
Home Projects Audio & Music Making Polyphonic Music with PIC® BASIC and the Proton Compiler

Making Polyphonic Music with PIC® BASIC and the
Proton Compiler

Getting Started With Christmas fast drawing near, I thought it appropriate to
create a project that has a festive theme and also shows what the humble PIC® micro is
capable of doing with a little imagination and the right tools. i.e. PROTON+ Compiler.
Everyone and their reindeer has created Christmas projects in the past but most of them
revolve around multi-coloured flashing LEDs. Don’t get me wrong, there’s nothing wrong with
flashing LEDs, but let’s face it, they don’t exactly stimulate the imagination?
So what I’ve created for your perusal is a project to play several well known Christmas tunes
using 3 channel (polyphonic) sound, with each channel having a pleasant chime effect. And all
this using nothing more than a handful of common or garden components that you probably
already have lying around. And yes, you can flash LEDs while the music is playing if you wish!

The BASIC Chime.

Creating sound on a PIC® micro is not difficult, simply toggle a pin rapidly enough and it will
produce a square wave output. Adjust the rate of toggle and the frequency will alter. However,
nothing else can be accomplished if this crude method is adopted because the PIC® micro will
use all its resources servicing the bit being toggled. So we must use an interrupt in order to
toggle the pin in the background, while the main program goes about its business as usual.
The program listing below illustrates a method of producing a tone from pin PORTB.0 using a
TIMER1 interrupt.

Code:

Pic® Basic

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link
above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

User Name Log in

 Remember Me?

RegisterHelp

Forum What's New? Wiki Updates About Us BUY NOW

Advanced Search

Published on 14th March 2010 15:51 Number
of Views: 1043

 Main Menu
 Proton Products
 Support
 Projects
 Wiki
 Videos
 Interesting
 Industry News
 Free Web Hosting

Recent Activity Widget

Beta Plugin EUSART + USART
Calculator

Today 16:03 by DaveS
Modulator for baudot RTTY

Today 13:25 by John Drew
Proteus Version 6.7

Yesterday 22:21 by Tim
problems with 16f877a

Today 13:20 by RGV250
How to prevent PIC cloning/copying

Today 02:14 by t0pP8uZz
887 Array causing error

Today 09:22 by John Drew

 Recent Articles

CML audio processor for MURS
radios
RSS_POSTER 3rd September 2010

National offers online LED lighting
design tool
RSS_POSTER 3rd September 2010

Texas Instruments introduces
industry's first -36-V, 200-mA LDO
RSS_POSTER 3rd September 2010

Thread Starter: DaveS

Thread Starter: John Drew

Thread Starter: Iain

Thread Starter: vissie

Thread Starter: t0pP8uZz

Thread Starter: SimonTempler

Home

http://www.protonbasic.co.uk/content.php/849-Making-Polyphonic-Music-with-PICBASIC-and-the-Proton-CompilerGo AUG SEP NOV

05
2009 2010 2012

31 captures

⍰❎
f �

5 Sep 2010 - 21 Sep 2017 ▾ About this capture

http://faq.web.archive.org/
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#close
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20101128092705/http://protonbasic.co.uk/content.php/849-Making-Polyphonic-Music-with-PICBASIC-and-the-Proton-Compiler
https://web.archive.org/web/20101128092705/http://protonbasic.co.uk/content.php/849-Making-Polyphonic-Music-with-PICBASIC-and-the-Proton-Compiler
https://web.archive.org/web/20120412135624/http://www.protonbasic.co.uk:80/content.php/849-Making-Polyphonic-Music-with-PICBASIC-and-the-Proton-Compiler
https://web.archive.org/web/*/http://www.protonbasic.co.uk/content.php/849-Making-Polyphonic-Music-with-PICBASIC-and-the-Proton-Compiler
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#expand
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/forum.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/register.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/faq.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/forum.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/search.php?do=getdaily&contenttype=vBForum_Post
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php?153
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1447
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php?136-Company
https://web.archive.org/web/20100905150501/http://www.crownhill.co.uk/level3.php?cat=1
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/search.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/index.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/256
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/309
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/faq.php?
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/register.php?
https://web.archive.org/web/20100905150501/http://www.picbasic.org/
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/118
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/140
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/256
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/153-Wiki
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/233-Videos
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/234
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/232
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/604
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=61453
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=338
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/338-DaveS
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453649
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=61496
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=26
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/26-John-Drew
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453646
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=50588
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=119
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/107-Tim
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453621
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=61493
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=15858
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/614-RGV250
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453645
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=61492
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=2592
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/2592-t0pP8uZz
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453623
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=61470
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=2030
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/26-John-Drew
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453630
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1839-CML-audio-processor-for-MURS-radios
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/2883-RSS_POSTER
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1839-CML-audio-processor-for-MURS-radios
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1838-National-offers-online-LED-lighting-design-tool
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/2883-RSS_POSTER
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1838-National-offers-online-LED-lighting-design-tool
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1837-Texas-Instruments-introduces-industry-s-first-36-V-200-mA-LDO
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/2883-RSS_POSTER
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1837-Texas-Instruments-introduces-industry-s-first-36-V-200-mA-LDO

' Program PLAY_NOTE.BAS
 ' Produce a tone from PORTB.0 using a TMR1 interrupt
 Device = 18F452 ' Use a PIC® 18F452 device
 XTAL = 20 ' With a 20MHz crystal/resonator

 Dim NOTE_COUNTER as Word SYSTEM ' Determines when the pin is toggled
 Dim NOTE as Word SYSTEM ' Determines the pitch of the note
 Dim TIMER1 as TMR1L.Word ' Combine TMR1L/TMR1H as a 16-bit word
 Symbol GIE = INTCON.7 ' Global Interrupt Enable/Disable

 ON_INTERRUPT Goto NOTE_INT ' Point interrupts to our interrupt handler
 Delayms 400 ' Wait for PICmicro to stabilise
 ALL_DIGITAL = True ' Set PORTA and PORTE to digital
Goto OVER_INTERRUPT ' Jump over the interrupt handler
'----[INTERRUPT HANDLER]--
 NOTE_INT:
 TIMER1 = 65490 ' Load TMR1 with a preset value
 Inc NOTE_COUNTER ' Increment the note counter
 If NOTE_COUNTER >= NOTE Then ' Is it time to toggle the pin ?
 PORTB = PORTB ̂ 1 ' Toggle pin PORTB.0
 Clear NOTE_COUNTER ' Clear the note counter
 Endif
 Clear PIR1.0 ' Clear TMR1 interrupt flag
 Retfie FAST ' Exit the interrupt

 '----[MAIN PROGRAM CODE]--
 OVER_INTERRUPT:
 Output PORTB.0 ' Make PORTB.0 and output
 Clear NOTE_COUNTER ' Reset the note counter
 T1CON = %00000001 ' Turn on TIMER1, with a 1:1 prescaler
 Clear PIR1.0 ' Clear TMR1 interrupt flag
 Set PIE1.0 ' Enable TMR1 as peripheral interrupt source
 INTCON = %11000000 ' Enable global interrupts, peripheral interrupts
 NOTE = 0 ' Reset the note to play
 Repeat ' Create a loop
 Inc NOTE ' Lower the pitch of the note
 Delayms 50 ' Wait 50ms between notes
 Until NOTE = 1000 ' Stop when we reach a count of 1000
 Clear GIE ' Disable interrupts to stop the note
Stop

The program above is very simple in principle. A TIMER1 interrupt is implemented by setting
the appropriate registers and pointing the compiler’s interrupt handler to the interrupt
subroutine. Whenever TIMER1 overflows. i.e. reaches a value of 65536, an interrupt will be
triggered and the NOTE_INT subroutine will be ran.
Within the NOTE_INT subroutine, TIMER1 is preloaded with a value to ensure that another
interrupt will occur quickly. A counter variable is then incremented (NOTE_COUNTER) and
tested against the required note frequency (NOTE). If both variables are the same then
PORTB.0 is toggled by XORing it with itself, and the counter is reset ready for the next
occurrence of the interrupt. However if the variables are not equal to each other then the
TIMER1 interrupt flag is cleared and the interrupt is exited without doing anything. This
happens in the background of the program so placing a value in the variable NOTE will alter the
rate of the toggle on PORTB.0 thus increasing or decreasing the frequency of the square wave
produced.
The circuit shown below can be used for the program above.

Although the previous program does what it should do and produces a note of varying
frequency, it isn’t exactly pleasing to the ear. What’s required is a form of envelope shaper in
order to give the note a more mellow sound. This is achieved by taking advantage of a well
known method of charging a capacitor and allowing it’s voltage to decay naturally. While the
capacitor is fully charged, the note is at full volume but as the capacitor discharges, the note’s
volume will decrease until it is silent. This will form a rather pleasant chime effect.
In order to accomplish this we require a few changes to our previous program and circuit, but
the interrupt driven note generator (with minor changes) is still at the heart of the process. The
circuit to produce a chime effect from pin PORTB.0 is shown below.

The circuit above also shows the approximate wave shapes produced on each pin and the
listing below shows the program needed to create the chime effect.

Code:
' Program PLAY_CHIME.BAS
 ' Produce two Chimes from PORTB.0 using a TMR1 interrupt
 '
 Device = 18F452 ' Use a PIC®18F452 device
 XTAL = 20 ' With a 20MHz crystal/resonator

 Dim NOTE_COUNTER as Word SYSTEM ' Determines when the pin is toggled
 Dim NOTE as Word SYSTEM ' Determines the pitch of the note

 Dim TIMER1 as TMR1L.Word ' Combine TMR1L/TMR1H as a 16-bit word
Symbol TRIGGER = PORTB.4
 ON_INTERRUPT Goto NOTE_INT ' Point interrupts to our interrupt handler
 Delayms 400 ' Wait for PIC® micro to stabilise
 ALL_DIGITAL = True ' Set PORTA and PORTE to digital
 Goto OVER_INTERRUPT ' Jump over the interrupt handler

'----[INTERRUPT HANDLER]--
 NOTE_INT:
 TIMER1 = 65490 ' Load TMR1 with a preset value
 Inc NOTE_COUNTER ' Increment the note counter
 If NOTE_COUNTER > NOTE Then ' Is it time to toggle the pin ?
 TRISB = TRISB ̂ 1 ' Toggle pin PORTB.0
 Clear NOTE_COUNTER ' Clear the note counter
 Endif
 Clear PIR1.0 ' Clear TMR1 interrupt flag
 Retfie FAST ' Exit the interrupt

 '----[MAIN PROGRAM CODE]--
 OVER_INTERRUPT:
 Input PORTB.0 ' Make PORTB.0 and Input
 Set PORTB.0 ' And set it high
 Clear NOTE_COUNTER ' Reset the note counter
 T1CON = %00000001 ' Turn on TIMER1, with a 1:1 prescaler
 Clear PIR1.0 ' Clear TMR1 interrupt flag
 Set PIE1.0 ' Enable TMR1 as peripheral interrupt source
 INTCON = %11000000 ' Enable global interrupts, peripheral interrupts

 ' Play DING chime
 NOTE = 110 ' Set the frequency of the first chime
 High TRIGGER ' Start charging the capacitor
 Delayms 40 ' Allow time for the capacitor to charge
 Input TRIGGER ' Release the capacitor and let it discharge naturally

 Delayms 300 ' Delay between chimes

 ' Play DONG chime
 NOTE = 139 ' Set the frequency of the second chime
 High TRIGGER ' Start charging the capacitor
 Delayms 40 ' Allow time for the capacitor to charge
 Input TRIGGER ' Release the capacitor and let it discharge naturally
 Stop

Now let’s take a look at how the program works.
The TIMER1 note generating interrupt is set up the same as the previous program, but instead
of toggling the port’s pin directly, the direction port (TRISB.0) is toggled from input to output
and vice-versa. This imitates an open collector output on PORTB.0, which is required to allow
the capacitor to be charged via PORTB.4. A square wave is still produced from PORTB.0 but it
is not audible yet. PORTB.0 is set at the start of the main program loop so that when the
interrupt generator makes the pin an output, it will be output high.
PORTB.0 is connected to an electrolytic capacitor (C1) via a reasonably high value resistor (R2
which is 100KW in this case). This will ensure that the capacitor’s charge is not dissipated too
much by the toggling of PORTB.0.
PORTB.4 is used to trigger an envelope and produce a chime by momentarily charging
capacitor C1 through resistor R1. This is accomplished by setting the pin to OUTPUT HIGH,
waiting a few tens of milliseconds, then setting the pin as an INPUT, thus reducing any load
from the pin. While C1 remains charged, the note being produced from pin PORTB.0 will
sound, and as C1 discharges, the note will diminish in volume.
The audio signal is tapped off via R3 (100KW), which is again required in order to eliminate any
loading on the capacitor that would cause premature discharging of its stored voltage. The
output level from R3 is not at TTL levels as it was in the previous circuit, but instead it is very
small at around 300mV (milliVolts), so we need some amplification. This is in the shape of the
good old LM386 amplifier IC, which is capable of giving a good output volume yet still work at 5
Volts. The circuit for the LM386 amplifier is shown below: -

The full circuit is shown below laid out on the PROTON Development Board MK2.

Try increasing or reducing the value of C1 and listen to the chimes produced. Also try changing
the value of R2.

Two’s Company, Three’s a Chord.

We now have the means of producing a pleasant sounding note, but one note does not make a
pleasant sounding tune. For that we need at least two notes, one for the melody and another
for a bass line, or harmony, this is named polyphonic sound. Adding an extra note or two to
the original chime program is very simple, it just requires identical routines within the interrupt
handler, one for each note needed. However, the main program is already slowed down
somewhat by the requirements of a single note, so it’s best not to get carried away, so we’ll
add an extra two notes, making three in all.
The program listing below produces a chord made up of three individual notes.

Code:

' Program 3_NOTE_CHORD.BAS
 ' Play three notes simultaneously to form a chord
 '
 Device = 18F452
 XTAL = 20

 Dim NOTE_1_COUNTER as Word SYSTEM ' Determines when pin for channel 1 is toggled
 Dim NOTE_1 as Word SYSTEM ' Determines the pitch of the note
 Dim NOTE_2_COUNTER as Word SYSTEM ' Determines when pin for channel 2 is toggled
 Dim NOTE_2 as Word SYSTEM ' Determines the pitch of the note
 Dim NOTE_3_COUNTER as Word SYSTEM ' Determines when pin for channel 3 is toggled
 Dim NOTE_3 as Word SYSTEM ' Determines the pitch of the note

 Symbol TRIGGER = PORTB
 Dim TIMER1 as TMR1L.Word ' Combine TMR1L/TMR1H into 16-bit variable TIMER1

 ON_INTERRUPT Goto NOTE_INT ' Point the hardware interrupt to the interrupt handler
 Delayms 100 ' Wait for the PIC® micro to stabilise
 ALL_DIGITAL = True ' Set PORTA and PORTE to all digital mode
 Low PORTB ' Discharge the capacitors before we start
 Low PORTA ' Make all of PORTA outputs to help discharge the capacitors
 Delayms 500 ' Wait for them to discharge
' Jump over the interrupt handling subroutine and the general subroutines
 Goto MAIN_PROGRAM_LOOP
 '----[INTERRUPT HANDLER TO PLAY THREE NOTES]--
 NOTE_INT:
 TIMER1 = 65460 ' Load TMR1 to increase the interrupt interval
 Inc NOTE_1_COUNTER ' \
 Inc NOTE_2_COUNTER ' Increment each channel's toggle counter
 Inc NOTE_3_COUNTER ' /
 ' Note generator for channel 1
 If NOTE_1_COUNTER >= NOTE_1 Then ' Is it time to toggle PORTA.0 ?
 TRISA = TRISA ̂ 1 ' Yes. So XOR with 1 to toggle the pin
 Clear NOTE_1_COUNTER ' And reset the toggle counter
 Endif
 ' Note generator for channel 2
 If NOTE_2_COUNTER >= NOTE_2 Then ' Is it time to toggle PORTA.1 ?
 TRISA = TRISA ̂ 2 ' Yes. So XOR with 2 to toggle the pin
 Clear NOTE_2_COUNTER ' And reset the toggle counter
 Endif
 ' Note generator for channel 3
 If NOTE_3_COUNTER >= NOTE_3 Then ' Is it time to toggle PORTA.2 ?
 TRISA = TRISA ̂ 4 ' Yes. So XOR with 4 to toggle the pin
 Clear NOTE_3_COUNTER ' And reset the toggle counter
 Endif
 Clear PIR1.0 ' Clear TMR1 interrupt flag
 Retfie FAST ' Return from the interrupt and restore WREG, BSR and STATUS

'----[MAIN PROGRAM CODE]---
 MAIN_PROGRAM_LOOP:
 Input TRIGGER ' Remove any loading to the capacitors
 NOTE_1_COUNTER = 0 ' \
 NOTE_2_COUNTER = 0 ' Clear note counters for all channels
 NOTE_3_COUNTER = 0 ' /
 INTCON = %11000000 ' Enable global interrupts, TMR1 will trigger interrupts
 T1CON = %00000001 ' Turn on Timer1, prescaler = 1:1
 PIR1.0 = 0 ' Clear TMR1 interrupt flag
 PIE1.0 = 1 ' Enable TMR1 as peripheral interrupt source

NOTE_1 = 179 ' Frequency value for channel 1 note
 NOTE_2 = 142 ' Frequency value for channel 2 note
 NOTE_3 = 119 ' Frequency value for channel 3 note
 High TRIGGER ' Start charging the capacitors
 Delayms 40 ' Allow time for the capacitors to charge
 Input TRIGGER ' Release the capacitors and let them discharge naturally
 Stop ' Stop when notes are played

Most of the listing above remains the same as the previous program for producing a single
chime, however, the notes are now produced from PORTA and triggered by PORTB. Within the
interrupt handler, there are three routines that perform the same function but on different pins of
PORTA. Each pin is toggled when its respective counter (NOTE_n_COUNTER) reaches a
predetermined value (NOTE_n). The value dictates the pitch or frequency of the note played.
The circuit for the above program is shown below and will be used for the rest of the program
listings.

The same circuit is shown below laid out on the PROTON Development Board MK2.

Capacitors C5 to C7 are used to store a voltage produced by resistors R1 to R3. Each resistor
and capacitor pair form an envelope generator for their respective channel. Resistors R4 to R6
allow the voltage to modify the output of pins PORTA.0 to PORTA.2, which in turn are fed to
the amplifier via a crude mixer formed by resistors R7 to R9.
When the power is first applied to the circuit or a reset is implemented, each note will play at
once forming a chord, with the sound from PORTA.0 being the loudest, PORTA.1 having a
fraction less volume and PORTA.2 being the lowest in volume.

Playing a Tune.

We now have the ability to play multiple notes using only a handful of components, and with
the PROTON+ compiler’s ability to store and handle data in the form of CDATA or LDATA
tables, we also have the possibility of holding the data required for tunes.
If your not musically gifted (which unfortunately, I’m not) then there is the small problem of
writing the tunes to play. However, thanks to the internet there are quite literally thousands of
ready made tunes in the form of MIDI files (.MID). However it must be noted that not all midi
files can be converted to notation data which is suitable for our project, but there should be
enough to keep you going for quite some time, you just have to find them.
I’ll take you briefly through converting a midi file later in the article, but for now, take a look at
the listing below. It’s a program capable of playing a single tune consisting of three channels,
and it uses the circuit previously shown. See if you can guess the tune?
Because the program contains lots of data, only the main body of the code is shown here. The
actual working program, along with the others, can be downloaded from the PROTON+ Users
Page. This program is named SIMPLE_TUNE.BAS.

Code:
' Play a tune consisting of three channels
 '
 ' Program with H4 set and use a 20MHz xtal to overclock the PIC® micro to approx 55MHz
 '
 Device = 18F452

 ' Setup the fuses for X4 xtal frequency
 @CONFIG_REQ
 @__CONFIG CONFIG1H, OSCS_OFF_1 & HSPLL_OSC_1
 @__CONFIG CONFIG2L, BOR_ON_2 & BORV_20_2 & PWRT_ON_2
 @__CONFIG CONFIG2H, WDT_OFF_2 & WDTPS_128_2
 @__CONFIG CONFIG3H, CCP2MX_ON_3
 @__CONFIG CONFIG4L, STVR_ON_4 & LVP_OFF_4 & DEBUG_OFF_4

 XTAL = 40 ' Produce code for a 40MHz crystal

 ' Interrupt driven channel variables
 Dim NOTE_1_COUNTER as Word SYSTEM ' Determines when pin for channel 1 is toggled
 Dim NOTE_1 as Word SYSTEM ' Determines the pitch of the note
 Dim NOTE_2_COUNTER as Word SYSTEM ' Determines when pin for channel 2 is toggled
 Dim NOTE_2 as Word SYSTEM ' Determines the pitch of the note
 Dim NOTE_3_COUNTER as Word SYSTEM ' Determines when pin for channel 3 is toggled
 Dim NOTE_3 as Word SYSTEM ' Determines the pitch of the note

 ' Misc variables
 Dim NOTE_STATUS as Byte ' Used as Flags
 Dim NOTE_1_TO_PLAY as NOTE_STATUS.0 ' 0 = Enable Chime, 1 = No Chime for channel 1
 Dim NOTE_2_TO_PLAY as NOTE_STATUS.1 ' 0 = Enable Chime, 1 = No Chime for channel 2
 Dim NOTE_3_TO_PLAY as NOTE_STATUS.2 ' 0 = Enable Chime, 1 = No Chime for channel 3
 Dim TICKS as Word ' Midi event counter
 Dim NOTE_POINTER as Word ' Pointer for midi to frequency table
 Dim CHANNEL_INFO as Byte ' Used as Flags

 ' Channel 1 variables

Although the above program looks large and complex, it is actually very simple in operation.
The music data is held in a series of LDATA tables, loaded into the main program by an
INCLUDE directive. Each of the three tracks represent a channel and consists of the time to
strike a note, (which is a 16-bit value), and the midi value that represents the note’s frequency,
(which is a 7-bit value). As shown below: -
TRACK_1:
LDATA WORD 00270 , BYTE 062
LDATA WORD 00324 , BYTE 067
LDATA WORD 00378 , BYTE 067
Each track is preceded by the label TRACK_n:, where n represents 1, 2, or 3. TRACK_1 data
is the melody line of the tune played via channel 1, TRACK_2 data is the harmony of the tune
played via channel 2 and TRACK_3 is the bass line of the tune played via channel 3.
The time to strike a note value is compared to a constantly incrementing counter (TICKS), if
the time to strike is equal to the TICKS variable, then a note is played. This is carried out for
each channel until the music data is finished for a particular track (channel), which is
represented by all zeroes in the LDATA table: -
LDATA WORD 00000 , BYTE 000
As mentioned above, the midi data representing a particular frequency consists of a 7-bit value
(0 to 127), however, the program requires different values in order to play the correct frequency.
This is accomplished by another LDATA table that has the corresponding frequency required
for a particular midi value. This information is held in the include file NOTE_DATA.INC.
The midi notes 24 to 95 are used in the program, implementing a 6 octave span.
You may have noticed something peculiar with the fuse setting in the program. The compiler is
set up to produce code for a 40MHz crystal, but a 20MHz crystal is actually used. And the
fuse settings are for a x4 PLL, which will multiply the crystal’s frequency by 4. Now the
maximum (official) frequency that a PIC® micro can operate is 40MHz, and this arrangement is
usually implemented using a 10MHz crystal (10MHz * 4). See the PIC® micro’ data sheet for
more information concerning the x4 PLL fuse setting, or peruse the midrange reference manual
for the 16-bit core devices. Both of these are downloadable, free of charge, from Microchip’s
web site at www.microchip.com.
You might think that using a 20MHz crystal with a x4 multiplier would allow the PIC® micro to
operate at 80MHz. However, this is unachievable on the current breed of PIC® micros and it
actually settles at a frequency of approx 55MHz. 40MHz is the closest crystal that is
implemented by the compiler therefore all delays will be somewhat wrong, which they are
anyway because the interrupt routine is taking most of the PIC® micro’s time. This high speed
allows higher pitched octaves to be achieved, thus producing a more pleasant sound to the
tune. Not bad for 20MHz crystal ?
In tests, no PIC® micro chosen failed to oscillate, and because the program is not dependant
on its frequency, it really doesn’t matter if the oscillator is out by a few KHz or even a few MHz.
We just need speed!

Converting a Midi file to LDATA tables.

Being able to play a tune is all well and good, but actually creating the tune to play is most of
the fun with this project. As mentioned earlier, tunes can be downloaded in the form of .MID
files (midi files) for playing on a PC soundcard. However, some of these are very complex
compositions, consisting of many tracks containing many instruments, so you will need to
choose the midi file carefully. Piano or guitar tunes tend to be more suitable, and classical
music is very good for conversion because they usually do not contain a drum track (which we
cannot recreate). And of course, traditional Christmas tunes are also more suitable.
Once you’ve chosen a midi file that you think may be suitable for conversion, you will need a
piece of software capable of viewing and editing the file. When creating the project I used a
shareware program named MIDINOTATE (Note: MIDINOTATE has since been renamed to
Notation Musician). A 30-day fully working demo of this can be downloaded from
www.notation.com. So this is the program I will use to illustrate conversion.
If you’ve built the previous circuit, you will have guessed that the tune was “We Wish You a
Merry Christmas”, so we’ll take a look at how this tune was converted.
The MERRY CHRISTMAS.MID file containing the tune can be found along with the BASIC
programs listed in the article at the PROTON Users Page.
Download and run the program midinotate.exe, and open the merry christmas.mid file. You will
be greeted with the screen below.

https://web.archive.org/web/20100905150501/http://www.microchip.com/
https://web.archive.org/web/20100905150501/http://www.notation.com/

The above screen shot shows the Merry Christmas tune laid out as if it were sheet music.
Each track will become our channels, however, in order to play successfully in our project, only
single notes are allowed per channel. If multiple notes appear on a track then the track can be
split using the SPLIT HAND option located in the TRACK menu. But sometimes this is not
necessary, and simple editing will suffice. Take a look at the piece of music score shown
below.

Notice how the two notes share the same track and the same location, one must be deleted,
and it is up to you to decide which one.
Once you’re happy that you have a good clean three track piece of music, each track needs
saving individually. I found the best way to do this is to temporarily delete the tracks that do not
require saving.

For example, if we wish to save track 1, then delete tracks two and three, and save the midi file
as MERRY CHRISTMAS 1.MID.

Repeat this for all three channels and you should now have three midi files, with each file
containing a single track (channel). Midi files already split can be found along with the rest of
programs for this project at the PROTON+ BASIC Users Page, named merry christmas
1.mid, merry christmas 2.mid and merry christmas 3.mid.
Now locate the program MIDI CONVERT.EXE, found with the above midi files, and place it and
the midi files inside the EXTERNAL PROGRAMS folder located in the compiler’s INC folder.
MIDI CONVERTER is a program written in Visual BASIC 6 that will convert the midi file
containing the track data into a series of LDATA statements. You may need the VB6 runtime
libraries for this program to operate. These can be downloaded from Microsoft’s web site at
www.microsoft.com.
Once the programs are copied into the EXTERNAL PROGRAMS folder, open the compiler’s
editor and choose the OPTIONS -> RUN menu.

You will be presented with the midi converter window. Shown below.

https://web.archive.org/web/20100905150501/http://www.microsoft.com/

Navigate to where your EXTERNAL PROGRAMS folder is located and the three midi files will
be listed. Click on the first file (merry christmas 1.mid) then click the CONVERT button. Once
converted (which is accomplished extremely quickly), exit the window and the LDATA
statements will be transferred to the compiler’s editor.

The list of LDATA statements should look something like the small snippet below.

TRACK_n:
LDATA WORD 00270 , BYTE 062
LDATA WORD 00324 , BYTE 067
LDATA WORD 00378 , BYTE 067
LDATA WORD 00405 , BYTE 069
LDATA WORD 00432 , BYTE 067
LDATA WORD 00459 , BYTE 066
Rename TRACK_n: to TRACK_1: and make sure the last LDATA statement contains all
zeroes.
LDATA WORD 00000 , BYTE 000 If not, then add them to the list. Save this file as
MERRY_TRACK_1.BAS.
Repeat the process for the remaining two midi files, renaming TRACK_n: to TRACK_2: and
TRACK_3: respectively, not forgetting to save each file with an appropriate name.
Open the three new .BAS programs containing the LDATA statements, and copy and paste
tracks two and three in to track one’s program. You should now have a single BASIC file
containing all three tracks. Rename this file when saving to MERRY CHRISTMAS.BAS. This is
now your music score.
Re-open the SIMPLE_TUNE.BAS program and change the line.

' Load the music score

Include "TUNE_DATA.INC" to

' Load the music score

Include "MERRY CHRISTMAS.BAS" Once the program is compiled and programmed into the
PIC® micro, you should hear the tune being played.

Optimising the Music Score.

Although the separate track information allows a tune to be played, it’s very memory hungry
because a lot of the ‘time to play the chime’ information is the same for each track. A better
method of storing the music data would be a single LDATA statement containing the time to
play, and which notes to play at that given time.
Included with the rest of the examples is a BASIC program named
SINGLE_TABLE_MAKER.BAS to do just that. It combines the separate tracks into a series of
single LDATA statements.
Load SINGLE_TABLE_MAKER.BAS, and place the separate track music data file’s name
(created earlier) in the line:-

' Load the music score

Include "MERRY CHRISTMAS.BAS" Compile the program, then open the serial terminal set
to 9600 baud. You will be prompted for a tempo value for the tune.

The tempo must be in microseconds (uS) and most tunes require values of approx 3000 to
5000 depending on the type of tune it is.
Once the ENTER key is pressed, the terminal’s screen will be filled with LDATA tables.

Select all the screen by pressing Ctrl-A, and copy the text by using Ctrl-C. Open a new
BASIC text page in the editor and paste the new data tables by using Ctrl-V. Then save the
new BASIC file created as MERRY.BAS.
The format for the new LDATA statements is: -
LDATA Time to Play a note , Channel 1 note , Channel 2 note , Channel 3 note
The tempo for the tune is stored at the very beginning of the list of LDATA statements.
In order to play the new music score format, you will need to load the program
SINGLE_TABLE_PLAYER.BAS. Again, this can be found with the rest of the project
examples.
The operation of this program is exactly the same as the previous ones, and if anything, it is a
lot simpler in design.

A Christmas JukeBox.

By searching the internet over the past few weeks, I have managed to gather and convert a
collection of festive tunes, and some not so festive. So the next program will play each tune
sequentially.
Compile the program CHRISTMAS_JUKEBOX.BAS and use the same circuit as previously
shown. The program will run through several tunes, playing each one in turn.
The program is essentially the same as the SINGLE_TABLE_PLAYER.BAS program, but
instead of pointing to a single tune’s data, a separate LDATA statement holds the tunes to
play.
Each tune’s LDATA list must be given a relevant name. For example, our merry christmas

-- English (US)

tune’s file now contains the label:

WISH_YOU_MERRY:
LDATA WORD 4000 ' Tempo of tune
LDATA WORD 270 , BYTE 62 , BYTE 00 , BYTE 00
LDATA WORD 324 , BYTE 67 , BYTE 00 , BYTE 50
LDATA WORD 378 , BYTE 67 , BYTE 00 , BYTE 00 Well, it’s now the 10th of December and
I’ve run out of time and steam. I know this all sounds rather complicated, but once you’ve
converted a few tunes successfully, it all fits into place and becomes much simpler.
I would like to take this opportunity to wish you a very merry Christmas and a prosperous new
year from all the team at Crownhill, and I look forward to listening to some tunes that you
convert.

Les Johnson.

About the Proton Development systems

Crownhill's Proton Plus Compiler is a part of the Proton Development Suite - A suite of British-
developed applications enabling fast development of PIC® micro's using the PIC® BASIC
Language.
Also mentioned in this project are the Proton Development Boards. Why not have a look at the
PDF Manual and see what it's capable of?
For more information on the Proton Development hardware and software, please visit
www.picbasic.org

Source files for this project are available here

Contact Us Home of Proton BASIC (Proton Development Suite) Archive Privacy Statement Top

All times are GMT +1. The time now is 16:05.

Powered by vBulletin™ Version 4.0.2
Copyright © 2010 vBulletin Solutions, Inc. All rights reserved.

 © Crownhill Associates Limited 1995-2010, All rights reserved.

All Trademarks acknowledged. E & OE

https://web.archive.org/web/20100905150501/http://www.crownhill.co.uk/
https://web.archive.org/web/20100905150501/http://www.picbasic.org/proton_development_suite.php
https://web.archive.org/web/20100905150501/http://www.picbasic.org/content.php/120-Hardware
https://web.archive.org/web/20100905150501/http://www.compile-it.com/Proton/ProtonDev.pdf
https://web.archive.org/web/20100905150501/http://www.picbasic.org/
https://web.archive.org/web/20100905150501/http://click-server.com/forumfiles/code/24541-Source.zip
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/sendmessage.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/archive/index.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/428-Privicay-Policy
https://web.archive.org/web/20100905150501/http://www.vbulletin.com/

