BAST: A biological evolutionary autonomous robot

Cassiano Silva de Campes
College of Information and Communication Engineering
Electrical and Computer Engineering
Sungkyunkwan University
Suwon, South Korea

Abstract

The Biological Evolutionary Autonomous System Tech-
nology - BEAST - is a robot that uses Genetic Algo-
rithm to learn by itself how to walk in any circumstances.
BEAST applies advanced techniques to divide the tasks
into three different groups: (1) search, (2) execute, and
(3) learn. It uses Genetic Algorithms to mimic the human
behavior in learning process, allowing the quadruped
robot to walk in an unknown environment iteratively.
BEAST uses an Client-Server approach to reduce the
computation requirements on the robot side. Future work
is envisioned for using different techniques that could re-
sult in a fast learning process as well as less computa-
tional power necessary to drive the calculations for the
local optimal result.

1 Introduction

1.1 Genetic Algorithms

In 1992, Holland [4] introduced the stochastic search
technique called Genetic Algorithm (GA). GA was in-
spired by biology where the evolutionary theory per-
sists and thus, every new adaptation generates a possi-
bly stronger model by the natural selection. Holland
could model complex computational problems into genes
(a representation of the problem in a computing sys-
tem) and thus could prove that by techniques inspired by
genomes, such as crossover, he could prove that GA is a
good candidate to find good solutions in a feasible time
[1].

Genetic Algorithms are based on the natural selec-
tion, an observation introduced by Darwin [2] where the
species are naturally selected based on its survival char-
acteristics, and thus, new species are produced, what
leads to a competition, natural selection and survival. It
is a well known cycle that has been studied by him. Fig-
ure 1 presents the natural selection mechanism.

Furthermore, with the evolution in computing power
with high performance parallel CPUs added to high ca-
pacity main memories, GA became a preferred approach
to solve complex systems that in the past were consid-
ered impossible to be solved within a lifetime. GA are
massively applied to generate high-quality solutions for
problem optimization, such as path planning, and search
problems. It relies on biological inspirations where the
possible operations in a GA are mutation, crossover and
selection [3].

Reproduction

Figure 1: Darwinian natural selection theorem

1.2 Problem Modeling

One of the major challenges about applying GA to real
world is how to model the problem domain in a computa-
tional environment. In our approach, we model the gene
as a given command that is going to be performed on the
BEAST robot. A gene chain is composed by several com-
mands that are going to be executed by the robot. Each
command is independent itself, what makes it easy to be
modeled and applied in an GA.

2 BEAST: the GA-based robot

This section we explain the design and implementation
of BEAST, our GA-based autonomous robot. It is di-
vided into Client (Subsection 2.1) and Server (Subsec-
tion 2.2) sides where the former is the robot itself that
executes the commands, and the last is in charge of deal-
ing the heavy computation, respectively.



2.1 Client-side: the BEAST

The Client-side is considered a passive module, that is,
it executes the commands according to the requests from
server and once executed, return the results back to the
server. The BEAST (presented in Figure 2) is a four-limb
robot that uses an ultrasound module to detect distance
from a reference point. The details are explained in sub-
section 2.3. The communication between Client and the
Server is through serial connection using a baud-rate of
9600 bits per second. This is a limitation in our project,
however in section 4, we evaluate the possibility of using
wireless communication to avoid cables connecting the
robot to Server.

Figure 2: BEAST: the developed robot

2.1.1 Arduino Mega

To control the hardware and develop the necessary soft-
ware to control the robot, we used the Arduino Mega
development board. Arduino - an open source devel-
opment board - was firstly introduced in 2005. It was
based on the Atmel AVR 8-bit micro-controller, and cur-
rently the board ranges from 8-bits to 32-bits data/in-
structions size according to the applications needs. The
board is simple and powerful at the same time, allowing
the fast prototyping and evaluation of the feasibility of
hardware and software projects in embedded systems in-
dustry. More informations about the board used can be
found at https://goo.gl/acd2zw.

2.2 Server-side: Genetic Algorithms

Our genetic algorithm is based on best genes
crossover, where the half best genes are selected to
suffer crossover with the half worst genes and finally a
probability function is assigned to generate random mu-
tations. Thus it is possible to create new generations that
mixes good and bad genes. Following, the remainder
half worst genes perform crossover among themselves

to generate the new half genes to complete our full next
generation. The new generation is created as follows:

1. generate the first generation with n genes
2. execute the genes to get the fitness;
3. sort genes from the best to the worst fitness values

4. select the half best genes and perform crossover
with the half worst genes

5. select the remainder half worst genes and perform
crossover among them

6. new generation is created

The pseudo-code on listing 1 explains how we de-
veloped the above mentioned steps to implement our
GA to be used in BEAST robot. The complete source
codes and references for this project can be found at
https://goo.gl/L9KgLA.
new_generation () {
cross_idx = random ()

int idx-gene

for (begin-best & begin-worst until end-best & end.worst)
if (idx-gene < cross-idx)

best[idx-gene] = worst[idx-gene]

else

worst[idx_gene] = best[idx.gene]

end._for

idx_gene = 0

for (begin_worst until end_worst)

if (idx-gene < cross-idx)
worst-begin[idx-gene] = worst_end[idx-gene]
else

worst-end [idx-gene] = worst_begin[idx-gene]

end_for

send-to.robot ()

sort_genes () {

int i, o

for (begin-gene until end-gene —1)

for (begin-gene until end-gene — (idx —1))
if (fitness[idx] > fitness[idx + 1]) {

int t = fitness[idx]

fitness [idx] = fitness[idx + 1]

fitness [idx = 1] = t

33 end_for
end._for
}
store-fitness (int genes-idx, int fit-val) {
fitness_list[idx] = fit-val

Listing 1: Pseudo Genetic Algorithm

Function new_generation () in listing 1 is exe-
cuted on the Server side due to the heavy computational
needs. Once the new genes are generated, they are sent
to the BEAST robot through the serial communication in-
terface. Thus, the robot is able to execute the new com-
mands, generating the fitness values, and sending it back
to the Server. Our approach exhaustively use the Client-
Server communication to avoid heavy computations on
the robot side, reducing complexity.

Figure 3 shows the block diagram that explains how
the Genetic Algorithm is executed in Server and Client
sides. The heavy computation is performed in the Server



by generating the first generation, and then sending the
genomes to the Client. The Client in turn executes the
commands, and stores the fitness and sends it to the
Server. The fitness is used by the Server to decide the
best genomes to be used for crossover operation. A mu-
tation of 1% is configured in our algorithm to give ran-
domness possibility. After the new generation is gener-
ated, the genomes are sent to the Client, and the algo-
rithm repeats until it reaches the maximum number of
iterations configured.

Generate first Send genome by

genomes genome

! !

Send fitness
from the
genome

Color legend
r\llum.
Server 1N ter
Client & 2

Figure 3: Block diagram representing the communica-
tion between Server and Client

Execute genome
by genome

Crossover and
mutation

2.3 Fitness Parameter

To evaluate the performance of the BEAST robot we used
the distance measurement as the fitness value to evaluate
the genes generated by the GA. However, we have no-
ticed that depending on the robot position and rotation
angle, the distance may be interfered. To solve this prob-
lem, we also use a gyroscope to give more measurement
precision to our fitness.

+ §

Figure 4: 3-axis gyroscope is used in this project

Figure 4 presents the 3-axis that is used to get the ro-
tational information of the robot. The better aligned the
robot is, the better is the fitness. This way, we have our
fitness function based on both distance and gyroscope in-
formation. Every gene stores a command that is executed
by the robot and thus, it may result in a random move-
ment that can either reduce or increase the distance be-

tween the robot and the target reference. This way, we
denote the fitness value as the average distance traveled
by the robot (distance difference) to the reference point
[5].

At runtime, when the robot is learning how to walk by
executing the genes received from the Server, the fitness
is calculated after each step and later the average value is
sent back to the Server. The distance is measured using
the ultrasonic module HC-SR04 sensor (more informa-
tions are available at https://goo.gl/PRMjTe).
Figure 5 shows how the distance influence the fitness
value.

Distance

Wall —

Figure 5: Fitness as a function of distance

Although at this point of the research we were not able
to provide a feasible fitness simulation to increase the re-
sult speed, our results satisfies the expectations according
to the available resources. We could provide good results
in a reasonable execution time even when we need the
robot to execute all genes generated.

3 Evaluation

We implemented the proposed project based on a Client
and an Server architecture as explained in Section 2.
The Server, which is in charge of the heavy comput-
ing processing, is an Intel Xeon E3-1270 3.6GHz Octa-
core 64-bit Processor equipped with 32GB main mem-
ory. The robot parts were printed using the 3D printer
Cubicon located on the Learning Factory Laboratory at
Sungkyunkwan University. The robot has four limbs
and each limb contains 2 micro-servo motors acting as
the joints, resulting in a total of eight step motors con-
nected to an Arduino Mega micro-controller. The control
of the motors is performed using Pulse Width Modula-
tion(PWM) to precisely infer in the rotation of the limbs.

Figure 6 shows the prototyping circuitry necessary for
our project. For this implementation, we were not able to
develop wireless communication and thus, the communi-
cation is done through serial signals to the Server. This
resulted in several wires to connect the parts of the robot.
Figure 7 shows the circuitry schematic used. The con-
nections are carefully placed. Other option could be the
use of Arduino Nano, however, this board does not have
enough PWM signals (only 6) to control all the neces-
sary servo motors in our project. It was inevitably to use
Arduino Mega to accomplish our goals.



Figure 7: Circuit schematic for the robot

To evaluate our robot we then executed all the nec-
essary GA algorithm, were the communication between
the Client and Server were performed. Every iteration
the robot sends the fitness values to the Server, and thus
the Server generates the new genes to be executed on the
Client. Once the number of iterations reach the maxi-
mum configured value, the Server then stores the best
gene reached so far, send it to the Client, and then the
Client executes the best gene in a infinite loop.

As explained, we added a gyroscope to give to the
robot more degrees of freedom to create a powerful fit-
ness function. For this reason, the fitness is the sum of
distance and the gyroscope information. At the initial-
ization phase of the robot, the gyroscope is calibrated
and then, the calibrated position is considered the posi-
tion zero in al three axes X, Y, and Z. This way, during
the algorithm execution, the difference between the ac-
tual axis values from the reference value will be counted
for the fitness value. Thus, as less rotation variation from
the reference, better is the fitness.

We plot a graph that is the result of the GA iterated
several times. The X-axis represents the number of itera-
tions executed and Y-axis is the average fitness value. As
we can expect, as the number of iterations increase, bet-
ter results we obtain. However, due to our project being
executed in a real hardware, we have suffered from slow

Fitness

Fitness average

o
o

10 15 20 25
Generation

Figure 8: BEAST fitness evaluation

execution time due to the motors rotation that has a time
limitation.

4 Conclusion

Very complex engineering problems are very hard to be
solved due to required huge computing performance and
enormous execution time. Evolutionary systems are a
good approach to find reasonable optimized solutions
(but not always the optimal) for such problems. Ge-
netic algorithms are a good example of such approach,
where inspiration by biology enforces the concept of
genes that are related to perform a given task. The genes
are crossover-ed and mutated to produce new generations
iteratively and thus, trying to reach a best solution.

Our BEAST robot uses such advanced techniques in
problem optimization by using genetic algorithms to find
a solution in its domain. Our experiments have demon-
strated that the robot is able to walk within few iterations.
Nonetheless, we also demonstrated that after several iter-
ations, the BEAST learned to walk in a admissible fash-
ion (similar to quadrupeds animals).

Finally, we could conclude in a real system the usage
of genetic algorithms applied to a quadruped robot. Al-
though our approach uses serial connection (that needs a
wired connection to the robot), we expect to improve the
interface to a wireless mechanism, allowing the robot to
be fully autonomous. Further work is considered to use
different GA approaches to enhance the processing time.
Nonetheless, we expect to implement a fitness simula-
tor based on real experiments, this way we can simulate
all the movements computationally and later transfer the
results to the robot to be executed on real platform.

References

[1] AHUACTZIN, J., TALBI, E.-G., BESSIERE, P., AND MAZER, E.
Using genetic algorithms for robot motion planning. Geometric
Reasoning for Perception and Action (1993), 84-93.



(2]
(3]

[4]

(5]

DARWIN, C. On the orngin of species, 1859.

EIBEN, A. E., RAUE, P.-E., AND RUTTKAY, Z. Genetic algo-
rithms with multi-parent recombination. In International Confer-
ence on Parallel Problem Solving from Nature (1994), Springer,
pp. 78-87.

HOLLAND, J. H. Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control, and
artificial intelligence. MIT press, 1992.

LIPPMANN, R. An introduction to computing with neural nets.
IEEE Assp magazine 4, 2 (1987), 4-22.



