31 captures

5 Sep 2010 - 21 Sep 2017

| http:/Avww.protonbasi| [Go | AUC =l NOV

$ 0

2009 plgld 2012 'v_About this capture

Advanced Search

Home # Projects # Audio & Music # Making Polyphonic Music with PIC® BASIC and the Proton Compiler

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may hawe to register before you can post: click the register link
abowe to proceed. To start viewing messages, select the forum that you want to Visit from the selection below.

Pic® Basic

Proton Development Suite
PICBASIC Programming - evolved

. Main Menu
Proton Products
Support
Projects
Wiki
Videos
Interesting
Industry News
Free Web Hosting

Recent Activity Widget

Beta Plugin EUSART + USART
Calculator

Thread Starter: DaveS
Today 16:03 by DaweS
Modulator for baudot RTTY
Thread Starter: John Drew
Today 13:25 by John Drew
Proteus Version 6.7
Thread Starter: lain
Yesterday 22:21 by Tim

problems with 16f877a
Thread Starter: vissie
Today 13:20 by RGV250

How to prevent PIC cloning/copying
Thread Starter: tOpP8uZz
Today 02:14 by tOpP8uZzz

887 Array causing error
Thread Starter: SinonTenpler
Today 09:22 by John Drew

Recent Articles

CML audio processor for MURS
radios

RSS_POSTER 3rd Septenber 2010

National offers online LED lighting
design tool

RSS _POSTER 3rd Septenber 2010
Texas Instruments introduces
industry's first -36-V, 200-mA LDO
RSS_POSTER 3rd Septenber 2010

Making Polyphonic Music with PIC® BASIC and the
Proton Compiler

Published on 14th March 2010 15:51 Number
of Views: 1043

Gettlng Started With Christmas fast drawing near, | thought it appropriate to

create a project that has a festive theme and also shows what the humble PIC® micro is
capable of doing with a little imagination and the right tools. i.e. PROTON+ Compiler.
Everyone and their reindeer has created Christmas projects in the past but most of them
rewolve around multi-coloured flashing LEDs. Don’t get me wrong, there’s nothing wrong with
flashing LEDs, but let’s face it, they don’t exactly stimulate the imagination?

So what I've created for your perusal is a project to play several well known Christmas tunes
using 3 channel (polyphonic) sound, with each channel having a pleasant chime effect. And all
this using nothing more than a handful of common or garden components that you probably
already hawe lying around. And yes, you can flash LEDs while the music is playing if you wish!

bl

The BASIC Chime.

Creating sound on a PIC® micro is not difficult, simply toggle a pin rapidly enough and it will
produce a square wave output. Adjust the rate of toggle and the frequency will alter. However,
nothing else can be accomplished if this crude method is adopted because the PIC® micro will
use all its resources senicing the bit being toggled. So we must use an interrupt in order to
toggle the pin in the background, while the main program goes about its business as usual.
The program listing below illustrates a method of producing a tone from pin PORTB.0 using a
TIMER1 interrupt.

Code:

http://faq.web.archive.org/
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#close
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20101128092705/http://protonbasic.co.uk/content.php/849-Making-Polyphonic-Music-with-PICBASIC-and-the-Proton-Compiler
https://web.archive.org/web/20101128092705/http://protonbasic.co.uk/content.php/849-Making-Polyphonic-Music-with-PICBASIC-and-the-Proton-Compiler
https://web.archive.org/web/20120412135624/http://www.protonbasic.co.uk:80/content.php/849-Making-Polyphonic-Music-with-PICBASIC-and-the-Proton-Compiler
https://web.archive.org/web/*/http://www.protonbasic.co.uk/content.php/849-Making-Polyphonic-Music-with-PICBASIC-and-the-Proton-Compiler
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#expand
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/forum.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/register.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/faq.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/forum.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/search.php?do=getdaily&contenttype=vBForum_Post
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php?153
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1447
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php?136-Company
https://web.archive.org/web/20100905150501/http://www.crownhill.co.uk/level3.php?cat=1
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/search.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/index.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/256
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/309
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/faq.php?
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/register.php?
https://web.archive.org/web/20100905150501/http://www.picbasic.org/
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/118
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/140
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/256
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/153-Wiki
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/233-Videos
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/234
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/232
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/#
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/604
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=61453
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=338
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/338-DaveS
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453649
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=61496
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=26
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/26-John-Drew
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453646
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=50588
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=119
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/107-Tim
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453621
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=61493
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=15858
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/614-RGV250
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453645
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=61492
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=2592
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/2592-t0pP8uZz
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453623
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php?t=61470
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php?u=2030
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/26-John-Drew
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/showthread.php/0?p=453630
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1839-CML-audio-processor-for-MURS-radios
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/2883-RSS_POSTER
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1839-CML-audio-processor-for-MURS-radios
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1838-National-offers-online-LED-lighting-design-tool
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/2883-RSS_POSTER
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1838-National-offers-online-LED-lighting-design-tool
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1837-Texas-Instruments-introduces-industry-s-first-36-V-200-mA-LDO
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/member.php/2883-RSS_POSTER
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/1837-Texas-Instruments-introduces-industry-s-first-36-V-200-mA-LDO

' Program PLAY_NOTE.BAS
' Produce a tone from PORTB.O usingla TVR1 interrupt

[»

Device = 18F452 'Use a PIC® 18F452 device
XTAL =20 'With a 20MHz crystal/resonator
Dim NOTE_COUNTER as Word SYSTEM ' Determines when the pin is toggled
Dim NOTE as Word SYSTEM ' Determines the pitch of the note
Dim TIMER1 as TVR1L.Word ' Combine TVR1L/TMR1H as a 16-bit word
Symbol GIE = INTCON.7 ' Global Interrupt Enable/Disable
ON_INTERRUPT Goto NOTE_INT ' Point interrupts to our interrupt handler
Delayms 400 ' Wait for PICmicro to stabilise
ALL DIGITAL = True ' Set PORTAand PORTE to digital
Goto OVER_INTERRUPT ' Jump over the interrupt handler
'—{INTERRUPT HANDLER}]
OTE_INT:
TIVERT = 65490 ' Load TMR1 with a preset value
Inc NOTE_COUNTER ' Increment the note counter
If NOTE_COUNTER >=NOTE Then 'ls ittime fo toggle the pin ?
PORTB = PORTB" 1 'Togcgle pin PORTB.0
(E)I%afr NOTE_COUNTER "Clear the note counter
ndi
Clear PIR1.0 ' Clear TMR1 interrupt flag
Retfie FAST ' Exit the interrupt
'—[MAIN PROGRAM CODE]
OVER_INTERRUPT:
Output PORTB.O ' Make PORTB.0 and output
| Clear NOTE COUNTER ' Reset the note counter | Jﬂ
4 »

The program abowe is very simple in principle. A TIMER1 interrupt is implemented by setting
the appropriate registers and pointing the compiler’s interrupt handler to the interrupt
subroutine. Whenever TIMER1 overflows. i.e. reaches a value of 65536, an interrupt will be
triggered and the NOTE_INT subroutine will be ran.

Within the NOTE_INT subroutine, TIMER1 is preloaded with a value to ensure that another
interrupt will occur quickly. A counter variable is then incremented (NOTE_COUNTER) and
tested against the required note frequency (NOTE). If both variables are the same then
PORTB.0 is toggled by XORing it with itself, and the counter is reset ready for the next
occurrence of the interrupt. However if the variables are not equal to each other then the
TIMER1 interrupt flag is cleared and the interrupt is exited without doing anything. This
happens in the background of the program so placing a value in the variable NOTE will alter the
rate of the toggle on PORTB.O0 thus increasing or decreasing the frequency of the square wave
produced.

The circuit shown below can be used for the program abowe.

e Ve Voo

E
RE0 el Speaker
18F452 ¢
PICmicro 10uF
10V

Although the previous program does what it should do and produces a note of varying
frequency, it isn’'t exactly pleasing to the ear. What's required is a form of envelope shaper in
order to give the note a more mellow sound. This is achieved by taking advantage of a well
known method of charging a capacitor and allowing it's voltage to decay naturally. While the
capacitor is fully charged, the note is at full volume but as the capacitor discharges, the note’s
wolume will decrease until it is silent. This will form a rather pleasant chime effect.

In order to accomplish this we require a few changes to our previous program and circuit, but
the interrupt driven note generator (with minor changes) is still at the heart of the process. The
circuit to produce a chime effect from pin PORTB.0 is shown below.

2 M
100k

— AL} Output to Amplifier
R2
100K
RBO WAYAVE
18F452 R
PIGmicro
220 J_l
RB4l—— AN, 4%
5 c1
I 4. TuFHov

The circuit above also shows the approximate wave shapes produced on each pin and the
listing below shows the program needed to create the chime effect.

Code:

' Program PLAY_CHIMVE.BAS]
' Produce two Chimes from PORTB.0 using a TMR1 interrupt

Device = 18F452 'Use a PIC®18F452 device
XTAL =20 'With a 20MHz crystal/resonator

Dim NOTE_COUNTER as Word SYSTEM ' Determines when the pin is toggled
Dim NOTE as Word SYSTEM ' Determines the pitch of the note

Dim TIVER1 as TVMR1L.Word ' Combine TMR1L/TMR1H as a 16-bit word
Symbol TRIGGER = PORTB4 o)

ON_INTERRUPT Goto NOTE_INT ' Point interrupts to our interrupt handler

Delayms 400 ' Wait for PIC® micro to stabilise

ALL DIGITAL = True ' Set PORTAand PORTE to digital

Goto OVER_INTERRUPT ' Jump over the interrupt handler

'----R‘NTERRUPT HANDLER]
OTE_INT:

TIVERT = 65490 'Load TMR1 with a preset value
Inc NOTE_COUNTER ' Increment the note counter
If NOTE_COUNTER > NOTE Then 'Is it time to toggle the pin ?
TRISB=TRISB"1 ' Toggle pin PORTB.0
EI%afr NOTE_COUNTER Clear the note counter
ndi
Clear PIR1.0 ' Clear TVR1 interrupt flag
Retfie FAST ' Exit the interrupt

' [MAIN PROGRAM CODE]
OVER INTERRUPT: hd|

1]

Now let’s take a look at how the program works.

The TIMER1 note generating interrupt is set up the same as the previous program, but instead
of toggling the port’s pin directly, the direction port (TRISB.0) is toggled from input to output
and vice-versa. This imitates an open collector output on PORTB.0, which is required to allow
the capacitor to be charged via PORTB.4. A square waw is still produced from PORTB.O but it
is not audible yet. PORTB.0 is set at the start of the main program loop so that when the
interrupt generator makes the pin an output, it will be output high.

PORTB.0 is connected to an electrolytic capacitor (C1) via a reasonably high value resistor (R2
which is 100KW in this case). This will ensure that the capacitor's charge is not dissipated too
much by the toggling of PORTB.0.

PORTB.4 is used to trigger an enwelope and produce a chime by momentarily charging
capacitor C1 through resistor R1. This is accomplished by setting the pin to OUTPUT HIGH,
waiting a few tens of milliseconds, then setting the pin as an INPUT, thus reducing any load
from the pin. While C1 remains charged, the note being produced from pin PORTB.O will
sound, and as C1 discharges, the note will diminish in volume.

The audio signal is tapped off via R3 (100KW), which is again required in order to eliminate any
loading on the capacitor that would cause premature discharging of its stored woltage. The
output level from R3 is not at TTL lewels as it was in the previous circuit, but instead it is very
small at around 300mV (milliVolts), so we need some amplification. This is in the shape of the
good old LM386 amplifier IC, which is capable of giving a good output volume yet still work at 5
Volts. The circuit for the LM386 amplifier is shown below: -

+5 Volts <

Yolume
Input
w1
100k
v o

The full circuit is shown below laid out on the PROTON Development Board MK2.

Try increasing or reducing the value of C1 and listen to the chimes produced. Also try changing
the value of R2.

Two’s Company, Three’s a Chord.

We now have the means of producing a pleasant sounding note, but one note does not make a
pleasant sounding tune. For that we need at least two notes, one for the melody and another
for a bass line, or harmony, this is named polyphonic sound. Adding an extra note or two to
the original chime program is very simple, it just requires identical routines within the interrupt
handler, one for each note needed. However, the main program is already slowed down
somewhat by the requirements of a single note, so it’s best not to get carried away, so we'll
add an extra two notes, making three in all.

The program listing below produces a chord made up of three individual notes.

Code:

‘]

! Prggram 3_NOTE_CHORD.BAS ol

lay three notes simultaneously to form a chord
Device = 18F452
XTAL =20

Dim NOTE_1_COUNTER as Word SYSTEM ' Determines when pin for channel 1 is
Dim NOTE_1"as Word SYSTEM ' Determines the pitch of the note
Dim NOTE_2_COUNTER as Word SYSTEM ' Determines when pin for channel 2 is t
Dim NOTE_2as Word SYSTEM ' Determines the pitch of the note
Dim NOTE_3_COUNTER as Word SYSTEM ' Determines when pin for channel 3 is t
Dim NOTE_3"as Word SYSTEM ' Determines the pitch of the note

Symbol TRIGGER = PORTB
Dim TIMER1 as TVR1LWord ' Combine TVR1L/TMR1H into 16-bit variable TIVER®

ON_INTERRUPT Goto NOTE_INT ' Point the hardware interrupt to the interrupt handle

Delayms 100 ' Wait for the PIC® micro to stabilise
ALL_DIGITAL =True ' Set PORTAand PORTE to all digital mode
LowPORTB ! Dlschar'ge the capacitors before we start
Low PORTA ' Make all of PORTAoutputs to help discharge the capacitors
Delayms 500 ' Wait for them to discharge)
' Jump over the interrupt handllngsubroutl ne and the general subroutines
Goto MAIN PROGFE{]AM LOOI
NO NTE\IF%RUPT HANDLER TO PLAY THREE NOTES]}
TIVER1 = 65460 'Load TMR1 to increase the interrupt interval
Inc NOTE_1_COUNTER "\
Inc NOTE_2_COUNTER ' Increment each channel's toggle counter
Inc NOTE -3 COUNTER g hd

| 2+

Most of the listing above remains the same as the previous program for producing a single

chime,

howe\er, the notes are now produced from PORTA and triggered by PORTB. Within the

interrupt handler, there are three routines that perform the same function but on different pins of
PORTA. Each pin is toggled when its respective counter (NOTE_n_COUNTER) reaches a
predetermined value (NOTE_n). The value dictates the pitch or frequency of the note played.
The circuit for the above program is shown below and will be used for the rest of the program

listings.
+5 Woltx
2 n = 73 Yalums
“DD VDD —1,"{531
e
w e
uﬂui i 100k
2 100k
Rz 2
HMc R f
* [1]
ﬁ R0 [iL1 110Km|
el mm PIC18F 452 1tka
LY _—
[+
1manF
[i+]
1ia
RBZ P—.
o 3 osc REN : .y
H By .
P RENO —.“.:«—!;:
a
— 1mm I -1
- -_ -
14 = [+ o
05C2 1IUF|LMF|LIF
|y | 10% | 1w
[+] [+ 3 N VEE
ou 15pF | 15gF l|: l:|
o ! !

The same circuit is shown below laid out on the PROTON Dewvelopment Board MK2.

Capacitors C5 to C7 are used to store a wltage produced by resistors R1 to R3. Each resistor
and capacitor pair form an enwvelope generator for their respective channel. Resistors R4 to R6
allow the woltage to modify the output of pins PORTA.O to PORTA.2, which in tumn are fed to
the amplifier via a crude mixer formed by resistors R7 to RO.

When the power is first applied to the circuit or a reset is implemented, each note will play at
once forming a chord, with the sound from PORTA.O being the loudest, PORTA.1 having a
fraction less volume and PORTA.2 being the lowest in volume.

Playing a Tune.

We now hawe the ability to play multiple notes using only a handful of components, and with
the PROTON+ compiler’s ability to store and handle data in the form of CDATA or LDATA
tables, we also have the possibility of holding the data required for tunes.

If your not musically gifted (which unfortunately, 'm not) then there is the small problem of
writing the tunes to play. However, thanks to the intemet there are quite literally thousands of
ready made tunes in the form of MIDI files (.MID). However it must be noted that not all midi
files can be conwerted to notation data which is suitable for our project, but there should be
enough to keep you going for quite some time, you just hawe to find them.

I'l take you briefly through converting a midi file later in the article, but for now, take a look at
the listing below. It's a program capable of playing a single tune consisting of three channels,
and it uses the circuit previously shown. See if you can guess the tune?

Because the program contains lots of data, only the main body of the code is shown here. The
actual working program, along with the others, can be downloaded from the PROTON+ Users
Page. This program is named SIMPLE_TUNE.BAS.

Code:
' Play a tune consisting of three channels

]
: Program with H4 set and use a 20MHz xtal to overclock the PIC® micro to apprOXSSI\J
Device = 18F452 :

' Setu 'H% fugga for X4 xtal frequency
CONFIG CONFIG1H, OSCS_OFF_1 & HSPLL_OSC 1
CONFIG CONFIG2L, BOR_ON _2'& BORV _20"2 & PWRT_ON_2
CONFIG CONFIG2H, WDT_OFF 2 & WDTPS 128 2
CONFIG CONFIG3H. CCPZMX ON_3
CONFIG CONFIGAL, STVR_ON_4 &' LVP_OFF 4 & DEBUG_OFF_4

XTAL =40 ' Produce code for a 40MHz crystal

' Interrupt driven channel variables

Dim NOTE_1_COUNTER as Word SYSTEM ' Determines when pin for channel 1 is tc
Dim NOTE_17as Word SYSTEM ' Determines the pitch of the note

Dim NOTE_2_COUNTER as Word SYSTEM ' Determines when pin for channel 2 is t
Dim NOTE_2"as Word SYSTEM ' Determines the pitch of the note

Dim NOTE_3_COUNTER as Word SYSTEM ' Determines when pin for channel 3 is t
Dim NOTE_3"as Word SYSTEM ' Determines the pitch of the note

'Msc variables

Dim NOTE_STATUS as Byte 'Used as FIags

Dim NOTE _1_TO PLAY as NOTE STATUS. O = Enable Chime, 1 = No Chime for cl
Dim NOTE 2_TO PLAY as NOTE_STATUS.1' 0 = Enable Chime, 1 = No Chime for ¢!
Dim NOTE 3 TO PLAY as NOTE_STATUS.2' 0 Enable Chime, 1 = No Chime for cl
Dim TICKS as Word ' Mdi event counter J

J | i

Although the above program looks large and complex, it is actually very simple in operation.
The music data is held in a series of LDATA tables, loaded into the main program by an
INCLUDE directive. Each of the three tracks represent a channel and consists of the time to
strike a note, (which is a 16-bit value), and the midi value that represents the note’s frequency,
(which is a 7-bit value). As shown below: -

TRACK_1:

LDATA WORD 00270 , BYTE 062

LDATA WORD 00324 , BYTE 067

LDATA WORD 00378 , BYTE 067

Each track is preceded by the label TRACK n:, where n represents 1, 2, or 3. TRACK 1 data
is the melody line of the tune played via channel 1, TRACK 2 data is the harmony of the tune
played via channel 2 and TRACK_3 is the bass line of the tune played via channel 3.

The time to strike a note value is compared to a constantly incrementing counter (TICKS), if
the time to strike is equal to the TICKS variable, then a note is played. This is carried out for
each channel until the music data is finished for a particular track (channel), which is
represented by all zeroes in the LDATA table: -

LDATA WORD 00000 , BYTE 000

As mentioned abowe, the midi data representing a particular frequency consists of a 7-bit value
(0 to 127), however, the program requires different values in order to play the correct frequency.
This is accomplished by another LDATA table that has the corresponding frequency required
for a particular midi value. This information is held in the include file NOTE_DATA.INC.

The midi notes 24 to 95 are used in the program, implementing a 6 octave span.

You may have noticed something peculiar with the fuse setting in the program. The compiler is
set up to produce code for a 40MHz crystal, but a 20MHz crystal is actually used. And the
fuse settings are for a x4 PLL, which will multiply the crystal’s frequency by 4. Now the
maximum (official) frequency that a PIC® micro can operate is 40MHz, and this arrangement is
usually implemented using a 10MHz crystal (10MHz * 4). See the PIC® micro’ data sheet for
more information conceming the x4 PLL fuse setting, or peruse the midrange reference manual
for the 16-bit core devices. Both of these are downloadable, free of charge, from Microchip's
web site at www.microchip.com.

You might think that using a 20MHz crystal with a x4 multiplier would allow the PIC® micro to
operate at 80MHz. However, this is unachievable on the current breed of PIC® micros and it
actually settles at a frequency of approx 55MHz. 40MHz is the closest crystal that is
implemented by the compiler therefore all delays will be somewhat wrong, which they are
anyway because the interrupt routine is taking most of the PIC® micro’s time. This high speed
allows higher pitched octaves to be achieved, thus producing a more pleasant sound to the
tune. Not bad for 20MHz crystal ?

In tests, no PIC® micro chosen failed to oscillate, and because the program is not dependant
on its frequency, it really doesn’t matter if the oscillator is out by a few KHz or even a few MHz.
We just need speed!

Converting a Midi file to LDATA tables.

Being able to play a tune is all well and good, but actually creating the tune to play is most of
the fun with this project. As mentioned earlier, tunes can be downloaded in the form of .MID
files (midi files) for playing on a PC soundcard. Howewer, some of these are very complex
compositions, consisting of many tracks containing many instruments, so you will need to
choose the midi file carefully. Piano or guitar tunes tend to be more suitable, and classical
music is very good for conversion because they usually do not contain a drum track (which we
cannot recreate). And of course, traditional Christmas tunes are also more suitable.

Once you've chosen a midi file that you think may be suitable for conversion, you will need a
piece of software capable of viewing and editing the file. When creating the project | used a
shareware program named MIDINOTATE (Note: MIDINOTATE has since been renamed to
Notation Musician). A 30-day fully working demo of this can be downloaded from
www.notation.com. So this is the program | will use to illustrate conversion.

If you've built the previous circuit, you will have guessed that the tune was “We Wish You a
Merry Christmas”, so we'll take a look at how this tune was converted.

The MERRY CHRISTMAS.MID file containing the tune can be found along with the BASIC
programs listed in the article at the PROTON Users Page.

Download and run the program midinotate.exe, and open the merry christmas.mid file. You will
be greeted with the screen below.

https://web.archive.org/web/20100905150501/http://www.microchip.com/
https://web.archive.org/web/20100905150501/http://www.notation.com/

Tt B Yew Zowd Tl Ckwd Petom Seom Wik At

sl vwen] g onfEsr—— |V [T

Faes e ﬁ@ﬁ
s -—m-w!mm=L— s

[l ot E@ —

s L M LB R = =¥

o

ke oy —

i

- s Cl

The abowe screen shot shows the Merry Christmas tune laid out as if it were sheet music.
Each track will become our channels, however, in order to play successfully in our project, only
single notes are allowed per channel. If multiple notes appear on a track then the track can be
split using the SPLIT HAND option located in the TRACK menu. But sometimes this is not
necessary, and simple editing will suffice. Take a look at the piece of music score shown
below.

Notice how the two notes share the same track and the same location, one must be deleted,
and it is up to you to decide which one.

Once you're happy that you have a good clean three track piece of music, each track needs
saving individually. | found the best way to do this is to temporarily delete the tracks that do not
require saving.

For example, if we wish to sawe track 1, then delete tracks two and three, and save the midi file
as MERRY CHRISTMAS 1.MID.

i Edt Vew Soes Tiiad Ober Perfom Seun wrds heb |

il v — mmm i E’Jﬂﬁiﬂ?

Exbiae Part.
mﬂ_‘ﬂ o
Fregira Fibn Book Lnoet Shoet. M
S burts | s "
Faleds = e o B e e P iy e T =
Herge s, =

e B ! S : e e
mum:nuL EE&

Pormanentiy peoican biack fromsong:

Repeat this for all three channels and you should now have three midi files, with each file
containing a single track (channel). Midi files already split can be found along with the rest of
programs for this project at the PROTON+ BASIC Users Page, named merry christmas
1.mid, merry christmas 2.mid and merry christmas 3.mid.

Now locate the program MIDI CONVERT.EXE, found with the above midi files, and place it and
the midi files inside the EXTERNAL PROGRAMS folder located in the compiler's INC folder.
MIDI CONVERTER is a program written in Visual BASIC 6 that will convert the midi file
containing the track data into a series of LDATA statements. You may need the VB6 runtime
libraries for this program to operate. These can be downloaded from Microsoft's web site at
www.microsoft.com.

Once the programs are copied into the EXTERNAL PROGRAMS folder, open the compiler's
editor and choose the OPTIONS -> RUN menu.

| Options Wigw Help B P
I > W
Liree number Font...
Choose Background Colour
EPIC Path...

Chaose Bootloader ¥
Bootloader Path, ..
MELOWDER Path...

Biowniosd Fii
Comipde FS

Compile then Download Fi2
Program Fl0

You will be presented with the midi converter window. Shown below.

https://web.archive.org/web/20100905150501/http://www.microsoft.com/

i, Midi to Cdata Converter . i _|E|£1

EXTERNAL PROGRAMS

1]

mr i .
mesry chismaz 3.mad

Ext

IC:\ﬂus_Sme\inc\EXTEHNAL PROG

= T = |

Navigate to where your EXTERNAL PROGRAMS folder is located and the three midi files will
be listed. Click on the first file (merry christmas 1.mid) then click the CONVERT button. Once
conwerted (which is accomplished extremely quickly), exit the window and the LDATA
statements will be transferred to the compiler's editor.

The list of LDATA statements should look something like the small snippet below.

TRACK n:

LDATA WORD 00270 , BYTE 062

LDATA WORD 00324 , BYTE 067

LDATA WORD 00378 , BYTE 067

LDATA WORD 00405 , BYTE 069

LDATA WORD 00432 , BYTE 067

LDATA WORD 00459 , BYTE 066

Rename TRACK_n: to TRACK 1: and make sure the last LDATA statement contains all
zeroes.

LDATA WORD 00000 , BYTE 000 If not, then add them to the list. Sawe this file as
MERRY_TRACK_1.BAS.

Repeat the process for the remaining two midi files, renaming TRACK_n: to TRACK_2: and
TRACK _3: respectively, not forgetting to save each file with an appropriate name.

Open the three new .BAS programs containing the LDATA statements, and copy and paste
tracks two and three in to track one’s program. You should now have a single BASIC file
containing all three tracks. Rename this file when saving to MERRY CHRISTMAS.BAS. This is
now your music score.

Re-open the SIMPLE_TUNE.BAS program and change the line.

' Load the music score
Include "TUNE_DATA.INC" to
' Load the music score

Include "MERRY CHRISTMAS.BAS" Once the program is compiled and programmed into the
PIC® micro, you should hear the tune being played.

Optimising the Music Score.

Although the separate track information allows a tune to be played, it's very memory hungry
because a lot of the ‘time to play the chime’ information is the same for each track. A better
method of storing the music data would be a single LDATA statement containing the time to
play, and which notes to play at that given time.

Included with the rest of the examples is a BASIC program named
SINGLE_TABLE_MAKER.BAS to do just that. It combines the separate tracks into a series of
single LDATA statements.

Load SINGLE_TABLE_MAKER.BAS, and place the separate track music data file's name
(created earlier) in the line:-

' Load the music score

Include "MERRY CHRISTMAS.BAS" Compile the program, then open the serial terminal set
to 9600 baud. You will be prompted for a tempo value for the tune.

coricaasiC rerminal =0
RS CRe) AT
& - &|s| = &

ENTER TEMPO
408

Connected to COM1 Bytes Txed: 0 Bytes Rxed i1

The tempo must be in microseconds (uS) and most tunes require values of approx 3000 to
5000 depending on the type of tune it is.
Once the ENTER key is pressed, the terminal’s screen will be filled with LDATA tables.

o PICBASIC Terminal N =10

o e R Lt
e - slel = ¥

TUNE _DATA:

LDATA WORD 48068 * Tempo of tune

LDATA WORD 278 , BYTE 62 , BYTE , BYTE

LDATA WORD 324 , BYTE 67 , BYTE » BYTE

LDATA WORD 378 , BYTE 67 , BYTE BYTE

LDATA WORD 405 , BYTE 69 , BYTE . BYTE

LDATA WORD 432 , BYTE 67 , BYTE » BYTE
WORD 459 , BYTE 66 , BYTE » BYTE

WORD LBS , BYTE 64 BYTE » BYTE
WORD S5&B , BYTE 6L BYTE » BYTE
WORD 594 , BYTE 64 BYTE ¢ + BYTE
WORD 6&E BYTE 69 , BYTE BYTE A&
WORD 782 BYTE 69 BYTE BYTE
WORD 729 BYTE 71 BYTE BYTE
WORD 756 BYTE 69 BYTE 5 BYTE
WORD 783 BYTE 67 BYTE BYTE
WORD 818 BYTE 66 BYTE & BYTE
WORD 864 BYTE 62 BYTE BYTE
WORD 918 BYTE 62 BYTE BYTE
A WORD 973 , BYTE 71 , BYTE BYTE 51

WORD 1027 , BYTE 71 , BYTE 54 , BYTE 00
WORD 1854 , BYTE . BYTE B8 , BYTE 80

Bytes Tued: 0 |Bytes Rued -2

Select all the screen by pressing Ctrl-A, and copy the text by using Ctrl-C. Open a new
BASIC text page in the editor and paste the new data tables by using Ctrl-V. Then saw the
new BASIC file created as MERRY.BAS.

The format for the new LDATA statements is: -

LDATA Time to Play a note , Channel 1 note , Channel 2 note , Channel 3 note

The tempo for the tune is stored at the very beginning of the list of LDATA statements.

In order to play the new music score format, you will need to load the program
SINGLE_TABLE_PLAYER.BAS. Again, this can be found with the rest of the project
examples.

The operation of this program is exactly the same as the previous ones, and if anything, it is a
lot simpler in design.

A Christmas JukeBox.

By searching the intemet owver the past few weeks, | have managed to gather and conwert a
collection of festive tunes, and some not so festive. So the next program will play each tune
sequentially.

Compile the program CHRISTMAS_JUKEBOX.BAS and use the same circuit as previously
shown. The program will run through several tunes, playing each one in tum.

The program is essentially the same as the SINGLE_TABLE_PLAYER.BAS program, but
instead of pointing to a single tune’s data, a separate LDATA statement holds the tunes to
play.

Each tune’s LDATA list must be given a relevant name. For example, our merry christmas

tune’s file now contains the label:

WISH_YOU_MERRY:

LDATA WORD 4000 ' Tempo of tune

LDATA WORD 270, BYTE 62, BYTE 00, BYTE 00

LDATA WORD 324 , BYTE 67 , BYTE 00, BYTE 50

LDATA WORD 378 , BYTE 67 , BYTE 00 , BYTE 00 Well, it's now the 10t of December and
I've run out of time and steam. | know this all sounds rather complicated, but once you've
conwerted a few tunes successfully, it all fits into place and becomes much simpler.

1 would like to take this opportunity to wish you a very merry Christmas and a prosperous new
year from all the team at Crownhill, and | look forward to listening to some tunes that you
conwert.

Les Johnson.

About the Proton Development systems

Crownhill's Proton Plus Compiler is a part of the Proton Development Suite - A suite of British-
deweloped applications enabling fast development of PIC® micro's using the PIC® BASIC
Language.

Also mentioned in this project are the Proton Development Boards. \Why not hawve a look at the
PDF Manual and see what it's capable of?

For more information on the Proton Development hardware and software, please visit
www.picbasic.org

Source files for this project are available here

—-English(US) | Contact Us Home of Proton BASIC (Proton Development Suite) Archive Privacy Statement Top

All times are GMT +1. The time now is 16:05.

Pow ered by vBulletin™ Version 4.0.2
Copyright © 2010 vBulletin Solutions, Inc. All rights reserved.

© Crow nhill Associates Linited 1995-2010, All rights reserved.

All Trademerks acknow ledged. E & OE

https://web.archive.org/web/20100905150501/http://www.crownhill.co.uk/
https://web.archive.org/web/20100905150501/http://www.picbasic.org/proton_development_suite.php
https://web.archive.org/web/20100905150501/http://www.picbasic.org/content.php/120-Hardware
https://web.archive.org/web/20100905150501/http://www.compile-it.com/Proton/ProtonDev.pdf
https://web.archive.org/web/20100905150501/http://www.picbasic.org/
https://web.archive.org/web/20100905150501/http://click-server.com/forumfiles/code/24541-Source.zip
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/sendmessage.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/archive/index.php
https://web.archive.org/web/20100905150501/http://www.protonbasic.co.uk/content.php/428-Privicay-Policy
https://web.archive.org/web/20100905150501/http://www.vbulletin.com/

