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/*

*

* Dahlander.ino

*

* This sketch aims at replacing a Dahlander switch
* steering 3 relays.

*

* Intended purpose

K e

* |t is intended as a replacement for a 3-position

* on a Lurem wood machine. This switch is natively
* preventing going backwards, which would damage
* down to 3000 rpm from 6000rpm.

* Remember that the cinetic energy varies with the

* s0 the machine is designed to spin down freely t

*

* Lurem is long gone as a company, some vendors st
* switch is nowhere to be found. Some of these ven

* 0-3000rpm-6000rpm-3000rpm-0 without the mechanic

* 6000 to 3000 rpm. As already mentioned, this is
* for around 200 EUR, and it is cheaper to impleme

*

* Dahlander motors

* Dahlander motors are asynchronous 3-phase motors

* between the low speed and the high speed. Other
* See: http://educypedia.karadimov.info/library/17
* Dahlander motors.

* |t is EXTREMELY important to ensure that the sho
* power to the motor, or we risk a very quick dest

* the relay timing to ensure proper relay switch o

*

* Overall design

*

* One pushbutton is used to cycle as per the origi

* a short push each time (aka 'Click’). Additional

* down from 3000 or 6000 rpm to O.

*

* Timeouts are inserted :

* - a 30s spin up timeout preventing any change wh
* - a1 mn spin down timeout preventing the machin
* from 3000 rpm

* - a 2 mn spin down timeout preventing the machin
* from 6000 rpm

* - 200 ms timeouts inserted between relay changes
* not have a risk of wrong temporary connection

*

* The timeouts introduce a security that did not e

* it is not possible to spin the machine up again

*

* Electronic design

K e

* The device uses 3 BJTs to drive the 3 relays, as
* the Arduino outputs. Also the relays are 24V, wh
*

* As for the push button, we insert a 100 nF in pa

* De-bouncing is implemented inside the OneButton
* electronics.

*

* The push button is an industrial type, big enoug

* smaller one would do, but would not be as resist

*

* Setup the circuit:

* - Connect a pushbutton to pin D2 (ButtonPin) and
* - Connect relays K1, K2, K3 to pins D3, D4 and D

*

* Libraries used

* The code makes use of the OneButton library to d
* as this library makes it simple to implement a f

* See: http://www.mathertel.de/Arduino/OneButtonLi
*

* |t also makes use of the SimpleTimer library in
* which call a pre-defined routine when the timeou
* See: http://playground.arduino.cc/Code/SimpleTim

with an Arduino Pro Mini
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ly, a long press (> 2s) allows spinning
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while still rotating.

each relay draws 120 mA, way too much
ile the Arduino is a 5V device.

rallel to improve de-bouncing
library, which simplifies the external

h to fit the machine buttons. A much
ant.

ground.
5 respectively

etect short and long button press,
inite state machine.
brary.aspx

order to implement non-blocking delays
t has expired.
er

Page 1



Dahl ander. i no

*

* Additionally, we also use the SyncLED library in
* by blinking the built-in LED on D13. This is for

* See: https://code.google.com/p/arduino-library-s
*

* Relative to blinking the on-board LED (D13), we

* through coding stable states with numbers in the

* is coded into the upper nibble. We lose the unst

* is sufficient for our purposes.

*

* Copyright (c) by Jean-Noel Simonnet - March 2014
* This work is licensed under a GPL V3 license.

*

*/

#include  "OneButton.h"
#include  "SimpleTimer.h"
#include  "SyncLED.h"

/*

* Push button SW1 on pin D2
* Relay K1 on pin D3

* Relay K2 on pin D4

* Relay K3 on pin D5

*/

#define SW1 2

#define K1 3

#define K2 4

#define K3 5

/*

* Timings in ms, respectively:

* - delay between relay changes

* - delay (ms) when spinning up at 3000 rpm
* - spin down time (ms) from 3000 rpm

* - spin down time (ms) from 6000 rpm

*

* Adjust the last 3 to match the actual machine ti
*/

#define DELAY_RELAY 200L

#define DELAY_SPINUP 30000L
#define DELAY_HALT3000 60000L
#define DELAY_HALT6000 120000L

/*

* Click and press timings

* - Click = button press followed by 600 ms of idl
* - double click = two button presses within 600 m
* - press = button pressed for more than 2 s

*/

#define CLICK_TICKS 600

#define PRESS_TICKS 2000

/I Finite machine states
typedef enum{

order to display current state
debug purposes.
yncled/

blink the stable state, and this is done
1..15 range, while the sub-state number
able state number, but the indication

mings

e time

ACTION_START = 0x01,

ACTION_3000RPM = 0x02,
ACTION_6000RPM = 0x03,
ACTION_HALT3000 = 0x04,
ACTION_HALT6000 = 0x05,
ACTION_3000RPM_1 = 0x12,
ACTION_6000RPM_1 = 0x13,
ACTION_6000RPM_2 = 0x23,
ACTION_HALT6000_1= 0x15,

MyActions;

/I state at power up

/I machine rotating @3000 rpm

/I machine rotating @6000 rpm

/I machine halting from 3000 rpm

/I machine halting from 6000 rpm

/I machine is being spinned up to 3000 rpm
/I Moving to 6000rpm, intermediate state 1

/| Setup a new OneButton on pin D2
true );

OneButton button(SW1,

/l We need only one timer, as the Finite State Mach

SimpleTimer timer;

ine only takes one state at a time here

// On-board LED to display which state we are

SyncLED status ( 13);
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MyActions action = ACTION_START;

/*

* Setup code here, to run once

*/
voi d setup (){
// pullup on button

pinMode (SW1, INPUT_PULLUP);
pinMode (K1, OUTPUT;
pinMode (K2, OUTPUT;
pinMode (K3, OUTPUT;

/I no action when starting

/I This delay is required, as otherwise we have a p
/l due to the 10K pullup + 100nF capacitor on SW1 (

delay ( 10); // This delay is required, as otherwise we have a p

/I Make sure the initial state is displayed

status.blinkPattern ((

byt e)(action &

/I Configure click and press timings
button.setClickTicks (CLICK_TICKS);
button.setPressTicks (PRESS_TICKS);

0x0F));

/I link the myClickFunction function to be called o
button.attachClick(myClickFunction);

/I link the myPressFunction function to be called o
button.attachPress(myPressFunction);

} llsetup

/*

* main code here, to run repeatedly:

*/
voi d loop (){

unsi gned | ong now =

millis  ();

/I keep watching the push button:

button.tick();

/l keep updating the timer

timer.run();

/I update state indicator

status.update();

/I Set outputs corresponding to each state; it does
/I that we reapply them at each loop, as they remai
i f (action == ACTION_START) {

Il All relays off initially

digitalWrite (K1, LOW
digitalWrite (K2, LOWY
digitalWrite (K3, LOW
} else if (action == ACTION_3000RPM_1) {
digitalWrite (K2, LOWY
digitalWrite (K3, LOW
digitalWrite (K1, HIGH);
} else if (action == ACTION_3000RPM) {
digitalWrite (K2, LOWY
digitalWrite (K3, LOW
digitalWrite (K1, HIGH);
} else if (action == ACTION_6000RPM_1) {
digitalWrite (K1, LOW
digitalWrite (K3, LOW;
digitalWrite (K2, LOWY
} else if (action == ACTION_6000RPM_2) {
digitalWrite (K1, LOW
digitalWrite (K3, HIGH);
digitalWrite (K2, LOW

ush button event
time constant = 1ms)
ush button event

n a click event.

n a press event.

not matter
n the same.
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} else if (action == ACTION_6000RPM) {
digitalWrite (K1, LOW,
digitalWrite (K3, HIGH);
digitalWrite (K2, HIGH);

} else if (action == ACTION_HALT3000) {
Il All relays off
digitalWrite (K1, LOW:
digitalWrite (K2, LOW:
digitalWrite (K3, LOW:

} else if (action==ACTION_HALT6000_1){
digitalWrite (K2, LOW
digitalWrite (K3, HIGH);
digitalWrite (K1, LOW:

} else if (action == ACTION_HALT6000) {
Il All relays off
digitalWrite (K2, LOW:
digitalWrite (K3, LOW:
digitalWrite (K1, LOW:

}
} /l'loop

/*

* The following functions are call-backs which per
* the state transitions.

*/

/I Called when the button was pressed 1 time and th
voi d myClickFunction() {
i f (action == ACTION_START) {
action = ACTION_3000RPM_1;
timer. setTimeout (DELAY_SPINUP, myTimerEvent);

} else if (action == ACTION_3000RPM) {
action = ACTION_6000RPM_1;
timer. setTimeout (DELAY_RELAY, myTimerEvent);

} else if (action == ACTION_6000RPM) {
action = ACTION_HALT6000_1;
timer. setTimeout (DELAY_RELAY, myTimerEvent);

}

status.blinkPattern (( byt e)(action &  OxO0F));
} /I myClickFunction

/I Called when the button was pressed for a long ti
voi d myPressFunction() {

i f (action == ACTION_3000RPM) {

action = ACTION_HALT3000;

timer. setTimeout (DELAY_HALT3000, myTimerEvent);

} else if (action == ACTION_6000RPM) {
action = ACTION_HALT6000_1;
timer. setTimeout (DELAY_RELAY, myTimerEvent);

} else if (action==ACTION_3000RPM_1) {
action = ACTION_HALT3000;

}
status.blinkPattern (( byt e)(action &  OxO0F));
} /I myPressFunction

/I Called on double click events
voi d myDoubleClickFunction() {
/I Unused in this example

}

/I Called on timer events

voi d myTimerEvent() {
i f (action == ACTION_HALT3000) {
action = ACTION_START;

form

em some time has passed.

me (> 2s)
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} else if (action==ACTION_HALT6000) {
action = ACTION_START;

} else if (action == ACTION_3000RPM_1) {
action = ACTION_3000RPM;

} else if (action == ACTION_6000RPM_1) {
action = ACTION_6000RPM_2;
timer. setTimeout (DELAY_RELAY, myTimerEvent);

} else if (action == ACTION_6000RPM_2) {
action = ACTION_6000RPM;

} else if (action==ACTION_HALT6000_1){
action = ACTION_HALT®6000;

timer. setTimeout (DELAY_HALT6000, myTimerEvent);

}
status.blinkPattern (( byt e)(action &  OxO0F));
} /I myTimerEvent
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