Dahl ander. i no

/*

*

* Dahlander.ino

*

* This sketch aims at replacing a Dahlander switch
* steering 3 relays.

*

* Intended purpose

K e

* |t is intended as a replacement for a 3-position

* on a Lurem wood machine. This switch is natively
* preventing going backwards, which would damage
* down to 3000 rpm from 6000rpm.

* Remember that the cinetic energy varies with the

* s0 the machine is designed to spin down freely t

*

* Lurem is long gone as a company, some vendors st
* switch is nowhere to be found. Some of these ven

* 0-3000rpm-6000rpm-3000rpm-0 without the mechanic

* 6000 to 3000 rpm. As already mentioned, this is
* for around 200 EUR, and it is cheaper to impleme

*

* Dahlander motors

* Dahlander motors are asynchronous 3-phase motors

* between the low speed and the high speed. Other
* See: http://educypedia.karadimov.info/library/17
* Dahlander motors.

* |t is EXTREMELY important to ensure that the sho
* power to the motor, or we risk a very quick dest

* the relay timing to ensure proper relay switch o

*

* Overall design

*

* One pushbutton is used to cycle as per the origi

* a short push each time (aka 'Click’). Additional

* down from 3000 or 6000 rpm to O.

*

* Timeouts are inserted :

* - a 30s spin up timeout preventing any change wh
* - a1 mn spin down timeout preventing the machin
* from 3000 rpm

* - a 2 mn spin down timeout preventing the machin
* from 6000 rpm

* - 200 ms timeouts inserted between relay changes
* not have a risk of wrong temporary connection

*

* The timeouts introduce a security that did not e

* it is not possible to spin the machine up again

*

* Electronic design

K e

* The device uses 3 BJTs to drive the 3 relays, as
* the Arduino outputs. Also the relays are 24V, wh
*

* As for the push button, we insert a 100 nF in pa

* De-bouncing is implemented inside the OneButton
* electronics.

*

* The push button is an industrial type, big enoug

* smaller one would do, but would not be as resist

*

* Setup the circuit:

* - Connect a pushbutton to pin D2 (ButtonPin) and
* - Connect relays K1, K2, K3 to pins D3, D4 and D

*

* Libraries used

* The code makes use of the OneButton library to d
* as this library makes it simple to implement a f

* See: http://www.mathertel.de/Arduino/OneButtonLi
*

* |t also makes use of the SimpleTimer library in
* which call a pre-defined routine when the timeou
* See: http://playground.arduino.cc/Code/SimpleTim

with an Arduino Pro Mini

switch doing 0-3000rpm-6000rpm-0
equipped with a mechanical device
the equipment if spinning brutally

square of the rotating speed,
o zero from 6000 rpm.

ill have spare parts, but the original
dors have switches doing

al device preventing from going from
not adequate. Additionally, these sell
nt it this way.

, usually wired to allow a ratio of two
ratios are possible, though uncommon.
3.pdf , page 3 for an explanation on

rting of 1U/1V/1W is done before applying
ruction of the motor. This is why we apply
rder.

nal design : 0-3000rpm-6000rpm-0, with
ly, a long press (> 2s) allows spinning

ile the machine is spinning up to 3000 rpm
e restart while being spinned down

e restart while being spinned down

. This is done so that we are sure we do
while relays are changing state

xist in the original switch, so that
while still rotating.

each relay draws 120 mA, way too much
ile the Arduino is a 5V device.

rallel to improve de-bouncing
library, which simplifies the external

h to fit the machine buttons. A much
ant.

ground.
5 respectively

etect short and long button press,
inite state machine.
brary.aspx

order to implement non-blocking delays
t has expired.
er

Page 1



Dahl ander. i no

*

* Additionally, we also use the SyncLED library in
* by blinking the built-in LED on D13. This is for

* See: https://code.google.com/p/arduino-library-s
*

* Relative to blinking the on-board LED (D13), we

* through coding stable states with numbers in the

* is coded into the upper nibble. We lose the unst

* is sufficient for our purposes.

*

* Copyright (c) by Jean-Noel Simonnet - March 2014
* This work is licensed under a GPL V3 license.

*

*/

#include  "OneButton.h"
#include  "SimpleTimer.h"
#include  "SyncLED.h"

/*

* Push button SW1 on pin D2
* Relay K1 on pin D3

* Relay K2 on pin D4

* Relay K3 on pin D5

*/

#define SW1 2

#define K1 3

#define K2 4

#define K3 5

/*

* Timings in ms, respectively:

* - delay between relay changes

* - delay (ms) when spinning up at 3000 rpm
* - spin down time (ms) from 3000 rpm

* - spin down time (ms) from 6000 rpm

*

* Adjust the last 3 to match the actual machine ti
*/

#define DELAY_RELAY 200L

#define DELAY_SPINUP 30000L
#define DELAY_HALT3000 60000L
#define DELAY_HALT6000 120000L

/*

* Click and press timings

* - Click = button press followed by 600 ms of idl
* - double click = two button presses within 600 m
* - press = button pressed for more than 2 s

*/

#define CLICK_TICKS 600

#define PRESS_TICKS 2000

/I Finite machine states
typedef enum{

order to display current state
debug purposes.
yncled/

blink the stable state, and this is done
1..15 range, while the sub-state number
able state number, but the indication

mings

e time

ACTION_START = 0x01,

ACTION_3000RPM = 0x02,
ACTION_6000RPM = 0x03,
ACTION_HALT3000 = 0x04,
ACTION_HALT6000 = 0x05,
ACTION_3000RPM_1 = 0x12,
ACTION_6000RPM_1 = 0x13,
ACTION_6000RPM_2 = 0x23,
ACTION_HALT6000_1= 0x15,

MyActions;

/I state at power up

/I machine rotating @3000 rpm

/I machine rotating @6000 rpm

/I machine halting from 3000 rpm

/I machine halting from 6000 rpm

/I machine is being spinned up to 3000 rpm
/I Moving to 6000rpm, intermediate state 1

/| Setup a new OneButton on pin D2
true );

OneButton button(SW1,

/l We need only one timer, as the Finite State Mach

SimpleTimer timer;

ine only takes one state at a time here

// On-board LED to display which state we are

SyncLED status ( 13);

Page 2



Dahl ander. i no

MyActions action = ACTION_START;

/*

* Setup code here, to run once

*/
voi d setup (){
// pullup on button

pinMode (SW1, INPUT_PULLUP);
pinMode (K1, OUTPUT;
pinMode (K2, OUTPUT;
pinMode (K3, OUTPUT;

/I no action when starting

/I This delay is required, as otherwise we have a p
/l due to the 10K pullup + 100nF capacitor on SW1 (

delay ( 10); // This delay is required, as otherwise we have a p

/I Make sure the initial state is displayed

status.blinkPattern ((

byt e)(action &

/I Configure click and press timings
button.setClickTicks (CLICK_TICKS);
button.setPressTicks (PRESS_TICKS);

0x0F));

/I link the myClickFunction function to be called o
button.attachClick(myClickFunction);

/I link the myPressFunction function to be called o
button.attachPress(myPressFunction);

} llsetup

/*

* main code here, to run repeatedly:

*/
voi d loop (){

unsi gned | ong now =

millis  ();

/I keep watching the push button:

button.tick();

/l keep updating the timer

timer.run();

/I update state indicator

status.update();

/I Set outputs corresponding to each state; it does
/I that we reapply them at each loop, as they remai
i f (action == ACTION_START) {

Il All relays off initially

digitalWrite (K1, LOW
digitalWrite (K2, LOWY
digitalWrite (K3, LOW
} else if (action == ACTION_3000RPM_1) {
digitalWrite (K2, LOWY
digitalWrite (K3, LOW
digitalWrite (K1, HIGH);
} else if (action == ACTION_3000RPM) {
digitalWrite (K2, LOWY
digitalWrite (K3, LOW
digitalWrite (K1, HIGH);
} else if (action == ACTION_6000RPM_1) {
digitalWrite (K1, LOW
digitalWrite (K3, LOW;
digitalWrite (K2, LOWY
} else if (action == ACTION_6000RPM_2) {
digitalWrite (K1, LOW
digitalWrite (K3, HIGH);
digitalWrite (K2, LOW

ush button event
time constant = 1ms)
ush button event

n a click event.

n a press event.

not matter
n the same.

Page 3



Dahl ander. i no

} else if (action == ACTION_6000RPM) {
digitalWrite (K1, LOW,
digitalWrite (K3, HIGH);
digitalWrite (K2, HIGH);

} else if (action == ACTION_HALT3000) {
Il All relays off
digitalWrite (K1, LOW:
digitalWrite (K2, LOW:
digitalWrite (K3, LOW:

} else if (action==ACTION_HALT6000_1){
digitalWrite (K2, LOW
digitalWrite (K3, HIGH);
digitalWrite (K1, LOW:

} else if (action == ACTION_HALT6000) {
Il All relays off
digitalWrite (K2, LOW:
digitalWrite (K3, LOW:
digitalWrite (K1, LOW:

}
} /l'loop

/*

* The following functions are call-backs which per
* the state transitions.

*/

/I Called when the button was pressed 1 time and th
voi d myClickFunction() {
i f (action == ACTION_START) {
action = ACTION_3000RPM_1;
timer. setTimeout (DELAY_SPINUP, myTimerEvent);

} else if (action == ACTION_3000RPM) {
action = ACTION_6000RPM_1;
timer. setTimeout (DELAY_RELAY, myTimerEvent);

} else if (action == ACTION_6000RPM) {
action = ACTION_HALT6000_1;
timer. setTimeout (DELAY_RELAY, myTimerEvent);

}

status.blinkPattern (( byt e)(action &  OxO0F));
} /I myClickFunction

/I Called when the button was pressed for a long ti
voi d myPressFunction() {

i f (action == ACTION_3000RPM) {

action = ACTION_HALT3000;

timer. setTimeout (DELAY_HALT3000, myTimerEvent);

} else if (action == ACTION_6000RPM) {
action = ACTION_HALT6000_1;
timer. setTimeout (DELAY_RELAY, myTimerEvent);

} else if (action==ACTION_3000RPM_1) {
action = ACTION_HALT3000;

}
status.blinkPattern (( byt e)(action &  OxO0F));
} /I myPressFunction

/I Called on double click events
voi d myDoubleClickFunction() {
/I Unused in this example

}

/I Called on timer events

voi d myTimerEvent() {
i f (action == ACTION_HALT3000) {
action = ACTION_START;

form

em some time has passed.

me (> 2s)

Page 4



Dahl ander. i no

} else if (action==ACTION_HALT6000) {
action = ACTION_START;

} else if (action == ACTION_3000RPM_1) {
action = ACTION_3000RPM;

} else if (action == ACTION_6000RPM_1) {
action = ACTION_6000RPM_2;
timer. setTimeout (DELAY_RELAY, myTimerEvent);

} else if (action == ACTION_6000RPM_2) {
action = ACTION_6000RPM;

} else if (action==ACTION_HALT6000_1){
action = ACTION_HALT®6000;

timer. setTimeout (DELAY_HALT6000, myTimerEvent);

}
status.blinkPattern (( byt e)(action &  OxO0F));
} /I myTimerEvent

Page 5



