
Entropy on the Arduino 
No Guesswork – Just Statistics 

 This document is a detailed description of my efforts to measure entropy sources 
easily available on the Arduino. I go through a detailed, step-by-step progression of 
implementing different entropy sources, testing them, discovering their failures, and 
analyzing the results. I include all errors, false impressions, and downright stupidities. I did 
dumb stuff… so you don’t have to! 

WTF? 
Why Entropy On Arduino’s? 

 A while back, one of the Hackaday writers put out a none too subtle call for a one-
time pad as a dedicated piece of hardware. That got me thinking (never particularly safe) and 
I started throwing together some basic design parameters. One thing however, kept nagging 
me. The problem is that cryptography is such a subtle and unforgiving practice. Catastrophic 
failures can occur silently, without you ever knowing that they happened. 

 Instead of jumping all the way into building an OTP device (dodging that particular 
bullet), I decided to focus on just one part of such a system in greater detail. Specifically, 
random number generation. One of the first steps toward building such a device (or anything 
else implementing cryptographic functions), is to find a method of generating excellent 
random numbers that is inexpensive and relatively easy to implement. 

 I thought that an unbiased(that’s an entropy joke, you should laugh now) analysis of 
various possible sources of entropy available on the Arduino platform would be of use to the 
community. I found several written accounts of people who have done similar work, but few 
compared multiple methods, many didn’t publish their test results, and some were 
incomprehensible to non-experts. Nevertheless, there is good data out there, just not 
compiled in an easily accessible manner. I’ve prepared this document with the hope that it 
can serve as a useful resource for the community by comparing multiple methods, giving test 
results, and explaining at least some of the reasons why various methods are unsuitable for 
cryptography. All errors are my own, this information is provided without warranty, your 
mileage may vary, and if I did make any mistakes… please be gentle. I am not a cryptography 
specialist or a mathematician so my contribution to this body of knowledge is restricted to 
using tools that cryptography specialists and mathematicians have created, measuring 
different sources of entropy, accurately reporting the measurements, and deriving 
recommendations. 

 So why the Arduino? Simple. I just want to hang out with the cool kids. They’re 
everywhere. Got a problem? Throw an Arduino at it! They are practically ubiquitous in the 
community, are inexpensive, and are working their way into all sorts of projects that few ever 
anticipated. They are already starting to show up in sensitive applications that require secure 
communications. Therefore, we need to know what sources of entropy can be reasonably 
implemented on the Arduino (keeping in mind codespace and performance limitations) and 
whether or not they are trustworthy. 



Random Number Generators 
“9… 9… 9… 9… 9… 9… 9…” 

 The Arduino comes with a pseudorandom generator(PRG) which is called using the 
random() function. A PRG is a mathematical formula, the output of which appears random if 
you don’t know the number that served as the starting point for the calculation. That starting 
number is called the seed. Unfortunately, a PRG will produce the same exact pattern of 
“random” numbers if given the same seed. Therefore, if somebody finds out what number you 
used to seed a PRG, they can find out every single “random” number you have used. This is 
not a problem with a true random number generator(RNG) which obtains its random numbers 
from a real-world source of entropy such as noise in a diode or radioactive decay. Aside from 
the random() function, there are a few 3rd party libraries for random number generation and 
a great many suggestions floating around on the internet. That’s nice because nothing is more 
comforting that unverified internet suggestions on the subject of cryptography. 

 For practical purposes I needed to answer a few questions. If random() is good enough 
for use in encryption, then I would need to find a second, very good source of random 
numbers that I could use as a seed. One that was not a PRG, but was a true source of entropy. 
However, if random() was not good enough, then I needed to find a complete replacement for 
it. 

 And just how would I know if it was random enough? If a random number generator 
consistently passes standard tests for randomness and has resisted attack by knowledgeable 
cryptanalysts for a considerable length of time, then it is considered suitable for 
cryptographic applications. The research given here focuses only on standard tests because all 
of my cryptanalysts were on vacation. 

 And finally, just because a technique is found to be unsuitable for cryptographic use 
doesn’t make it useless. When you need an LED to blink randomly, don’t waste the processing 
time and code space on a really good RNG when a simple one or a convenient one will do the 
job. 

The Testing Suites 
Down The Rabbit Hole 

 There are several entropy test suites available and each has its proponents and 
detractors. I applied two different testing suites to the random numbers generated on the 
Arduino. First is “Ent”. Initially it analyzes any file fed to it as 8-bit numbers and displays a 
breakdown of the total occurrences and percentage of the 256 possible values. This output 
can give you an almost instantaneous insight into the trouble with poor entropy. Some values 
are obviously more common (or less) than others when the entropy source is particularly bad. 
It also performs six separate tests and gives you a score for each one. Unfortunately, the 
documentation isn’t clear on what constitutes a good score or a bad score on three of the 
tests. That led me to read up on recommendations by others who have done work in this area. 



From this research I compiled criteria to account for a “Pass” or “Fail” on the various tests. I 
was very conservative in this regard so it is more likely that good entropy was failing those 
three tests than bad entropy was passing them. 

 The second piece of software is the granddaddy of entropy testing. It’s called the 
Diehard suite and it performs many different tests on whatever file you throw at it. One test 
continually crashed so it is not reflected in my results. Diehard produces an esoteric and 
detailed report giving the results. Wading through it is a bit of a task, but I do recommend it 
for those who really want to thoroughly understand what’s being done to test randomness. 
The brief summary is that each test gives a probability value (p-value). The p-value of each of 
the tests is actually the end product of multiple runs though the data. As Diehard runs the 
test and factors each successive p-value into a final p-value, it will do one of two things. It 
will either return a number somewhere between 0.0 and 1.0 or it will return a 0 or a 1. A 0 or 
a 1 is a hard failure of the RNG. Any other value, no matter how close to 0 or 1, is not a 
failure. Some people have erroneously believed that a number within a few decimal points of 
1 or 0 is a failure, but the documentation clearly states otherwise. No test exists that can 
positively confirm randomness. They can only positively confirm a lack of randomness. A 0 or 
a 1 is confirmation that the output is not random. No p-value other than 0 or 1 indicates a 
lack of randomness. 

 The diehard suite recommends a minimum of 10 MB files so I made sure I had double 
that for each test. The files were run through the two test suites and the output of each suite 
was then saved for anyone who wants to look at the raw test results. Finally, I made a short 
summary giving the source of the entropy and a Pass/Fail notation for each of the 24 total 
tests run on it. One note: The overlapping permutations test in the diehard suite crashed 
consistently and is not included in my results. 

 Finally, I used the website binvis.io to produce visualizations of Shannon entropy in the 
binary files produced by the various entropy sources. The pictures don’t give an in-depth 
analysis of entropy, but they do give you an easy way to see whether a particular method is 
worthy of consideration or just plain terrible. It also makes this document a lot less boring 
because, Pictures! Black regions have low Shannon entropy, bright purple regions have high 
Shannon entropy. Here’s a sample of a particularly bad method, analogRead() on an 
unconnected pin. Next to is is the output of a well-regarded PRG called Yarrow (not run on an 
Arduino). As you can see, Yarrow is the clear winner. Duh. 



 

Bad Things™ 
(Brought To You By Good Intentions, Inc.) 

 I started my analysis with the random() function since it is built-in and easy to work 
with. Initially I researched a bit about its inner workings. The Arduino development 
environment uses the C library “avr-libc”. If you check out the file stdlib.h (standard library) 
you will find a reference to “RANDOM_MAX” which defines the maximum possible value 
returned by the random() function as 0x7FFFFFFF. In binary, this translates to a 0 followed by 
thirty one 1’s. The random() function always returns a 32 bit number so this means that there 
is always a 0 in position 32. I don’t know if this is necessary in order to account for a 
hardware limitation, to maintain backwards compatibility, or some other perfectly legitimate 
reason, but it means Bad Things™ in the world of cryptanalysis. An adversary knows every 
thirty-second bit will be a 0. Here is a sample output of a few numbers generated by 
random() expressed in binary: 

00010000110101100011101011110001 
01100000101101111010110011011001 
00111010101101010000110000101010 
01000100001100011011011110000010 
00011100000001101101101011001000 

 Each number has a zero in its most significant bit and that pattern is continued no 
matter how long you let it run. Obviously, calling random() without correcting this is no good. 
By default, random() returns an unsigned long, but you don’t necessarily have to use the 
entire 32 bits. Here’s one option. 

unsigned int myRandomNumber = random(); 

 By assigning the returned value to an unsigned int (16 bits on the Arduino) you strip 
the leftmost 16 bits off and simply lose them. In the process you also lose that annoying 0. 
Heres a sample output of the above line of code expressed in binary: 

1011011110000010 
1101101011001000 

Not a good 
sign…

analogRead() on an unconnected pin Yarrow



1000111011011000 
0000100111111110 
0010111101000011 

 Much better! Now any of the bits can be either a 1 or a 0. Another way to do it that 
only loses 8 bits rather than 16 is to break up the four bytes and then only use the lower 
three, like so. 

unsigned long rand_number = random(); 
byte byte2 = rand_number >> 16; 
byte byte1 = rand_number >> 8; 
byte byte0 = rand_number; 

 This gives you three separate bytes corresponding to the lower three bytes of the 
original unsigned long. I also tried random(255) giving the function a maximum value to 
calculate that is equal the the maximum value a byte can contain. 

 Here’s a comparison of random() using all 4 bytes vs. using only the lowest 3 bytes vs. 
only allowing it to calculate a byte’s worth of data per call of the function. Each sample is 
exactly 20 megabytes in size (20,971,520 bytes). 

 From an initial look, there’s not much to differentiate them. To get a better idea of 
their quality I also ran ent and diehard on them. Here is the summary of the results. 

     4 Bytes 3 Bytes (255) 
Ent Tests: 
Entropy:    Pass  Pass  Pass 
Compression:   Pass  Pass  Pass 

random() 4 Bytes random() 3 Bytes random(255)



Chi-Square:   Fail  Pass  Fail 
Arithmetic Mean:   Fail  Pass  Pass 
Monte Carlo - Pi:  Fail  Pass  Fail 
Serial Correlation:  Fail  Pass  Pass 

Diehard Tests: 
Birthday Test:   Fail  Pass  Pass 
Binary Rank 31x21 Test: Fail  Pass  Pass 
Binary Rank 32x32 Test:  Fail  Pass  Pass 
Binary Rank 6x8 Test:  Fail  Pass  Pass 
Bitstream 20-Tuple Test: Fail  Pass  Pass 
Bitstream OPSO:   Fail  Pass  Fail 
Bitstream OQSO:   Fail  Pass  Pass 
DNA Test:    Fail  Pass  Pass 
Count The 1's Stream:  Fail  Pass  Pass 
Count The 1's Specific: Fail  Pass  Pass 
Parking Lot Test:  Pass  Pass  Pass 
Minimum Distance Test: Pass  Pass  Pass 
3D Spheres Test:   Pass  Pass  Pass 
Squeeze Test:   Pass  Pass  Pass 
Overlapping Sums Test: Pass  Pass  Pass 
Runs Test:    Pass  Pass  Pass 
Craps Wins Test:   Pass  Pass  Pass 
Craps Throws/Game Test: Pass  Pass  Pass 

 Much to my surprise, the 3-bytes method passed all tests. I actually was not expecting 
any of them to reach that level of quality. So, from the viewpoint of standard tests, we 
actually have a decent source of random numbers on the Arduino, the built-in PRG. The only 
caveat is that one must use it correctly, i.e. omitting the most significant byte. Nevertheless, 
we must also remember that it is necessary to seed the PRG or it is completely predictable. 
Therefore, we also need a secure source of seed numbers that come from a true random 
number generator. We need to do some measurements! 

Issues With Measurement 
Measure Once, Cut Twice… Wait, No! 

 Before I go any further, I have some admissions to make. I made bad, bad, bad errors 
in my initial efforts that resulted in comically awful results from many of the sources of 
entropy I tested. First off, a silly error, but one I didn’t catch until after I had accumulated a 
great deal of data for testing. The two functions I had been using to get data off the Arduino 
were Serial.write() when I was using the serial connection over USB, and SD.write() when I 
was using an SD card. Both of these functions send a single byte only, no matter what kind of 
data type you send to them. If you try to send and int or a  long then the most significant bits 
are thrown out and only the lowest 8 bits are transferred. The moral of the story is; collect 
your entropy as single bytes, or break larger data types down into a series of bytes and then 
send them individually if you need to use one of these methods of collecting data. 



 The next error was far more subtle and took a long while to find. Every source of 
entropy I measured was missing the values 15 and 22. I could generate millions of bytes of 
data using ANY method imaginable, but I only occasionally got a byte valued at 15 or 22. I 
posted the odd phenomena and a plea for suggestions on the AVR Freaks forum and the 
problem turned out to be the way I was getting the data off the Arduino. I had been using 
Serial.write() to pull data up to my computer via USB, and then used the command “screen” 
to pull data off the terminal and log it into a file. I had suspected that the screen command 
might be doing something weird so I tested it on /dev/random, the standard entropy source 
on most linux/unix systems. This worked just fine, no missing 15’s or 22’s, so I discarded the 
theory that screen was the problem and went back to thinking I was going crazy. It never 
occurred to me that there was another piece of software operating in-between the screen 
command and the Arduino; the TTY. Apparently the TTY was interpreting those bytes as 
commands for it to do something as opposed to data that should be passed along. The result 
was falsified measurements. To solve this, I needed a less intrusive way of getting data off the 
Arduino, and settled on using an SD card to go back and forth. No more missing values! Of 
course, I only needed to get the stored random numbers off the Arduino in order to measure 
them. In most cases you wouldn’t need to worry about these problems since one does not 
normally exfiltrate their own random numbers. That’s what adversaries are for! 

analogRead() On An Unconnected Pin 
And Other Lies I Read On The Internet 

 If you look for “Arduino random numbers” on any search engine you will inevitably 
come across the recommendation to use the analogRead() function on a pin that is left 
floating with no connection and to use the returned value as a seed for the random() 
function. It’s my sad duty to tell you that every time you do this, somebody somewhere 
drowns a kitten. Please don’t ever do it again, I like kittens. In all seriousness however, this is 
fine if you are just blinking an LED. 

 Nevertheless, when you get something making random numbers for you, you should 
actually measure those numbers correctly. Otherwise, what’s the point? If you have some 
professional hardware RNG generating digitized values then you’re all good, but if you need 
to sample an analog source then you had better know how to use the Analog to Digital 
Converter. Even if the source isn’t very good we should still give it a fair chance by not 
measuring it wrong… which I was doing for a long while. 

 When you take a measurement using analogRead() you are asking the ADC to sample 
the voltage on the specified pin and report back what that voltage is. By default, it measures 
from 0 volts to 5 volts on 5V Arduinos or from 0 volts to 3.3 volts on 3.3V Arduinos. Mine is an 
Arduino Uno and operates at 5 volts. The ADC is a 10-bit device and 10 bits = 1024 possible 
values it could return for whatever it see’s on the pin, numbered from 0 - 1023. Because 5 
volts/1024 = 0.00488, the voltage detected on the pin will be measured as being a multiple of 
0.00488. For example, if the voltage on the pin is 1.07000 volts, the ADC will measure that 
the voltage is 1.06872 volts as that is the closest value divisible by 0.00488. Because 
1.06872/0.00488 = 219, the number that you actually get back from calling analogRead() is 



219 in this case. But what happens when the measured value is less than 0.00488 volts? It 
reports back a 0. What if it’s more than 5 volts? It reports back a 1023. What if it’s much more 
than 5 volts? Nothing, because you broke your Arduino. 

 Following is the first few lines of the output of “ent -c” on a file containing 5000 bytes 
of analogRead() on an unconnected pin. As you can see, there are an awful lot of zero’s. In 
fact, 29 percent of all the measurements taken by the ADC were reported back as zero, 
meaning there was 0.00488 volts or less on the pin. 

 The way to solve this is to change the maximum reference voltage of the ADC. This can 
be done with the analogReference() function. The two easy options are 
analogReference(DEFAULT) which uses the system voltage and analogReference(INTERNAL) 
which uses an internal 1.1V power source (2.56V on some boards). Here’s the result using 
analogReference(INTERNAL). 



 A third option, analogReference(EXTERNAL), is also available and allows you to apply a 
voltage in-between the Internal and Default voltages to the AREF pin and use that as the 
reference. I suggest caution in doing so because you can break your Arduino if you do that 
without following the proper sequence both in the hardware and software. Don’t say I didn’t 
warn you! Nevertheless, it may be necessary if you get a bunch of 0’s using EXTERNAL, but 
then get a bunch of 1023’s when using INTERNAL. Setting the AREF pin to an intermediate 
value can correct this situation. Unfortunately, there’s no way to know which is more 
appropriate for your given circuit except to try both and measure them. 

 Now that we are measuring honestly, there’s still the nagging problem of the “extra 
bits”. The ADC is a 10-bit device and calling analogRead() returns an integer, 16-bits. That 
means you get 6 bits of zeros, and then the actual number that was returned by the function. 
Needless to say, this is bad if you attempt to use both bytes of data. We only want to keep 8 
of those 10 bits so we have two options; throw away the two most-significant of the 10 bits or 
the two least-significant of the 10 bits. I tried both and here are the results. 

 
 

 

 

 The sample using the least significant bits is clearly better which surprised me at first. 
After thinking about it a bit, it made sense. Because I’m measuring an unconnected pin, it’s 
just reporting back the ambient temperature for the most part, perhaps modified by stray 
static in the air. That would result in most of the numbers falling into a similar range. If the 
range of numbers is pretty consistent, then the most significant bits would almost always be 
the same. By removing those two bits, rather than the two lowest bits (which probably 

Worth 
investigating

analogRead() on an unconnected pin 
using 8 most significant bits and 

internal reference

analogRead() on an unconnected pin 
using 8 least significant bits and 

internal reference 

Terrible



fluctuate all over the place) you remove the portion of the consecutive values that changes 
least often. For a closer analysis, here’s the ent and diehard results. 

     8 Lower Bits 8 Higher Bits 
Ent Tests: 
Entropy:    Pass   Fail 
Compression:   Fail   Fail 
Chi-Square:   Fail   Fail 
Arithmetic Mean:   Fail   Fail 
Monte Carlo - Pi:  Fail   Fail 
Serial Correlation:  Fail   Fail 

Diehard Tests: 
Birthday Test:   Fail   Fail 
Binary Rank 31x21 Test: Fail   Fail 
Binary Rank 32x32 Test:  Fail   Fail 
Binary Rank 6x8 Test:  Fail   Fail 
Bitstream 20-Tuple Test: Fail   Fail 
Bitstream OPSO:   Fail   Fail 
Bitstream OQSO:   Fail   Fail 
DNA Test:    Fail   Fail 
Count The 1's Stream:  Fail   Fail 
Count The 1's Specific: Fail   Fail 
Parking Lot Test:  Fail   Fail 
Minimum Distance Test: Fail   Fail 
3D Spheres Test:   Fail   Fail 
Squeeze Test:   Fail   Fail 
Overlapping Sums Test: Fail   Fail 
Runs Test:    Fail   Fail 
Craps Wins Test:   Fail   Fail 
Craps Throws/Game Test: Fail   Fail 

 Okay, that’s sobering. Clearly the whole unconnected pin/analogRead() thing just isn’t 
working out very well. But there may still be a way… 

Bias 
Not Just For Mean People Anymore 

 Once you have random numbers being generated, there is still another thing to 
consider. No matter how random your entropy source, the data it produces can still suffer 
from bias. On average, a random system will produce a fairly even quantity of each possible 
outcome. If you roll a 6-sided dice 600 times, you would expect to get approximately 100 of 
each number, but because it is random, one or more numbers will occur more frequently than 
others. This bias could be entirely random, or it could be an indication of some underlying 
pattern demonstrating a weakness in the entropy source. Techniques designed to remove bias 
from a stream of random numbers are called (speaking of bias…) “whitening” algorithms. 



They can never increase the overall entropy of a data stream, but they can remove bias. 
Whitening algorithms also slow the output of an RNG because they throw out some numbers 
from the stream as they do their job. It’s possible that using a whitening algorithm could 
improve analogRead() enough to be useful. Or maybe not. I decided to check it out. 

 There are two methods that are pretty simple to implement but appear to be very 
effective at removing bias. The first is simple XOR. I started with XOR since you can apply the 
method to a bit, byte, or any size variable really. The other method can only be applied to a 
single bit at a time so that makes it a completely different method of measurement than I 
have been dealing with thus far. To apply XOR, all you do is take one byte from your stream of 
random number, then take a second byte and do a bitwise XOR on them. The result of this 
operation becomes your final random number. Of course, generating the random numbers will 
take twice as long since you have to take two measurements in order to get one output. 

 I tried applying this to the least awful analogRead() method I’ve yet found, 
analogRead() on an unconnected pin using the 8 least significant bits only… but I won’t bore 
you with the details. It was even worse. Way worse then doing nothing to the bit stream in 
the first place. It only took me a few minutes to realize the problem. The whole reason 
reading an unconnected pin isn’t very good is because it generally doesn’t change much from 
one reading to the next. What happens when you XOR two very similar numbers together? You 
get a whole lot of zero’s. Example: 00101011 XOR 00100111 = 00001100. This will tend to give 
you byte values which are predominantly composed of binary 0’s. In other words, the “bias 
reducing” technique was doing exactly the opposite of its intended purpose. In all fairness, 
with a bit more research I found that I was grossly misapplying XOR as a whitening tool. It is 
actually intended to be used with two different sources of entropy rather than the same 
source serially. Live and learn. 

 I dispensed with XOR as a whitening algorithm for use with analogRead() on an 
unconnected pin and turned to the other simple and common technique, Von Neumann 
whitening. To implement this you need to do a whole lot more reads from the analog source 
because you only use 1 bit at a time. Basically, you take a reading to get just the least 
significant bit, then take another reading to get another bit and you compare the two bits. If 
they are both 0’s or both 1’s, you immediately discard both bits and start over. If the first bit 
is a 0 and the second is a 1, then you output a 0. If they are reversed, 1 then 0, you output a 
1. You link these final 0’s and 1’s together until you have a full byte (or whatever sized 
variable you are trying to get). As you can imagine, with the many, many calls to analogRead() 
that this would entail, it takes  a very long time. To collect 20 MB took just over 10 hours. The 
result was significantly improved but still just not good enough. Here’s Von Neumann applied 
to the least significant byte method compared to the original. 

     Low Byte Low Byte With Von Neumann 
Ent Tests: 
Entropy:    Pass  Pass 
Compression:   Fail  Pass 
Chi-Square:   Fail  Fail 
Arithmetic Mean:   Fail  Pass 



Monte Carlo - Pi:  Fail  Fail 
Serial Correlation:  Fail  Fail 

Diehard Tests: 
Birthday Test:   Fail  Fail 
Binary Rank 31x21 Test: Fail  Pass 
Binary Rank 32x32 Test:  Fail  Pass 
Binary Rank 6x8 Test:  Fail  Fail 
Bitstream 20-Tuple Test: Fail  Fail 
Bitstream OPSO:   Fail  Fail 
Bitstream OQSO:   Fail  Fail 
DNA Test:    Fail  Fail 
Count The 1's Stream:  Fail  Fail 
Count The 1's Specific: Fail  Fail 
Parking Lot Test:  Fail  Fail 
Minimum Distance Test: Fail  Fail 
3D Spheres Test:   Fail  Pass 
Squeeze Test:   Fail  Fail 
Overlapping Sums Test: Fail  Fail 
Runs Test:    Fail  Pass 
Craps Wins Test:   Fail  Fail 
Craps Throws/Game Test: Fail  Fail 

 Adding Von Neumann whitening got it to pass three of the ent tests and four of the 
diehard tests. Better, but nowhere near good enough to trust for anything more dangerous 
than a blinking LED. And not even that if it’s a really important LED. Just saying. 

“All my brilliant plans foiled by thermodynamics. 
Damn you, Entropy”! 

 In my final tests of analogRead() on an unconnected pin, I ran across yet another 
problem that makes this such a completely unreliable technique. The XOR sample was taken 
in the evening, the Von Neumann sample in the morning. Between that evening and the 
following morning, the environment had changed enough to require changing 
analogReference() from INTERNAL to DEFAULT in order to get sensible readings. In other 
words, even if you determine the best reference voltage to use, it could be entirely wrong 
just hours later. Yet another reason never to trust the floating pin. 

 I know that I really ran analogRead() into the ground, but the fact is that I wanted to 
find a way to make it work. I already determined that there is a way to make the random() 
function good enough for most purposes, maybe even good enough to use in secure 
applications. It would have been fantastic to find a way to seed random() without having to 
resort to additional hardware or 3rd party libraries that take up more of my precious 
codespace. I guess it just wasn’t meant to be. 



The Tom Sawyer Technique 
Get Someone Else To Do The Work For You 

 Going in search of a way to seed random() I turned to 3rd party libraries. The first one 
I tested was the TrueRandom library which  generates it’s random numbers by “setting up a 
noisy voltage on Analog pin 0, measuring it, and then discarding all but the least significant 
bit of the measured value”. Hmmm, looks like my favorite function again. I was unable to 
figure out how it gets a “noisy voltage” but I chose not to worry about it and just tested the 
values it produced. Much like my quick hack of a Von Neumann whitening algorithm, this 
library took a considerable amount of time to produce the necessary 20 MB,12 1/2 hours. The 
library allows for the return of different data types and even some specially formatted types 
like MAC address or UUID. I stuck to TrueRandom.randomByte(). 

 The second library I tested was the aptly named Entropy library. This one uses a really 
interesting source of entropy that is completely different than all the others so far examined. 
The other sources of random (sort of) data relied on analogRead() but this one uses a 
technique known as timer jitter. Basically, there are four different clocks on an Arduino and 
they operate at different frequencies, the three “timer” clocks being significantly faster than 
the watchdog clock. Because no clock is truly perfect, there can be some variation of how 
many times each of the faster timers will tick during one tick of the watchdog clock. The 
Entropy library watches these changes and then converts the differences between one 
watchdog tick and the next into 0’s and 1’s. After passing this through a whitening algorithm, 
it returns the random data. A very neat concept, but unbelievably slow. In order to 
accumulate 20MB to test, I had to run my Arduino Uno for 31 DAYS. For this reason, the 
author suggests using it to seed a PRG, not as a primary source of entropy. Luckily, that’s 
exactly what I want to use it for and randomSeed() only requires 4 bytes. On the other hand, 
if it is a good enough source of entropy and you only occasionally need a small amount of 
random numbers, it could work just fine on its own.  I used the randomByte() function to 
collect my sample. Without further ado, here’s the comparison. 
 

 TrueRandom Library 
Truerandom.randomByte() 

Entropy Library 
randomByte() 



     TrueRandom  Entropy Library 
Ent Tests: 
Entropy:    Fail   Pass 
Compression:   Fail   Pass 
Chi-Square:   Fail   Pass 
Arithmetic Mean:   Fail   Pass 
Monte Carlo - Pi:  Fail   Pass 
Serial Correlation:  Fail   Pass 

Diehard Tests: 
Birthday Test:   Fail   Pass 
Binary Rank 31x21 Test: Pass   Pass 
Binary Rank 32x32 Test:  Pass   Pass 
Binary Rank 6x8 Test:  Fail   Pass 
Bitstream 20-Tuple Test: Fail   Pass 
Bitstream OPSO:   Fail   Pass 
Bitstream OQSO:   Fail   Pass 
DNA Test:    Fail   Pass 
Count The 1's Stream:  Fail   Pass 
Count The 1's Specific: Fail   Pass 
Parking Lot Test:  Fail   Pass 
Minimum Distance Test: Fail   Pass 
3D Spheres Test:   Fail   Pass 
Squeeze Test:   Fail   Pass 
Overlapping Sums Test: Fail   Pass 
Runs Test:    Fail   Pass 
Craps Wins Test:   Fail   Pass 
Craps Throws/Game Test: Fail   Pass 

 Damn, that’s harsh. I actually really liked the way the TrueRandom library was put 
together. A lot of thought and effort went into making it as useful as possible for the end user. 
However, the numbers don’t lie, it just isn’t using a good source of entropy. The Entropy 
library, on the other hand, doesn’t provide you much more than your choice of a 32-bit 
random number, a 16-bit random number, or an 8-bit random number, but it is clearly using a 
good source of entropy. The Entropy library is the clear victor and appears to be fully capable 
of serving as a source of seed values. Or, if you don’t need a lot of random numbers quickly it 
can simply deliver them directly. 

Conclusion 
Caveat Emptor 

 All this can be pretty well summed up in the following way: If you need good random 
numbers, pick some numbers from the Entropy library and use them to seed the random() 
function. Then chop up the output and take only the lowest three bytes. Use those bytes to 
build up whatever length chunk of random data you need. Reseed frequently. 



 I did a lot of research to get this document to where it is, but that doesn’t mean it is 
complete. I only tested a single 20MB file from each source of entropy. If you want to be 
really sure, you should test many more, each taken under different circumstances, with the 
rest of your code running on the test platform to simulate true use cases. Also, there’s a 
whole world of techniques I didn’t even try to apply. For example, passing your entropy 
source through a hashing algorithm as a whitener. Some hashes have been designed for 
exactly this purpose. Or what about passing an even or odd parity bit to a whitening algorithm 
instead of using least significant bits? I’ve heard of it being done, but didn’t test the idea. In 
other words, I’ve only scratched the surface. 

 Is this cryptographically secure? Who knows! But it’s a heck of a lot better than what 
many of us have been doing thus far. Maybe someone out there will extend this research and 
improve it… or prove it totally wrong. In the meantime, I think that the above advice will 
serve us well. 


