Service Manual

for the

MODEL S-430 AND S-450 SCANNIG ELECTRON MICROSCOPES

ž

X November 1977 Part No. 531-E600

MODEL S-430 AND S-450

SCANNING ELECTRON MICROSCOPES

Table of Contents

<u>Section</u>		Title	Page	
I.	HOW TO USE THIS SERVICE MANUAL			
II.	PRECAUTIONS ON HANDLING			
	2 - 1	Precautions for Transport	2 - 1 2 - 1	
	2 - 2	Precautions for Power Connection	2 - 1 2 - 1	
	2-3	Precaution on Vacuum Check	2 - 1 2 - 2	
	2-4	Precautions on Temperature Rise	2 - 2	
	2-5	Other Precautions	2 - 2	
III.	INSTA	LLATION	3 - 1	
	3-1	Unpacking	3 - 1	
	3 - 1 - 1	Removal of Shipping Crate	3 - 1	
	3-1-2	Unpacking Procedure	3 - 1	
	3-1-3	Unpacking	3 - 1	
	3-1-4	Check of Parts	3 - 1	
	3-2	Installation	3 - 1 3 - 2	
	3 - 2 - 1	Installation Requirements	3 - 2	
	3-2-2	Installation Layout	3 - 4	
	3-3	Assembly	3 - 5	
	3-3-1	Assembly of Display Unit	3 - 5	
	3-3-2	Removal of PS Power Supply PC Board Holder	3 - 6	
~	3-3-3	Wiring between Column and Display Unit	3 - 6	
	3-3-4	Grounding Connection	3 - 8	
	3-3-5	Assembly of Rotary Pump	3 - 9	
	3-3-6	Mounting of Water Supply Hoses	3 - 10	
	3-3-7	Assembly of Main Console	3 - 10	
	3-3-8	Assembly of Fixed Aperture Assembly	3 - 11	
	3-3-9	Assembly of Column Table	3 - 11	
	3-3-10	Installation of Head Amplifier		

Table of Contents (cont'd)

<u>Sect</u> :	ion	Title	Page
VI.	TROU	BLESHOOTING	6 - 1
	6-1	Operating Process Chart in Ordinary Operation	6 - 2
	6-2	Evacuating System does not Operate Normally	6 - 4
	6-3	Absence of Raster on CRT	6 - 5
	6-4	Absence of Image on CRT	6 - 6
	6-5	Rough Image Appears	6 - 8
	6-6	Astigmatism Correction Impossible	6 - 9
	6-7	Emission Current Fluctuates	6 - 10
	6-8	Raster only Appears on CRT and Brightness Changes	6 - 11 -
	6-9	Brightness Changes when Observing Image	6 - 12
	6-10	Electron Beam is not Emitted	6 - 13
VII.	AXIAI	ALIGNMENT OF ELECTRON OPTICAL SYSTEM	7 - 1
•	7-1	Axial Alignment of S-450 Instrument	7 - 1
	7-2	Method of Operating Cl and C2 Independently	7 - 1
VIII.	CIRCU	IIT ADJUSTMENT DATA	8 - 1
	8 - 1	CRT in Various Scan Modes and Scanning System of Electron Beam on Specimen	8 - 1
	8-2	Current Waveform of Each Beam Deflector Circuit in Various Scan Modes	
	8-3	Various Systems of Beam Deflector Circuit	8 - 2
	8-4	DC Power Supplies	8 - 3 8 - 5
	8-5	HV Power Supplies	
	8-5-1	Protective Circuit	
•	8-5-2	30 kHV Power Supply	
	8-5-3	POST HV Power Supply	-
	8-5-4	PM HV Power Supply	
	8-6	Principle Circuit Diagram of Sawtooth Wave Generator Circuit	2
	8-7	Principle Circuit Diagram of Blanking Circuit	- •
	8-8	Scan Speed	
	8-9	Visual Field Size of Each Monitor CRT	
	-		0 - 11

Table of Contents (cont'd)

ction		Title	Pag	e
IX.	PART	S EMPLOYED	9 -	1
x.	MAINT	FENANCE	10 -	1
	10-1	Periodical Maintenance and Inspections	10 -	1
	10-2	Cleaning of S-430 Fixed Aperture	10 -	1
	10-3	Cleaning of S-450 Fixed Aperture	10 -	3

Section I

HOW TO USE THIS SERVICE MANUAL

This manual applies to the Model S-430 and S-450 Scanning Electron Microscopes and systematically covers, in the troubleshooting procedures, the information required for locating faulty points starting with various phenomena appearing in the instrument. For using this manual effectively, the following items should be observed.

- (1) Understand the outlined compositions of the instrument.
- (2) Understand the composition and function of each display unit.
- (3) Understand the meanings of phenomena derived from faulty conditions when a trouble occurs, and examine such faulty points to be repaired according to the troubleshooting procedure.
- (4) Prepare extension cords for checking details of circuits according to the troubleshooting procedure.
- (5) Prepare a circuit tester having an impedance of 20 k Ω/V or higher to be used for circuit checks.

General troubleshooting procedures are as follows:

Section II

PRECAUTIONS ON HANDLING

For the safety of the instrument as well as of the serviceman, the following precautions should be taken into account on the handling.

2-1 PRECAUTIONS FOR TRANSPORT

- Do not lift the instrument by holding the table. The strength of the table fitting is not sufficient for bearing the total weight of display unit and the column. Should the table be lifted, the display unit might slip off and crash down. Hence, it is recommended to disconnect the table for transport. Do not hold the instrument by means of the evacuating pipe, the secondary electron detector or the objective aperture fixed to the main console.
- (2) The prepared pieces for transport should be applied to the main column before transportation. The specimen stage unit of S-430 should be removed and replaced by the prepared blind lid before transport. For S-450, the stage should be prefixed by the prepared screws. Both for S-430 and S-450, the sleeve for condenser aperture inside the column and the photomultiplier tube inside the detector housing should be removed before transport.

2-2 PRECAUTIONS FOR POWER CONNECTION

- (1) When removing the front and rear cover of display unit, turn off the power switches marked "EVAC POWER" and "DISPLAY POWER" without fail.
- (2) Connect the grounding wire correctly. Otherwise, not only will the instrument fail to operate normally but there may be a shock hazard. Refer to item 3-3-4.
- (3) Following units are dangerous with high voltages and should be handled carefully.

0	High voltage transformer	:	max 30 kV
0	High voltage units for CRT and the post acceleration	:	max 10 kV
0	Unit for photomultiplier	:	max 600 V
्०	PC-4 unit	•	max 600 V
0	CRT	:	10 kV
0	Printed board "SG"	:	max 600 V
0	Secondary electron detector	:	max 10 kV

- (4) When replacing a fuse, turn off the main switch on the distribution board.
- (5) When replacing the scintillator, turn off the DISPLAY switch without fail.
- (6) Interval of min 5 sec should be maintained for the on-off operation of the "DISPLAY" switch. This is a precaution against the preheated CRT.

(7) Interval of min 5 sec should be kept for the on-off operation of the "EVAC" switch. Otherwise, mis-operation of the evacuating sequence may occur. The intervals are needed for the charge and discharge of the capacitors.

2-3 PRECAUTION ON VACUUM CHECK

When the vacuum is checked by means of Geissler discharge tube, the MANUAL-AUTO switch of the printed board for evacuating sequence should be turned to MANUAL position, or the EVAC POWER switch should be turned off. Otherwise, mis-operation may happen because of discharging impulses.

2-4 PRECAUTIONS ON TEMPERATURE RISE

Temperature of the following units may run up to more than 55°C during normal operation.

- o Oil diffusion pump
- o Oil rotary pump
- o Power supply unit
- o Heat radiators for power IC's
- o Upper part of the condenser lens

2-5 OTHER PRECAUTIONS

- (1) Absolutely avoid touching the scintillator surface by hand.
- (2) Keep vessels containing flammable organic solvent away from the instrument.
- (3) Do not leave solder fragments inside the instrument to avoid "short-circuit" troubles.
- (4) Characteristics of photomultiplier are quite sensitive to light. Keep it protected from light radiation at all times.
- (5) Avoid any mechanical shock to the CRT and the photomultiplier.

Section III

INSTALLATION

- 3-1 UNPACKING
- 3-1-1 Removal of Shipping Crate
- (1) Remove the top and four side shipping panels.
- (2) Remove the shipping frames from the bottom panel of the shipping crate.
- 3-1-2 Unpacking Procedure
- (1) Main Console

Carry the main console (column, evacuating system, and rack) into the installation room using a fork lift or by other appropriate means. Exercise care to avoid jolting the instrument.

(2) Display Unit

Exercise the same care as with the column.

(3) Other Units

Carry the other units into the installation room before unpacking from their cartons. Keep the cartons upright and use extreme care.

- 3-1-3 Unpacking
- (1) Unpacking the Main Console

Remove all vinyl covers from the main console... The instrument should be kept free of dust after uncovering.

(2) Unpacking the Display Unit

Remove all vinyl covers from the display unit. Untie the connector cords (interconnecting cables) from the chassis.

- (3) Unpacking of Other Units
 - (a) Take the other units out of the cartons.
 - (b) Place large units (compressor, rotary pumps, etc.) directly on the floor.
 - (c) Lay small, delicate, or fragile components (such as electron gun, etc. which require careful handling) on soft paper spread over the floor.

3-1-4 Check of Parts

On unpacking all components as outlined in procedures 3-1-1 through 3-1-3, check for damaged or missing parts against the shipping list.

3-2 INSTALLATION

- 3-2-1 Installation Requirements
- (1) General

Good environmental surroundings, normal for laboratory equipment should be provided.

Avoid installing the instrument in the following locations:

- (a) Adjacent to the building power distribution room
- (b) Adjacent to an elevator
- (c) Adjacent to high-power equipment (for example, electric furnace, etc.) or its power source
- (d) Adjacent to arcing or high-frequency instruments
- (e) Corrosive gas atmosphere
- (f) Direct sunlight
- (g) Dust
- (h) Location subjected to frequent or severe vibrations
- (i) Avoid grounding the instrument with other electrical equipment
- (2) Room Temperature and Humidity
 - (a) Room temperature : 15° ~ 30°C
 - Room temperature variation should not exceed 5°C during operation.
 - (b) Humidity : Less than 70 %

It is recommended that the room be air-conditioned.

(3) Power Supply

115, 200, 208, 220, 230, or 240 V AC ± 10 %, 50/60 Hz, 1.8 kVA

Notes 1 : Auto transformer (option) should be used at 200, 208, 220, 230 or 240 V area.

- 2 : The voltage fluctuation of the AC power line should be very slow.
- (4) Grounding Terminal

It is recommended to connect the instrument to a grounding terminal having a resistance of 50 Ω or less. The grounding terminal should be exclusive for the instrument only and not in common with other equipment.

(5) Water Facilities

Normal tap water, with minimum requirements as shown, is needed.

Flow rate : $2 \sim 4 \ l/min$ Water pressure (at the inlet port of water pressure relay) : $0.5 \sim 2 \ kg/cm^2$ Water temperature : $10 \sim 25^{\circ}C$ Normal drainage is adequate. A filter is recommended in case of water containing excess impurities.

(6) Stray Magnetic Field (at the installation site)

			, AC Components ²⁾			
	τ.	DC compo-	Same frequency component as that of the AC line supplied to the Model S-430/S-450.		Different frequen- cy component from that of the AC power supply used in the Model S-430/S-450.	
Con- dition	Mode and scan speed	nent 1)	Observation Scan speed 文 〇 〇 Photographing All SCAN SPEED settings	Under conditions other than mentioned at left.		
Maximum allow- able magnitude		50 mGauss	5 mGauss	0.6 mGauss ³)	0.6 mGauss	
Maximum allow- able fluctu- ation ⁴)		l mGauss/ 5 min	l mGauss/5 min	0.3 mGauss/ 5 min	0.3 mGauss/5 min	

Notes : 1) The components due to terrestrial magnetic field are excluded from the values.

Terrestrial magnetic field in Japan :

Horizontal component : 300 mGauss

Vertical component : 350 mGauss'

- 2) All values of AC components are effective values.
- 3) If this value is less than 2 mGauss, it may be left out of consideration when observing intensity-modulated images.
- 4) AC and DC stray magnetic field fluctuation is defined as varying monotonously and gradually with time lapse. Thus, magnetic field fluctuation with pulse or step waveform should not occur.

(7) Vibration

For optimum performance, the instrument should be installed in a ferroconcrete or steel-concrete building meeting the following conditions;

(a) Situated on the first floor

- (b) No vibration source such as large machine tools, etc. in near proximity
- (c) Free from traffic vibration sources such as highway or railroad

- (8) Site Requirements
 - (a) Space required :

A room of about 4 m x 3.5 m (13 ft x 11.5 ft) is recommended.

(b) Durability of floor :

	T otal weight of instruments		
Floor strength(kg/m^2) \geq	installed in the room (kg)		
3	Floor area of the room (m^2)		

(c) Dimensions of entrance :

0.85 m wide x 1.7 m high (34 inches wide x 67 inches high) (minimum)

(d) Others :

Sliding curtains around the instrument is convenient. Photographic dark room in the immediate area is also convenient.

(9) Installation Layout (See Fig. 3-1.)

3-2-2 Installation Layout

Place the main console and display unit as shown in Fig. 3-1. Leave some leeway for the table as it is not fixed at this point. Install the main console on the spacer provided. (Refer to Fig. 3-1.)

Fig. 3-1 Installation Layout

3-3 ASSEMBLY

3-3-1 Assembly of Display Unit (See Fig. 3-2.)

- Mount the display unit on a floor as flat as possible. If the console rack is unstable, insert the attached rubber sheets into the clearances between each leg and the floor, so that the table is mounted stably.
- (2) Insert the photo CRT unit into the hole on the left side of the table so that the camera fixing stay is positioned on the display unit side, and fix the photo CRT unit securely using the attached setscrews at the upper corners.
 - Mount the CRT-HV connectors and grounding wire for the photo unit.
- (3) Mount the display unit at an easy-to-operate place on the table. Connect the display unit connectors as follows:

Connect CN-300, CN-34, CN-1, and CN-5 to the power supply inside the table, connect CN-2 to the photo CRT unit, and also connect CN-29 to the HV transformer without fail. (For the standard high-resolution CRT, mount CN-3 and CRT-HV connectors.)

3-3-2 Removal of PS Power Supply PC Board Holder (See Fig. 3-3.)

Detach the top cover from the PS power supply, and also exfoliate the fixing materials from the PC board holder.

Fig. 3-3 Top Cover

- 3-3-3 Wiring between Column and Display Unit
- Connect DEF, condenser, gun alignment, detector, 100 V AC power cord, and high voltage cable from the power supply to the column. For fixing cables to the column console rack, see Fig. 3-4.

Fig. 3-4 Rear View of Column Console Rack

- (2) Mount the HV cable to the HV transformer inside the table. Fix the cables to the column by the fixture mounted on the rear cover when the assembly work is finished.
- (3) Connection of Detector Cords (See Fig. 3-5.)

Bind the detector cords as shown in Fig. 3-5 so that they do not touch the photomultiplier HV unit.

Fig. 3-5 Top View of Display Unit

- (4) Connection of 100 V AC
 - (a) Connect 100 V AC from the switch box on the room power distribution board to the power terminals on the rear of the column. Connect one end of the grounding wire to the column console rack and the other end to ground. Turn off the EVAC and DISPLAY switches on the front panel of the column without fail before starting the connection work. For cord connection, see Fig. 3-6.

Fig. 3-6 Connection of Terminal Board on Column Console Rack

- (b) When the switch on the room power distribution board is employed for the auto transformer, make sure using a circuit tester that the output voltage of the output terminal is 100 V.
- (5) Connection of Auto Transformer

When mounting this instrument at a place where the line voltage is other than 100 V AC, the auto transformer must be used.

 Make sure that the output voltage of the auto transformer is 100 V after installation. If the output voltage is not 100 V, perform tap selection of the auto transformer or line voltage value. For the AC input wiring and ground wiring with the auto transformer installed, see Fig. 3-7.

Fig. 3-7

3-3-4 Grounding Connection (See Fig. 3-2.)

Connect grounding wire as specified below, otherwise image troubles and other failures may result.

3-3-5 Assembly of Rotary Pump (See Fig. 3-8.)

Rotary Pump

Fig. 3-8 Assembly of Rotary Pump and Evacuating Pipe

- (1) Detach seal washers and butterfly nuts for transportation from the mounting part of the oil filter, and assemble the oil filter.
- (2) Insert the rubber tube to the rotary pump to connect the rotary pump and weight to each other.

Connect the weight and evacuating valve box by the 1 m rubber tube.

- (3) Connect the rubber tube connecting the weight and evacuating valve box to the oil diffusion pump heater via the left side (on the power terminal board side) of the column console rack.
- (4) Clamp the connecting part of the rubber tube by the fastener so it won't slip out.
- (5) Insert the 100 V AC connector and grounding wire to the power terminal board of the column console rack.

- 3-3-6 Mounting of Water Supply Hoses (See Fig. 3-9.)
- Connect the water supply hoses as shown in Fig. 3-9. It is recommended for facilitating the insertion of the water supply hoses to the city water faucet to apply a thin coat of vacuum grease to the faucet.

Fig. 3-9 Installation of Water Supply Hoses

- (2) Clamp three inserting parts of the water supply hoses by using fasteners to fit respective port grooves.
- (3) The water supply port (city water plug) should be lower than 1 m.The drain hole should be flush with the floor surface. In addition, a water circulator, if employed, should be mounted lower than 1 m.

3-3-7 Assembly of Main Console

- o Removal of fixing bolts of main console
 - After detaching the front and rear covers, remove four fixing bolts connecting the load plate and console rack to each other, and also remove the spacer between the load plate and the console rack.

Fig. 3-10 Removal of Fixing Bolts

3-3-8 Assembly of Fixed Aperture Assembly

- (1) After detaching the front cover from the column, make sure that the evacuating sequence auto/manual switch is at auto.
- (2) Run cooling water to the oil diffusion pump.
- (3) Turn on the switch on the power distribution board.
- (4) Turn on the EVAC POWER switch on the front panel of the column.
- (5) Depress the EVAC pushbutton.
- (6) After $4 \sim 5$ minutes, set the EVAC pushbutton to AIR.
- (7) After vacuum leak of the column, open the electron gun assembly as shown in Fig. 4-5, and insert the fixed condenser aperture. For the S-450/S-430 fixed condenser aperture, see Fig. 4-6.

3-3-9 Assembly of Column Table

(1) In Case of S-430 Instrument

Insert four screws with washers at the rear of the table into the console rack. If these screws cannot be inserted, loosen them to allow their insertion.

- (2) In Case of S-450 Instrument
 - (a) Perform vacuum leak of the column.
 - (b) Set the specimen feed knobs of the specimen goniometer stage to the following specimen exchange position.

 $\begin{array}{c} \leftarrow \rightarrow (X) : 20 \\ \hline \\ \hline \\ \hline \\ \end{array} \begin{array}{c} \downarrow \\ (Z) : EX \\ \hline \\ \end{array} \begin{array}{c} \downarrow \\ \hline \\ \end{array} \begin{array}{c} (Y) : 20 \\ \hline \\ \hline \\ \end{array} \begin{array}{c} \downarrow \\ (T) : 0^{\circ} \end{array}$

(c) Detach the four fixing screws for transportation from the specimen goniometer stage. See Fig. 3-11.

Fig. 3-11 Fixing Screws for Transportation

- (d) Pull the specimen goniometer stage out of the column, and detach it from the specimen goniometer stage arm holder while supporting it by both hands.
- (e) With the specimen goniometer stage (including the arm) detached from the column console rack, mount the table onto the column console rack in the same manner as with S-430.
- (f) Mount the specimen goniometer stage while taking care not to allow the specimen goniometer stage arm to touch the table hole, otherwise vibration troubles may result.
- (g) Mount 4 mm dia. chrome-plated screws into the mounting positions of the fixing screws for transportation for the purpose of good appearance.

3-3-10 Installation of Head Amplifier (See Fig. 3-12.)

- (1) Insert the photomultiplier tube into the head amplifier case.
- (2) Clean the cathode face of the photomultiplier tube using gauze.
- (3) Apply a drop of silicone oil for photomultiplier tube to the center of the cathode face of the photomultiplier tube.
- (4) Insert the head amplifier into the cylinder, and lightly turn the head amplifier clockwise and counterclockwise two or three times after allowing the cathode face of the photomultiplier tube to make contact with the light guide face.
 See Fig. 3-12.

Fig. 3-12 Installation of Head Amplifier

(5) Fix the head amplifier to the cylinder using three setscrews.

3-3-11 Assembly of Specimen Goniometer Stage of S-430

Mount the specimen goniometer stage mounting flange in the direction specified in the disassembly procedure.

3-3-12 Confirmation of Assembly

After completion of all assembly work, check all assembly procedures thoroughly for correctness. For the bundled wires of the column console rack, see Fig. 3-13.

(1) Don't Forget to Connect the Grounding Wire.

Connect the grounding wire to the shock-absorbing mount by utilizing the grounding terminal screw on the shock-absorbing mount at the rear of the specimen chamber.

(2) Fix the connector wiring to the console rack at A and B.

Connection

Fig. 3-13 Connection of Connectors to Column

Section IV

COMPOSITION OF MODEL S-430 AND S-450

4-1 OPERATING PRINCIPLE

Fig. 4-1 shows the block diagram of operating principle of Model S-430/S-450. The electron beam emitted from the electron gun is focused by three electromagnetic lenses and irradiated onto the specimen surface to form an electron probe. Various information can be obtained from the specimen by means of the interaction between the electron probe and the specimen surface (or material).

Of this various information, the secondary electron serves as a substantial information source in SEM. The secondary electron produced from the specimen surface is captured and accelerated to bombard the plastic scintillator where it is converted into light. The light thus obtained is then fed to the photomultiplier after passing through the light guide and converted into an electric signal, which is then amplified by both preamplifier and main amplifier to be an intensity modulation signal of the electron beam on CRT. The electron beam scanning on CRT synchronizes with scanning of the electron probe on the specimen. Contrast of the final image is formed according to the change in intensity of the emitted secondary electron which depends upon variations of specimen profiles. A three-dimensional image having a sufficient depth of focus is also formed by a fine electron probe.

The magnification in SEM is determined according to the ratio of the constant scan range (12 cm in the lateral direction and 9 cm in the longitudinal direction) of the electron beam to the scan range of the electron probe on the specimen surface and can be selected optionally and continuously by the magnification control. For example if the scan range on the specimen surface is 12 μ m x 9 μ m, magnification is x10,000.

4-2 COMPOSITION OF MAIN CONSOLE

Fig. 4-2 shows the schematic diagram of the microscope column, which is composed mainly of the electron gun having an electromagnetic axial alignment system, condenser lenses inclusive of a self-cleaning aperture, objective lens, deflection coils and stigmator coil, objective lens movable aperture, secondary electron detector, specimen goniometer stage, and evacuating system. These elements will be summarized below :

4-2-1 Electron Gun

Fig. 4-3 is a sectional view of the electron gun. Its axial alignment is done by mechanical horizontal alignment screws and electromagnetic alignment knobs. The acceleration voltage ranges from 1 kV to 30 kV (plus 50 kV at option).

The mechanical axial alignment can be done by four semi-fixed horizontal alignment screws. The electrical axial alignment knobs employ an X, Y system with coils supplied with a current of ± 250 mA maximum.

The gap between the anode and the Wehnelt cylinder is as follows:

Acceleration Voltage	Gap	Remarks
1 ~ 2 kV	2 mm	Replacement part
5 ~ 30 kV	5 mm	Standard

(Continuously variable system for electron gun anode : Option)

The electron gun insulator on the atmospheric air side is sealed with Freon gas to prevent discharge. The Freon gas is introduced through the Freon gas inlet and then sealed if discharge occurs due to high humidity, etc. The filament is set so that the distance between the filament tip and the Wehnelt cylinder tip is 0.1 mm to 0.2 mm, and then the filament tip is positioned at the center of the Wehnelt hole by adjusting the four filament centering screws.

The emission current under normal operation is about 120 μ A at an acceleration voltage of 20 kV. If the filament tip is excessively protruding with reference to the Wehnelt hole, the emission current increases and the saturation point becomes indefinite or the emission current will not be saturated.

On the contrary, if the filament tip is excessively withdrawn with reference to the Wehnelt hole, the emission current decreases and the maximum intensity cannot be obtained.

4-2-2 Condenser Lenses

Fig. 4-4 shows a schematic sectional view of the condenser lenses. Two condenser lenses are substantially unified and connected in series, thus requiring one power supply only. The resistance value of the condenser lenses connected in series is about 24 Ω . Inserted inside the lens magnetic yoke is a selfcleaning aperture and a helisert spring (Fig. 4-5, 4-6), which serve to prevent contamination of the magnetic yoke and electron beam path due to scattering of the beam. The aperture (1 mm ID x 6 mm OD x 10 μ m thickness) is made of molybdenum.

Of the four apertures inserted into the condenser lens assembly the first aperture requires no cleaning since it is subjected to irradiation with a dense electron beam. However, it is recommended to clean the second aperture once every four months and the third aperture once every two months.

2

S-430/S-450 Scanning Electron Microscope Block Diagram 4-1 Fig.

THE REAL PROPERTY.

To Oil Diffusion Pump

Fig. 4-2b Sectional View of S-450 SEM Column

Fig. 4-4a Sectional View of Condenser Lens for S-430

Fig. 4-6 Fixed Aperture Ass'y

4-2-3 Deflection Coils and Stigmator Coil

Fig. 4-7 shows a schematic sectional view of both deflection coils and stigmator coil assembled inside the objective lens. The deflection coils employ a toroidal System. The angle alignment of the 1st and 2nd deflection coils has been factory-adjusted and locked before shipment of the instrument.

4-2-4 Objective Lens

Fig. 4-7 shows a sectional view of the objective lens. It is directly fixed to the specimen chamber assembly.

At the lower pole piece hole section, a pole piece protection cylinder of 1.4 mm dia. is provided. An objective lens movable aperture is set to the principal plane of objective lens.

Fig. 4-7a Sectional View of Objective Lens, Scanning Coil, Stigmator Coil for S-430

Fig. 4-7b Sectional View of Objective Lens, Scanning Coil and Stigmator Coil for S-450

4-2-5 Objective Lens Movable Aperture

Fig. 4-8 shows a sectional view of the objective lens movable aperture. It is made of molybdenum and 10 μ m in thickness. The aperture plate is provide with four holes; 100 μ m, 200 μ m, 300 μ m, and 400 μ m in diameter. These different holes are used as follows :

100 μ m dia. (notch 4) :	For long depth of focus
200 µm dia. (notch 3) :	For ordinary uses
300 μm dia. (notch 2) :	For specimens forming a poor contrast, which require a relatively large electron beam current.

400 μ m dia. (notch 1) : For x-ray analysis (dispersive type) The depth of focus in SEM can be obtained by :

$$2 \Delta f = \frac{\left(\frac{\gamma}{M} - \alpha\right)}{d}$$

where $2\Delta f$

α

: Depth of focus

- : Semi-angular aperture of electron probe to be irradiated onto the specimen
- M : Magnification

d : Final spot diameter

Y : Resolution of CRT

For example, when semi-angular aperture $\alpha = 3 \times 10^{-3}$ radian, magnification M = x1,000, final spot diameter d = 100 Å, and resolution of CRT $\gamma = 0.1$ mm, then the depth of focus 2 Δ f is about 33 μ m.

Be careful particularly when baking and cleaning the aperture plate of objective lens movable aperture since it is very thin and apt to break easily.

4-2-6 Secondary Electron Detector

Fig. 4-9 shows the construction of the secondary electron detector. Silicone oil should be used to bond the glass scintillator to the light guide and also le light guide to the glass surface of the photomultiplier. However, be careful

not to let the silicone oil bubble, otherwise the light transmission efficiency lowers. All soldering joints of lead wires for the secondary electron acceleration voltage (POST HV + 10 kV) should be free from sharp ends so as to prevent discharging.

Specimen Goniometer Stage (S-430)

Fig. 4-10 shows a schematic sectional view of the specimen goniometer stage. It is of a draw-out type with X, Y, Tilting, and Rotation control modes. Table 4-1 shows the performance and accuracy of the stage. The vibration resistance depends upon mounting site conditions, etc. However, if the amplitude of indented image edges due to vibrations is within 0.5 mm at a magnification of x100,000 (it is recommended to use a magnetic tape as specimen) when the instrument is mounted in a place subjected to relatively little vibration, the specimen goniometer stage may be considered normal. If the specimen goniometer stage vibrates, check the following points.

If the Y-movement guide is loose. 1.

If the fixed screw is loose. 2.

If X-, Y-movement knobs or other part is loose.

a) Performance			Movement
Knob	Movable Range	Minimum Graduation	per Knob Rotation
t lunch	0 ~ 20 mm	10 µm	0.5 mm
X-movement knob	0 ~ 10 mm	10 µm	0.5 mm
X-movement knob			
Z (Working Distance)	5 ~ 15 mm Semi-fixed		
	0° ~ 360°		180°
Rotation	-20° ~ +70°		
Tilting	- 40 - 110		

Table 4-1 Performance and Accuracy of

Specimen Goniometer Stage

3.

Accuracy (b)

o) need y	Accuracy		
Item			
Image drift when specimen goniometer stage is being stopped (X, Y)			
Meandering of specimen goniometer	Less than 5 µm Range (within 4 mm)		
stage (X, Y) Reproducibility of specimen goniometer stage (X, Y)	Less than 5 µm Range (within 4 mm)		
5			

4 - 15

and a state of the second s

and the second of the second sec

4-2-8 Specimen Goniometer Stage (S-450)

(1) Composition

0

The specimen goniometer stage is provided with five kinds of specimen moving mechanisms.

Specimen rotation (called R and indicated by (\frown) mark) 0

- Specimen tilting (called T and indicated by (()) mark) 0
- Vertical movement of specimen (called Z and indicated by $(\frac{1}{1})$ mark) 0
- Plane movement (called Y and indicated by (--) mark)
- Plane movement (called X and indicated by ($\frac{1}{2}$) mark) 0

These movements can be indicated by the three-dimensional orthogonal axes as follows :

Electron Beam Irradiating Direction

The above mechanisms serve as the main guide portions of the specimen goniometer stage. Fig. 4-11 indicates a sectional view of the specimen goniometer stage, Fig. 4-12 indicates the front view of the specimen goniometer stage as viewed from the front of the column, and Fig. 4-13 indicates the plan of the specimen goniometer stage.

The specimen goniometer stage including the above guide portions is composed of the following :

- Each guide portion 0
- Drive knobs and drive shafts 0
- Specimen goniometer stage base assembly 0
- Specimen goniometer stage lock assembly 0
- (2) Construction

0

0

Fig. 4-11 \sim 4-13 indicate the entire construction.

- For the X, Y knobs and drive assembly, see Fig. 4-14. 0
- For T, R, Z, and X lock knobs and drive shafts, see Fig. 4-15.
- For R, T, R, Z, and Z lock drive assembly, see Fig. 4-16.
- For R guide and T mount, see Fig. 4-17. 0

- For Z guide and Y-movement mount, see Fig. 4-18.
- o For X movement mount and Y-guide base, see Fig. 4-19.
- For X base guide, see Fig. 4-20.
- For Y drive lever assembly, see Fig. 4-21.

Read the above figures carefully, and locate the actual parts correspondingly. Now, the major parts of the specimen goniometer stage will be detailed.

(a) Linear Guide

System for both X and Y movement, except that their shapes differ from each other due to their compositions. A cemented carbide (TOSHIBA TANGALLOY G5) tip is bonded to the V-grooved aluminum base by epoxy resin. This guide is supported at three points consisting of two steel balls in the V-groove and one bearing opposite to the guide.

The following figure indicates the X-movement guide assembly as an example.

P Arrow View

(b) Z Guide

This guide adopts the slide system using a bearing and a stainless steel shaft. The shaft is V-grooved and supported by nylon ball and spring for the purpose of preventing rotation and eliminating play.

(c) T Guide

This guide adopts a swing system by holding one end using a bearing and holding the other end by a Delrin split bush.

(d) R Guide

This adopts the full ball bearing system using 48 nylon balls which are employed for electrically insulating the specimen stage.

- (e) Drive System of Each Movement
 - X ... The movable mount is directly moved by the microhead via a steel ball for eliminating the effect of rotating force.
 - Y ... Same system as for X, provided that a lever is employed, since the operating direction differs from that of X-movement by 90°.
 - Z ... Rack pinion system

T ... Direct movement using rotating knob

R ... Worm plus worm gear shaft

Each knob and movement mount are connected by the spline expansion/ contraction and universal joint system.

(f) Y-Drive Lever Assembly

The movable range of the X-component is secured by using a slide bear (made by ORIGIN). The rotating shaft of each lever employs a pivot bearing (ORIGIN) and a pivot (quenched SKD) to eliminate play.

(3) Performance

Reproducibility	:	5 μ
Backlash	:	$10 \sim 40 \mu$
Linearity	:	Less than 1 µ
Vibration resistance	··· •	About 1 μ in amplitude
Hysteresis	:	3
Specifications		
Movable range X,	Y :	0 ~ 40 mm
Z	:	0 ~ 30 mm (WD: 5 ~ 35)
۲. ۲	:	-20 ~ 90°

R : 360° continuous

(4) Disassembly and Assembly of Specimen Goniometer Stage

The specimen goniometer stage assures an accuracy of μ order. However, it is designed in such a structure that the above accuracy can be obtained automatically when the work is done according to the following procedure while observing precautions described below.

o Precautions Before Disassembly

- (a) Understand the construction thoroughly referring to Figs. 4-11 ~ 4-21.
- (b) Wear gloves so as not to contaminate any part during disassembly.
- (c) Disassemble the unit on a table while taking care so as not to lose parts in the course of the disassembly work. Be careful since 6 steel balls and 48 nylon balls are apt to roll.
- (d) Disassemble the unit for each block, and keep disassembled parts for each block in good order.

o Disassembling Procedure

This specimen goniometer stage can roughly be divided into the following seven portions.

- (a) Each knob assembly (Figs. $4-14 \sim 4-15$)
- (b) T mount and R assembly (Fig. 4-17)
- (c) Z guide and Y-movement mount (Fig. 4-18)
- (d) X-movement mount and Y-guide base (Fig. 4-19)
- (e) X-base guide assembly (Fig. 4-20)
- (f) Y-drive lever assembly (Fig. 4-21)
- (g) Other specimen stage base assembly (Figs. 4-11 ~ 4-13 indicating the entire view)

- o Procedure
- (a) Disassembly of Base Assembly and Specimen Goniometer Stage
 - 1) Loosen screws (1) (12) (Fig. 4-17) to disconnect the absorption current wiring, and also detach the cover.
 - 2) Loosen screw (13) (Fig. 4-11) to separate the base assembly from the specimen goniometer stage.
- (b) Disassembly of Knob Assembly
 - 1) Loosen two screws (1) (Figs. 4-15 and 4-16) at the tip of each knob drive assembly.
 - 2) Turn knob base (2) (Fig. 4-15) counterclockwise.
 - 3) Detach two springs (3) (Fig. 4-14) at the tips of X and Y knobs having the same shape.
 Loosen three screws (4) (Fig. 4-14) to detach the component.
 - 4) Loosen base (5) (Fig. 4-14) counterclockwise.
- (c) T Mount and R Assembly

After opening the T-mount bearing, loosen screw (6) (Fig. 4-11). Pull the T-mount and R assembly in the screw direction.

- (d) X-Movement Mount, Y-Movement Mount, Z-Guide, and Y-Movement Mount Assembly
 - 1) Loosen spring (10) (Fig. 4-13).
 - 2) Loosen screw (14) (Fig. 4-13) to detach two bearings.
 - 3) Pull these parts in the direction opposite to the knobs.
- (e) Z-Guide and Y-Movement Mount
 - 1) Detach spring (7) (Fig. 4-13).
 - 2) Loosen two screws (9) (Fig. 4-13) to detach the bearing.
 - 3) Loosen two screws (8) (Fig. 4-13) to detach the part.
- (f) X-Base Guide AssemblyLoosen two screws (15) (Fig. 4-11).
- (g) Y-Lever Assembly

Loosen two screws (16) (Fig. 4-11).

Now, disassembly of each block is completed.

The cautions on disassembly and assembly of each part are as given below.

(a) Knob Assembly

X, Y Knob

Clamp three screws evenly to assure smooth rotation of the microhead.

T, R, Z, Z-Lock Knobs

Eliminate play of the shaft by locking the shaft using these two nuts.

(b) X-Base

Obtain overall parallelism.

(c) Y-Movement Mount and Z-Guide Assembly

TR Assembly

Adjust screws 3 to eliminate play at 1 and 2. Clamp lock screws without fail.

(e) X-Movement Mount and Y-Base Guide

(1) should move smoothly.

(f) Y-Lever Assembly

Y-lever assembly (D#25310583)

Clamp the pivot lightly and make sure that no play exists.

(5) Troubleshooting

- (a) Noticeable Backlash (X, Y)
 - 1) Check if each knob screw is securely clamped.
 - Check if spring A (Fig. 4-13) is normally fixed to the tip of X, Y knob.
 - 3) Check if bearing B (Fig. 4-13) is properly mounted.
 - 4) Check Y-lever pivot C (Fig. 4-13) for play.
 - 5) Check if springs \bigcirc , E (Fig. 4-13) are properly mounted.
 - 6) Check if Y-guide shaft \bigcirc (Fig. 4-13) is securely clamped.
 - Check if slide bearing G (Fig. 4-11) is properly mounted without looseness.
- (b) Poor Reproducibility (X, Y)
 - 1) Same as 1) ~ 6) in (a) above.
 - 2) Check if four steel balls (H) (Figs. 4-11 and 4-12) are mounted to each guide assembly.
 - 3) Check steel ball faces (H) (Figs. 4-11 and 4-12) of each guide assembly for dust deposit.

- (c) Vibration
 - Same as 1) ~ 7) in (a) above.
 - Check if T-mount shaft brake (I) (Fig. 4-11) is securely mounted without looseness. (Check if the T-knob torque exceeds 500 g/cm).
 - 3) Check if R-ball holder \bigcirc (Fig. 4-11) is securely mounted.
 - Check if a 1 ~ 2 mm gap exists in the specimen goniometer stage base lock K (Fig. 4-11).
 - 5) Check if the table and column contact each other.
 - 6) Check if the city water pressure is higher than specified.
 - Adjust it to a flow rate of 2 liters/min.
 - 7) Check if external vibrations are noticeable.
 - 8) Check screws of each part of the column for looseness.
 - 9) Check the rear cover of the console rack for looseness.
 - (d) Each knob does not move.

Check the screw (L) (Fig. 4-11) at the tip of knob drive shaft for loosenes: Disassemble and check it.

- and the

s

Universal Joint

Fig. 4-16 Construction of Each Drive Shaft

4-3 COMPOSITION OF DISPLAY UNIT

4-3-1 Function of Each PC Board

Name of PC Board	Function
HEAD AMP	SE signal pre-amplifier
AL/STG	Gun alignment amplifier Stigmator amplifier Image shift amplifier
DEF AMP	CRT X and Y deflection amplifier Column X and Y deflection amplifier Spot killer circuit
MAG IND CONTROL	Magnification indicator control HV ON-OFF switch
HV INDICATOR	Emission meter circuit
SG-VA	Sawtooth wave generator Video amplifier Blanking signal generator
B/C-METER	Brightness and contrast indicator
MAG IND	Digital magnification indicator
MAG SW	Magnification selector
SCAN SPEED	Scanning speed selector
LENS	Cond lens power supply Obj lens power supply Acc voltage selector Working distance selector Focus monitor circuit Photo speed selector
PS-1	DC power supply
PS-2	DC power supply
PS-4	CRT HV 600 V, 100 V
PC-H10	CRT HV (photo and view) Post HV
PC-H30	Gun Acc HV Filament power supply
PC-HPM	Photomultiplier HV

Fig. 4-22 Alignment and Stigmator Circuit

Fig. 4-23 Lens Current Power Supply

Fig. 4-24 Video Signal Amplifier Circuit

Fig. 4-25 Magnification Indicator Circuit

Fig. 4-26 Gun, HV and Emission Current Indicator

Section V

EVACUATING SYSTEM

5-1 COMPOSITION OF EVACUATING SYSTEM

Fig. 5-1 indicates the block diagram of the evacuating system.

Unlike conventional EMs, values V1 \sim V3, LV1, and LV2 shown in Fig. 5-1 are assembled into one value box.

The valves are opened or closed by vertically moving the valve directly coupled to the solenoid.

Fig. 5-2 indicates an external view of the valve box.

Fig. 5-1 Evacuating System

Fig. 5-2 External View of Valve Box

- (1) The value box is provided with a built-in evacuating passage. Namely, this value box may be regarded as a value concentration system plus built-in evacuating pipe. The evacuating pipe connected to RP is provided below V3. The evacuating pipe shown in Fig. 5-2 is connected to the bottom of the specimen chamber.
- (2) Fig. 5-3 indicates the valve construction. The valve can be disassembled together with the latching solenoid by detaching the flange.

Fig. 5-3 Valve Construction

The latching solenoid is positioned by the push screw so as to maintain normal holding force. The l dimension must be maintained before and after disassembling.

5-2 EVACUATING SYSTEM SEQUENCE

5-2-1 Composition of Sequence

Fig. 5-4 indicates the composition of the evacuating system and its flow chart. This sequence is fully automated. When turning on the EVAC switch, the microscope column is kept under high vacuum or atmospheric pressure according to the AIR selector switch setting.

5-2-2 Safety Measures

(1) Power Interruption

If power interruption occurs the instrument operates in the same manner as if the power supply were turned off. All valves are closed and air leaks from the rotary pump (RP). After power recovery, the instrument is reset to the status before power interruption according to the sequence.

(2) Water Interruption

The buzzer informs the operator of a water interruption. The DP is turned off to close V1 simultaneously, for the purpose of preventing backstreaming of oil into the column.

(3) Vacuum Leak

If the vacuum in the microscope column becomes > 0.01 Torr, the high voltage is automatically turned off.

If it deteriorates to > 0.1 Torr, Vl is closed. Then, the back pressure of DP is evacuated for 30 seconds, and pre-evacuation is done.

(4) Malfunction of Valves

The valve operation is always checked by microswitches. If a valve malfunctions, the sequence stops operating to insure safety.

(5) Overheat of DP

If DP heater temperature exceeds 250°C, the DP heater power supply is automatically turned off.

And a set of the se

いたいないない いんないない ないない ちょうしょう ちょうしょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう

ALTER A MART

5-2-3 Valve Circuit

Each value in the value box is driven by latching solenoid. When the current flows as shown in Fig. 5-5, the value moves vertically by switching operation.

Once the valve operates, the piston is fixed by the built-in permanent magnet, and it will not be operated unless a force exceeding 10 kg is applied.

Resistor Re is always connected with the other coil and cancels the magnetic force of the permanent magnet.

The coil rating is a short-time rating, so continuous long-time current flow to the coils is not permitted.

The maximum allowable current flowing time is about 1 minute. In this sequence, this time is set to 0.3 sec.

Fig. 5-5

5-2-4 Circuit Composition

The evacuating sequence circuit is composed of three PC boards PC-12, PC-14, and PC-15, and external control switch. For details, see the circuit diagram.

Each PC board functions as follows;

(1) PC-12:

This is the automatic control PC board for the evacuating sequence system. It opens and closes each valve automatically by the external switch. It also contains the Pirani vacuum gauge circuit.

(2) PC-14:

This PC board accommodates the power supply and manual switch required for valve operation. The manual valve open/close operation can be done by this PC board only.

(3) PC-15 :

This PC board is used for connecting the valve body and PC boards. It comprises a surge absorber and resistor Re.

This sequence is designed to be solid-state using semiconductors except the valve current polarity switching and vacuum gauge output relays. It features high reliability with various safety circuits.

5-2-5 Operating Principle of Circuit

The evacuating system sequence employs digital ICs (TTL, Hitachi HD25 series). includes the NAND, NOR, INVERT gates and a one-shot multivibrator as a umer. For each digital IC operation, refer to respective manuals.

Now, the specially designed evacuating system sequence circuits will be described.

(1) One-Shot Multivibrator Time Reduction Circuit

Fig. 5-6 indicates this circuit diagram, and Fig. 5-7 indicates the time chart. When the input changes from L to H, IC17 is triggered, and one pulse determined by R and C is outputted. If the input remains unchanged as H, Q11 remains turned off, and the time constant is determined by R51 and C14.

When the input returns to L again after triggering IC17, Q11 turns on, and the time constant is determined by R66 and C14. Accordingly, the pulse is completed within a remarkably reduced time as compared with the former.

This is designed to obtain a 15-sec delay time securely until V3 is open after V2 and V4 have been closed.

Fig. 5-6

Fig. 5-7

(2) Valve Drive Circuit

Fig. 5-8 indicates the Vl valve drive circuit.

A relay is employed to switch the polarity of the current flowing to the latching relay. The breaking capacity of this relay is 3 A at 30 V DC, but it decreases to less than 1 A at 100 V DC. Accordingly, the current is not fed to the relay during its switching operation for the purpose of protecting the relay, and this circuit flows the latching solenoid current for 0.3 sec only.

The solenoid current is given with a delay of the chattering time (0.1 sec) after the relay contact has been closed by utilizing an idle contact of this relay. Fig. 5-9 indicates the time chart at each point.

R28, C14, R32, and C16 produce a delay time of 0.1 sec, while R26, C13, R30, and C15 produce a current flowing time of 0.3 sec.

R serves as the discharge protection resistor for capacitors C13 \sim C15.

and R15 compose the solenoid coil current limiter circuit.

Fig. 5-8

5-2-6 Troubleshooting

- (1) Check the Power Supply Circuit
 - (a) Check if 100 V AC is applied
 - (b) Check if fuses are blown out
 - (c) Check if the specified voltages are obtained

- (2) Check PC-14 (after detaching PC-12 from the connector)
 - (a) If 100 V DC does not appear, output transistors Q8, Q9, etc. may be faulty.
 - (b) Operate each valve with SWl set to MANUAL, to see if they operate normally. If the relays operate normally with 100 V DC applied but a valve does not operate normally yet, transistors Q18 ~ Q22 may be broken.
- (3) Check PC-12 by Connecting it to PC-14
 - (a) Check power supplies (+8 V, ±15 V) for vacuum gauge. The meter should deflect when changing VR1. If the meter remains at zero, the measuring probe may be broken.
 - (b) Check if digital IC output versus each input meets the truth value table.
 (However, since HD2523 is an open collector type IC, its output does not always meet the truth value table.) Check its peripheral circuit too.

5-2-7 Adjustment of Vacuum Gauge .

- (1) Adjust the VR-01 until the vacuum gauge registers 100 at the atmospheric pressure.
- (2) For adjusting the meter relay contact, evacuate the microscope column for at least 1 hour. (This adjustment may be done at once when the microscope column has been evacuated continuously.) Switching point of fine and coarse evacuation : Leak the column at first. Perform evacuation soon after completion of leak and adjust the VR-03 knob

so that coarse evacuation is switched to fine evacuation 100 to 110 seconds later. At that time, the vacuum gauge should register about 20.

- (3) Adjust the HV relay contact by turning the VR-02 knob so that the HV relay operates when the vacuum gauge registers 10-15 (HIGH Lamp). The degree of vacuum is about 5 x 10⁻⁴ mmHg at that time. When checking vacuum leakage, evacuate the microscope column 5 hours or more continuously after a vacuum of 5 x 10⁻⁵ mmHg or better has been attained. Then, shut off the instrument. The degree of vacuum should be about 5 x 10⁻² mmHg (vacuum gauge indicates about 20) after leaving the instrument 10 hours. It may also be inspected qualitatively by confirming the absence of evacuating noise of the rotary pumps when starting evacuation next morning after stopping the instrument the previous day.
 - Note : It should be noted when adjusting the Pirani gauge that it takes several minutes until the gauge registers the degree of vacuum exactly since the transient response of the measuring bulb is slow with reference to the vacuum change.
5-2-8 Manual Operation of Evacuating System

Observe the following procedure. (Switch position : AUTO/MANUAL control assembly on the printed circuit board. PC-14))

- (1) Ordinary evacuating system operation :
 - (a) AUTO/MANUAL switch ------> AUTO
 - (b) V1 ~ V3, LV1 switches -----> OFF
- (2) When evacuating the entire microscope column by manual operation :
 - (a) Make sure the AUTO/MANUAL, and VI \sim V3 plus LV1 switches are set as in (1) above.
 - (b) AUTO/MANUAL switch ------ MANUAL

_____ ON (30 seconds) (c) V3 switch ——

- (d) V3 switch —
- ____> ON (e) V2 switch -
- (f) Wait about 2 minutes until the Pirani gauge registers about 20. \longrightarrow OFF Then, V2 ------
- (g) V3 switch ———— > ON
- > ON (h) Vl switch ——
- (i) Wait about 3 minutes until the Pirani gauge registers 10. Now, evacuation is completed.

5-3 ASSEMBLY OF EVACUATING SYSTEM UNIT

5-3-1 Removal of DP and Valve Unit

- (1) After turning off the EVAC main switch, wait for a while until DP is cooled down. Detach in advance connectors of PC board which may interfere with the removal of DP and valve unit.
- (2) Insert wooden blocks below DP so as not to drop DP directly. Have at least two workers carry the DP and valve unit, since they are heavy.
- (3) Detach three screws indicated by arrows in Fig. 5-10.
- (4) Detach the nut shown by arrow in Fig. 5-11.
- (5) Hold the DP unit by hands so that it will not move.
- (6) Have one worker remove the wooden blocks while the DP unit is being held by another worker as described above, and detach the DP and valve unit slowly from the console rack.

.

5-3-2 Installation of DP and Valve Unit

Reverse the above procedure while taking care so as not to cause deviation or offcentering of axis when connecting the main evacuating pipe and valve box (see Fig. 5-12) to each other.

Fig. 5-12

Section VI

TROUBLESHOOTING

Para. 6-1 thru para. 6-10 indicate troubleshooting block diagrams. Since it becomes very complicated to sort out troubles in detail and all of these troubles cannot be described, this section describes the methods of locating causes of troubles from symptoms which may be produced in the display unit, regarding the basic items.

If a trouble occurs, locate its possible cause from the symptoms according to this troubleshooting block diagram, and find the unit to be examined.

6-1 OPERATING PROCESS CHART IN ORDINARY OPERATION

Use CONTRAST and BRIGHTNESS meters.

Note : For details of operation, see instruction manual.

EVACUATING SYSTEM DOES NOT OPERATE NORMALLY 6-2

- Notes : (1) See Schematic Diagram of Evacuating System.
 - (2) See Evacuating System Sequence.
 - (3) See Adjusting Method of Vacuum Meter.
 - (4) Confirm auto-manual setting before check.

6-3 ABSENCE OF RASTER ON CRT

6-4 ABSENCE OF IMAGE ON CRT

いたいであるというでしたの

Electron Gun HV	ON (20 kV)	COND LENS	Scale 5.
Filament Current	ON	SIGNAL SELECTOR	OFF
CONTRAST	Fully clockwise ON	SCAN SPEED	
		MAGNIFICATION	Minimum magnification
	D) emotes emultip except except except except except except except except		

6-5 ROUGH IMAGE APPEARS

6-6 ASTIGMATISM CORRECTION IMPOSSIBLE

- Anti-

For examining astigmatism correction, use a conductive specimen such as magnetic tape, which does not require any evaporation. If specimen evaporation is needed, appearance of astigmatism or image drift may be caused by evaporation failure.

6-7 EMISSION CURRENT FLUCTUATES

6-8 RASTER ONLY APPEARS ON CRT AND BRIGHTNESS CHANGES

6-9 BRIGHTNESS CHANGES WHEN OBSERVING IMAGE

6-10 ELECTRON BEAM IS NOT EMITTED

Section VII

AXIAL ALIGNMENT OF ELECTRON OPTICAL SYSTEM

For the axial alignment of the S-430 instrument, refer to the instruction manual. The following description covers the axial alignment of the S-450 instrument when the condenser magnetic path has been detached or when the current center axis is adjusted.

7-1 AXIAL ALIGNMENT OF S-450 INSTRUMENT

- (1) For applying the accelerating voltage, see the instruction manual.
- (2) The condenser axial alignment should be done by servicemen only.
- (3) Detach the condenser exciting current connector from the column.
- (4) Set the SE switch to OFF and set the MAG to the minimum magnification mode.
- (5) Adjust the electron gun horizontal alignment knob (See Fig. 7-1.) so that the maximum intensity can be obtained with the electrical gun-alignment control knob set to about the midpoint.
- (6) Bring a characteristic specimen surface (hereinafter referred to as "object") to the CRT center and focus it.
- (7) Flow the first condenser lens current (for independently flowing the current to the first and second condenser lenses, see Figs. 7-2 and 7-3 as well as description), and set the condenser lens current selector switch to $4 \sim 5$.
- (8) If the object set in step (6) is deviated from the CRT center under the condition in step (7), adjust the first condenser lens (hereinafter referred to as Cl) axial alignment knob to bring the object to the CRT center.
- (9) Turn off the Cl current, and flow the second condenser lens (hereinafter referred to as C2) current.
- (10) If the object is deviated from the CRT center under the condition in step (9), adjust the C2 axial alignment knob to bring the object to the CRT center.
- (11) Repeat steps (7) ~ (10) for axial alignment.
- (12) Reset the condenser lens exciting current connector as before, and turn on the SE switch.
- (13) If the object largely escapes from the CRT center, repeat steps $(7) \sim (12)$ until the escape is minimized.

7-2 METHOD OF OPERATING C1 AND C2 INDEPENDENTLY

- (1) Detach the condenser lens exciting current connector.
- When it is desired to operate Cl only, short between (+)(l) and (-)(l) and also between (+) (2) and (-) (2) of the connector respectively by using clip wires prepared by servicemen.

(3) When it is desired to operate C2 only, short between (+) (1) and (-) (3) and also between (+) (2) and (-) (4) in the same manner as above.

Fig. 7-2 When Operating Cl Only

Fig. 7-3 When Operating C2 Only

Section VIII

and the second second

CIRCUIT ADJUSTMENT DATA

			-		
	MODE	Electron Beam on Specimen	CRT Elec- tron Beam	CRT Grid	Use
	NORMAL			VIDEO SIGNAL	Image Observation
	SPOT		+ + + +	Fixed bias	Information analysis from an optionally selected point on image (qualitative and quantitative ana- lyses by x-ray analysis and others)
			+	VIDEO SIGNAL	Setting of line analysis position
	FOCUS MONITOR LINE ANALYSIS	ł	A-	Fixed bias	CRT display of distribution of signal intensity (ex. x-ray intensi- ty) on optional line of image (line analysis)
1	OBLIQUE			bias	Line analysis on entire specimen surface (an image like a relief can be obtained)

8-1 CRT IN VARIOUS SCAN MODES AND SCANNING SYSTEM OF ELECTRON BEAM ON SPECIMEN

12

8-3 VARIOUS SYSTEMS OF BEAM DEFLECTOR CIRCUIT

The deflection coils of microscope column and CRT are driven by the following circuits.

- (1) Non-Reverse Type
 - (for deflection of CRT in various models)

(2) Reverse Type(for deflection of CRT in various models)

(3) Non-Reverse Current Variable Type (for SSM, HSM-2, 2A column deflection)

(4) Non-Reverse Current Variable Type(S-500 S-550, S-400 and S-700 column deflection)

(5) Positive Feedback Type (Current Variable) (for HHS-2R column deflection)

8-4 DC POWER SUPPLIES

Uni	t Output Voltage (±2 %)	Output Current	Ripple Max.	Short- Circuit Current 30~60 %	Drooping Current 105~200%	Volt. Setting	Use
	+20 V	3.35 A	20 mVp-p	$1 \sim 2 A$	3.5~6.7A	P	DEF;CDLX
							CRTX-SLOV
		3.35 A	20 mVp-p	1A~2 A	3.5~6.7A	P	CRTY
	+50 V	0.5 A	50 mVp-p			P	CRTX-TV
	+15 V ± 20 %	×				F	
PS1	-50 V	0.5 A	50 mVp-p			P	CRTX-TV
	-15 V ± 20 %					F	01(112-14
	+36 V	1 A	30 mVp-p	0.3~ 0.6 A	1.05~ 2.0A	P	ACC HV (30 kV)
	-15 V	0.02 A	15 mVp-p			F	ACC HV (30 kV)
	+24 V	1.5 A	24 mVp-p			P	10 kV HV PM HV
	+5 V	0.5 A	10 mVp-p	0.15~ 0.3 A	0.525~ 1.0A	F	SG VA
	+15 V	0.5 A	15 mVp-p	0.15~ 0.3 A	0.525~ 1.0A	F	
	-15 V	0.5 A	15 mVp-p	0.15~ 0.3 A	0.525~ 1.0A	F	
	+24 V	0.7 A	24 mVp-p	0.21~ 0.42A	0.37~ 0.74A		CRT HEATER
PS2	+38 V	2.0 A	2 Vp-p	Fuse blown			LENS
	+20 V	1.3 A	1	Fuse blown		N 2	AL/STG/IS
`	-20 V	1.3 A	Vp-p	Fuse blown		N	r
	2 V	0.05 A				AC	
	8 V	1 A					5006
	19.4 V	0.1 A				AC	
		0.1 A				AC	

A SA PAT ADALAT

(cont'

Unit	Output Voltage (±2 %)	Output Current	Ripple Max.	Short- Circuit Current 30~60 %	Drooping Current 105~200%	Volt. Setting	Use
	+550 V	0.1 mA	100 mVp-p				CRT
PS4	+100 V	4 mA	10 mVp-p	2			CRT
H10	-10 kV	100 µA	l Vp-p			P	CRT HV POST HV
PM HV	-650 V	0.1 mA	100 mVp-p			P	PM HV

P : Provided

F : Fixed

N : Non-regulated

AC : Alternating Current

8-5 HV POWER SUPPLIES

8-5-1 Protective Circuit

- (1) The CRT HV power supply operates simultaneously when the DISPLAY switch is turned on.
- (2) Interlinkage with Vacuum

The 30 kHV power supply, POST HV power supply, and PM HV power supply are operable when the column is under high vacuum. (When the column is under high vacuum, connector V5 pins (1)-(4) are shorted in the evacuating system rack. In order to operate these power supplies under low vacuum of column, short pins (1)-(4) on the plug side after disconnectir connector V5.)

(3) Interlocking with Specimen Exchange Chamber Peep Window

When the specimen exchange chamber is attached, PM HV is not operated unless the peep window for specimen exchange is closed. (A microswitch is assembled to the lid.)

- 8-5-2 30 kHV Power Supply
- (1) DC Power Supply

CN31 (1) +36 V (2) 0 Applied under high vacuum only (3) -15 V (4) 0 Applied at all times (2) Output

	Voltage	Current	Ripple	Frequency	
HV	l ~ 30 kV	200 µA max	300 mVp-p max	30 - 36 kHz	Variable by VRl on PC-H30
FILAMENT power supply	0~2.3 V	2.3 A	0.1 Vp-p	16 ~ 18 kHz	
BIAS voltage	ч. 				Self bias

- 8-5-3 POST HV Power Supply
- (1) DC Power Supply

(2) Output

+10 kV ± 10 % (variable by VR1 on PC-H10)

(1) DC Power Supply

CN32 (1) + 24 V (2) 0(3) GNDApplied under high vacuum only

(2) Output

Max $650 \text{ V} \pm 5 \%$ (variable by VR1 on PC-HPM) Min $170 \text{ V} \pm 15 \%$ 8-6 PRINCIPLE CIRCUIT DIAGRAM OF SAWTOOTH WAVE GENERATOR CIRCUIT

8-7 PRINCIPLE CIRCUIT DIAGRAM OF BLANKING CIRCUIT

(1) SSM, HSM-2, 2A, 2B, HHS-2R and Other Cathode Blanking

(2) S-500, S-550, S-700 and S-400 Grid Blanking

8-8 SCAN SPEED

MODE		TX	T _{XB}	ΤΥ	T _{YB}	Number of Lines	LINE SYNC
		0.12 ms	0.05 ms	0.025 s	0.002 s	500	
		0.12 ms	0.05 ms	0.0 <u>2</u> 5 s	0.002 s	500	
		1.0 ms	0.15 ms	0.5 s	0.005 s	500	
1.2	R	1.0 ms	0.15 ms	"		500	
VIEW		20 ms	5 ms	10 s		500	YES
	\₹	16.7 ms	1.7 ms	8.4 s		500	
		40 ms	10 ms	40 s		1000	YES
	B	33.3 ms	3.3 ms	33.3 s		1000	
		0.33 ms	0.03 ms	0.060 s		167	YES
		0.33 ms	0.03 ms	0.066 s		101	1120
And the providence of the second s		20 ms	5 ms	50 s		2500	YES
	1	16.7 ms	1.7 ms	41.7 s			
		40 ms	10 ms	100 s		2500	YES
	2	33.3 ms	3.3 ms	88.3 s		2500	
PHOTO		80 ms	8.3 ms	200 s		2500	YES
	3	83.3 ms	5 ms	208 s		2500	
		160 ms	5 ms	400 s		2500	YES
	4	166.7 ms	11.7 ms	417 s		2500	

8-9 VISUAL FIELD SIZE OF EACH MONITOR CRT

Note : Magnification of image displayed on each monitor:

- MONITOR ————— Indication on magnification meter x 1.23

o LENS

No.		Check Point	Adjust- ing Position	Specification
1	Check the power supply voltage.	CN10		+38 V +15 V -15 V
2	Check the connection of connectors. CN17 (OBJ VR) CN12 (POWER TRANSISTOR) CN12 (STANDARD) CN13 (LOAD)			
3	Check the reference voltage (ZD)	TPl		+8.3 ± 0.5 V
.4	Adjust the reference voltage. at 30 kV	TP2	VR8	5.80 V ±0.02 V
5	Check the linkage of HV. at 25 kV 20 15 10 5 4 3 2	TP2	VR9 VR2 VR1	5. $29 \pm 0.05 \text{ V}$ 4. $74 \pm 0.05 \text{ V}$ 4. $10 \pm 0.04 \text{ V}$ 3. $35 \pm 0.03 \text{ V}$ 2. $37 \pm 0.02 \text{ V}$ 2. $12 \pm 0.02 \text{ V}$ 1. $83 \pm 0.02 \text{ V}$ 1. $50 \pm 0.01 \text{ V}$
6	Check the condenser lens. 30 kV notch 1 2 3 4 5 6 7 8 9	TP6		0. 635 V 0. 883 V 1. 131 V 1. 379 V 1. 627 V 1. 875 V 2. 123 V 2. 371 V 2. 62 ± 0. 1 V (Corresponds to 1. 19 A)
7	Ripple of condenser lens.	TP6		0.4mV or less (2x10 ⁻⁴ or less)

LENS (cont'd)

		Check Point	Adjust- ing Position	Specification
8	 OBJ LENS 20 kV WD 1 5 mm 20 kV WD 1 5 mm 20 10 3 15 25 5 35 o Adjust obj lens current to medium current by using the VR3~VR7 at each WD with FOCUS FINE and FOCUS COARSE knobs set at middle positions. o The obj lens current becomes minimum at fully counterclockwise position of FOCUS C. knob and maximum at the fully clockwise position. o Each current should be overlapped. 		VR3 VR4 VR5 VR6 VR7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
9	 (1.5% or more) OBJ FINE o The obj lens current increases when OBJ FINE knob is rotated in clock-wise direction. 20 kV 	TP10		+10 ± 2 mV

• AL/STG/IS

No.		Check Point	Adjust- ing Position		Specification
1	Check the reference voltage. at 30 kV	LENS TP17 TP18		+5.58 V -5.58 V	•
2	Check the power supply voltage.	LENS CN10 AL/STG CN6		+20 V -20 V +15 V -15 V	
3	GUN ALIGNMENT ($\pm 0.21 \text{ A} \pm 6 \%$) X Y	AL/STG R21 R22		+5.58 V -5.58 V	• -
4	<pre>STIGMATOR (±0.17 A ± 6 %) X Y o Stigmator current is shut down with STG SW set to OFF.</pre>	TP32 TP34 TP32 TP34		+5.58 V -5.58 V } 0	•
5	STIG-ALIGNMENT STIG X ; Fully clockwise STIG Y ; Fully clockwise VR15 Fully counterclock- wise	LENS IC8 (6) IC9 (6) IC10 (6) IC11 (6) CN6-8			
	VR12 VR13 VR14	-9 -10 -11	1	-5.58 V	> +5.58 V > +5.58 V > +5.58 V

o AL/STG/IS (cont'd)

No.		Check	Adjust-			
		Point	ing Position	Spe	cification	
6	IMAGE SHIFT (±0.178 A)					Alfant Charles, 12
	o STIG X, Y: Middle positio	n ·				
	STIG AL VR12~15: Middle position		α.			
	IS X: Fully counter- clockwise	TP63		-8.37 V	±7.5 %	
	fully clockwise ISY: Fully counter- clockwise	TP66		+8.37 V	±7.5 %	
	o STIG X, Y: Fully clock- wise IS X, Y: Middle position					
	LENS VR15 Fully counter - clockwise> fully clockwise	TP63		+1.12 V	changes	
	LENS VR12 Fully counter - clockwise> fully clockwise	TP63		+1.12 V		
	LENS VR13 Fully counter - clockwise — fully clockwise	TP66		+1.12 V		
	LENS VR14 Fully counter - clockwise> fully clockwise	TP66		+1.12 V		
7	Circuit must not be oscil- lated. Ripple: GA, STG, IS			0.5 mVp-p o (1x10 ⁻⁴)	r less	

(4) A STATE TO A STATE AND A STATE AN

11

Vo.	×		Check Point	Adjust- ing Position		Specific	ation	A
1	Check the power supp voltage.	oly						
	o Power supply mu be oscillated.	st not.	CN27 () (3) (4) (5)		$\left \begin{array}{c} 2 & V & A \\ +15 & V \\ 0 \\ \end{array}\right $	C		
2	CN18 (SCAN SPEED cuit board) should be nected.				-15 V			
3	SCAN SPEED §							
	X amplitude adjustr X zero adjustment	nent .	TP8 TP8	VR7 VR8	8 VPE	$(\pm 0.4 V)$ $(\pm 0.1 V)$		
4	SCAN SPEED							
	Y amplitude adjustr Y zero adjustment	nent	TP9 TP9	VR9 VR10	8.8 V 0	p-p(±0.4 (±0.1		·· .
5	SCAN SPEED adjust	ment:X			T (ms)	T _B (ms)		
				VR1	0.12	0.05		+10
		¥		VR2	1.0	0.15		
	T	¥	TP8	VR3	2.0	5		2;
				VR4	40	10		4
				(2)	33.3	3.3		+10
6	SCAN SPEED adjust	ment:Y			T (s)	T _B (s)	-	
				C18	0.025	0.002	40 frames	+10
		¥		C20	0.5	0.005	500 lines	+10
		¥	TP9	C20	10 8.4		500 lines	+10
				C22	4.0) 4 V) 1 V) 4 V) 4 V) 4 V) 4 V) 4 V) 4 V) 4 V) 4	+10
				(C20)	0.060			1

* Synchronized with LINE

o SG (cont'd)

* Synchronized with LINE

o SG (cont'd)

.*

No.		Check Point	Adjust- ing Position	Specification	-
	Linkage of accelerating voltage CN7 (HV SW circuit board) should be connected. X, Y 25 20 15 10 5 4 3 2	X Y CN52	· · ·	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
12	Change of XY output for CRT. V-X amplitude P-X amplitude V-X zero adjustment P-X zero adjustment V-Y amplitude P-Y amplitude V-P zero adjustment P-Y zero adjustment TV-X zero adjustment	CN23-4 CN23-4 CN23-5 CN23-5 CN23-6 CN23-6 CN23-7 CN23-7 CN23-7	VR15 VR16 VR17 VR18 VR19 VR20 VR21	1.76 Vp-p 2.0 Vp-p $+5 \sim -5$ V $+5 \sim -5$ V $+5 \sim -5$ V 4.4 Vp-p 0.88 Vp-p $+5 \sim -5$ V $+5 \sim -5$ V	ole st

• DEF

.No.	а С.	Check Point	Adjust- ing Position	Specification
1	Check the power supply voltage.	CN23-1 -2 -3		+15 V 0 -15 V
		C N 34 - 1 - 2 - 3 - 5 - 6 - 7 - 9 - 10 - 11 - 13 - 14 - 15		+20 V 0 -20 V +15 V 0 -15 V +20 V 0 -20 V +15 V 0 -15 V
2	 Check of CRT-DEF o RL1 operates with VIEW mode. o RL1 does not operate with PHOTO mode. 			
	<pre>< VIEW> X amplitude (l. 76 Ap-p) zero(position)</pre>	TP6	SG VR14 VR16	1.76 Vp-p 0 ±0.1 V
	Y amplitude (2.2 Ap-p) zero	TP8 TP8	VR18 VR20	4.4 Vp-p 0 <u>+</u> 0.1 V
	<pre><photo> X amplitude (2.0 Ap-p) zero</photo></pre>	TP6 TP6	SG VR15 VR17	2.0 Vp-p 0 ±0.1 V
e#70%/2017	Y amplitude (0.4 Ap-p) zero	TP8 TP8	VR19 VR21	0.88 Vp-p 0 ±0.1 V
o DEF (cont'd)

Constant and the second

No.		Check Point	Adjust- ing Position	Specification
3	 Adjustment of COL DEF Connect the CN21 (MAG SW circuit board) Connect the CN20 (DEF coil) Insert the Fl and F2. Set the display panel to VIEW mode. Turn the MAG FINE VR fully counterclockwise. Set the HV to 30 kV. X amplitude adjustment Amplitude becomes 1/3 when turning the MAG FINE VR fully clockwise. Y amplitude adjustment Amplitude becomes 1/3 when turning the MAG FINE VR fully clockwise. 	TP2 TP2 TP4 TP4	SG VR12 SG VR13	Vp-p <u>+0.02</u> V Within 3 % Vp-p <u>+0.02</u> V Within 3 %
4	 Adjustment of COL DEF oscillation. RL2 on the DEF circuit board operates at notch 7 or higher position of MAG COARSE SW. Turn the MAG FINE VR fully counterclockwise. Set the HV to 30 kV. Set the diaplay panel to VIEW (TV) mode. Adjust the VR so as not to oscillate when the MAG COARSE SW is changed from low mag position to high mag position or vice versa. 	X: TP2 Y: TP4	VR1, 2, 3 VR4, 5	

o DEF (cont'd)

. 10.		Check Point	Adjust- ing Position	Specification
5	SPOT KILLER	1		
	VIEW 🛱		+14 V 0 -14 V +14 V 0	Operation display
	o Check waveform with the CN24 (CRT coil) discon- nected.	DEF TP9 SG TP12	-10 v	
		Martin Contraction of Contraction		•

State State State

• FOCUS MONITOR

No.		Check Point	Adjust- ing Position	Specification	
1	Set the FOCUS MONITOR to ON. o X waveform is as follows at any SCAN SPEED. T_B	SG TP8	(VR4)	T (ms)T (ms)Synchronized with LINE.401033.33.38 Vp-p	
2	Y waveform (COL-Y)	SG TP9	None	0	
3	X waveform (CRT-Y) o Apply sine wave of 200 Hz and 4 Vp-p ripple to CN28 (EXT SIG) and the waveform at right will be seen.	DEF TP7	None	$\frac{2}{3} XY$	

• VIDEO AMP

Contractory				
۰۷۵.		Check Point	Adjust- ing Positior	Specification
1	Connect CN27 (power supply), CN26 (HEAD AMP), CN7 (HEAD AMP BRIGHT- NESS)			
2	Turn the BRIGHTNESS knob from fully counterclockwise to fully clockwise position.	TP13		-15 V 2 +1 V
3	TV out	TV out		Voltage of +0.5V higher than that of TP13.
4	The HEAD AMP must not be oscillated.	TP13		
	 GAMMA CONTROL Disconnect the CN26 (HEAD AMP). Connect oscillator to the CN26. Apply sine wave (1 kV, 0.2 Vp-p) through the CN26 (3). Turn off the INVERT SW. The waveform changes when the GAMMA SW is turned on and off. 	TP20	+5V +3V 	OF F ON
1	Check of frequency re- sponse. The position where the output (gain) becomes half when the SCAN SPEED is changed while applying a signal 1 with oscillator through 1 the CN26 ③.			
J	Input 0.05 Vp-p INVERT OFF	TP16		3MHz or higher 70 kHz within ±15 % 16 kHz within ±15 % 16 kHz within ±15 % 500 kHz within ±15 %

- Contriction & Los

• VIDEO AMP (cont'd)

-

Adjust-Check Specification ing No. Point Position GRID BLANKING 7 0-¥ **TP16** 0 -14.7V +8V TP8 -8V 0 REDUCE TP16 0 50 µs TP8 o Check the voltage for ' the external signal terminal. (EXT. CN02 (11) BLK'NG) (EXT. CN66 WHITE) TTL -14 V TP16 LOW +14 V **TP16** HIGH , 8 CATHODE BLANKING +27 V o Connect the CRTs to the CN35-1 CN35 and CN8. +36 V o Connect the CN27 (power -2 supply). 0 o Connect the CN7 (VIEW - 3 +12 V -4 BRIGHT VR) V.CRT-K - 5 o Make sure of the check VIDEO SIGNAL -6 points at right. 0~+550V Variable CN8-1 +550V --2 +12V - 3 +24V -4 P.CRT-K -5 VIDEO SIGNAL - 6

8 - 24

4

• VIDEO AMP (cont'd)

No.		Check Point	Adjust- ing Position	Specification
8	 Raster appears on the viewing CRT at position. Adjust brightness of the viewing CRT. VG = +0.6 V VIEW BRIGHT VR : Middle position 		VR22	Raster : Grey
	• PHOTO CRT Make sure that the PHOTO CRT is in blank- ing condition with VIEW mode and is released with PHOTO mode.	CN8-5	· · · · · · · · · · · · · · · · · · ·	0.4V PHOTO
	Set the VG at +0.6V and adjust the PHOTO CRT with PHOTO mode.	a .i	VR23	exposure meter
	Adjust the raster focus.		VR24	E .
9	Check enhanced brightness at SCAN SPEED (TV) mode. The V _G should be higher than that of any other SCAN SPEED.	TP16	*	+2V higher (±0.5 V)

0	C	R	T
0	$\mathbf{\nabla}$	1/	- da -

٧٥.		Check Point	Adjust- ing Position	Specification
1	VIEW C924 P7 PHOTO C818 P4			These apply to the CRT delivery regulations for S-500, S-550 and S-700.
2	 VIEW CRT-1 O Orientation and inter- section perpendicu- larity of raster. O Deflection center Adjust the raster ampli- tude to 145W x 160H. (The mask is 135Wx150H and exposure area is 110W x 150H). * The above adjustment is done by using mode. 		coil SG VR16,20 SG VR14,18	Within <u>+</u> 1° Within <u>+</u> 1 mm of CRT center. <u>+</u> 1 mm
3	<pre>VIEW CRT-2 o Set the SCAN SPEED to</pre>			
4	 PHOTO CRT Orientation and inter- section perpendicularity of raster. Deflection center Adjust the raster amplit to 118W x 130H. 10x150 (The exposure area is 	ude	Deflection coil and furnished magnet. SG VR17,22 SG VR15, 1	Within <u>+</u> 1 mm of CRT center.

o CRT (cont'd)

1 1

• STG. MONITOR/DYNAMIC FOCUS

No.		Check Point	Adjust- ing Position	Specification
1	STIG. MONITOR o Turn on the STIG MONITOR SW and make sure that the oscillator output is of sine wave.	LENS TP16	VRII	2 Hz 10 Vp-p
	 OBJ LENS current This current changes when the VR of AMP is turned from fully counterclockwise to fully clockwise. 	LENS TP10	5	0 50 mVp-p
2	DYNAMIC FOCUS	LENS TP10		0 0.8 Vp-p

o ABC

No.			Check Point	Adjust- ing Position	Specification
1	0	Set the ABC SW to AUTO. Turn off the INVERT SW.			
	0	Make sure that the ABC input TP21 is connected to the VIDEO AMP out- put TP20.			
		Connect the HEAD AMP. Set the SCAN SPEED to mode.			
	0	Adjust the VR331 so that the signal at TP21 becomes zero.	TP21	VR331	0 V
	0	The above condition should not be changed when the SCAN SPEED is set to 🔲 and 💆 modes.	TP21		0 V
	0	Also, it should not be varied even at the SIGNAL INVERT.	TP21		0 V

• B/C COLOR BAR (BRIGHTNESS, CONTRAST COLOR BAR)

No.		Check Point	Adjust- ing Position	Specification
: 1	BRIGHTNESS COLOR BAR o Adjust the VR1 so that half of the color bar LEDs are lit when the voltage of TP20 (meter input) on the SG circuit board is set to 0V.		B/C VR1	light
2	CONTRAST COLOR BAR o Make sure that half of the color bar LEDs are lit when the voltage of TP20 (color bar input) on the SG circuit board is set to the following. [500 Hz sine wave l. 6 Vp-p		None	light

• MAG INDICATOR-1

Control of the							
No.			Check	Adjust-		n digine di celo di secondo con con control ne contro più di secondo	
INO.		,	Point	ing		Specification	L
				Position			
1	Check of power su	upply.	CN4-10		-	+15 V	
			-11			0	
			-12		-	-15 V	
2	WD switch : 3 (15 mm)					
	FOCUS COARSE:	Middle					
		position					
	LOW MAG SW: O						
	MAG FINE: Fully		MAG.	MAG,			
	clock		IND,	1			
	positi		CONT	IND, CONT			
	MAG COARSE: Fu		IC 3 6	VR1	0.326V		
		erclock-					
	wise	position.					
3	The voltage in item 2 above		IC 3 6		0.978V		
	becomes triple wh	ien the			0.7104		
	MAG FINE knob is		· ·				
	fully clockwise.						
4	Return the MAG F	INE knob					
	fully counterclock	wise.					
5	The above voltage	above voltage changes					
	when changing ove	r the				•	
	WD switch.	(mm)			(V)		7
		1 35	IC36	None	0.178		1
		2 25	IC 3 6	None	0.230		
		3 15	IC3 (6)	None	0.326	±2 %	
		4 10	IC36	None	0.412		
	-	5 5	IC 3 (6)	None	0.559		
6	WD switch: 3,						
	MAG FINE: Fully						
	wise	position.					
	• The above volta	ge changes					
	when rotating th						
	COARSE knob.		· ·				
		clockwise	IC3 6	None	0.392 V		1
		position	IC 3 6	None	0.326 V	±2 %	
		counter-	IC3 (6)	None	0.268 V	/0	
		lockwise					
- 1	and the second se					1	

Sugar Braham

Se arrively and the sec

• MAG INDICATOR-1 (cont'd)

No.		Check Point	Adjust- ing Position	Spec	tification	
7	 WD switch: 1, MAG FINE: Fully counter- clockwise position. FOCUS COARSE: Middle position. o The reading of the mag indicator increases by 1 digit at IC3 output of 0.98 V when the MAG FINE knob is rotated clockwise. 	IC 3 (6)	None	0.294 V	±2 %	,

• MAG INDICATOR-2

.No.			Check Point	Adjust- ing Position	S	pecification
1	The voltage of 0.3 given on the analo (IC3 output) when MAG to OFF, MA to fully counterclo position and FOCL COARSE to middle Adjust the VR3 so DIGITAL DISPLAT becomes "33".	g output ' setting the G FINE ockwise JS position. that the	LED	VR3	33	
2	Figures at right sl resistance for eac of the MAG COARS	h notch		8		
,		Notch 1 2 3 4 5 6 7 8 9 10 11 12			33 82 160 330 820 1.60 k 3.30 k 8.20 k 16.0 k 33.0 k 82.0 k 160 k	

and the state of the state of

·A

EMISSION COLOR BAR

			Check Point	Adjust- ing Position	Specification
	Connect the HV (H30) board and HV tank to respective fixed posit	the	CN3-19 -20 -21 -22		+15 V 0 -15 V + 5 V
1	Turn on the HV switc	h.	CN3-23		+5 V
	Change the HV	2 kV 2 30 kV	LED		2 kV lamp lights 30 kV
	EMISSION COLOR BA	150 μA	H 30 circuit board. LED		0.594 V ±1.2 %
	LEmission color bar Acc. voltage: 15 kV		H 30 circuit board.		0.545 V ±2.5 %
	Emission current: mission color bar	150 μA • output	LED		15 pcs ±1 pc

Section IX PARTS EMPLOYED

8 . ; Y

 $\sum_{i=1}^{n}$

Ţ

Table 9-1 Transistors Employed

													Replacement	aent	
-	bart	Mf.	T.una	Mate-	Ca tr		Max Ratings	tings		hre. h	Use		NEC	TOCHINA	a da na co
Mudel	Nu.	.9 IM	2016	rià l		I) ocl	Pc(W) Ic(A)	VCBO VCEO	VCEO	1		нласни	(Note 2)		
7545370018	1321016	HITACHI	dNd	Si.	1'U-39	0.75	-0.7	-60	-50	50 ~ 100	MED POWER, MED SPEED		2SA717	2SA594-0	
25453(n11)	1321013	IIITACIII	dNd	Si	TO-18	0.2	-0.1	-50	-35	35 - 120	MED SPEED AMP/SWITCH		2SA603	2SA499-0	
	1321024	IITACIII	dNd	Si	81-0J,	0.2	-0.1	-50	-35	60 ~ 120	GENERAL PURPOSE	2SA530(H) 2SA603	2SA603	2SA499-0	
almaccer	1323018	HITACHI	NdN	Si	TO-18	0.36	0.2	40	15	60~ 120	HIGH SPEED SWITCH		2SC943	25C979-0	
25056501118	J 32 5035	HITACIII	NPN	Si	TO- 3	\$50	7	130	80	$50 \sim 130$	HIGH POWER AMP/SWITCH		2SD151	2SC521A	
2SC680A	-	HITACHI	NHN	Si	99-01	*12.5	2	200	140	45 ~ 180	HIGH VOLT SWITCH			2SC779-0	
2SC1706	J323160	IIITACHI	NPN	ŝ	TO-18										
2SC 708(11)13	71-02-25 L	HITACIII	NFN	Si	TO-39	0.75	1	60	50	$50 \sim 100$	MED POWER AMP/SWITCH		2SC1008	2SC512-0	
25C830(1)13	J 32 3052	HITACHI	NPN	Si	TO-66	*25	9	100	55	60~120	MED POWER AMP/SWITCH		2SD283	2SD103-0	
25037	1323113	HITACHI	NdN	Si	TO- 3	*22	2.5	1200	500	30 ~ 100	HIGH VOLT SWITCHING		2SC1325	2SC1172-0	
2SC:984(H)C	J 323065	HITACHI	NFN	Si	TO- 1	0.35	0.5	100	50	100 ~ 200	MED SPEED SWITCH	2SC1781(11) 2SC943	2SC943	2SC979-0	
2SC1707(11)13		HITACIII	NAN	Si	TO-18	0.2	0.1	40	30	100 ~ 200	RF AMPLIFIER		2SC943	2SC979-0	
2SC1781(11)15	J323180	HITACHI	NHN	Si	TO-18	0.35	0.5	70	50	110~170	GENERAL PURPOSE		2SC943	2SC979-0	
N T.	_	NEC									PROGRAMMABLE UJT				
PT-500		SILARP									PHOTO TRANSISTOR				
2N4392	J 326750	- L'HS CONIX	Г- N	FET	'TO - 18						ANALOG SWITCH				E112
1T400	J326725		۲-N	FET	TO-18						ANALOG SWITCH				

Notes : (1) Manufacture of asterisked parts may be discontinued and replaced with substitutes in the future.

Since these parts are classified according to the hFE values, it is necessary to select those having an hFE value close to the characteristics table value.
 For substitutes not covered in this table, select them referring to the characteristics table.

Table 9-2 Diodes Employed

1<u>0</u> (

u f

ľ

1;

			Mater		Max Ratings	tings	IR Max				Substitutes		
Model	Part No.	Mfg.	rial	Case	IF.(mA)	(V)q V	(V ¹)	101	Use	HITACHI	NEC	TOSIIIBA	
1N34A(11)	00011EL	HITACIII	Ge		50	- 60	-10	140 nis	SMALI, SIG		SD34	1N60	(Note 1)
İ	1312005	IIITACHI	Si	D0-7	100	-200	-1	20 Jus	HIGH VOL'T SW		15955		
		III'FACIII	si	1-00	150	-45	-0.1	4 ns	SMALL SIG	1S2074(H)	15954	151586	
-	J 312008	IIITACHI	Si	DO-35	150	-45	-0.1	4 ns	SMALL SIG		15954	1S1586	and a second
1	J 311005	HITACIII	Si	D0-7	30	- 30			1.EVEL SHIFT		- 151300		$V_{\rm F} = 2V (l_{\rm F} = 2 {\rm mA})$
V 03C	1313005	IIITACHI	Si		1 300	-200	-20	2 µs	RECTIFIER		F14B	1S1886	SAME AS 151948
V06C	J 31 3008	HITACHI	Si		1100	-200	-20	عدا ف	RECTIFIER		F 1413	151886	SAME AS 152080
V 09E	3 31 301 2	HITACHI	Si		800	-400	-10	0.4 hs	HIGH SPEED				SAME AS 152245
152080(11)	1313105	HITACHI	iS.		1300	- 200	-20	2 μ5	RECTIFIER		F 14B	151886	SAME AS V03C
502C	J 313063	HITACHI	Si		10 A	-200	Ain t-		RECTIFIER .		ZIR 25		SAME AS IS1280
15689	J 312007	HITACHI	Ge		6 A	- 200	-5 niA		RECTIFIER				LOW VF (0. 6 V MAX)
Y-16-LC	J 311043	HITACHI	ß		3	-12 kV	-4		пісн уог.т	•			
ED11-12		ORION	Si		100	-12 kV	-10	0.5 µs	нисн уорт				
SRI03D	J 315 608	NEC	Gap						ran raha din bergendi yang ing sa sa ang ang ang ang ang ang ang ang ang an				
M4C-1	J 342000	IIITACHI	Si		1.2 A	-200	-100		RECTIFIER STACK				LED (REF)
S211B40	J 342806	SHINDEN GEN	s	T0-3	8 A	-400		}	RECTIFIER STACK				
5082-7731	1315801	ЧЬ		-					an a chuidh de saoirte airger an cáille a ta - faistean an Annaic				
5082-4684	1315813	ЧН											
5082-4984	J 315803	НР											
RLID9-210PT J315900	J315900	OKAYA											

Note : Use a germanium diode as substitute without fail.

Zener Diodes Employed Table 9-3

or scher careful to the second

					HIGH POWER (1 W)						GENERAL PURPOSE				LOW TEMPERATURE		
	FOSHBA			· ·				021323.9	02B24.7	02324.7	02Z6.2A	02Z6.8A	0229. IA	1S212	15213	1S214	
Substitutes	NEC	RD6. 2FB	RD9. IFB	RD10FB	RD12FB	RDI5FB	RD30FB	RD4A	RD5A					1S550	1S551	15552	
	IIITACIII				 Antifere Millerandhallerweide Officer Anto at Advances ym 			vendet	entre 18 s automatica de la data data de la data de la data de la data data de la data de la data de la data de	HZ5(H)	1126(11)	HZ7(H)	(1129(11)		2		
a	e 8 X I.	0. 025 %/°C	0.053 %/°C	0. 058 %/°C	0.065 %/°C	0.072 %/°C	0.083 %/ C	2.1 mV/°C	2.1 mV/°C	0.01 %/°C	0. 03 %/°C	0.04 %/°C	0. 055 %/*C	0.01 %/°C	0.005 %/°C	0.002 %/°C	2
tings	(Am) *	160	105	95	75	65	32									-	
Max Ratings	(Am) * (W)del	-	-	-	1	1	1	0.4	0.4	0. 25	0. 25	0. 25	0. 25	0. 25	0. 25	0. 25	1
Z 7.F	(u)	6	3	5	ю	12	15	47	45	40	30	12	10	50	20	20	COEFFICIENT
V _Z	IZT(INA)	60	25	25	25	15	10	5	5	10	10	10	10	10	10	10) TURE COEI
>	V Z (V)	5.2~ 6.8	8.5~ 9.6	9.4~10.6.	11.4~ 12.7	13.5~15.6	28 ~ 32	3.4~4.5	4.3~ 5.4	4.3~ 5.4	5.2~ 6.4	6.2~ 8.0	7.5 ~ 10.0	7.7 - 8.7	7.7~ 8.7	7.7~ 8.7	E JANCE (MAX E TEMPERA
- JAN	-3114	HITACHI	IIITACIII	HITACIII	HITACHI	HITACHI	IIITACIII	III.TACIII	штасш	NEC	NEC .	NEC	NEC	NEC	NEC	NEC	ZENER VOLTAGE TEST CURRENT DYNAMIC IMPEDANCE (MAX) ZENER VOLTAGE TEMPERATURE
Part	Nu.	J314000	J314003	J314004	J 314006	314008	210H1EL	J314204	J 314207	J 3145'04	J 314505	J314506	J314507	J 314500	J314501	J314502	
	Model	90-10 M V	A W 01-09	A W 01-10	A W 01 - 12	A W 01-15	08-10 MV	1124(11)	1125(11)	R D5A	RDGA	RD7A	RD9A	152190	182191	152192	Note : V _Z IZT ZZT "TYP

: Permissible Current

¥

Table 9-4 Linear IC Substitutes

L.

2	HITACHI	NEC	FAIRCHILD	NS	TEXAS INSTRU - MENTS	RCA	INTERSIL	MOTOR - OLA	IMH	ANALOG	BROWN	TELE- DYNE	
201	704 - *HAI7741M	µ1.C741C	e74111C	L.M741CH	SN72741L	CA3741CT	741CTY	MC1741CG				741CE	OP AMP
			¢70911C	LM709CH	SN72709L			MC1709CG				709CE	OP AMP
	11A17715M		*715HC										OP AMP
			776/776CH	*LM312H									OP AMP(Note 1)
			740/740CH	740/740CII LII740A/CII			*ICL-8007-CTV			AD503J/K/S			OP AMP(Nute 1)
										AV540J/K/S			
		*µ12C53A											OP AMP
		*µPC154A		LM725/725CH					1				OP AMP
								C	*OP-05CJ				OP AMP(Note 2)
					SN72810N								COMPARATOR
									*CMP-01CJ				COMPARATOR
	HA17723		¢723DC	LM723CD				MC1723CL				723CN	VOLT REGULATOR
9 -			L.M309K	*LM309K				MLM309K					VOLT REGULATOR
5							8013C			*AD533JH	42013/4203J		MULTIPLIER
										*429B		4457	MULTIPLIER
										*40J		1026-02	OP AMP
	Notes 1. Lin	hear IC741 is	employable fo	Notes 1. Linear IC741 is employable for emergency remedy or		Or circuit operation check	ation check						

Notes 1. Linear IC741 is employable for emergency remedy or for circuit operation check.

Lincar IC741 is employable for emergency remedy or for circuit operation check. However, be careful since the specified stability often may not be obtained. 5.

Table 9-5 Digital IC Substitute's

Functions	нгасні	TEXAS	MITSUBISHI	NEC	NSE	SIGNETICS	FAIR - CHILD	MOTOROLA
16-bit Data Selector/Multiplexer	11D2548	SN74150N		μPB2150C				
8-but Data Sclector/Multiplexer (with Strobe)	HD2549	SN74151N	M53351P	μ PB2151C		N8230A		
8-bit Data Selector/Multiplexer		SN74152N			:			
Dual D-type Edge-Truggered Flip-Flops	11D2510	SN7474N	M53274P	µPB214C	DM8510N	N7474A	7474	MC7474P
Dual J-K Master-Slave Flip-Flops (with Preset and Clear)	HD2516	SN7476N	M5 3276P	µPB224C	DM8500N	N7476B	7476	MC7476P
Ciated J-K Muster-Slave Flip-Flops		SN74104N		1 1 1 1 I I I I I I I I I I I I I I I I				and any other states and an advance of the states of the s
Ciated J-K Master-Slave Flip-Flops		SN74105N			x -			
Dual J-K Master-Slave Flip-Flops (Vcc-14, GND-7)	111)2530	N74107N	M53307P				74107	
Monostable Multivibrator	HD2543	N12147NS	M53321P			N8162A		
Dual Retriggerable Monostable Multivibrators	1102561	SN74125N						
Quad 2-input Positive NAND Gates	11D2503	SN7400N	M53200P	µPB201C	DM8000N	N7400	7400	MC7400P
Quad 2-input Positive NAND Gates (with Open Collector Output)	1112509	N101-LNS	M53201P	µPB215C	DM8001N	N7401A	7401	MC7401P
llex inverters	11D2522	SN7404N	M53204P	μPB235C	DM8004N		7404	MC7404P
Ilex Inverters (with Open Collector Output)	HD2523	SN7405N	M53205P	µPB236C	DM8005N		7405	MC7405P
Quad 2-input Positive NAND Gates	HD2550	SN7408N		μPB234C			7408	
Dual 4-input Positive NAND Gates	HD2504	SN7420N	M5 3220P	µPB203C	DM8020N	N7420A	7420	MC7420P
hCD-to-Seven Segment Decoder/Driver (with 15 V Output)	HD2532	SN7447N		μPB2047C				
4-bit Binary Counters	11D2520	SN7493N	M53293P	μPB223C	DM8533N	N7493A		MC7493P
BCD-to-Seven Segment Decoder/Driver (with 15 V Output)	HD2532	SN7447AN		нРВ2047C				
Triple 3-Input Positive NAND Gate	HD2507	SN7410						
Quadruple 2-input Positive NAND Gate with Open Collector	11D2528	SN7403						
Synchronous 4-bit Binary Up/Down Counter	HD2542	SN74193						

Note : It is recommended to use a ceramic-scaled package.

4

Section X

MAINTENANCE

10-1 PERIODICAL MAINTENANCE AND INSPECTIONS

Inspect the following parts periodically once every six to 12 months so the instrument will operate normally.

- Once every 6 months, shut off the cooling water to the oil diffusion pump with the column under the high vacuum working condition. Check the following items.
 - (a) The 100 V AC for the oil diffusion pump turns off.
 - (b) The alarm buzzer sounds.

C F

C F

时候

4

- (2) Check the oil filter of the oil rotary pump for clogging once every 6 months. If the oil receiving vinyl pipe of the oil filter is clogged with oil, replace the oil filter, otherwise the evacuating capacity deteriorates.
- (3) Check the oil rotary pump for the specified oil level once every 6 months.
- (4) Check fuses for normal condition once every year. Replace them if faulty.
- (5) Check the specimen chamber and specimen goniometer stage for ingress of foreign substances.

Foreign substances may cause image troubles or absence of image when photographing a specimen current image.

(6) Cleaning of the electron optical system.

10-2 CLEANING OF S-430 FIXED APERTURE

- (1) For the method of cleaning the condenser lens aperture, see the instruction manual.
- (2) Cleaning of objective lens fixed aperture
 - (a) Turn off HV power supply.
 - (b) Depress AIR switch on the evacuating system operation panel.
 - (c) Detach four setscrews of the objective lens assembly. See Fig. 10-1.
 - (d) Detach the main evacuating pipe by removing one upper and four lower setscrews of the pipe. See Fig. 10-1.
 - (e) Loosen the setscrews of the objective lens movable aperture, and pull out the aperture slowly. See Fig. 10-2.

(f) Evenly screw in the attached four objective lens lifting screws into the four holes other than the objective lens mounting screw holes, and lift the upper part of the column by separating it from the objective lens assembly. See Fig. 10-1. (g) Detach DEF and condenser lens connector setscrews from the console rack, and remove all connectors.

Be careful during this work since very fine wires are employed.

- (h) After winding the cords detached in step (g) around the column, lift the magnetic path and lay it on its side, and detach the aperture by the following method using the attached aperture take-off tool (Fig. 10-3).
- (i) Screw in the take-off tool shown in Fig. 10-3 clockwise by $2 \sim 3$ pitches into the female screw inside the objective lens fixed aperture with the internal column head protruding from the outer cylinder by $2 \sim 3$ mm, and then screw in the internal column clockwise until it no longer moves while holding the outer cylinder. After fixing the internal column securely, turn the outer cylinder counterclockwise to detach the fixed aperture.
- (j) For assembling the fixed aperture, reverse the above procedure.

Fig. 10-3 Aperture Take-Off Tool

Internal Thread

Fig. 10-4 Sectional View of Objective Lens Fixed Aperture

10-3 CLEANING OF S-450 FIXED APERTURE

- (1) For the method of cleaning the condenser lens aperture, see the instruction manual.
- (2) Cleaning of objective lens fixed aperture
 - (a) Turn off the HV power supply.
 - (b) Depress the AIR switch on the evacuating system operation panel.
 - (c) Vacuum is lost completely after about 30 seconds. Detach the specimen goniometer stage from the column. (Set each specimen control knob to the specimen exchange position.)
 - (d) Screw in the take-off tool shown in Fig. 10-3 clockwise by $2 \sim 3$ pitches into the female screw inside the objective lens fixed aperture with its internal column head protruding from the outer cylinder by $2 \sim 3$ mm, and detach the fixed aperture by turning the internal column clockwise while holding the outer cylinder.
 - (e) For assembling, reverse the above procedure.

(Set this knob to the specimen exchange position.)

Fig. 10-6 Items to be Checked before Detaching the Specimen Goniometer Stage Outside the Column

Schematic Diagrams

for the

MODEL S-430 AND S-450 SCANNING ELECTRON MICROSCOPES

Schematic Diagrams

for the

MODEL S-430 AND S-450 SCANNING ELECTRON MICROSCOPES

(2) 10 KV PM HV 353180 (3) Magnification Indicator 253180 (4) DEF AMP 253180 (5) Power Supply-1 253180 (6) Power Supply-2 253180 (7) 30 KV HV 253180 (8) Wiring Diagram 253180 (9) Lens Power Supply 253180 (10) Alignment PS, Stigmator PS, Image Shift PS 253180 (11) Scan Generator Video Amp 153180 (12) Evacuating Sequence 153180			DWG. NO.
(3) Magnification Indicator 253180 (4) DEF AMP 253180 (5) Power Supply-1 253180 (6) Power Supply-2 253180 (7) 30 KV HV 253180 (8) Wiring Diagram 253180 (9) Lens Power Supply 253180 (10) Alignment PS, Stigmator PS, Image Shift PS 253180 (11) Scan Generator Video Amp 153180 (12) Evacuating Sequence 153180	(1)	Coil Wiring	35318020
(4) DEF AMP 253180 (5) Power Supply-1 253180 (6) Power Supply-2 253180 (7) 30 KV HV 253180 (8) Wiring Diagram 253180 (9) Lens Power Supply 253180 (10) Alignment PS, Stigmator PS, Image Shift PS 253180 (11) Scan Generator Video Amp 153180 (12) Evacuating Sequence 153180	(2)	10 KV PM HV	35318021
(5) Power Supply-1 253180 (6) Power Supply-2 253180 (7) 30 KV HV 253180 (8) Wiring Diagram 253180 (9) Lens Power Supply 253180 (10) Alignment PS, Stigmator PS, Image Shift PS 253180 (11) Scan Generator Video Amp 153180 (12) Evacuating Sequence 153180	(3)	Magnification Indicator	25318022
(5) Power Supply-1 253180 (6) Power Supply-2 253180 (7) 30 KV HV 253180 (8) Wiring Diagram 253180 (9) Lens Power Supply 253180 (10) Alignment PS, Stigmator PS, Image Shift PS 253180 (11) Scan Generator Video Amp 153180 (12) Evacuating Sequence 153180	(4)	DEF AMP	25318023
 (7) 30 KV HV (8) Wiring Diagram (9) Lens Power Supply (10) Alignment PS, Stigmator PS, Image Shift PS (11) Scan Generator Video Amp (12) Evacuating Sequence (13) PS-4 	(5)	Power Supply-1	25318024
 (8) Wiring Diagram (9) Lens Power Supply (10) Alignment PS, Stigmator PS, Image Shift PS (11) Scan Generator Video Amp (12) Evacuating Sequence (13) PS-4 	(6)	Power Supply-2	25318025
 (9) Lens Power Supply (10) Alignment PS, Stigmator PS, Image Shift PS (11) Scan Generator Video Amp (12) Evacuating Sequence (13) PS-4 	(7)	30 KV HV	25318026
 (10) Alignment PS, Stigmator PS, Image Shift PS (11) Scan Generator Video Amp (12) Evacuating Sequence (13) PS-4 	(8)	Wiring Diagram	25318027
 (11) Scan Generator Video Amp (12) Evacuating Sequence (13) PS-4 	(9)	Lens Power Supply	25318028
(12) Evacuating Sequence 153180 (13) PS-4	(10)	Alignment PS, Stigmator PS, Image Shift PS	25318029
(13) PS_4	(11)	Scan Generator Video Amp	15318030
(13) PS-4 353391	(12)	Evacuating Sequence	15318031
	(13)	PS-4	35339175