

How it works

By Bruno Laurencich

Proofreading: Diego Laurenti Sellers

Part of the original content that can be found at:

http://wiki.chordata.cc

This work and the content published on the wiki are licensed under a​ ​Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License​.

http://wiki.chordata.cc/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Intro and motivation

The field of motion capture has been receiving a lot of attention in the last few years. Not
only is the scientific community creating an incredible amount of publications presenting
several types of enhancements to the different techniques involved in the discipline, but also
the average person with a minimum level of technological knowledge is becoming more
aware of the many areas of application.

There are several reasons for this tendency. The main one might be the fact that domestic
access to high computational devices has become granted to the average user. On top of
that a variety of commonly available tools allow (and sometimes require) the processing of
motion capture information: from 3D creation tools and video game engines, to multiple data
analysis techniques.

While the cinematographic and medical industry rely on the more expensive and accurate
optical capture, inertial captures are applied to situations where portability or costs are a
concern. In this field the MEMS type of inertial sensor has reduced prices while increasing
accuracy. Other promising techniques require only one camera and achieve the capture
through the application of Artificial intelligence algorithms are making their appearance.

We live in a historic moment when for the first time doing motion capture is (virtually) easy:
all the tools to achieve it are easily available. In this scenario, the lack of a systematic guide
or framework to help people implement motion capture gears draws attention. To remedy
that shortcoming Chordata was developed.

Our system was specially designed to meet the following criteria:

● Being inexpensive and easy to implement for the basic user, who is just interested in
getting a capture.

● Flexible enough to allow an advanced user to develop a custom system, which
requires implementing a motion capture solution.

Chordata is a hardware/software motion capture framework. It constitutes a starting point
to begin building a new type of motion capture, one that is available to everyone and to
which anyone can contribute. It also offers a launching platform in which to build and test
new ideas and techniques, or deploy new discoveries in order to share them with average
users beyond the academic circles.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 2

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

What this document is about

Chordata was developed to be used. Is not the consequence of an extensive research,
instead it was the progressive implementation of each one of its parts that guided me
through the study of the several disciplines that give life to motion capture.
A consequence of this pragmatic approach is a system about which I’m aware of every
single implementation detail, but that still lacks a comprehensive taxonomy. This is a first
attempt to create a complete description of how the system is implemented.

If you are reading this in a pdf format be aware that what you have in your hands is just a
dump of part of the knowledge base that can be found at the Chordata’s wiki
(​http://wiki.chordata.cc​). That type of content structure allows this document to constantly
grow through the contribution of whoever thinks have something to say about the Chordata
system, the motion capture in general or any of the many technical fields that make that
discipline possible. The starting point of this document was written by just one person
during september and october 2018, but since it is meant to be a collective creation from
this point on the pronoun “we” will be used to reference the author(s).

We will begin with a general description of the main parts of the system and the way that
they are related to each other in §1.

An specific description of each of the specific parts will follow in §2. By “specific” we intend
hardware and software designed exclusively for this system (as opposed to parts commonly
available).

Power considerations can be found on §3.

A description of how the sensor data is processed can be found on §4. This chapter begins
by stating that the most fundamental property that we should try to pull out from the sensors
is their orientation (not the position as you might believe!). Then we will briefly describe how
an orientation can be expressed using a Quaternion and how the raw data from the sensors
is transformed into an orientation.

Chapter 5 will cover calibration: The differences between sensor calibration and in-pose
calibration, and a detailed explanation of the latter.

A fundamental aspect of the Chordata functionality is the network communication between
the gear on the performer’s body and the client which is receiving the capture. A description
of the forms that the network can take is included in §6, and a summary of the Chordata
specific networking protocols can be found in §7.

As a way to apply all the concepts in §8 we will go through the creation of a simple client in
python.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 3

http://wiki.chordata.cc/
http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

As you can see many fields of knowledge are covered in this document. There’s a not
negligible probability that at least some aspects of them are described in a not technically
accurate manner. If you are an expert in one specific topic, and find some mistakes or ways
to improve parts of this document please feel free to contribute by suggesting modifications
to the wiki.

At the end of this document you can find a glossary describing most of the specific terms
used in this guide, and in the Chordata documentation in general, in the way that they are
intended within Chordata.

Disclaimer:​ This document is Work in progress, you might find some chapters still
missing. Please refer to ​the wiki​ to get the updated content.

What this document is not about
Please note that this is not a guide to build the system, and won’t attempt to extensively
describe the basic technical knowledge required to understand the system. If you are just
interested on creating your own mocap gear you will probably want to take a look the guide
on which the building procedure is explained taking nothing for granted.

On the other hand this document will take the different software pieces of the system as
closed entities, in the sense that even if it will describe their internal mechanisms or design,
no systematic description of the source code will be included here. That type of
documentation will be published together with the release of the first production version of
the system.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 4

http://wiki.chordata.cc/
http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Table of contents:

Intro and motivation 2

What this document is about 3

What this document is not about 4

Table of contents 5

1. General description of the the system and its components 7
1.1 Hardware configuration 8

1.1.1 Host side communications 9
1.1.2 Role of the SCB 9
1.1.3 Role of the K-Ceptor 9
1.1.4 Role of the Hub 9

1.2 Client side 10
1.2.1 Current client as a Blender add-on 10
1.2.2 Future client for basic usage. 10
1.2.3 Custom clients. 11

1.3 Client-host communication 11

2. Chordata’s parts specifications 13
2.1 Core parts 13

2.1.1 K-Ceptor 13
2.1.2 Notochord 15

2.1.2.1 Notochord: Armature parsing 16
2.1.2.2 Scheduling 17
2.1.2.3 Data processing 18
2.1.2.4 Data output 18

2.1.3 Custom sensing nodes 20
2.2 Periferic parts 21

2.2.1 Hub 21
2.2.2 Client 22
2.2.3 ID_Module 24

TODO. 24
2.3 Utility parts 25

2.3.1 Notochord control server 25
2.3.2 Remote Console 27

TODO. 27
2.3.3 WS2812 Server 27

TODO. 27

3. Powering the system 27

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 5

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

3.1 Power rates 27
3.2 Power connection 28

3.2.1 Using the Hub Buck converter. 28
3.2.1 Using the SBC’s 3.3v rail. 28

4. How the data from the sensors is used 29
TODO. 29

5.Calibration 29
Sensor calibration 29

TODO. 29
In-pose calibration 29

TODO. 29

6 .Network configurations 29
TODO. 29

7. Communication protocols 29
TODO. 29

8. Write your own Chordata client. 29
TODO. 29

GLOSARY: 30
TODO. 30

Appendix A: EEPROM table 31

Appendix B: Control protocol commands and syntax 32

Appendix C: Schematics 33

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 6

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

1. General description of the the system and its components
The system is composed of hardware and software parts. Most of its software and all of its
specific hardware is placed and works attached to the the body of the person whose
movements we are trying to capture. We call this person is ​the performer​, and all the
hardware and software attached to him or her is called the ​host side, ​as opposed to the
client side ​which takes place on a computing device dettached to the performer. We take
this definition from the networking jargon in part because many aspects or the system
reassemble the server-client model.

The host side hardware is in part specific to the chordata system, and in part is made of
commonly available components. All the hardware is interconnected forming a ​hierarchy​. In
the root, as the main processing unit there’s an ​SBC (single board computer). ​All the
development and testing of the system until now has been done using a Raspberry Pi 3 as
the SBC, but any other one with at least one exposed i2c hardware interface and preferably a
WIFI adapter can be used.

The branches and leaves of the tree can be composed of any arbitrary configuration of any
of the following types of chordata specific nodes:
-Hubs
-K-Ceptors
-Custom sensing units

In this page you will find a general block diagram of the complete system. In the rest of this
chapter we will describe the role of the components and how they all relate to each other.
You can find detailed explanations of each one in §2.

Figure 1: General Chordata Diagram

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 7

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

1.1 Hardware configuration
The Chordata nodes can be arranged arbitrarily but most of the time a default configuration
is used, it allows a complete capture of the human body, while keeping the nodes count to a
minimum. We call it the ​default biped configuration ​and from now on in this document we
will treat it like the only possible one (just for the sake of simplicity). Keep in mind the is
actually just one of the many possible ones: for example if you what to capture the
movements of a dog or a robotic arm you will probably need to use a different one.

In the default biped configuration the first child is the Hub, after it six branches diverge
containing the 15 K-Ceptor more or less evenly distributed among them.
Here a diagram of the default byped configuration:

Figure 2: Default biped configuration. The most commonly used hierarchy

Custom sensing units​ is just a name that means “any possible sensor that might be used
to complement the inertial capture”. See §2.1.3 for details

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 8

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

1.1.1 Host side communications
On the host side all connections are wired, and the i2c protocol is used for the
communications. Despite of it being at the limits of its possible physical application, it never
showed issues regarding crosstalks, RF interferences or errors due to excess of capacitance
on the bus. In future versions of the system alternatives to address those possible problems
might be proposed.
Like many design decisions on chordata, the use of the same protocol that the sensors
natively implement allows the hardware complexity to be pulled to the minimum. As a
consequence the difficulty of building the system, and its derived cost gets reduced.

1.1.2 Role of the SCB
The SBC hosts the core of the system, and is responsible for all of the data processing on
the host side. Apart from the processing it handles the reading or writing to the nodes of the
hierarchy and the networking communication with the clients. On the hierarchy it always act
as the i2c master. When communicating with a client it always assumes the role of the
server . 1

It achieves these tasks through several programs and services. It’s most important program
is called ​Notochord , and by extension we sometimes refer to the hardware SBC as the 2

notochord.

1.1.3 Role of the K-Ceptor
This is the main sensing unit of the system, and the first building block that then shapes the
whole system. At its core there’s a MARG sensor array , consisting in an accelerometer, a 3

gyroscope and a magnetometer. No microcontroller apart from the one embedded on the
MARG is used keeping the hardware configuration on this node as minimal as possible. In
the hierarchy this node always act as a slave on the i2c protocol.

1.1.4 Role of the Hub
The main role of the Hub is splitting the hierarchy tree in branches. It features mainly an i2c
multiplexer. Secondary functionality include:

● Physically transforming the connector on the SBC to the RJ-12 ports.
● Powering the hierarchy tree
● Performing as a simple visual interface to give the user information about the state

of the system (through an RGB led).

1 Even if, as you will see in §2: on some communications is actually implemented as a client.
2 What about all those strange names?! Well I just happened to like the word “Chordata” which
designates a biological phylum: a kind of taxonomic rank higher than the class. To get and idea it
gathers together us the humans and all the vertebrates with many jelly-looking invertebrates and
several strange creatures. What we all possess in common is a notochord, a hollow dorsal nerve cord
and other organs on at least the embryonary state: that’s what in part inspired our logo. If you are a
biologist and you are reading this please don’t be mad at me, I swear not to keep blindly citing
wikipedia anymore :)
3 MARG stands for “Magnetic, Angular Rate, and Gravity”. That kind of sensing unit is also called
AHRS (Attitude and heading reference system), and sometimes mistakenly referred as IMU (inertial
measurement unit). The last form is not completely wrong, but is not taking into consideration the
magnetometer.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 9

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

It always acts as a slave on the i2c protocol, receiving simple commands that open or close
its gates.

1.2 Client side

For the client Chordata relies on some consumer-level computing device running a specific
client software. In this guide and in many places of the Chordata documentation we refer to
that specific software as just the ​client​ . For the initial release the only client available can
run on a desktop PC under any of the main operating systems, but clients to be used on
mobile devices (smartphones or tablets) are planned for the future. The implementation of
custom clients is relatively straightforward.

1.2.1 Current client as a Blender add-on
The current client takes the form of an add-on for the popular open source 3D manipulation
software: Blender.
The reasons to use Blender as a platform for the first Chordata client are multiple. First of all
it offers a Python API that can control practically all aspects of the interface of the program.
It was used during development as a 3D sandbox in which to rapidly prototype and test most
of the implementation steps. As a result, at the time of start creating this first release we had
already created an informal mocap client library written in Python for Blender. The add-on is
just a formalization of that codebase, with the addition of an Graphical User Interface (​GUI​).

On the other hand: having a rich and solid 3D manipulation tool working underneath our thin
layer of specialization allowed us to offer to users a complete client, with a GUI and 3D
visualization, in a fraction of the time that it would have taken to write a client program from
scratch. Apart from that, many users might take advantage of some of the many tools
already implemented in Blender to pre and post process the capture, edit the animations,
apply them to meshes, export the capture to some 3D interchange format, or even to some
other format oriented to data analysis, etc.
Not to say that we personally love Blender and we are happy to contribute to keep expanding
its already broad possibilities :)

1.2.2 Future client for basic usage.
That being said, the drawback with the client as a Blender addon is that being buried in the
vast availability of tools that the Blender interface offers might scare or confuse a user that
just want to get a capture done . Not to say that the setup process requires the installation 4

of a completely different software, and then the activation of the addon.
To tackle those difficulties we are planning to create a simpler client software. We are still
deciding the implementation details, but it should be in essence the opposite of what the
blender addon is:

4 Even if with the incoming release of the version 2.80 of Blender the GUI will suffer many changes
with the explicit intention of making it friendlier to non experienced users. It is scheduled for the first
months of 2019, we are looking forward to it!

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 10

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

● The installation procedure should be as minimal as possible, and the target platforms
should be as many as possible without duplicating the codebase. Ideally it will come
already hosted on the system running on the SBC, and served to the clients at the
moment of use.

● It should implement just the basic features that allow the user to initialize, visualize,
and record the capture. The interface should be as clear and minimal as possible.

It you carefully think about it, there aren’t no so many ways to implement such a client. But
we don’t want to spoil the surprise. Stay tuned for some news on this aspect.

1.2.3 Custom clients.
Writing clients for chordata is easy, provided that you have access to a programing
environment that can handle 3D visualization and networking. The main tasks of the client
are initializing the capture and applying the incoming capture data to some armature-like 3D
structure. An overview of the communication protocols follows, and they are described in
detail on §7. Directives on how to build a custom client are given on §8.

1.3 Client-host communication
The softwares running on the SBC offer both an HTTP and a Websocket API to control the
state of the host side. And within the capture the pose information is sent using the OSC
protocol.

The ​notochord control API​ exposes commands that allow a simplified yet flexible handling
of the capture. The same commands can be given through an HTTP GET request as
key-value pairs of a query string or a token followed by argument flags in a POSIX terminal
fashion through Websocket.
Examples of commands are ​init ​, ​close ​, ​config ​ among others. A complete description
of this protocol can be found in §7.

On the other hand when the notochord collects data from the sensors, after processing it
sends the pose information using the ​chordata pose protocol​ which is built on top of
OSC/UDP.
The data is structured in a really simple and straightforward manner, basically including a
timestamp, the node label, and the payload that in the case of the K-Ceptors is an orientation
expressed in form of a Quaternion.

The reason for this proliferation of protocols and transport layers is not arbitrary. For the
control API, which issues just a few commands over a whole session the use of a reliable
communication was desirable.
When transmitting the pose data packets are sent in an average rate of 700 packets/second.
In this scenario losing a package is preferable to a potential network congestion due to
packet retransmission, so an unreliable transport method is prefered.
Another benefit of using UDP for the pose transmission is that it supports multicasting,
allowing more than one client to consume the capture data at the same time (especially
useful in live performance scenarios).

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 11

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 12

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2. Chordata’s parts specifications
As stated in §1 the parts of the chordata system can be classified as either hardware or
software, as specially designed or commonly available. In this chapter we will go through all
the specially designed parts and their specifications, and for doing so we will use a different
type of classification:
We will start with the core parts, those that were first conceived and designed, and that then
shaped the rest of the system.
We will then review the peripheral parts: those that serve the purposes of allowing the core
to work. And to lastly the utility parts: those that are there just to make the interaction with
the user easier.

2.1 Core parts

2.1.1 K-Ceptor

To do inertial motion capture the first thing that has to be done is collect data from a number
of sensors. The idea of putting an MCU next to each one makes sense, but it would make the
system more complex, increasing price and decreasing code maintainability.
Instead having a single MCU reading all the sensors was one of the first design choices on
Chordata. The problem arises when more than two of them share the same bus, since the
i2c addresses fixed in hardware clashes would occur, making the bus behave in an 5

undefined way.
The K-Ceptor sidesteps that problem by using an i2c address translator (LTC4316) to create
an ad-hoc translated i2c bus branch where an LSM9DS1 MARG and an EEPROM memory are
placed.

Figure 3: K-Ceptor internal configuration.

5 The ​LSM9DS1 has one hardware configurable address bit, that’s why we refer to “more
than two on the same bus”

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 13

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The address translator behaves in a completely transparent manner from the master’s point
of view, changing just the address part of the message on the fly and bypassing the payload.
The translation value is hardware configurable, and is applied as an XOR operation to all
incoming addresses.

What figure 3 clearly shows is another of the characteristics of the K-Ceptors: they can be
daisy-chained together extending the original untranslated bus and allowing the creation of
linear hierarchies. The term “hierarchy” doesn't make much sense here, but it is used on
several parts of the system to refer to how the nodes are connected. Keep in mind that is no
describing the correct relation between the K-Ceptors on the bus, on which they are all
siblings and should have an unique translation value (more on translation values on §2.2.3).

The EEPROM memory is used to store the calibration information and other details of the
node (see appendix A).

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 14

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2.1.2 Notochord

The notochord is the main program running inside the SBC. Its role is not extremely complex:
Upon launching it has to figure out how the hierarchy is arranged (​armature parsing​),
calculate the correct order to read all the nodes (​scheduling​), process the data obtained
from each sensor and output it using one or more from a couple of configurable channels.

Figure
4: Notochord program functional diagram.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 15

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

It’s a command line interface program written in C++. A complete description of its usage
and configuration details is beyond the scope of this document. You can type ​notochord
-h ​ to get a list of all the possible arguments it can take.

2.1.2.1 Notochord: Armature parsing

Notochord ain’t no sorcerer, and it can’t guess how the hierarchy is set. Instead it needs to
be told how. This is done by an xml file: the ​Chordata.xml ​. Apart from containing much of
the configuration parameters that can also be passed as command line interface arguments,
it contains a description of the hierarchy. If you want to know exactly how i is defined you
can take a look to the ​Chordata.xsd ​file, which is a formal description of the
Chordata.xml ​ file for the purposes of validation. But to better grasp how it works what
about some examples?

To describe a hierarchy like this:

Figure 5: Simple linear hierarchy with 3 K-Ceptors.

The armature part of the xml file would look like this:

<Armature>

<K_Ceptor Name="first" id="0">

 3

 <K_Ceptor Name="seconf" id="1">

 0x0f

 <K_Ceptor Name="third" id="2">

 9

 </K_Ceptor>

 </K_Ceptor>

</K_Ceptor>

</Armature>

Ti should be clear now why we are always talking about “hierarchy” when referring to the
arrangement of nodes. On the ​Chordata.xml ​ nodes can have children and parents,
representing the way they are physically connected to each other . The value contained on 6

each K-Ceptor node is its translation value (expressed as a decimal of hexadecimal number),

6 Apart from the physical connection of the nodes, the term hierarchy is inherited from the 3D skeletal
animation techniques where bones are arranged on a hierarchical configuration. Generally speaking,
on 3D a child element transformations are expressed in terms of its parent’s coordinates system. As
a consequence the child “follows” all the parent “movements”

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 16

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

and the name property will be used to match it with the corresponding bone in the virtual
skeleton.

Let’s take a look to a slightly more complex configuration:

Figure 6: Branching hierarchy with 1 Hub and 3 K-Ceptors.

And its xml representation:

<Armature>

 <Mux Name="main" id="0">

 0x77

 <Branch Name="left" id="1">

 CH_1

 <K_Ceptor Name="first" id="2">

 3

 <K_Ceptor Name="second" id="3">

 0x0f

 <K_Ceptor Name="third" id="4">

 9

 </K_Ceptor>

 </K_Ceptor>

 </K_Ceptor>

 </Branch>

 </Mux>

</Armature>

Here we introduced the Hub, which has many gates: Both these elements should be
reflected on the xml. While a ​<Mux> ​ node can have many​ <Branch> ​ nodes inside, only one
<K-Ceptor> ​ is allowed inside the ​<Branch> ​ of ​<K-Ceptor> ​ nodes.

Whatever hierarchy this file contains, the notochord reads it on startup, validates it against
the ​Chordata.xsd ​ file and then parses it creating an internal representation of its
contents.

2.1.2.2 Scheduling

In order to be able to correctly process the data the time interval between reads has to be
known. There are some fancy techniques to do it, some of them take advange of the
interrupt signal that the sensor emits when data is available. Notochord just goes for the

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 17

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

simpler of them: Determine a decent output data rate (ODR) for each sensor taking into
account their number and the bus capacities. Calculate the sleep time that the program
would need to wait between each lecture to approximate as best as possible the theoretical
ODR, taking into consideration all the sensors and also the opening and closing of the gates.
Accommodate a sequence of reads and writes needed to perform a complete round and
then.. Just go for it!.
A couple of control mechanisms complete the process, but basically that’s how it works.

2.1.2.3 Data processing

Once the data is obtained, most of the time it should be processed in order to pull out
something significant of it. When the K-Ceptor is our sensing node processing means
converting the 9-dimensional reading from the accelerometer, gyroscope and magnetometer
into an absolute orientation. This process is called sensor fusion, and is briefly described in
§4.

For custom sensing nodes a processing routine should be implemented in C/C++ or even as
a Matlab/Octave script. Of course the latter wouldn’t be the most efficient way to do so, it
would allow the implementation of new routines without the necessity of recompiling the
program, perhaps they perform just simple calculation or might be useful as a testing step
for a later formal implementation.
If you are asking yourself how on earth might the notochord be able to process those kind of
scripts is because I forgot to mention it.. a GNU Octave interpreter is already implemented
inside it. It was used at the beginning for quickly testing different sensor calibration
algorithms, and now is there, why not use it? Take a look at the next section (§2.1.3) for
information about the current state of the custom sensing nodes.

2.1.2.4 Data output

By far the most common and useful way of outputting the data is transmitting it using the
open sound control (OSC) protocol . But the notochord has the ability to configure the output 7

on different ways to suit the needs of the user’s requirements.
To start with: the data processing step can be bypassed to output the raw data as it was
collected from the sensors, that’s achieved by passing the ​-r ​ or ​--raw ​ flag on startup.
The verbosity level can be set with ​-v <0-2> ​ or ​--verbose <0-2> ​.

The messages generated inside notochord can be of any of these three types:

● Log (Messages to the user)
● Error (Errors and warnings)
● Transmission (The important ones)

7 As the name suggests: this protocol was born to be used to control synthesizers or other devices for
the purposes of musical or multimedial performances (like a MIDI on steroids to make it short). It
turned out to be a pretty useful protocol for transmitting many types of (usually short range) time
sensitive information, so it was widely adopted in the fields of computer-based new interfaces,
distributed music systems, inter-process communication, among others. OSC's advantages include
been a simple yet flexible and accurate protocol with a detailed documentation, a numerous
community and the availability of implementations on almost all programing languages. Take a look at
http://opensoundcontrol.org/introduction-osc​ for more information.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 18

http://opensoundcontrol.org/introduction-osc
http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Even if two of them obviously takes its name from the output method they use by default 8

they can be arbitrarily piped to one or more of these sinks
● Stdout
● Stderr
● File
● Osc
● None

These pipings can be set from the configuration part of the ​Chordata.xml​ or from the
command line interface. Following some valid examples:

Figure 7: First example of message piping in notochord.

For a piping scheme like the one in figure 6 the arguments for the call to notochord should
be:
notochord --log file --error stderr --transmit stdout
(using long option arguments)

Figure 8: Second example of message piping in notochord.

Or to get something like the figure 7:
notochord -l stdout -l file -e none -t osc -t stdout

8 Yeah, I know.. Is not the smarter thing to do. We might change this naming on futures releases.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 19

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

(using short option arguments, and using more than one output for some of the messages
types: notice how the argument is repeated with a different sink)

Or this is the same as before but using the xml configuration

<Configuration>

 <Communication>

 <Log>

 stdout, file

 </Log>

 <Error>

 none

 </Error>

 <Transmit>

 osc, stdout

 </Transmit>

 </Communication>

</Configuration>

There’s more: it provides a well defined mechanism for implementing custom sinks. For the
most part the process is described on the documentation of the library used for logging in
notochord: spdlog
(​https://github.com/gabime/spdlog/wiki/4.-Sinks#implementing-your-own-sink​).
Expect more detailed information on how to do in notochord with the release of the first
production version and the documentation for the C++ source code.

2.1.3 Custom sensing nodes

At the moment the custom sensing nodes are more a design decision than an actual feature.
It’s name to say: Any given sensor that might contribute to some scope complementary to
the capture, and that can be included in the hierarchy in the same way that the current nodes
can. The K-Ceptor is formally nothing more than a custom sensing node, but it is one that
already ships with the system.
Just to name another as an example: many research and expressive areas would greatly
benefit with the addition of electromyography (EMG) data to the capture.

There’s of course the possibility of modifying the code, and building a hardware in a manner
compatible with the rest of the system. But Chordata still lacks a specific mechanism to
make it easy for someone alien to the codebase to do so. It would also be great to take
advantage of the already implemented GNU Octave interpreter as a way to quickly apply
processing algorithms for new the sensors, but it’s still work to be done.

We are hoping to be able to implement such features in the following versions.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 20

https://github.com/gabime/spdlog/wiki/4.-Sinks#implementing-your-own-sink
http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2.2 Periferic parts

2.2.1 Hub

The most important of the peripheral parts is without doubt the Hub. Apart from allowing the
hierarchy to be splitted in branches, it distributes power to all the nodes (apart from the
SBC), physically translates the connectors from the hub to the RJ-12 type, and serves as a
basic visible interface keeping the user informed about the state of the system.

Its most fundamental task (branching the hierarchy) is accomplished thanks to the PCA9548
i2c multiplexer. That component receives commands from the same bus that then
distributes by opening and closing its gates. The current version of the Hub exposes 6 gates
as RJ-12 6p6c connectors. As you can see on figure 9 the i2c pair takes the sides of the
connector, paired with a ground connector, this pattern provides some crosstalk and
interference proofing. The other two pins of the connector are used for the 3.3v rail and an
ENABLE signal coming from the SBC.

Figure 9: Scheme of the connections on the Hub.

The multiplexer is never asked to open more than one gate at the same time. This strategy
reduces the possibility of address clashing coming from nodes on completely different
branches and helps to reduce the problem associated with an excess of capacitance on the
bus by reducing the length of cable present on the bus at any given point in time to just the
length of one of the branches.

We said that the hub distributes power to its children, but where does the power came from
in the first place? The short answer is that it can use the 3,3v power rail on the SBC or
optionally a dedicated 5V inlet in the form of a micro USB B connector. More information on
power handling on §3.
The Hub also serves as a simple visual interface. It has a pilot led to indicate correct power
supply and an RGB led that informs about the state of the system, for example it turns
ORANGE when the system has finished booting, WHITE the notochord is transmitting data,
etc. A complete list of all the states and their colors can be found on the chordata user
guide.
This RGB led is controlled from the SBC using the WS2818 single wire protocol.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 21

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2.2.2 Client
A Chordata client is not a definite structure, the only task that it has to mandatorily
accomplish is receive the capture data. As you will see in §8 Clients can take many forms
and be as simple or as complex as needed. Here we will discuss how a generic client would
work. And by “generic” we intend one that allows a user without programming experience to
do the more common tasks on the motion capture, namely: controlling the state of the
notochord, building and sending the representation of the working armature in the form of a
Chordata.xml​, doing the calibration procedure, visualizing the capture, and finally doing
something useful with it, like recording it for later use, etc. The only client with those
characteristics in existence is the Blender addon, so in this section we will describe what’s
happening inside it.

Figure 9. Finite state machine representation of a generic client’s flow. It’s a simplified version that just takes into consideration
one bone and many control structures or transitions resulting from errors are omitted.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 22

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Blender already offers 3D visualization, has an internal representation of a 3D skeleton,
exposes a GUI to interact with it. Talking about creating a Chordata client on top of it sounds
like cheating: all the harder parts are already done. But the good news is that nowadays it’s
not hard to find an environment on your programming language of choice that is able to give
you access to all those features more or less out of the box.

Back to our Blender addon: everything starts with an armature on the 3D view. It can be a
custom one, or we can ask the addon to pull out an example our beloved default biped
configuration. If the user goes for the custom one he or she would have to give some extra
information in order to allow the client to map the bones to the distribution of sensors and
hubs in the performer’s body.

With the base armature already set the next step is to ​Connect ​ to the notochord. The
Blender client uses exclusively the HTTP version of the control API, so no long lasting
connections are ever established. Instead when the user clicks ​Connect ​ what’s happening
is just a connectivity test to assure that there’s a notochord ready to start capturing on the
other side.
If the “connection” was successful the user can then ​Start ​ the capture. Calling this
operator triggers several actions: first it generates the ​Chordata.xml ​ containing not only
the representation of the hierarchy, but also the configuration that will make the notochord
transmit the data to the correct place. Then it sends the file issuing an HTTP PUT request.
On success it will issue an HTTP GET request with the command “init”. That will cause the
notochord to start, read the configuration on the xml which will tell it to point all of its
outputs to OSC and use the client’s ip as a destination.
In the meantime the client has opened an UDP socket and has started listening for the
messages from the notochord on it.

When a message arrives the client checks the type: ​log ​ or ​error ​ messages are shown to
the user, and might cause the operator to terminate.
Other types of messages contain the capture data, those are used to directly modify the
internal representation of the armature. Blender then takes care of displaying the updated
armature to the user.
To be more precise what comes in a ​capture type ​ message is basically the label of the
K-Ceptor and an orientation in the form of a quaternion. The client just grabs the orientation
and applies it to the bone with the same label.

If it wasn’t for a little detail that would be the end of the story of our client’s hard work.
Instead it has to also take into consideration the in-pose calibration which is the process of
correcting the difference in orientation of the sensor with respect to the theoretical
orientation on the bone. If the last sentence doesn’t makes sense to you that’s completely
natural, a more detailed explanation of the in-pose calibration process will be given on §5.2.
For now what you need to know is that during a short period of time (calibration mode) on
the start of each capture session the orientations are not directly assigned to a bone, but
instead stored and used to get the difference in orientation of which we talked before. Once
the calibration is done the program enters “capture mode” and the incoming messages are

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 23

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

used to modify the orientation of the bones, But! The difference obtained in calibration is
subtracted to the incoming orientation before assigning it to a bone.

I know, your mind probably hurts by this point. If that’s not the case you have probably heard
of these processes before. Thing is: In-pose calibration is one of the trickiest parts of the
client’s job.​ It would be awesome to let the notochord do it​, greatly simplifying the job of
writing a Chordata client. Doing it is one of the ​main priorities on the roadmap for future
versions of Chordata.

At this point we have covered all the steps on a generic client, except for the specific part:
How is the capture used? The options given to the user on the Blender addon are: recording
it for later use, use scripting to process it in real time, or re transmit it to another program.
We won’t cover how any of those tasks are achieved, since it’s the job of the client writer to
decide what to do with the data, and how to implement it.

2.2.3 ID_Module

TODO.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 24

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2.3 Utility parts

2.3.1 Notochord control server

The notochord is a command line interface program, in order to run it a user should have
access to a terminal on the SBC. An ssh client might provide a convenient way to do it , but 9

opening an ssh session each time you want to perform a capture might not be the more
portable and user friendly technique. Besides making a script initialize a program on a
remote computer through ssh doesn’t sound like a easy task, I just don’t want to even think
how it can be done.
As an alternative everytime the Chordata’s SBC finishes booting, launches a service that
provides an HTTP and Websocket interface through which a user can perform the common
operations that a capture requires. We call it the notochord control server

Figure 10. Diagram of the notochord control server.

9 Because trying to attach a monitor and a keyboard to an SBC that is worn by a performer who has to
move might not be much fun.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 25

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

If you have already read §2.2.2 who might already have an idea of how it works. As a recap:
the most important command that can be given to the server is “init” which might take any
number of argument and forward them to a call to the notochord program.
If passing all the configuration parameters as arguments to the init command results on a
excessively verbose construction, or if a description of the current physical hierarchy is not
already on the notochord directory, then the command ​put ​ should be used to pass a
Chordata.xml ​ file . 10

The program is written in python and has 3 main parts: An HTTP server, a WebSocket server,
and a single command interpreter and actions runner. This means that regardless of the
channel on which a message arrives, the possible commands and arguments are the same,
and the state that they might query or modify is shared.

In terms of functionality the only thing that changes is that the websocket part is listening for
messages from the notochord while there’s at least one connected client. If there’s some
news about the state of the notochord the websocket users will receive a message
immediately, while an HTTP user will have to continuously poll for that information.

And there’s another formal difference between both communication channels: the syntax
with which the command and arguments are passed. Let’s see as an example how a call to
notochord with a destination ip and a verbose argument number is issued. A complete
description of the API can be found on §7

This is the HTTP version (non url escaped)
http://notochord.local/command/ ​init ​? ​p= ​-v ​&p= ​2 ​& ​p= ​192.168.85.2

And in the WS version, after connecting to ws://notochord.local:8000 you need to send a
message as TEXT like:

init ​ ​-v ​ ​2 ​ ​192.168.85.2

This duplication of protocols might seem bizarre. Why not just choosing one and making it
work fine? Isn’t this duplicating the job of maintaining and expanding the code?
Well, those are not completely incorrect considerations. The implementation of each of the
protocols just happened as a consequence of the creation of different clients while in
development. Now they both are there, and keeping them live doesn’t really implies an
additional job, since (we hope) the servers and parsing part will remain for the most
untouched while the cmd interpreter can keep growing.
On the other hand having the possibility of using both of them can really facilitate the job of
writing a client. For example let’s consider how a Blender addon is allowed to work: it can
offer operators to the user to interact with the program, but those operators have to
completely end execution before returning to the user the control of the GUI. In such case
having the possibility of issuing self conclusive HTTP command is best suited.

10 The ​put​ command can be used to pass any file and place it in a directory relative to the notochord
one.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 26

http://notochord.local/command/init?p=%E2%80%9D192.168.85.2
http://notochord.local/command/init?p=%E2%80%9D192.168.85.2
http://notochord.local/command/init?p=%E2%80%9D192.168.85.2
http://notochord.local/command/init?p=%E2%80%9D192.168.85.2
http://notochord.local/command/init?p=%E2%80%9D192.168.85.2
http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Instead in some other applications the bidirectional communication of the Websocket just
makes the life of the programer easier. In the next section there is an example of such
application: a terminal like interface for the control API where the user get the messages
emitted from the notochord as soon as they exit the program. The same idea can be
implemented using asynchronous HTTP requests, but it would make the client code bulkier
and more error prone.

2.3.2 Remote Console

TODO.

2.3.3 WS2812 Server

TODO.

3. Powering the system
To power the system a 5V, 2A source is needed. It can be connected to the SCB only, or
also to the Hub. Both connections use a micro USB-B connector.
By far the easiest way to achieve it is to use a common power bank. It should be rated for at
least 2A.

Figure 11. 10400mAh Power bank and Raspberry Pi.

To have a durable supply a capacity of at least 10000mAh is desirable. Under normal
capture conditions such a power bank was able to keep the system running for around 8
hours.

3.1 Power rates
The SBC is the major contributor to the power consumption on the host side of the system. A
Raspberry Pi 3 consumes about 500mA when in idle, and about 1500mA when under heavy
computing requirements. The manufacturer recommends a power supply rated at at 2A or
more. In the Chordata system the SBC should always get a direct connection to the power
source.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 27

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The Hub is responsible for distributing power to the rest of the hierarchy. Only the 3.3V rail is
used from this point on.

On regular usage a K-Ceptor withdraws about 7.8mA, so a complete default biped
configuration should use about 120mA.

In a worst case scenario the whole host side should be consuming about 1650mA. Not far
from the rating of our recommended power bank, but we can leave our concerns in peace by
knowing the fact that under normal usage conditions the notochord is just using about 8% of
the Raspberry Pi 3 computing capacity which result on a consumption of about 700mA for
the SBC.

3.2 Power connection
As stated before, one power connection should always go directly from the supply to the
SBC. That being said, there’s a couple of option to power the rest of the system.

3.2.1 Using the Hub Buck converter.
In this mode an additional connection from the power source to the Hub’s micro USB-B inlet
is used. The voltage is converted to 3.3V by a MCP1603 Buck converter and then distributed
to the lower part of the hierarchy tree.

Most 2A powerbank come with tho USB-A output connectors. If that’s the case then one can
be used to power the SBC and the other for the Hub.
If just one is available the Hub provides a 5V power outlet in the form of an USB-A
connector, allowing the use of a normal USB cable to give power to the SBC

3.2.1 Using the SBC’s 3.3v rail.
If the SBC exposes a pin with a constant 3.3 voltage, then it can be used to power the Hub
and the rest of the hierarchy tree overstepping the Hub’s Buck converter.
Figure 12 shows the wiring from a Raspberry pi 3 using female jumpers.

Figure 12. Wiring the Rasberry Pi 3 and the Chordata Hub to use the SBC’s 3.3v power rail.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 28

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

4. How the data from the sensors is used

TODO.

5.Calibration

Sensor calibration

TODO.

In-pose calibration

TODO.

6 .Network configurations

TODO.

7. Communication protocols

TODO.

8. Write your own Chordata client.

TODO.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 29

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

GLOSARY:
In this section you will find a description of most of the specific terms used in this guide, and
in the chordata documentation in general. They are described in the way that they are
intended inside the chordata system. For example you will find that the entry for “client”
describes the program that receives and visualizes capture data, but doesn’t mention the
broader concept of a client software that includes any type of computer program that
accesses a service made available by a server.

TODO.
Armature
Armature parsing
Blender
chordata pose protocol
Client
Client side
Core parts
Custom sensing units
default byped configuration
GUI
hierarchy
host side
HTTP
Hub
i2c
Kceptor
Master (i2c)
Notochord
notochord control API
notochord control server
OSC
performer
Periferic parts
Python
Quaternion
SBC
scheduling
skeleton
UDP
Utility parts
Websocket

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 30

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Appendix A: EEPROM table
The memory mapping table on the K-Ceptor EEPROM. The VALIDATION_CHKSUM is just
a 32bits string resulting from the CRC32 digest of the string "chordata". It used for checking
presence of data in EEPROM.

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 31

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Appendix B: Control protocol commands and syntax
(TODO)

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 32

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Appendix C: Schematics

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 33

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

 http://wiki.chordata.cc ​ | Released under ​CC BY-NC-SA 34

http://wiki.chordata.cc/
https://creativecommons.org/licenses/by-nc-sa/4.0/

