
The 6809
Part 1: Design Philosophy

Terry Ritter
Joel Boney
Motorola, Inc.
3501 Ed Blustein Blvd.
Austin, TX 78721

This is a story. It is a story of computers in
general, specifically microcomputers, and of one
particular microprocessor - with revolutionary
social change lurking in the background. The story
could well be imaginary, but it happens to be true.
In this 3 part series we will describer the design of
what we feel is the best 8 bit machine so far made
by human: the Motorola M6809.

Philosophy

A new day is breaking; after a long slow twi-
light of design the sun is beginning to rise on the
microprocessor revolution. For the first time we
have mass production computers; expensive cus-
tom, cottage industry designs take on less impor-
tance.

Microprocessors are real computers. The
first and second generation devices are not very
sophisticated as processors go, but the are general-
purpose logic machines. Any microprocessor can
eventually be made to solve the same problems as
any large scale computer, although this may be an
easier or harder task depending on the micro-
processor. (Naturally, some jobs require doing
processing fast, in real time. We are not discussing
those right now. We are discussing getting a big
job done sometime.) What differentiates the class-
es is a hierarchy of technology, size performance,
and curiously, philosophy of use.

A processor of given capability has a fixed
general complexity in terms of digital logic ele-
ments. Consider the computers that were built
using the first solid state technology. In short they
consisted of many thousands of individual transis-
tors and other parts on hundreds of different print-
ed circuit boards using thousands of connections
and miles of connecting wire. A big computer was
a big project and a very big expense. This simple
economic fact fossilized a whole generation of
technology into the “big computer philosophy.”

Because the big computer was so expensive,
time on the computer was regarded as a limited
and therefore valuable resource. Certainly the time
was valuable to researchers who could now look
more deeply into their equations than ever before.
Computer time was valuable to business people
who became at least marginally capable of analyz-

ing the performance of an unwieldy bureaucratic
organization. And the computer makers clearly
thought that processor time was valuable too; or
was a severely limited resource, worth as much as
the market would bear.

Processor time was a limited resource. But
some of us, a few small groups of technologists,
are about to change that situation. And we hope we
will also change how people look at computers,
and how professionals see them too. Computer
time should be cheap; people time is 70 years and
counting down.

The large computer, being a very expensive
resource, quickly justified the capital required to
investigate optimum use of that resource. Among
the principal results of these projects was the
development of batch mode multiprocessing. The
computer itself would save up the various tasks it
had to do, then change from one to the other at
computer speeds. This minimized the wasted time
between jobs and spawned the concept of an oper-
ating system.

Photo 1: Systems architects Ritter (right) and Boney review some of the
6809 design documents. This work results in a complete description of the
desired part in a 200 page design specification. The specification is then
used by logic designers to develop flowcharts of internal operations on a
cycle by cycle basis.

People were in the position of waiting for
the computer, not because they were less impor-
tant than the machine, but precisely because it was
a limited resource (the problems it solved were
not).

Electronics know-how continued to develop,
producing second generation solid state technolo-
gy: families of digital logic integrated circuits
replaces discrete transistors designs. This new
technology was exploited in two main thrusts: big
computers could be made conceptually bigger (or
faster, or better) for the same expense, or comput-
ers could be made physically smaller and less
expensive. These new, smaller computers (mini-
computers) filled market segments which could
afford a sizable but not huge investment in both

equipment and expertise. But most people, includ-
ing scientists and engineers, still used only the
very large central machines. Rarely were mini-
computers placed in schools; few computer sci-
ence or electrical engineering departments (who
might have been at the leading edge of new gener-
ation technology) used them for general instruc-
tion.

And so the semiconductor technologists
began a third generation technology: the ability to
build a complete computer on a single chip of sil-
icon. The question then became, “How do we use
this new technology (to make money)?”

The semiconductor producer’s problem with
third generation technology wa that an unbeliev-
ably large development expense was (and is)
required to produce just one large scale integration
(LSI) chip. The best road to profit was unclear; for
a while, customer interconnection of gate array
integrated circuits was tried, then dropped.
Complete custom designs were (and are) found to
be profitable only in vary large volumes.

Another road to profit was to produce a few
programmable large scale integration devices
which could satisfy the market needs (in terms of
large quantities of different systems) and the fac-
tory;s needs (in terms of volume production of
exactly the dame device). Naturally, the general-
purpose computer was seen as a possible answer.

Photo 2: 6809 logic design. Design engineer Wayne Harrington inspects a portion of the 6809’s processor logic blueprint at the
Motorola Austin plant. The print is colored by systems engineers to partition the logic for the logic-equivalent TTL “breadboard.”

About the Authors
Joel Boney and Terry Ritter are with the Motorola 6800

Microprocessor Design Group in Austin TX. Joel is responsible for the
software inputs into the design of the 6800 family processors and periph-
eral parts and was a co-architect of the M6809. Terry Ritter is a micro-
component architect, responsible for the specification of the 6809
advanced microprocessor. While with Motorola, Terry has been co-
Architect of the 6809, and co-architect as well of the 6847 and 68047
video display generator integrated circuits. He holds a BSES from the
University of Texas as Austin and Joel Boney has a BSE from the
University of South Florida.

So what was the market for a general-pur-
pose computer? The first thought was to enter the
old second generation markets; ie: replacement of
the complex logic of small or medium scale inte-
gration. Control systems, instruments and special
designs could all use a simular processor, but this
designer was the key. Designers (or design man-
agers)had to be converted from their heavy first
and second generation logic design backgrounds
to the new third generation technology. In so
doing, some early marketing strategists over-
looked the principal microprocessor markets.

Random logic replacement was by no means
a quick and sufficient market for microprocessors.
In particular, the design cycle was quite long,
users we often unsophisticated in their use of com-
puters, and the unit volumes was somewhat small.
Only when microprocessors entered high volume
markets (hobby, games, etc) did the manufactures
begin to make money and thus provide a credible
reason (and funds) for designing future micro-
processors. Naturally, the users who wanted more
features were surprised that it was taking so long
to get new designs - they knew what was needed.

Thus semiconductor makers began to realize
that their market was more oriented to hobby
applications that to logic replacement, and was
more generalized than they had thought. But even
the hobby market was saturable.

Meanwhile companies continued to improve
production and reduce costs, and competition
drove process down into the ground. Where could
they sell enough computers for real volume pro-
duction, the wondered. One answer was the per-
sonal computer!

Design of Large Scale Integration Parts

The design of a complex large scale integra-
tion (LSI) part may be conveniently broken into
thee phases: the architectural design, the logic and
the layout software and hardware (breadboard)
simulations. Each phase ha its own requirements.

The architect/systems designers represent the
use of the device, the need of the marketplace and
the future needs of all customers. They propose
what a specific customer should have that could
also be used by other customers, possible in dif-
ferent ways. They advocate what the customers
will really want, even when if no customers can be
identified who know that they will want it. that it
is possible or that they will want it. The attitude
that “I know what is best for you” and be irritating
to most people, but it is necessary in order to make
maximum use of a limited resource (in this case, a
single LSI design). The architect eventually gener-
ates the design specification used in subsequent

phases of the design.
Logic design consists of the production of a

cycle by cycle flowchart and the derivation of the
equations and logic circuitry necessary to imple-
ment the specified design. This is a job of
immense complexity and detail, but it is absolute-
ly crucial to the entire project. Throughout this
phase, the specification may be iterated toward a
local optimum of maximum features at minimum
logic (and thus cost). The architectural design con-
tinues, and techniques are developed to cross-
check on the logical correctness of the architec-
ture.

The third phase is the most hectic in terms of
demands and involvement. By this time, many
people know what the product is and see the
resulting part merely as the turning of an imple-
mentation “crank.” It seems to those who are not
involved in this phase that more effort could case
that crank to turn faster. Since the product could be
sold immediately, delay is seen as a real loss of
income. In actual practice, more effort will some-
times “break the crank.”

A medium scale integration logic implemen-
tation (usually transistor-transistor logic, for
speed) is required to verify the logic design. A
processor emulation may require ten different
boards of 80 medium scale integrated circuits each
and hundreds of board to board interconnections.
Each board will likely require separate testing, and
only then will the emulation represent the proces-
sor to come. Extensive test programs are required
to check out each facet of the part, each instruc-
tion, and each addressing mode. This testing may

The other major device
needed for home com-
puters–the video display
generator color TV
interface–is presently in
volume production.
Several versions are
available, many derived
from the original
Motorola architecture

Photo 3: 6809 emulator board. Software and systems engineers implement
a functional equivalent of the 6809 as a 6800 program. A 6800 to 6809 cross
assembler allows 6809 programs to be assembled and then executed as a
check of the architectural design.

detect logic design errors that will have to be fixed
at all levels of design.

Circuit design, in the context of the semicon-
ductor industry, depends upon running computer
simulation (which require sophisticated device
models) of signals at various nodes to verify that
they will meet the necessary speed requirement.
Transistors are sized and polysilicon lines changed
to provide reliable worst case operation.

Layout is the actual task of arranging transis-
tors and interconnections to implement the logic
diagram. Circuit design results will indicate appro-
priate transistor sizes and polysilicon widths; these
must now be arranged for minimum area. Every
attempt is made to make general logic “cells”
which can be used in many places across the inte-
grated circuit, but minimization is the principal
concern.

The layout for the chip eventually exists only
as a computer data base. Each cell is individually
digitized into the computer, where is can be arbi-
trarily positioned, modified or replicated as
desired. Large 2 by 3 m (6.5 by 10 feet) plots of

various areas of the chip are
hand checked to the logic
diagram by layout and cir-
cuit designers as final
checks of the implemented
circuit.

When layout is com-
plete, the computer data

base that represents the chip design is sent to the
mask shop (the mask is a photographic stencil of
the part used in the manufacturing process). At the
mask shop precision plotting and photographic
step and repeat techniques are used to produce
glass plates for each mask layer. Each mask covers
an entire wafer with etched nickel or chrome lay-
outs at real chip size. (A typical LSI device will be
between 5 by 5 and 7.6 by 7.4 mm (0.2 by 0.2 and
0.3 by 0.3 inches). These masks are used to expose
photosensitive etch resist the will protect some
areas of the wafer from the chemical processes
which selectively add the impurities that create
transistors.

Actual processing steps are quite simular for
each part. But the processing itself is a variable,
and it will not be known until final testing exactly
how many parts will turn out to be saleable.
Therefore, a best estimate is taken, and the
required numbers of wafers (of a particular device)
is started and processed. The whole industry
revolves around highly trained production engi-
neers, chemists and others who process wafers to
highly secret recipes. Some recipes work, some
don’t. You find out which ones do by testing.

Each die (ie: individual large scale integra-
tion circuit) is tested while still on the wafer; fail-
ing devices are marked with a blob of ink. The
wafer is sawed into individual dies and the good
devices placed into a plastic or ceramic package
base. The connection pads are “die bonded” to the

Photo 4: Circuit design. Detailed computer
simulations of the circuit under design yield
predictions of on chip waveforms. Tulley
Peters and Bryant Wilder decide to
enhance a particular critical transistor.

exposed internal lead frame with very tiny wire.
The package is then sealed and tested again.

Testing a device having only 40 pins but
which has up to 40,000 internal transistors is no
mean trick nor a minor expense. Furthermore, the
device must execute all operations properly at the
worst case system conditions (which may be high
or low extremes of temperature, voltage and load-
ing) and work with other devices on a common
bus. Thus, the device is not specified to its own
maximum operating speed, but rather the speed of
a worst case system. Motorola microprocessors
can usually be made to run much faster (and much
slower) than their guaranteed worst case specifica-
tions.

Project Goals

The 6809 project started life with a number
of (mostly unformalized) goals. The principle pub-
lic goal was to upgrade the 6800 processor to be
definitely superior to the 8 bit competition. (The
Motorola 68000 project will address the 16 bit
market with what we believe will be another supe-
rior processor.) Many people, including many cus-
tomers, felt that all that had to be done was to add
another index register (Y), a few supporting
instructions (LDY, STY) and correct some of the
past omissions (PSHX, PULX, PSHU,m PULY).
Since this would mean a rather complete redesign
anyway, it made little sense to stop there.

A more philosophical goal — thus one much
less useful in discussions with engineers and man-
agers (who had their own opinions of what the
project should be) — was to minimize software
cost. This led to an extensive, and thus hard to
explain sequence of logic that went somewhat like
this:

Q: How do we reduce software costs?
A: 1. Write code is a block structured high

level language.
2. Distribute the code in mass production

read only memories.
Q: Why aren’t many read only memories

being used now?
A: 1. The great opportunities for error in

assemble language allow many mistakes which
incur sever read only memory costs.

2. The present architecture is not suitable
for read only memories.

Q: In what way are the second generation
processors unsuitable?

A: It is very difficult to use a read only mem-
ory in any other context than that for which it was
originally developed. It is hard to use the same
read only memory on systems built by different

vendors. Simply having different input and output
(IO) or using a different memory location is usual-
ly enough to make the read only product useless.

Q: What is needed?
A: 1. Position independent code.

2. Temporary variables on the stack.
3. Indirect operations through the stack

for input and output.
4. Absolute indirect operation for system

branch tables.

And so it went. How could we make a device
that would answer the software problems of two
generations of processors? How indeed!

Design Decisions

Usually an engineering project may be pur-
sued in many ways, but only one way at a time.
The ever present hope is that this one time will be
the only time necessary. Furthermore, it would be
nice to get the project over with as soon as possi-
ble to get on with selling some products. (A rapid
return on investment is especially important in a
time of rapid inflation.) To these honorable ends
certain decisions are made which delineate the
investment and risk undertaken in an attempt to
achieve a new product.

The 6809 project was no exception. To min-
imize project risk it was decided that the 6809

Photo 5: Checking the flowcharts. Logic and circuit designer Bryant Wilder
compares the specification to one of the flowcharts. The flowcharts are used
to develop Boolean equations for the required logic; those equations are
then used to generate a logic diagram.

would be built on the same technological base as
the recently completed 6800 depletion load
redesign. In particular, the machine would be a
random logic computer with essentially dynamic
internal operation. It would use the reliable 6800
type of storage register. Functions would be com-
patible with the defined 6800 bus and 6800 periph-
erals. This decision would extend the like of parts
already in production and minimize testing
peripheral devices for a particular processor (6800
versus 6809). Buss compatibility doesn’t have to
mean identity — the new device could have con-
siderably improved specifications but could not do
worse than the specifications for the existing
device. This mandate was a little tricky when you
consider that we were dealing with a more com-
plex device using exactly the same technology, but
there was a slight edge: the advancing very large
scale integration (VLSI) learning curve.

One wide range decision wa that the new
device would be an improved 6800 part. The
widely known 6800 architecture would be iterated
and improved, but no radical departure would be
considered. In fact, the new devise should be code
compatible with the 6800 at some level.

Compatibility was the basis for the 6809
architecture design. It implied that the 6809 could
capitalize on the existing familiarity with the

6800. 6800 programmers could be programming
for the 6809 almost immediately and could learn
and use new addressing mode and features as they
were needed. This decision also ended any consid-
eration of radically new architecture for the
machine before it was begun.

A corporation selling into a given market is
necessarily limited to moderate innovation. Any
vast product change requires reeducation of both
the internal marketing organization and the cus-
tomer base before mass sales can proceed.
Consequently, designers have to restrict their cre-
ativity to conform to the market desires. The
amount of change actually implemented, produced
and seen by society is the true meaning of a com-
puter “generation.” In the end, society itself
defines the limits of a new generation, and a
design years ahead of its time may well fail in the
marketplace.

M6800 Data Analysis

Once the initial philosophical and marketing
trade-offs were made, construction of the final
form of the M6809 began. By this time a large
numbers of M6800 programs had been written by
both Motorola and our customers, so it was felt
that a good place to start design of the 6809 was to
analyze large amounts of existing 6800 source
code. Surprisingly, the data gathered about 6800
usage of instructions and addressing modes agreed
substantially with simular data previously com-
piled for minicomputers and maxicomputers. By
far the most common instructions were load and
stores, which accounted for over 38 percent of all
6800 instructions. Next were the subroutine calls
(Direct, Extended, Immediate, Indexed, Relative,
Accumulator) had nearly equal usage, which indi-
cated that programmers actually took advantage of
the bytes to be saved by direct (page zero) address-
ing and indexed addressing. Furthermore the off-
sets for indexed instructions were either 0 or less
than 32 (see table 2).

This information was used to greatly expand
the addressing modes (as discussed later) with out
making the 6800 programs require more code
when converted to run on the 6809. Also the num-
ber of increment or decrement index register
instructions in loops indicated that autoincrement-
ing and autodecrementing would be beneficial.

Auto decrementing and autoincrementing are
simular to indexing except the index register
used is decremented before, or decremented
after, the addressing operation takes place.

As all programmers and even architects
like ourselves eventually learn, consistent and
uniform instruction sets are used more effective-

Instruction Class Percent Usage

Loads 23.4
Stores 15.3
Subroutine calls and returns 13.0
Conditional branches 11.0
Unconditional branches and jumps 6.5
Compares and tests 6.2
Increments and decrements 6.1
Clear 4.4
Adds and subtracts 2.8
All others 11.3

Table 1: 6800 instruction types based on static analysis of
25,000 lines of 6800 source code. In static analysis the
actual number of occurrences of each instruction is tal-
lied from program listings. In the alternate technique,
called dynamic analysis, the numbers of occurrences of
an instruction is tallied while the program is running. An
instruction inside a program loop would therefore be
counted more than once.

Table 2: Size of offsets used in
6800 indexed addressing, based
on static analysis of 25,000 lines
of 6800 source code.

Index Offset Percent Usage
0 40.0

1-31 53.0
32-63 1.0

64-255 6.0

ly than instruction sets that treat similar resource
(IO, registers or data) in dissimilar ways. For
example, the least used instructions on the 6800
were those that dealt with the A accumulator in
specific ways that did not apply to the B accumu-
lator (eg: ABA: add B to A, CBA: compare B to
A). It’s not that these instructions are not useful,
it’s just that programmers will not use inconsistent
instructions or addressing modes. Consistency
became the battle cry of the M6809 designers!

Customer Inputs

At the completion of the 6800 analysis stage,
the first preliminary design specification for the
6809 was generated. This preliminary specifica-
tion was then taken to about 30 customers who
represented a cross section of current 6800 users,
as well as some customers and consultants known
to be hostile to the 6800. With these customers vis-
its we hoped to resolve two major questions about
the 6809’s architecture:

1) Which architecture was more desirable 8
bit or 16 bit?

2) Did 6809 compatibility with the 6800
need to occur at the object level or at the source
level.

Most customers felt that an 8 bit architecture
was adequate for their upcoming applications, and
they did not want to pay the price penalty for 16
bit as long as the 6809 included the most common
16 bit operations such as add, subtract, load, store,
compare and multiply. Many were interested
though, in Motorola’s advanced 16 bit processor
(68000) for future 16 bit applications. From the
very inception of the6809 project it was a require-
ment that the 6809 would be compatible with the
6800. Wether this compatibility needed to occur at
the object level or at the assembly language
(source code) level was a question we felt our cus-
tomers should help us answer. Virtually every cus-
tomer indicated that source compatibility was suf-
ficient because they would not try to use 6800 read
only memories in 6809 systems. Most customers
indicated that they would take advantage of the
6800 compatibility in order to initially convert
running 6800 programs into running 6809 pro-
grams, and then modify the 6800 code to take
advantage of the 6809’s features.

The decision not to be object code compati-
ble was an easy one for us since it meant that we
could remap the 6800 op codes in a manner guar-
anteed to produce more byte efficient and faster
6809 programs. The remapping of op codes was
greatly affected by the 6800 data analysis. Some

low occurrence 6800 instruction were combined
into consistent 2 byte instructions, allowing the
more useful instruction to take fewer bytes and
execute faster. Also, some 6800 instructions were
eliminated completely in favor of 2 instruction
sequences. These sequences are generated auto-
matically by our assembler when the 6800
mnemonic is recognized. This remapping in favor
of more often used functions results in 6809 pro-
grams that require only one half to two thirds as
much memory as 6800 programs, and run faster.

M6809 Registers

What, then, are the pertinent features that
make the 6809 a next generation processor? In the
following paragraphs we will attempt to highlight
the improvements made to the 6800. The pro-
gramming model for the 6809 (figure 1) consists
of four 8 bit registers and five 16 bit registers.

The A and B accumulators are the same as
those of the 6800 except that they can also be cate-
nated into the A:B pair, called the D register, for
16 bit operations.

The condition codes are simular to the 6800,
with the inclusion of two new bits. The F bit is the
interrupt mask bit for the new fast interrupt. The
fast interrupt (FIRQ) only stacks the program
counter and condition code register when an inter-
rupt occurs. The interrupt routine is then responsi-
ble for stacking any registers it uses. The E bit is

X INDEX REGISTER

POINTER REGISTERS

Y INDEX REGISTER

U USER STACK POINTER

S HARDWARE STACK POINTER

PC PROGRAM COUNTER

A B

D

ACCUMULATORS

DP DIRECT PAGE REGISTER

CC–CONDITION CODE REGISTER

OVERFLOW
CARRY–BORROW

ZERO
NEGATIVE
INTERRUPT REQUEST MASK
HALF CARRY
FAST INTERRUPT REQUEST MASK
ENTIRE STATE ON STACK

E F H I N Z V C

Figure 1: 6809 programming model.

set when the registers are stacked during interrupts
if the entire register set was saved (as in nonmask-
able and maskable interrupts) or cleared if the
short register set was saved (for a fast interrupt).

On the 6800, an instruction with direct mode
(or page zero) addressing consisted of an op code
followed by an 8 bit value that defined the lower
eight bits of an address, The upper eight bits were
always assumed to be zero. Thus, direct address-
ing could only address locations in the lowest 256
bytes of memory. The 6809 adds versatility to this
addressing mode by defining an 8 bit direct page
register that defines the upper eight bits of address
for all direct addressing instructions. This allows
direct mode addressing to be used throughout the
entire address space of the machine. To maintain
6800 compatibility, the direct page register is set
to 0 on reset.

Four 16 bit indexable register are included in
the 6809. They are the X, Y, U and S registers. The
X register is the familiar 6800 index register, and
the S register is the hardware stack pointer. The Y
register is a second index register; the U register is
the user stack pointer. All four registers can be
used in all indexing operations and the U and S
resisters are also stack pointers, The S register is
used during interrupts and subroutine calls by the
hardware to stack return addresses and machine
states.

The last 16 bit register is the program count-
er. In certain 6809 addressing modes, the program
counter can also be used as an index register to
achieve position independent code.

Addressing Modes

It was out opinion that the best way to
improve an existing architecture and maintain
source compatibility was to add powerful address-
ing modes. In out view, the 6809 has the most
powerful addressing modes available on any
microprocessor. Powerful addressing modes
helped us achieve out goals of position independ-
ence, reentrancy, recursion, consistency and easy
implementation of block structured high level lan-
guages.

All the 6800 addressing modes (immediate,
Extended, Direct, Indexed, Accumulator, Relative,
and inherent) are supported on the 6809 with the
direct mode of addressing made more useful by
the inclusion of the direct page register (DPR).

The direct page register usage and direct
addressing need some explanation, since they can
be very effective when used correctly. For exam-
ple, since global variables are referenced frequent-
ly in high level language execution, the direct page
register can be used to point to a page containing
the global variables while the stack contains the
local variables, which are also referenced fre-
quently. This creates very efficient code which is
safe since the compiler keeps track of the direct
page register. The direct page register can also be
used effectively and safely in a multitasking envi-
ronment where the real time operating system

Type

Constant
offset from R

Accumulator
offset from R

Autoincrement/
–decrement R

Constant offset
from program
counter

Extended use nonindexed

Forms

no offset
5 bit offset
8 bit offset

16 bit offset

A register offset
B register offset
D register offset

increment by 1
increment by 2
decrement by 1
decrement by 2

8 bit offset
16 bit offset

Source

,R
n,R
n,R
n,R

A,R
B,R
D,R

,R+
,R++
,-R
,--R

n,PCR
n,PCR

Post Byte

Nonindirect

1RR00100
0RRnnnnn
1RR01000
1RR01001

1RR00110
1RR00101
1RR01011

1R000000
1RR00001
1RR00010
1RR00011

1XX01100
1XX01101

+
~

0
1
1
4

1
1
4

2
3
2
3

1
5

+
#

0
0
1
2

0
0
0

0
0
0
0

1
2

Source

[,R]

[n,R]
[n,R]

[A,R]
[B,R]
[D,R]

[,R++]

[,--R]

[n,PCR]
[n,PCR]

[n]

Post Byte

Indirect

1RR10100
defaults to 8-bit

1RR11000
1RR11001

1RR10110
1RR10101
1RR11011

not allowed
1RR10001
not allowed
1RR10011

1XX11100
1XX11101

10011111

+
~

3

4
7

4
4
7

6

6

4
8

5

+
#

0

1
2

0
0
0

0

0

1
2

2

Table 3: Indexed addressing modes. All instructions with indexed addressing
have a base size and number of cycles. The +

~ and +# columns indicate the
number of additional cycles and bytes for the particular variation. The post
byte op code is the byte that immediately follows the normal op code.

allocates a different base page register for each
task.

On the other hand, it would be quite danger-
ous to indiscriminately reallocate the direct page
register frequently, such as within subroutines or
loops, since it might become very easy to lose
track of the current direct page register value.
Therefore, even though the direct page register is
unstructured, we included it because, when used
correctly, the byte savings are significant. Also, to
make direct addressing more useful, the read mod-
ify write instruction on the 6809 now have all
memory addressing modes: Direct, Extended and
Indexed.

The major improvements in the 6809’s
addressing mode were made by greatly expanding
the indexed addressing modes as well as making
all indexable instructions applicable to the X, Y, U
and S registers (see table 3).

Indexed addressing with an offset is familiar
to 6800 users, but the 6809 allows the offset to be
any of four possible lengths: 0, 5, 8 or 16 bits, and
the offsets are signed two’s complements values.
This allows greater flexibility in addressing while

achieving maximum byte efficiency. The inclusion
of the 16 bit offset allows the role of index regis-
ter and offset to be reversed if desired. A further
enhancement allows all of the above modes to
include an additional level of indirection. Even
extended addressing can be indirected (as a special
indexed addressing mode). Since either stack
pointer can be specified as a base address in
indexed addressing, the indirect mode allows
addresses of data to be passed to a subroutine. The
subroutine can then reference the data pointed to
with one instruction. This increases the efficiency
of high level language calls that pass arguments by
reference.

M6800 data indicated that quite often the
index register was being used in a loop and incre-
mented or decremented each time. This moved the
pointer though tables or was used to move data
from one area of memory to another (block
moves). Therefore, we implemented autoincre-
ment and autodecrement indexed addressing in the
M6809. In autoincrement mode the value pointed
to by the index register is used as the effective
address, and then the index register is increment-

00001 NAM AUTOEX
00003 OPT LLEN=80
00004 *
00005 **
00006 * COMPARE STRINGS SUB
00007 *
00008 * FIND AN INPUT ASCII STRING POINTED TO BY THE
00009 * X-REGISTER IN A TEXT BUFFER POINTED TO BY THE
00010 * Y-REGISTER. THE BUFFER IS TERMINATED BY A
00011 * BYTE CONTAINING A NEGATIVE VALUE. ON ENTRY
00012 * A CONTAINS THE LENGTH OF THE INPUT STRING. ON
00013 * EXIT Y CONTAINS THE POINTER TO THE START
00014 * OF THE MATCHED STRING + 1 IFF Z IS SET. IFF Z
00015 * IS NOT SER THE INPUT STRING WAS NOT FOUND
00016 *
00017 * ENTRY:
00018 * X POINTS TO INPUT STRING
00019 * Y POINTS TO TEXT BUFFER
00020 * A LENGTH OF INPUT STRING
00021 * EXIT:
00022 * IFF Z=1 THEN Y POINTS TO MATCHED STRING + 1
00023 * IFF Z = 0 THE NO MATCH
00024 * X IS DESTROYED
00025 * B IS DESTROYED
00026 *
00027 **
00028 *
00029 0100 6 ORG $100
00030 0100 E6 A0 6 CMPSTR LDB ,Y+ GET BUFFER CHARACTER
00031 0102 2A 01 3 BPL CMP1 BRANCH IS NOT AT BUFFER END
00032 0104 39 5 RTS NO MATCH, Z=0
00033 0105 E1 84 4 CMP1 CMPB ,X COMPARE TO FIRST STRING CHAR.
00034 0107 26 F7 3 BNE CMPSTR BRANCH ON NO COMPARE
00035 *SAVE STATE SO SEARCH CAN BE RESUMED IF IT FAILS
00036 0109 34 32 9 PSHS A,X,Y
00037 010B 30 01 5 LEAX 1,X POINT X TO NEXT CHAR
00038 010D 4A 2 CMP2 DECA ALL CHARS COMPARE?
00039 010E 27 0C 3 BEQ CMPOUT IF SO, IT’S A MATCH, Z=1
00040 0110 E6 A0 6 LDB ,Y+ GET NEXT BUFFER CHAR
00041 0112 2B 08 3 BMI CMPOUT BRANCH IS BUFFER END, Z=0
00042 0114 E1 80 6 CMPB ,X+ DOES IT MATCH STRING CHAR?
00043 0116 27 F5 3 BEQ CMP2 BRANCH IF SO
00044 0118 35 32 9 PULS A,X,Y SEARCH FAILED, RESTART SEARCH
00045 011A 20 E4 3 BRA CMPSTR
00046 011C 35 B2 11 CMPOUT PULS A,X,Y,PC FIX STACK, RETURN WITH Z
00047 *
00048 0000 END

Listing 1: 6809 autoincrementing example. This subroutine searches a text buffer for the occurrence of an input string. In autoincrement
mode, the value pointed to by the index register is used as the effective address and the index register is then incremented.

ed. Autodecrement is similar except that the index
register is first decremented and then used to
obtain the effective address. Listing 1 is an exam-
ple of a subroutine that searches a text; buffer for
the occurrence of an input string. It makes heavy
use of autoincrementing.

Since the 6809 supports 8 and 16 bit opera-
tions, the size of the increment or decrement can
be selected by the programmer to be 1 or 2. The
post increment, predecrement nature of the
addressing mode makes it equivalent in operation
to a push and pull from a stack. This allows the X
and Y registers to also be used as software stack
pointers if the programmer needs more than two
stacks. All indexed addressing modes can also
contain an extra level of post indirection.
Autoincrement and autodecrement are more versa-
tile than the block moves and string commands
available on other processors.

Quite often the programmer needs to calcu-
late the offset used by an indexed instruction dur-
ing program execution, so we included an index
mode that allows the A, B, or D accumulator to be

used as an offset to any indexable register. For
example, consider fetching a 16 bit value from a
two dimensional array called CAT with dimen-
sions: CAT (100,30). Listing 2 shows the 6809
code to accomplish this fetch. These addressing
modes can also be indirected.

Implementation of position independent
code was one the highest priority design goals.
The 6800 had limited position independent code
capabilities for small programs, but we felt the
6809 must make this type of code so easy to write
that most programmers would make all their pro-
grams position independent. To do this a addition-
al long relative (16 bit offset) branch mode was
added to all 6800 branches as well as adding pro-
gram relative addressing. Program relative
addressing uses the program counter much as
indexing uses on of the indexable registers. This
allows all instructions that reference memory to
reference data relative to the current program
counter (which is inherently position independ-
ent). Of course, program relative addressing can
be indirected.

The addressing modes of the 6809 have cre-
ated a processor that has been termed a “program-
mer’s dream machine.” To date all the benchmarks
we have written for the 6809 are position inde-
pendent, modular, reentrant and much smaller than
comparable programs on other microprocessors. It
is easier to write good programs on the 6809 than
bad ones!

New or Innovative Instructions

The 6809 does not contain dozens of new
innovative instructions, and we planned it that
way. What we wanted to do was clean up the 6800
instruction set and make it more consistent and
versatile. We do not feel a processor with 500 dif-
ferent assembler mnemonics for instructions is
better than on with 59 powerful instructions that
operate on different data in the manner, for exam-
ple, the 6809 contains a transfer instruction of the
form TFR R1, R2 that allows transfer of any like-
sized registers. There are 42 such valid combina-
tions on the 6809, and clearly one TFR instruction
is easier to remember than 42 mnemonics o the
form: TAB, TBA, TAP, TXY, etc. Also an
exchange instruction (EXG) exists that has identi-
cal syntax to the TFR instruction and has 21 valid
forms. In the time it took to read three sentences
you just learned 63 new 6809 instructions! As
another example, we combined the instructions
that set and cleared condition code bits on the
6800 into two 6809 instructions that AND or OR
immediate data into the condition code register.

Other significant new instructions include

00010 0100 ORG $100
00011 0100 108E 1000 4 LDY #CAT LOAD BASE ADDRESS OF ARRAY
00012 0104 96 32 4 LDA SUB1 GET FIRST SUBSCRIPT
00013 0106 C6 64 2 LDB #100 MULTIPLY BY FIRST DIMENSION
00014 0108 3D 11 MUL
00015 0109 D3 33 6 ADDD SUB2 ADD SECOND SUBSCRIPT
00016 010B EC AB 9 LDD D,Y FETCH VALUE

Listing 2: Array subscript calculations. This 6809 program fetches a 16 bit value from a two-
dimensional array called CAT, with dimensions: CAT (100,30).

Advertisment

for

C&K Components, Inc.
15 Riverdale Avenue, Newton, MA 02158

the new 16 bit operations, The D register can be
loaded, stored, added to subtracted from, com-
pared, transferred, exchanged, pushed and pulled.
All the indexable registers (16 bits) and be loaded,
stored and compared. The load effective address
instruction can also be used to perform 8 or 16 bit
arithmetic on the indexable registers as described
later.

Two significant new instructions are the mul-
tiple push and multiple instructions on the 6809.
With one 2 byte instruction any register or set of
registers can be pushed or pulled from wither
stack. These instructions greatly decrease the
overhead associated with subroutine calls in both
assembly and high level language programs. In
conjunction with instructions using autoincrement
and autodecrement, the 6809 can efficiently emu-
late a stack computer architecture, which means it
should e efficient for Pascal p-code interpreters
and the like.

The orders in which the registers are pushed
or pulled from the stacked is given in figure 2.
Note that not all registers need to be pushed or
pulled, but that the order is retained if a subset is
pushed. This stacking order is also identical to the
order used by all hardware and software interrupts.

One new instruction in the 6809 is a sleeper.
The load effective address to indexable register
(LEA) instruction calculates the effective address
from the indexed addressing mode and deposits
that address in an indexable register, rather than
loading the data pointed to by the effective address
as in a normal load. This instruction was original-
ly created because we wanted a way to let the
addressing mode hardware already present in the
processor calculate the address of a data object so
that it could be passed to a subroutine. After the
index addressing modes were completed it was
realized the LEA instruction had many more uses,
and once again, allowed us to combine other
instructions into one powerful instruction. For
example to add the D accumulator to the Y index
register, the instruction is: LEAY D, Y; to add 500
to the U register: LEAU 500, U; and to add 5 to the
value is the S register and transfer the sum to the
U register: LEAU 5, S.

In writing position independent read only
memory programs it is sometimes necessary to
reference data in a table within the same read only
memory. This is generally a tedious process even
in computers that claim to support position inde-
pendent code because the register that points to the
table must eventually contain an absolute address.
The LEA instruction, in conjunction with program
counter relative addressing, makes this possible
with one instruction on the 6809. For example, to
put the address of a table DG located in a relative

read only memory into indexable register U:
LEAU DG, PCR; or to find out where a position
independent read only memory is located: LEAY
*, PCR (or TFR PC, Y). Our benchmarks show the
LEA instruction to be the most used new 6809
instruction by far.

An unsigned 8 bit by 8 bit to 16 bit multiply
was provided for the 6809. The A accumulator
contains one argument and the B the other. The
result is put back onto the A:B (D) accumulator. A
multiply was added because multiplied are used
for calculating array subscripts, interpolating val-
ues and shifting, as well as for more conventional
arithmetic calculations. An unsigned multiply was
selected because it can be used to form multipreci-
sion multiplies.

Another facet of good programming practice
that we wanted to encourage was the use of oper-
ating system calls or software interrupts (SWI).
The 6800 SWI has been effectively used by 6800
support software for breakpoints and disk operat-
ing system calls. That’s nice, but unfortunately
there was only one software interrupt, and since
Motorola’s software used that one the customer
found it difficult to share. The 6809 provides three
software interrupts, one of which Motorola prom-
ises never to use. It is available for user systems.

One new instruction on the 6809, SYNC,
allows external hardware to be synchronized to the
software by using one of their interrupt lines.
Using this instruction, very tight, fast instruction
sequences can be created when it is necessary to
process data from very fast input and output

6809 STACKING ORDER

PUSH ORDER

PULL FROM STACK
TOP OF STACK
PUSH ONTO STACK

FFFF

0000

10,S

PCL

PCH

U/SL

U/SH

YL

YH

XL

XH

DPR

B

A

CCR

8,S

6,S

4,S

3,S

2,S

1,S

0,SSP (OR US)

Figure 2: 6809
push/pull and
interrupt stacking
order.

devices. Listing 4 gives an example of the use of
SYNC. It is assumed that the A side of the periph-
eral interface adapter (PIA) is connected to a high
speed device that transfers 128 bytes of data to a
memory buffer. When the device is ready to send
a piece of data, it generates a fast interrupt (FIRQ)
from the A side of the peripheral interface adapter.
Program lines 12 and 13 set up the transfer; lines
16 through 20 are the synchronization loop. On
each pass through the loop, the program waits at
the SYNC instruction until any interrupt line is
pulled low. When the interrupt line goes low, the
processor executed the next instruction. In order to
use SYNC, all other devices tied to any of the
interrupt line must be disabled. For this example it
was assumed that the B side of the peripheral
interface adapter also had interrupts enabled; pro-
gram lines 9 though 11 disable the interrupts and
line 21 through 23 reenable it. Line 14 is included
to keep the interrupt by the A side of the peripher-
al interface adapter from going to the interrupt
routine. Note that interrupts do not need to be
enabled for SYNC to work, and in fact are nor-
mally disabled.

Another improvement to the instruction set
was brought about by the inclusion of the hard-
ware signal BUSY. BUSY is high during
read/modify/write types of instructions to indicate
to shared memory multiprocessors that and indi-
visible operation is in progress. As shown in figure
3 this fact can be used to turn existing instructions

into the LOCK and UNLOCK necessary for mutu-
al exclusion of critical sections of the program, or
for allocation of resources.

And lastly, never let it be said the 6809 has
no SEX appeal—sign extend, that is. The SEX
instruction takes an 8 bit two’s complement value
in the B accumulator and converts it to a 16 bit
two’s complements value in the D accumulator by
extending the most significant bit (sign bit) of B
into A.

Table 4 is a convenient way to look to look a
all the instructions available on the 6809. The
notation first page/second page/third page op
codes have the following meaning: first page op
codes have only one byte of op code. For example:
load A immediate has an op code of hexadecimal
68. All second page op code are preceded by a
page op code of 10. For example, the op code for
CMPD immediate is hexadecimal 1083 (two
bytes). Similarly third page op codes are preceded
by a hexadecimal 11. A CMPU immediate is 1183.
Some instructions are given two mnemonics as a
programmer convenience. For example, ASL and
LSL are equivalent. Notice that the long branch op
codes LBRA and LBSR were brought onto the
first page for increased code efficiency.

Stacks

As mentioned previously, the 6809 has many
features that support stack usage. Most modern
block structured high level languages make exten-
sive use of stacks. Even though stacks are useful in
the typical textbook example of expression evalu-
ation, their major usage in languages such as
Pascal is to implement control structures.
Microprocessor users already realize the advan-
tage of a stack in nesting interrupts and subroutine
calls. Most high level languages also pass data on
the stack and allocate temporary local variables
from the stack.

Listing 4 and figure 4 show an example of a
high level language subroutine linkage. Before
calling the subroutine the caller pushed and

00008 0100 ORG $100
00009 0100 B6 F002 5 LDA PIABC LOAD PIA CONTROL REG. - SIDE B
00010 0103 84 F7 2 ANDA #$F7 TURN OFF B-SIDE INTERRUPTS
00011 0105 B7 F002 5 STA PIABC
00012 0108 8E 3000 3 LDX #BUFFER GET POINTER TO BUFFER
00013 010B C6 80 2 LDB #128 GET SIZE OF TRANSFER
00014 010D 1A 50 3 ORCC #$50 DISABLE INTERRUPTS
00015 * WAIT FOR ANY INTERRUPT LINE TO GO LOW
00016 010F 13 2 LOOP SYNC SYNCHRONIZE WITH I/O
00017 0110 B6 F000 5 LDA PIAAD LOAD A-SIDE DATA; CLEAR INTERRUPT
00018 0113 A7 80 6 STA ,X+ STORE IN BUFFER
00019 0115 5A 2 DECB DONE?
00020 0116 26 F7 3 BNE LOOP BRANCH IS NOT
00021 0118 B6 F002 5 LDA PIABC TURN B-SIDE INTERRUPTS BACK ON
00022 011B 8A 08 2 ORA #$08
00023 011D B7 F002 5 STA PIABC

Listing 3: Hardware synchronization using SYNC, a new instruction in the 6809 processor that allows external hardware to be synchro-
nized to the software by using one of the interrupt lines. Very fast instruction sequences can be created using SYNC when it is necessary
to process data from very fast input and output devices.

INSTRUCTIONS

ASR 0 C0 0 0 0 0 0 1

BEFORE

NOT BUSY

10 0 0 0 0 0 0

NOT BUSY
GRANTED

NOT GRANTED

00 0 0 0 0 0 0

BUSY

C0 0 0 0 0 0 1

NOT BUSY

AFTER

ASR 0 C0 0 0 0 0 0 0

BUSY

LDA #1
STA

C0 0 0 0 0 0 0

BUSY

Figure 3: The ASR
(arithmetic shift
right) instruction
is used as a “test
and clear” and ST
(store) is used for
“unbusy.” These
primitive opera-
tions are used for
implementing crit-
ical section exclu-
sion on the 6809.

addresses of two arguments and the answer on the
stack and then executed the jump to subroutine
which puts the return program counter on the
stack. The subroutine then saves the old stack
mark pointer on the stack as well as reserving
space on the stack for the local variables for the
subroutine. In this example, size locations are used
but the subroutine body during calculation. At this
point the stack mark pointer is set to a new value
for this subroutine. The stack mark pointer is used
because the S register may very during execution
of the subroutine body due to local subroutines,
etc. It is much more convenient for the compiler to
generate offsets to the parameters is the U is used
for this purpose instead of the S.

Once U is set it is used to fetch the two argu-
ments using indexed indirect addressing. The sub-

routine body presumable does something with the
arguments and finishes with an answer in the D
register. The subroutine exit saved this value. It
then puts the return address in X and restores the
previous stack mark pointer. The whole stack is
then cleaned up (deleted) and return is made to the
caller.

Motorola 6800 users should note that the
stack pointers on the 6809 point to the last value
pushed on the stack rather than the next free loca-
tion, as on the 6800. This was done so that autoin-
crement and autodecrement would be equivalent
to pulls and pushes. For example: STA ,-S is
equivalent to PSHS A; and LDA ,S+ is equivalent
to PULS S. This also means the X and Y registers
can be used as stack pointers if the programmer
desires. For example: STA ,-X is a push on a stack

Table 4: 6809 op code map and cycle counts. The numbers by each op code indicate the number of machine cycles required to execute
each instruction. When the number contains an I (eg: 4+I), and additional number of machine cycles equaling I may be required (see
table 3). The presence of two numbers, with the second on in parentheses, indicate that the instruction involves a branch. The larger
number applies if the branch is taken. The notation first page/second page/third page has the following meaning: first page op codes
have only one bye of op code (eg: load A immediate has an op code of hexadecimal 86). All page 2 op codes are preceded by a page
op code hexadecimal 10 (eg: the op code for CMPD immediate is hexadecimal 1083 – two bytes). Similarly third page op codes are
preceded by a hexadecimal 11. A CMPU immediate is 1183. Some instructions are given two mnemonics as a programmer convenience
(eg ASL and LSL are equivalent). Notice that the long branch op codes LBRA and LBSR were brought onto the first page to increased
code efficiency.

Most Significant Four Bits

Le
as

t S
ig

ni
fic

an
t F

ou
r

B
its

DIR REL ACCA ACCB IND EXT IMM DIR IND EXT IMM DIR IND EXT

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1

6
NEG0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

6
COM

6
LSR

6
ROR

6
ASR

6 ASL
(LSL)

6
ROL

6
DEC

6
INC

6
TST

3
JMP

6
CLR

4+I
LEAX

2 2 6+I 7
NEG

2 4 4+I 5
SUBA

2 4 4+I 5
SUBB

2 4 4+I 5
CMPB

2 4 4+I 5
SBCB

2 4 4+I 5
ADDD

2 4 4+I 5
ANDB

2 4 4+I 5
BITB

2 4 4+I 5
LDB

2 4 4+I 5
EORB

2 4 4+I 5
ADCB

2 4 4+I 5
ORB

2 4 4+I 5
ADDB

3 5 5+I 6
LDD

5 5+I 6
STD

4 4+I 5
STB

2 4 4+I 5
CMPA

2 4 4+I 5
SBCA

2 4 4+I 5
ANDA

2 4 4+I 5
BITA

2 4 4+I 5
LDA

2 4 4+I 5
EORA

2 4 4+I 5
ADCA

2 4 4+I 5
ORA

2 4 4+I 5
ADDA

7 7 7+I 8
 BSR JSR

4 4+I 5
STA

4,6,6+I,7 5,7,7+I,8 5,7,7+I,8
SUBD CMPD CMPU

2 2 6+I 7
COM

2 2 6+I 7
LSR

2 2 6+I 7
ROR

2 2 6+I 7
ASR

2 2 6+I 7
ASL (LSL)

2 2 6+I 7
ROL

2 2 6+I 7
DEC

2 2 6+I 7
INC

2 2 6+I 7
TST

2 2 6+I 7
CLR

3+I 4
 JMP

4+I
LEAY

4+I
LEAS

4+I
LEAU

5+1/by
PSHS

5+1/by
PULS

5+1/by
PSHU

5+1/by
PULU

5
RTS

3
ABX

6/15
RTI

20
CWAI

11
MUL

19/20/20
SWI/2/3

3 BRA

3 BRN/
5 LBRN

3 BHI/
5(6)LBHI

3 BLS/
5(6) LBHS

3 BHS
5(6) BCC

3 BLO/
5(6) (BCS)

3 BNE/
5(6) LBNE

3 BEQ/
5(6) LBEQ

3 BVC/
5(6) LBVC

3 BVS/
5(6) LBVS

3 BPL/
5(6) LBPL

3 BMI/
5(6) LBMI

3 BGE/
5(6) LBGE

3 BLT/
5(6) LBLT

3 BGT/
5(6) LBGT

3 BLE/
5(6) LBLE

PAGE
2

PAGE
3

2
NOP

2
SYNC

5
LBRA

9
LBSR

2
DAA

3
ORCC

3
ANDCC

2
SEX

8
EXG

7
TFR

2 3 4 5 6 7 8 9 A B C D E F F

4,6,6+I,7 5,7,7+I,8 5,7,7+I,8
CMPX CMPY CMPS

3,5,5+I,6 4,6,6+I,7
LDX LDY

3,5,5+I,6 4,6,6+I,7
LDU LDS

5,5+I,6 6,6+I,7
STX STY

5,5+I,6 6,6+I,7
STU STS

defined by X. The possible ambiguity between
where the stack pointer points on the 6800 and the
6809 may be less of a problem than it seems, since
of 6800’s TSX becomes the 6809’s TFR S, X
without adding 1 and TXS becomes a TFR X, S
without subtracting 1 – think about it. The only
danger is in programs that used the stack pointer as
an index register. In these programs the stack
pointer may point on location away from where it
did previously.

Interrupts

The 6809 has three fully vectored hardware
interrupts. The nonmaskable interrupt (NMI) and
maskable interrupt (IRQ) are the same as the
6800’s NMI and IRQ. The new interrupt is the fast
maskable interrupt, or FIRQ, that stacks the pro-
gram counter and condition code register only on
interrupt. Table 5 gives the addresses of the inter-
rupt vectors for the 6809.

A new signal (IACK) has been added that is
available anytime an interrupt vector is fetched.
This signal together with address bus lined A1
through A3 can be used to implement in interrupt
scheme in which each device supplies its own
interrupt vector.

The interrupt control and prioritization logic
of the 6809 have been defined very carefully – not
redundant or indeterminate conditions can exist
when several interrupts occur simultaneously. The
details of the interrupt structure are precisely
defined in Motorola documentation for the 6809.

Part 2, entitled “instruction Set Dead-Ends,
Old Trails and Apologies,” will be a question and
answer discussion about the design philosophy
that went into the 6809.■

Table 5: Hexadecimal
addresses of the 6809
restart and interrupt vec-
tors.

FFFF Restart
FFFC NMI
FFFA SWI
FFF8 IRQ
FFF6 FIRQ
FFF4 SWI2
FFF2 SWI3
FFF0 Reserved

14

12

10

8

6

5

4

3

2

1

0

OFFSET FROM
STACK MARK
(U)

ADDRESS

OF ARG 1

ADDRESS

OF ARG 2

ADDRESS

OF ANS

RETURN

PC'

OLD STACK

MARK (U')

LOCAL

VARIABLES

U'

S'

U

S

00006 0500 34 40 6 SUBR PSHS U SAVE OLD STACK MARKER
00007 0502 32 66 5 LEAS 6,S RESERVE LOCAL STORAGE
00008 0504 1F 43 6 TFR S,U GET NEW STACK MARKER
00009 0506 EC D8 0E 10 LDD [14,U] GET ARGUMENT 1
00010 0509 AE DE 0C 10 LDX [12,U] GET ARGUMENT 2
00011 *
00012 * SUBROUTINE BODY
00013 *
00014 050C ED D3 0A 10 STD [10,U] SAVE ANSWER
00015 050F AE 48 6 LDX 8,U GET RETURN ADDRESS
00016 0511 EE 46 6 LDU 6,U RESTORE U’
00017 0513 32 E8 10 6 LEAS 16,S POP EVERYTHING OFF STACK
00018 0516 6E 84 3 JMP ,X RETURN

Listing 4: Use of stacks on the 6809 processor. In this typical high level language subroutine example, U’ and S’ are the mark stack point-
er and the hardware stack pointer, respectively, just prior to the call. U and S are the same registers during execution of the subroutine
body. Before calling the subroutine the caller pushes the address of two arguments and the answer on the stack and then executes the jump
to subroutine which puts the return program counter on the stack. The subroutine then saves the old stack mark pointer on the stack as
well as reserving space on the stack for the local variables for the subroutine (see figure 4).

A Microprocessor for the Revolution: The 6809

Part 2: Instruction Set Dead Ends, Old Trails and
Apologies

Terry Ritter and Joel Boney
Motorola, Inc.
3501 Ed Bluestein Blvd
Austin, TX 78721

In part 1 of this series (see January 1979
BYTE, page 14) we discussed the instruction set
and other details of the Motorola 6809 processor.
Part 2 is a question and answer discussion of the
design philosophy that went into the 6809.

Any change from old to new inevitably
brings criticism from someone. Indeed, any failure
to change to include someone’s pet ideas brings its
own criticisms. We have not been isolated from
sometimes severe criticism, nor from its political
implications.

However, a number of our decisions have
been reasonably challenged, and here we hope to
present illumination and defense. While we are
aware of a number of improvements which might
have been included, the whole point is to sell a
reasonably sized (and thus reasonably priced) inte-
grated circuit. We hope that architectural errors of
commission, as they are found, will be seen in

light of the complete design. We are not aware of
any such errors at this time.

Point 1:

The replaced instructions (PSHA/PULA,
TAB/TBA, INX/DEX) all take more cycles and
bytes than before. Why did you do such a thing?

Answer 1:

Consider: the question is not just
PSHA/PULA, but rather PSHA/PULA/PSHB/
PULB/PSHX/PULX/PSHY/PULY/PSHU/PULU,
etc, as well as simular op codes for the other stack.
There are only 256 1 byte op codes. If the PUSHs
and PULLs are made 1 byte, others must be made
2 byte, and thesewill take more cycles and bytes
than before. And the macrosequenced PUSH or
PULL instructions are more efficientthan byte op
codes when more than one register is involved.

Similarly, as more registers are added, the
number of possible transfer paths become combi-
natorially larger. Do you really want to give up
that number of 1 byte op codes?

As for INX/DEX, we find that these we fre-
quently used in 6800 code because they were more
convenient than any other alternatives. We now
offer autoincrementing and autodecrementing
indexing as a viable (ie: shorter, in cycles and

Photo 1: Layout.
Layout designer Tony
Riccio adds a line in a
large layout cell.
Their various colored
lines represent differ-
ent types of conduc-
tors (metal, polysili-
con, N_, etc) which
will be formed on the
integrated circuit.
(The yellow dots rep-
resent problems to be
corrected.)

Copyright 1978 by
Terry Ritter and Joel
Boney

bytes) alternative. We also allow arbitrary addi-
tions to X, Y, U, and S.

Point 2:

I don’t see any facility for expanding the 64K
address space.

Answer 2:

True. Memory expansion is possible, but
consider this: microprocessors are products of a
mass production technology - processor cost is no
longer a system limiting factor. It is generally
inappropriate to use a single $20 processor to con-
trol $10,000 worth of memory; the single proces-
sor could use only a fraction of the bandwidth
resource available in that much memory (here,
bandwidth means the maximum possible rate of
change of storage state under processor control). A
far more reasonable approach is to place the same
total store on ten processors and give yourself the
possibility of major throughput improvement.
Naturally you’ll have to learn how to control all
this power, but if you’re an innovative systems
designer, that’s exactly your job.

There are two principal divisions of multi-
processor systems, depending on the degree of

coupling between the processors. Closely coupled
processors usually communicate through some
common memory; loosely coupled processors
communicate through input/output ports, serial
lines, or other “slow” communications channels.
Loosely coupled systems can usually be under-
stood as networks of quasi-independent proces-
sors.

Now, let’s consider a concept that we call
“smart memory.” One reason for wanting more
address space on a processor is to randomly access
a large store of on line data. Most of your process-
ing is spent cataloging data, sorting data, moving,
searching and updating data. If you want to handle
more data, you put on more memory and the sys-
tem gets bigger and slower.

But suppose you put a processor on each rea-
sonable piece of memory (16K or whatever).
Make the program for that processor really dumb
- make it just take orders for data. Its whole pur-
pose is to handle data for the command processor;
it stores, moved, searches and updates. But for
now, it does only memory operations. Now hook a
lot of these “smart memory” modules onto your
system (the IEEE 488 bus should work), and com-
mand a search. All the modules search in parallel,
and if you grow and put more modules, you han-
dle more data just as fast as ever!

Photo 2: Breadboard
design. After parti-
tioning the logic, the
mos (metal oxide
semiconductor) dia-
gram is translated to
TTL. The required ten
boards are then
designed and built.
Meanwhile, Bill
Keshlear validates
the logic changes on
the master copy of the
logic diagrams, since
they will imply
changes on the
boards.

The second major approach to multiproces-
sor systems is what we call shared bus multipro-
cessing. Multiple microprocessors are closely cou-
pled through a common bus and a proper subset of
their memory address space. It is crucial to see the
common bus as the bandwidth limiting resource;
each processor should use its own local memory
and stay off the common bus until it needs access
to the common store.

Multiple requests for common memory
access might be issued by various processors at
exactly the same moment. It is there fore neces-
sary to arbitrate among them, switching exactly
one processor onto the common bus, and allowing
it to proceed with its memory access while the
other are held not-READY.

It should be clear that the same concept (a
common bus arbitration and switching node) can
be hierarchically extended. Further, the addressing
capability can be expanded and possibly remapped
at each node to allow fast random access to huge
amounts of on line mass storage. Such obvious
extension is left as an exercise for the serious stu-
dent. Perhaps you are thinking that you can build
it, but nobody can write the software to control it.
We are not insensitive to the problem, just unhap-
py with the attitude. We worked hard to give you
the tool; all you have to do is learn to use it. Every
new technology is like this - our scientists still
don’t know how to fully control the atom, but that
doesn’t stop atomic fusion from being one of the
most attractive “games” around since the payoffs
are huge.

Nobody has a chanceto develop complex
multiprocessor software until she or he has a real
multiprocessor system. Now for $500 and a little
work, you’ve got the hardware. It’s time to start
learning to control these systems. If it’s hard one
way, do it another. The power is there for use.

Point 3:

You still didn’t include block operations, did
you?

Answer 3:

No - and we could have. But have you looked
at how often block instructions could really be
used in your programs? And how much code is
needed to duplicate them yourself? And how often
they don’t really do exactly what you wanted? And
how fast they would run compared to your pro-
grammed version? Please do look. We think the
autoincrement and autodecrement index address-
ing is a far more general solution.

Point 4:

No bit manipulation, either.

Answer 4:

Are you really willing to pay 10 to 20 percent
more just for bit manipulation? Program coded bit
manipulation takes a little longer, but is more gen-
eral, and probably is located is a very lightly used
portion of your program, thus having very little
effect on your total throughput or program size.

Point 5:

Why no undefined op code trap?

Answer 5:

Because the machine is a random logic
implementation. The unused op codes are used as
‘don’t cares’ in derivation of internal logic equa-
tions, thus allowing reduced logic and integrated
circuit size. Failure to include the don’t cares in
the logic equations would result is a larger and
more expensive circuit.

Point 6:

Some other processors allow both indexed
before indirect (indexed indirect) operation and
indirect before indexed (indirect indexed) opera-
tion, but yours does not. Why?

Answer 6:

First of all, we wanted our addressing modes
to operate on all of our memory instructions.
Secondly, indirect indexed addressing has much
lower utility than our indexed indirect form.
Thirdly, we didn’t strip down our instruction set,
so real features were getting a little precious.
Everything has to fit on one chip, remember.

We had considered the possibility of includ-
ing a sort of chained addressing, in which the
memory data would be interpreted as a new
indexed postbyte capable of specifying a complete
new addressing operation. This sort of thing could
continue to indefinite levels, of course. But such
an instruction would then be executing data, which
is usually a bad idea (self-modifying code) and is
also the reason why we included no EXEcute
instruction. (Naturally, EXEcute can be emulated
if you really need it. but since EXEcute is usually
used to make up for the lack of powerful address-
ing modes, it will not likely be missed from the
6809) Furthermore, this executed data would

almost certainly be discontiguous in the memory
space, making even the analysis of the simple case
(read only memory) programs extremely difficult.
Placing such an uncontrollable gimmick in a
processor design would be like placing a glittering
knife in front of a baby, and would be similarly
irresponsible.

Point 7:

You have a MULtiply, but no DIVide.

Answer 7:

True enough. Multiply operations are
required in high level language subscript array cal-
culations, but how often do you really need
divide? Do you really want to pay for something
you will rarely use and can do easily with a pro-
gram. Additionally, the unsigned multiply is easily
capable of extension into multiple precision arith-
metic. (Try that with a singed multiply!) Divide
does not decompose as nicely. This combined with
the absence of similar instructions in the machine
(divide needs 24 bits of parameters, both in and
out) was enough to leave it out.

Point 8:

Your registers are all special purpose.

Answer 8:

Well, in a way, as we have 16 bits of accu-
mulator and 64 bits of useable pointers plus some
others. This basic dichotomy of data and pointers
to data exists in practice, and is therefore rarely a
problem with out implementation. But the EXG
instruction allows convenient manipulation
between these groups in any unusual circum-
stances.

Point 9:

Why did you include all those new address-
ing modes? I’ll never use them.

Answer 9:

We expect that you will use the new address-
ing modes, and quite heavily. There are a lot of
different indexed options. But notice that the large
number of different modes is a result of including
all permutations of a few basic ideas.

Fundamentally, you can index from any
pointer register (x 4), use indexed indirect access
(x 2), and have accumulator offsets (x 3) or con-

stant offsets of up to 16 bits in three versions (x 3)
(see box at lower right). But if you work in assem-
bly language, you don’t need to figure addressing
so the different constant offsets modes may be
ignored. And if you select an addressing mode
which is not available, the assembler will politely
inform you of your indiscretion.

Alternately, you can specify autoincrement
or autodecrement operations (x 2), by either one or
two (x 2), which may be indirected (x 1.5) (except
there is no indexed autoincrement and autodecre-
ment by one indirect - think about it). Finally, con-
stant offsets are allowed from the program count-
er (x 3) and these may also be indirected (x 2).

There are a lot of modes, no doubt about it.
But relatively few new ideas are required to gain
full control over those powerful new features.

Point 10:

I would have liked an operating system call

Photo 3: Visual inspection. Some of the gross processing errors or problems
that occur with probing equipment can be detected visually. Here, lead pro-
duction operator Mary Celedon checks a 6802 wafer.

instruction which carried a parameter to the oper-
ating system.

Answer 10:

So would we. Unfortunately, the location I
want to use for parameters may not (and probably
will not) be what you want to use. It is desirable to
allow both constant and variable parameters to the
operating system. What you do get is two more
trap-like software interrupt (SWI) instructions; the
instructions SWI2 and SWI3 do not mask interrupt
as SWI does, thus allowing use even in interrupt
derived programs. Parameters may be passed in
any register, or on the stack, or as the next byte of
in line code. All of this will require some over-
head, but the scheme is for more general than a
trap that carries a parameter.

Point 11:

Tell me again about the stack pointers: why
two stack pointers?

Answer 11:

Good point. The original reason for adding
the user stack pointer was to facilitate the creation
of a data stack in memory that is separate from the
program stack. This avoids one of the serious
problems of using a second generation processor
in a modular programming environment - that of
returning parameters to a calling routine. We want
to pass parameters in a position independent man-
ner, of course, but the return from subroutine
(RTS) instruction uses the top element of the stack
as a return address, and this address is placed on
the stack beforethe subroutine is entered. On the
6800 there will be a lot of stack rearrangement
going on to get around this problem. The user
stack pointer was created as a new stack unen-
cumbered with return addresses (or interrupt state
information) to allow data to be passed between
routines of different levels in a reasonable manner.
And since the new stack works exactly like the
old, there is a relatively small silicon cost
involved.

We do suspect, however, that many program-
mers will elect to accept the overhead involved
with passing parameters on the hardware stack
(note that the overhead problem is greatly reduced
with the 6809). These programmers will be con-
cerned with the access of parameters placed on the
stack by higher level routines. Notice that, as more
elements are added to the stack, these same
parametersare referred to by varying offsets with
respect to the stack pointer itself: this is bad, since

it becomes difficult to analyze exactly which value
is being accessed by any given subroutine. Thus
many programmers will use the U register as a
stack markpointer, fixed at some previous loca-
tion of the stack pointer. All lower level modules
will then be able to refer to the same data by iden-
tical offsets from the U register.

Point 12:

Why do the 6809 stack pointers point to the
last item on the stack rather than the next free loca-
tion, as on the 6800?

Answer 12:

This architectural change was virtually man-
dated by the following the chain of logic that
resulted from extending the 6800 into double byte,
autoincrement and stack indexable operations.

First, let us assume the above extensions
with a 6800 style stack: the stack pointer thus
points one byte below (lower in memory) the last
byte deposited. Naturally the other pointers should
work similarly (allowing their use as additional
stacks, and requiring no new understanding). This
means that the autoindex operations have to be
preincrement and postdecrement. Now, suppose
we have a stack or table of double byte data; the
data pointer must be set up one byte below the data
to prepare for autoincrement (or pull) operations.
To access the first value the expression LDD ,+S
must be used, while succeeding operations appear
to need LDD ,++S. This result is not great for
loops. Alternately, the stack pointer could be made
to point two bytes above the stack for double byte
data only. This would require different offsets
from the stack pointer (to access, say, the top of
the stack) depending upon the size of the data
being accessed. Different offsets would also be
required, depending on whether the data was just
being used, or being pulled from the stack. This is
workable, but not great conceptually. Another pos-
sibility is to form the effective address from the
value of the pointer after only the first increment.
This “kluge” solution would be hard to implement
anyway, so we changed the stacks.

This change of reasoning is an example of
the difference between architectural design and
just slapping instructions together.

Point 13:

Why not have more registers?

Answer 13:

The notation (x n)
means there are n
ways to perform
that particular
operation. (x 1.5)
means there are
two ways to per-
form that opera-
tion but not every
addressing mode
is allowed…RGAC

Good designs are often the result of engi-
neering compromises. To meet product size goals,
only so many things can go on an integrated cir-
cuit. You can have registers, or features, or some
combination. The 6809 does have approximately
20 addressing modes.

Registers for the sake of registers amount to
little more than separate, very expensive and
restricted memory areas. The register resource is
always insufficient to hold temporary results of a
large program, and must be reallocated in various
routines. This allocation process is an error prone
programming overhead. A separate register set for
interrupt processing is suitable only for one inter-
rupt level and, otherwise, is mostly wasted.

A few registers fully supported by features
are better than just having a lot of registers.

Point 14:

Why no instructions to load or store the
direct page register?

Answer 14:

The direct page register is one of those pos-
sible dangerous features which was just too good
to pass up (in terms of substantial benefits for min-
imum cost). The benefits include an operation
length reduction of 33 percent for instructions

using absolute address and a concurrent through-
put increase of 20 percent. It now becomes possi-
ble to optimize code, perhaps allowing an over-
sized program to fit within discrete read only
memory boundaries. The direct page register may
also be used in a multitasking environment to
allow single copies of routines to operate with
multiple independent processes. However, provid-
ing a separate stack area and having each routine
store local values on the stack may be a better
solution.

Because a number of 6809 instructions (eg:
INC/DEC, ASL/ASR/ROL/ROR/LSL, TST/
COM/CLR/NEG) operate directly on memory, the
direct page area may be used very much like a
processor with 256 8 bit registers to hold counters,
flags and serial information. So, perhaps most
importantly, the direct page register relaxes the
system requirement for programmable memory at
a particular location (page 0) to use direct address-
ing; the cost is a single 8 bit register and no new
instructions.

The programmer is cautioned to tread care-
fully when using direct page register. All forms of
absolute addressing for temporary values and
parameters present problems in the development
of large programs. Attempts to enlarge the number
of direct locations by manipulating the direct page
register may be tricky. And manipulation of the
register by subroutines may lead to errors which

Photo 4: Editing the
layout. Drafting man-
ager Wayne Busfield
and senior layout
designer Rick Secrist
make changes indi-
cated by engineering
analysis. This itera-
tive process improves
performance and pro-
duction yield, and
thus lowers cost.

switch the calling routines direct page in remote
(ie: subroutine) unobvious code. Therefore, this
register is made deliberately difficult to play with.
Typically, it should be set up once and left there.
To load the direct page register you can proceed as
follows: EXG A,DP; LDA #NEWDP; EXG A,DP.
Alternately, the direct page register is also avail-
able in PUSH/PULL instructions, but misuse is
discouraged through lack of LDDP and STDP.

Point 15:

You preach consistency, yet you give us
LEA, an instruction with different condition codes
for different registers. Why is this so?

Answer 15:

The Z flag is unaffected by LEAS or LEAU
but conditionally set by LEAX or LEAY depend-
ing on the value loaded into the register. This pro-
vides 6800 compatibility with INX/DEX (imple-
mented as LEAX 1,S or LEAX -1,X) and
INS/DES (implemented as LEAS 1,S and LEAS -
1,S), respectively.

Now clearly, if most 6800 programs are
going to run on the 6809, the use of INX/DEX for
event counts must be recognized. But in 6809 pro-
grams, releasing local stack area before executing
RTS will b a very frequent action (LEAS -9,S;
RTS) “cleaning up the stack.” You do want to
return a previous condition code value undamaged
by the LEAS, so you get two types of LEA.

Point 16:

What about position independent code?
Doesn’t the 6800 allow it, too?

Answer 16:

Position independent code is one crucial fac-
tor in achieving low cost software. (Position inde-
pendent temporary storage and input/output must
also be available.) Only read only memories which
may be used in arbitrary target systems are eco-
nomically viable in the context of mass produc-
tion. And only these read only memories can result
in low cost firmware for us all.

The 6800 is capable of position independent
code execution in relatively small programs.
Somewhere around a 4 K byte limit the program
can no longer support all control-transfer paths
using branch branch instructions (even allowing
the use of intermediate branch “islands”). Either a
long branch subroutine must be used (at a cost of
100+ cycles for each LBSR) or the program must
be made position dependent.

Point 17:

What about dynamic memory?

Answer 17:

There are two problems associated with
dynamic memories: address bus multiplexing and
refresh. Address bus multiplexing is the most
severe problem but requires multiplexing 6+6
address lines (for 4 K memories) or 7 + 7 lines (for
16K memories); these values are particularly
inconvenient for 8 bit processors (which usually
multiplex address/data). Thus, we have yet to see

Photo 5: First silicon engineering analysis. Logic and circuit design engi-
neer Bob Thompson tracks down a weak node in the first batch of 6801
chips. The 6801 die is packaged, but not sealed, so that internal nodes may
be probed while in operation. Viewing through a microscope, a probe can be
placed at critical points equivalent to the layout plot. The chip itself is run-
ning a modifies EXORcisor system, and the scope actually displayed an
internal signal with excessively slow rise time.

a processor address this problem.
Microprocessors that automatically refresh

memory during most unused bus cycles waste
power on unnecessary refreshes and unnecessarily
increase bus activity. The 6809 can easily refresh
dynamic memory in software (a timer cause inter-
rupt execution of FCB $1063 times, then RTI), or
can support hardware refresh (a direct memory
access [DMA] sequence, or isolatec board auto-
matic refresh) at minimal cost.

Point 18:

What about price?

Answer 18:

The 6809 will be more expensive than in-
production second generation 8 bit designs. For
one thing, it is bigger and also new - both reasons
imply reduced yield compared to older parts. A
moderately higher price should not be a problem,
since the processor cost is a very minor part of the
price of a whole system. The total 6809 system
should be nearly as powerful and much less expen-
sive than 16 bit designs. The cost of not using
6809, on the other hand, will likely be severe in
terms of increased programming error rates, larger
read only memories and decreased throughput.

In “Part 3: Final Thoughts” (March 1979
BYTE), we will conclude this series with a dis-
cussion of clock speed, timing, condition codes
and software deign philosophy.■

Table 1: 6809 instruction set.

8 BIT OPERATIONS

Mnemonic Description

ABX Add B register to X register unsigned.
ADCA, ADCB Add memory to accumulator with cary.
ANDA, ANDB And memory with accumulator.
ANDCC And memory with condition code register.
ASLA, ASLB, ASL Arithmetic shift left accumulator or memory.
ASRA, ASRB, ASR Arithmetic shift right accumulator or memory.
BITA, BITB Bit test memory with accumulator.
CLRA, CLRB, CLR Clear accumulator or memory.
CMPA, CMPB Compare memory with accumulator.
COMA, COMB, COM Complement accumulator or memory.
DAA Decimal adjust A accumulator.
DECA, DECB, DEC Decrement accumulator or memory.
EORA, EORB Exclusive or memory with accumulator.
EXG R1, R2 Exchange R1 with R2.
INCA, INCB, INC Increment accumulator or memory.
LDA, LDB Load accumulator from memory.
LSLA, LSLB, LSL Logical shift left accumulator or memory.
LSRA, LSRB, LSR Logical shift right accumulator or memory.
MUL Unsigned multiply (8 bit by 8 bit = 16 bits).
NEGA, NEGB, NEG Negate accumulator or memory.
ORA, ORB Or memory with accumulator.
ORCC Or immediate with condition code register.

PSHS (register)80 Push register(s) on hardware stack.

PSHU (register)80 Push register(s) on user stack.

PULS (register)80 Pull register(s) on hardware stack.

PULU (register)80 Pull register(s) on user stack.

ROLA, ROLB, ROL Rotate accumulator or memory left.
RORA, RORB, ROR Rotate accumulator or memory right.
SBCA, SBCB Subtract memory from accumulator with barrow.
STA, STB Store accumulator to memory.
SUBA, SUBB Subtract memory from accumulator.
TSTA, TSTB, TST Test accumulator or memory.
TFR R1, R2 Transfer register R1 to register R2.

16 BIT OPERATIONS

Mnemonic Description

ADD Add to D accumulator.
SUBD Subtract from D accumulator.
LDD Load D accumulator.
STD Store D accumulator.
CMPD Compare D accumulator.
LDX, LDY, LDS, LDU Load pointer register.
STX, STY, STS, STU Store pointer register.
CMPX, CMPY, CMPU, CMPS Compare pointer register.
LEAX, LEAY, LEAS, LEAU Load effective address into pointer register.
SEX Sign extend.
TFR register, register Transfer register to register.
EXG register, register Exchange register to register.

PSHS (register)80 Push register(s) on hardware stack.

PSHU (register)80 Push register(s) on user stack.

PULS (register)80 Pull register(s) on hardware stack.

PULU (register)80 Pull register(s) on user stack.

Table 1: continued:

INDEXED ADDRESSING MODES

Mnemonic Description
0,R Indexed with zero offset
[0,R] Indexed with zero offset indirect
,R+ Autoincrement by 1.
,R++ Autoincrement by 2
[,R++] Autoincrement by 2 indirect
,-R Autodecrement by 1
,--R Autodecrement by 2
[,--R] Autodecrement by 2 indirect
n,P Indexed with signed n as offset (n=5, 8, or 16
bits)
[n,P] Indexed with signed n as offset indirect
A,R Indexed with accumulator A as offset
[A,R] Indexed with accumulator A as offset indirect
B,R Indexed with accumulator B as offset
[B,R] Indexed with accumulator B as offset indirect
D,R Indexed with accumulator D as offset
[D,R] Indexed with accumulator D as offset indirect

Note: R=X, Y, U, or S; P = PC, X, Y, U, or S. Brackets indicate indirection. D
means use AB accumulator pair.

6809 RELATIVE SHORT AND LONG BRANCHES.

Mnemonic Description

BCC, LBCC Branch if carry clear.
BCS, LBCS Branch if carry clear.
BEQ, LBEQ Branch if equal.
BGE, LBGE Branch if greater than or equal (signed).
BGT, LBGT Branch if greater (signed).
BHI, LBHI Branch if higher (unsigned).
BHS, LBHS Branch if higher or same (unsigned).
BLE, LBLE Branch if less than or equal (signed).
BLO, LBLO Branch if lower (unsigned).
BLS, LBLS Branch if lower or same (unsigned).
BLT, LBLT Branch if less than (signed).
BMI, LBMI Branch if minus.
BNE, LBNE Branch if not equal.
BPL, BPL Branch if plus.
BRA, LBRA Branch always.
BRN, LBRN Branch never.
BSR, LBSR Branch to subroutine.
BVC, LBVC Branch if overflow clear.
BVS, LBVS Branch if overflow set.

6809 MISCELLANEOUS INSTRUCTIONS

Mnemonic Description

CWAI clear condition code register bits and wait for
interrupt.
NOP No operation/
JMP Jump.
JSR Jump to subroutine.
RTI Return from interrupt.
RTS Return from subroutine.
SEX Sign extend B register into A register.
SWI, SWI2 SWI3 Software interrupt/
SYNC Synchronize with interrupt line.

AMicroprocessor for the Revolution: The 6809
Part 3: Final Thoughts

Terry Ritter and Joel Boney
Motorola Inc.
3501 Ed Bluestein Blvd.
Austin, TX 78721

Clock Speed

In part 3 we conclude our discussion of the
Motorola 6809 processor with some thoughts on
clock speed, timing signals, condition codes and
software design philosophy for the 6809.

We expect that our logic and circuit design
cohorts will be able to get significant production at
a 2 MHz bus rate (and possibly faster) with the
6809. But this value alone means next to nothing
as a figure of processor merit (we did consider
using a very high frequency on chip oscillator so
we could win the clock rate race, but decided at the
last minute that a resonant cavity would not be
acceptable to most users).

Other processors use an internal state
machine to implement the required internal opera-
tions. These processors frequently require multiple
states and multiple clock edges to implement oper-
ations which are done in one cycle on 6800 class
processors.

The 6800 class machines are all random
logic machines with multiple dynamic sequencers.
This method of microprocessor design selects a
different set of engineering trade-offs as opposed
to the state machine approach. In particular, less
critical timing is necessary, but suspending the
processor for a long time is difficult. We provide
two external methods of stopping the machine:
DMAREQ (which has a maximum asynchronous
latency of 1.5 bus cycles, and which will recover
the bus from DMA (direct memory access) period-
ically to allow the dynamic microprocessor to per-
form a refresh cycle) and HALT (which has a max-
imum latency of 21 cycles, but releases this bus
completely).

Signals

The 6809 processor will be made in two ver-
sions: the on chip clock version (for small sys-
tems) and the off chip clock version (with extra
signal lines for additional processor status infor-
mation). This will allow a cost effective utilization
of pins for each proposed market.

The bus timing signals are E and Q. E is the
same as on 6800 systems (previously called ∅), a
square wave clock with a period equal to one bus
cycle. Q is the quadrature clock, and leads E by

Photo 1: Processing. Photosensitized wafers are exposed with a particular
mask pattern using ultraviolet light. The entire environment is otherwise
ultraviolet-free.

Photo 2: Breadboard debug. The gate level TTL model of the processor
involves ten boards of 80 to 120 integrated circuits each. Many of the
required 10,000 connections will be wrong. The system must be tested to find
and correct construction and logic errors.
Crowds are not unusual; here we have Don Tietjen, Katy Miller, James
Tietjen, Steven Messinger (almost hidden), Mike Shapiro and Bill Keshlear.

one quarter bus cycle. Good addresses should be
available from the processor on the leading edge
of Q; data is latched (by the processor or selected
memory or peripheral) on the trailing edge of E.

Two signals are used for clock control in the
on chip clock version. DMAREQ halts the proces-
sor internally (and puts the output lines of the
processor in the high impedance state using three
state circuitry) but allows E and Q to continue to
run to provide system clocks for a DMA transfer.
MREADY being low extends a memory access in
increments of the high frequency oscillator period
until MREADY is brought high. If BA=0 (the
processor is running) BS=1 means that a vector
fetch is occurring (IACK). This signal can be used
to develop vector-by-interrupting-device hardware
that transfers control directly into the desired
interrupt handler without polling.

Two signals are available in the off chip
clock version to assist in multiprocessor systems.
The last instruction cycle (LIC) pin is high during
the last execution cycle of any instruction, thus
giving bus arbitration a head start. BUSY is high
during read modify write, (from the read through
to modify) to indicate the memory exclusion is
required. Exclusion is required in multi-processor
systems.

Condition Codes

The 6809 condition code flags are the same
as those used in the 6800 (N, Z, V, and C), and are
affected similarly by most operations. Some
exceptions are double byte operations, since the
flags are always set to represent the result of the
entire operation, whether single or double byte.
(This implied by the fact that both data length
operations have the same root mnemonics).

While very simple in concept (the condition
flags being mere by-products of arithmetic and
logic unit [ALU] operations), their use with vari-
ous data representations and the rich set of condi-
tional branch conditions can seem quite complex.
First, we will define the flags as follows.

N: set if and only if the most significant bit of the
result is set (this would be the 2’s comple-
ment “sign” bit).

Z: set if and only if all bits of the result are clear
(the result is exactly 0).

V: set if and only if the operation causes a 2’s
complement overflow. Notice that the expres-
sion (N ⊕ V) will give the correct sign, even
if the sign is not properly represented in the
result.

C: set if and only if the operation causes a carry
from the most significant bit (for ADD, ADC)

Photo 4: Digitizing. Computer aided design (CAD) technician Lisa F. enters
a cell layout into the data base. The cursor on the light table is used to trans-
fer precision measurements to the computers. An already digitized cell is
shown on the video display.

Photo 3: Plotting the circuit layout. Huge precision plotters display the com-
puter data base which will become the chip. The layout plot is then checked
by circuit engineers both for proper interconnection and exact transistor siz-
ing. Any problems thus uncovered will be repaired by editing the data base.

or,

set if and only if the operation does not cause
a carry from the most significant bit of the
arithmetic and logic unit (for subtract-like
operations – SUB, SBC, CMP – carry flag
represent a borrow) or,

set according to rules for rotate or shifts
or,

set if and only if bit 7 of the result is set (for
MUL).

• Notice that the C flag is not the simple result of
the carry in the 8 bit arithmetic and logic unit,
but depends on the type of operation per-
formed.

• Notice also that the carry flag represents a bor-
row after subtract-like operations. This was
done on the 6800, for convenience.

Next, let’s define the use of the branches.
Simple conditional branches:

Test True False
Z=1 BEQ BNE
N=1 BMI BPL
C=1 BCS BCC
V=1 BVS BVC

Signed conditional branches:

Test True False

(N ⊕ V) Z = 1 BGT BLE
(N ⊕ V) = 1 BGE BLT
Z=1 BEQ BNE
(N ⊕ V) Z = 1 BLE BGT
(N ⊕ V) = 1 BLT BGE

Unsigned conditional branches:

Test True False

C Z = 1 BHI BLS
C = 1 BHS BLO
Z = 1 BEQ BNE
C Z = 1 BLS BHI
C = 1 BLO BHS

Note: The unsigned branches are not, in gen-
eral, useful after INC, DEV, LD, ST, TST, CLR or
COM.

And finally, the results of known conditions
of comparison are as follows.

After SUB, SBC, CMP:

If register is less than memory value
(2’s complement value) (N ⊕ V) =1.

If register is lower than memory value
(unsigned values) C=1

If register is equal to memory value
(signed or unsigned) Z=1.

Because some instruction do not (and should
not) affect carry, only the equal and not equal
branch tests (BEQ and BNE) are useful after these
instructions (INC, DEC, LD, ST, TST, CLR,
COM) operate on unsigned values. When operat-
ing on 2’s complement values, all signed branches
are correctly available.

Some Software Design Philosophy.

The design of successful software differs
from other types of engineering design in that
good software can be easily changed, but is
exceedingly unforgiving. The creation of working
software involves intimate contact with quality.

Any program, working or unworking, is a
representative of the philosophy of truth; the
machine will execute the program, good or bad.

Photo 5: Diffusion.
Into the furnace
goes another batch
of wafers in the
process of becom-
ing integrated cir-
cuits. Operating
near 1000° C, the
quartz liner glows
incandescent.

Only applicable programs are useful, however,
and utility is where we encounter quality. Many
individuals indoctrinated into a society founded
upon truth can scarcely understand why such
truthful programs do not work, for isn’t one truth
just as good as another?

Any program that is to be fixed or changed
must be analyzed: the written code must be read
and understood. Reading is a problem – most com-
puter languages are very difficult to read simply
because so many options are possible from each
statement. Finding the coherent design of a pro-
gram is nearly impossible when, as it is begin read,
thousands of options exists. It is the paradox of
programming that a disciplined, restricted, struc-
tured programming language gives programmers
greater freedom to understand their programs.

Consider the analysis of programs: any pro-
gram segment having multiple conditional branch-
es that cannot be separated must be analyzed for
all possible conditions of input data before we can
be assured that the program will operate correctly.

Program segments having branch paths that
cross may be impossible to analyze rigorously due
to the combinatorially larger number of paths that
the program may execute. Where control struc-
tures are always properly nested, crossed branch
path cannot occur and analysis is easier.

Programming structures which have basical-
ly one entry point and one exit are easily detached
from the surrounding code and are easier to under-
stand and test. This is the fundamental tenet of
structured programming.

Every attempt should be made to code in
modules. Modules are self-contained entities (usu-
ally subroutines) which allocate and deallocate
their own local storage. Naturally, the actual code
should be heavily commented to allow a reader to
understand what is being attempted. But one mark
of a good module is that it contains a header block
which fully describes all aspects of the inputs to
the module and results from it. This description
should be so detailed as to allow the module to be
totally recoded from this information alone. We
hope that the description was arrived at beforethe
module was written. It is a mark of good software
design that the actual coding is but a minor part of
the project; it occurs after all modules have been
completely described. The finished modules
which are recoded at a later date must pass the
original tests.

Software in the Revolution

The microprocessor revolution is fueled by
continual technical advancement that produces
hardware with ever higher capability and ever
lower cost. Yet, it is a requirement of the revolu-
tion that software be written to make that cheap
hardware do anything.

Most present microprocessor software is cus-
tom software written for a specific project. Project
specific software is rarely published, partly in the
(unreasonable) hope of maintaining trade secrete
protection, and partly because finished project
software is rarely of publication quality.
Commercial software is rare for a number of rea-
sons: there must be a market for the (machine spe-
cific) software before the investment in program
development is made, but the customer base may
not exists until good programs are available. It is
also difficult to consider inventing in software that
can be so easily copied (stolen) and used.

The copying problem is not new; musical
reproductions have long coexisted with the possi-
bility of consumer recording and reproduction for
a close circle of friends. This occasionally hap-
pens, but it is usually too much bother to tape the
music you want (assuming that the original prod-
uct is available at a reasonable cost). Software
should be distributed as a reasonably priced phys-
ical product that is useful to a broad consumer
base.

This is an old idea, but it just hasn’t worked.
The problem is not in the idea, but in the second
generation microcomputer architecture which
limit the applicability of any particular program
read only memory. The 6809 microprocessor is
designed specifically – through the use of position
independent code, stack indexing, and indirect

Photo 6: Wafer
probe. Each circuit
is separately
checked while still
on the wafer. This
equipment auto-
matically steps to
the next chip after
any bad results or
when all tests are
good. A production
6800 is shown.

addressing – to allow the creation of standard pro-
gram read only memories. This creates a market
opportunity for a brand new standard software
industry. We knew this when we included these
features; you’re welcome, entrepreneurs!

Summary

We wrote this series of articles not only to
disclose the 6809 but mainly to put down in print
the rational and reasoning behind the 6809. It
would have benefited us if the designers of the
6800 had documented their rationale. We would
also like to think we have stimulated some interest
in the personal computing community for solu-
tions to the software problem and for the study of
computer architecture. The big challenge for
architects in the next decade and beyond will be to
design computers that can effectively utilize the
huge number of devices – 1,000,000 transistors by
1985 – that semiconductor technology will be able
to put on one 25 mm2 piece of silicon.

No computer is designed in a vacume, and
we would like to thank all of our customers and
the people at Motorola who gave us valuable
input. Special thanks go to the dozens of people –
two many to enumerate – who have been or are
still actively involved in the design, implementa-
tion and production of the MC6809. Without their
individual talents and dedication to what seemed
to be impossible tasks and impossible schedules,
the MC6809 could not have been realized.■

