Cloud

showery early, improving Cloud, rain

Changeable mending Cloud

rather unsettled Clearing later Cloud

unsettled, probably improving Cloud

unsettled, short fine intervals Cloud

Very unsettled, finer at times Cloud, rain

Stormy, possibly improving Cloud, rain

Stormy, much rain Cloud, rain

Plans for future development

• Calculating moon phases

• Showing the day of the week

• Adding buttons for setup

• Adding energy-independent memory for saving the collected data

• Adding external sensor for temperature and humidity

• Adding an image for storm

• Connecting via WiFi to mobile devices for setup and control

• Showing events – birthdays, appointments, official holidays, defined in a mobile app

Download:

https://github.com/fandonov/weatherstation

https://github.com/fandonov/weatherstation

Links:

http://drkfs.net/zambretti.htm

http://keisan.casio.com/exec/system/1224575267#!

http://keisan.casio.com/exec/system/1224575267#!
http://drkfs.net/zambretti.htm

	Weather station

