
M I C R O S D C A R D C R E AT I O N

J U N E 1 4 , 2 0 1 6

How to Read this Document

This document makes extensive use of links, references and notices in the

page margins to detail additional information that can be useful while following

the guide.

!
WARNING A warning notice indicates a potential hazard. If care is

not taken to adhere to the safety precautions, damage may be done to

snickerdoodle.

Warnings and cautions will be clearly visible in either the body of the text or in

the margin and must be paid close attention while following the guided steps.

i
Warning, caution and informational

notices, such as this one, may also be
found in the margin.

CAUTION A caution indication denotes a process that requires spe-

cial attention. If the caution is not exercised and the process not adhered

to, failure may result and/or potential damage to snickerdoodle.

Keywords

Keywords and important terms are shown in italicized type. Additional impor-

tant information can be found in the margins of text with superscript notation1. 1 Margin notes, such as this one, reference
the body content and highlight technical de-
tails or references for further information.

Navigation of menus and directories are shown using bold italicized type. Any

hierarchical navigation is shown using an arrow to denote a Parent → child
relationship.

Teletype text is used to highlight inputs, variables and system files within the

host environment.



2

Load microSD Card Using Windows

Because Windows does not support reading/writing of Linux filesystems (ext2,

etc.), the partitioning and formatting of the microSD card must be done with

disk images. The disk image contains all of the information required to define

the partition scheme, disk format and file system contents. This includes the

boot partition components (BOOT.bin, devicetree.dtb, etc.) as well as the

root filesystem partition and it’s components.

Format the microSD Card

To load a bootable microSD card with a Snickerdoodle Linux system, the card

must first be formatted. A tool for formatting the microSD card is produced by

the SD Association and can be found at SDCard.org2 . After downloading and 2 https://www.sdcard.org/downloads/

formatter_4installing the SDFormatter software, connect the microSD card to the host ma-

chine and run the SDFormatter.

CAUTION Be sure to check that the drive letter in the SDFormatter is

that of the inserted microSD card to avoid formatting (and erasing) any

drives unintentionally.

Figure 1: SDFormatter V4.0 Interface

S N I C K E R D O O D L E M I C R O S D C A R D C R E AT I O N

https://www.sdcard.org/downloads/formatter_4
https://www.sdcard.org/downloads/formatter_4
https://www.sdcard.org/downloads/formatter_4


3

Before formatting the card, set the FORMAT SIZE ADJUSTMENT to ON in

the Option Settings as shown in Figure 2 . The FORMAT TYPE can be left as

QUICK.

Figure 2: Set Format Options in SDFormatter

After setting the format options, select Format from the SDFormatter inter-

face to start formatting the disk.

Load the microSD Card Image

Before loading the Linux system on the microSD card, first download the system

image. SD card images, as well as Linux system components and filesystems

can be downloaded from krtkl3 . The SD card image represents a 4GB SD card 3 http://krtkl.com/downloads/

but can be loaded onto any size microSD card of 4GB or larger size. The com-

pressed image is much smaller than 4GB as the system does not use nearly

the full size of a 4GB card. After downloading, extract the system image to a

convenient directory that will be accessed when writing the image to the card.

The Win32 Disk Imager utility is used to write the disk image to the freshly

formatted microSD card. Download the utility from SourceForge4 and install it 4 http://sourceforge.net/projects/

win32diskimageron the Windows host.

Figure 3: Win32 Disk Imager Disk Letter Se-
lection

After opening the Win32 Disk Imager, verify the drive letter matches that of

the newly formatted card. By selecting the folder button next to the image file

path, you will be able to navigate to and select the extracted system image file.

After selecting the system image, select Write to begin writing the image to the

microSD card, as shown in Figure 4 .

When the Win32 Disk Imager is finished writing the Linux system to the

microSD card it can be ejected from the Windows host and loaded on Snick-

erdoodle. After mounting the microSD, Snickerdoodle can be powered on and

booted from the microSD card.

S N I C K E R D O O D L E M I C R O S D C A R D C R E AT I O N

http://krtkl.com/downloads/
http://krtkl.com/downloads/
http://sourceforge.net/projects/win32diskimager
http://sourceforge.net/projects/win32diskimager
http://sourceforge.net/projects/win32diskimager


4

Figure 4: Write Linux System Disk Image
with Win32 Disk Imager

Load microSD Card Using OS X

OS X does not have native file system support for Linux filesystems. For this

reason, the microSD card creation process parallels the process for Windows

hosts.

Format the microSD Card

The SD Association supports an SD card formatting utility for OS X machines.

The utility can be downloaded from SDCard.org5 . After downloading and 5 https://www.sdcard.org/downloads/

formatter_4installing the SDFormatter, insert the microSD card and run the SDFormatter

program.

Load the microSD Card Image

Before attempting to copy the Linux system image to the microSD card, verify

the disk location on the OS X host. mount can be used from a terminal to

check the mount point of the newly formatted card. Code Listing 1 shows the

truncated output of the mount command, showing the disk label and /dev tree

mount point. In this example, the disk labeled ’UNTITLED’ is the first and only

partition on /dev/disk4 as it was created during the card formatting step (with

it’s own file path /dev/disk4s1).

Code Listing 1: Verify microSD Card Loca-
tion in OS X

$ mount

...

/dev/disk4s1 on /Volumes/UNTITLED (msdos, local, nodev, nosuid,

noowners)

The formatted partition should be unmounted from the OS X host, before

copying the Linux system image. Rather than using umount, the particularities

of OS X require diskutil unmount be used to unmount the card’s partition.

Code Listing 2: Unmount microSD Card Par-
tition in OS X

$ diskutil unmount /dev/disk4s1

Volume UNTITLED on disk4s1 unmounted

S N I C K E R D O O D L E M I C R O S D C A R D C R E AT I O N

https://www.sdcard.org/downloads/formatter_4
https://www.sdcard.org/downloads/formatter_4
https://www.sdcard.org/downloads/formatter_4


5

CAUTION When loading the system image to the microSD card, do

not include the partition in the output file name. In this example, /dev/disk4s1

is the newly formatted FAT32 partition on /dev/disk4 and so /dev/disk4

is used as the output file for dd.

Code Listing 3: Load Linux System Image to
microSD Card from OS X$ sudo dd if=<image_path> of=/dev/disk4 bs=1m

After loading the image to the microSD card, the card can be ejected using

diskutil eject and is ready to be loaded into Snickerdoodle.

$ sudo diskutil eject /dev/disk4

Disk /dev/disk4 ejected

After loading the microSD card, Snickerdoodle is ready to be powered on

boot from the microSD card.

Create microSD Card Using Linux

From a Linux environment, the microSD card can be created from the individual

system components. This allows for greater flexibility in the configuration of

the system and allows an opportunity to pre-load custom system components

rather than replacing the components in the default configuration image.

Connecting and Locating the microSD Card

The mount command can be used to locate the SD card device, once it has

been connected to the host computer. In the example below, an SD card has

been connected on /dev/sdb1 and mounted at /media/user/UNTITLED.

$ mount

/dev/sda1 on / type ext4 (rw,errors=remount-ro)

proc on /proc type proc (rw,noexec,nosuid,nodev)

sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)

none on /sys/fs/cgroup type tmpfs (rw)

none on /sys/fs/fuse/connections type fusectl (rw)

none on /sys/kernel/debug type debugfs (rw)

...

/dev/sdb1 on /media/user/UNTITLED type vfat

(rw,nosuid,nodev,uid=1000,gid=1000,shortname=mixed,dmask=0077,

utf8=1,showexec,flush,uhelper=udisks2)

S N I C K E R D O O D L E M I C R O S D C A R D C R E AT I O N



6

Partitioning the microSD Card (fdisk)

Before partitioning the SD card, any partitions that have been mounted on the

system must be unmounted. This can be done using the umount command.

$ umount /dev/sdb1

Once the SD card has been located, we can partition it for the Linux system

(BOOT partition) and root filesystem (ROOTFS partition) using fdisk6 . Addi- 6 http://linux.die.net/man/8/fdisk

tional information on fdisk is available from the Linux Documentation Project7 7 http://tldp.org/HOWTO/Partition/

fdisk_partitioning.html. fdisk must be run with root permissions (sudo) using the disk parent as the

argument (do not use the parition number in the argument).

$ fdisk /dev/sdb

CAUTION Do NOT include any
partition number (in the example case
’1’) when running fdisk on the SD
card. ’/dev/sdb’ NOT ’/dev/sdb1’

From within the fdisk interface, we can view the parition table at any time

using the ’p’ command. In this example, an 8GB SD card with a single FAT32

partition is being used and will be re-partitioned for snickerdoodle.

Command (m for help): p

Disk /dev/sdb: 7969 MB, 7969177600 bytes

255 heads, 63 sectors/track, 968 cylinders, total 15564800 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

Device Boot Start End Blocks Id System

/dev/sdb1 8192 15564799 7778304 b W95 FAT32

BOOT Partition

First, a partition must be allocated for the Linux system binaries and files. This

includes BOOT.bin (FSBL, bitstream, U-Boot), uEnv.txt, devicetree.dtb,

and the Linux kernel uImage. The partition size for these files is recommended

to be 128MB in size which translates to an additional 262144, 512 byte sectors.

S N I C K E R D O O D L E M I C R O S D C A R D C R E AT I O N

http://linux.die.net/man/8/fdisk
http://linux.die.net/man/8/fdisk
http://tldp.org/HOWTO/Partition/fdisk_partitioning.html
http://tldp.org/HOWTO/Partition/fdisk_partitioning.html
http://tldp.org/HOWTO/Partition/fdisk_partitioning.html


7

Command (m for help): d

Selected partition 1

Command (m for help): n

Partition type:

p primary (0 primary, 0 extended, 4 free)

e extended

Select (default p): p

Partition number (1-4, default 1): 1

First sector (2048-15564799, default 2048): <RETURN>

Using default value 2048

Last sector, +sectors or +size{K,M,G} (2048-15564799, default

15564799): +262144

The default partition type for fdisk is Linux (type ID 83). The BOOT parti-

tion needs to be formatted as FAT32 (type ID ’C’). Do do this, the ’t’ command

is used:

Command (m for help): t

Partition number (1-4): 1

Hex code (type L to list codes): c

Changed system type of partition 1 to c (W95 FAT32 (LBA))

ROOTFS Partition

Second, a partition for the root filesystem must be created. This partition will be

formatted as a Linux type using type ID 83. This is the default partition type.

Command (m for help): n

Partition type:

p primary (1 primary, 0 extended, 3 free)

e extended

Select (default p): p

Partition number (1-4, default 2): <RETURN>

Using default value 2

First sector (264193-15564799, default 264193): <RETURN>

Using default value 264193

Last sector, +sectors or +size{K,M,G} (264193-15564799, default

15564799): <RETURN>

Using default value 15564799

i
Always check the partition table be-

fore attempting to write it to the disk,
using the ’p’ command.

Before writing the parition table, you should verify the partition layout by

printing it with the ’p’ command. In this example, an 8GB SD card has been

partitioned with a 128MB FAT32 BOOT partition and the rest allocated for a

Linux ROOTFS partition.

S N I C K E R D O O D L E M I C R O S D C A R D C R E AT I O N



8

Command (m for help): p

Disk /dev/sdb: 7969 MB, 7969177600 bytes

255 heads, 63 sectors/track, 968 cylinders, total 15564800 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

Device Boot Start End Blocks Id System

/dev/sdb1 2048 264192 131072+ c W95 FAT32

(LBA)

/dev/sdb2 264193 15564799 7650303+ 83 Linux

Once the partition table has been verified, the ’w’ command can be used to

write the table to the disk:

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.

Formatting Partitions (mkfs/mke2fs)

With a partitioned SD card, the partitions need to be formatted with the nec-

essary filesystem type. For the BOOT partition, the filesystem type is VFAT.

Formatting the BOOT partition can be done using the mkfs.vfat8. To for- 8 Additional information on mkfs/mke2fs

and it’s front end tools can be found
at: http://www.tldp.org/HOWTO/

Partition/formatting.html

mat a FAT32 filesystem on /dev/sdb1 with a ’BOOT’ disk label, the following

command can be used:

$ mkfs.vfat -n BOOT /dev/sdb1

The format for the ROOTFS partition can be done with mke2fs which will

format a Linux partition with an ext2/ext3/ext4 filesystem. To format an ext4

filesystem on /dev/sdb2 with a block size of 1k (1024) and a ’ROOTFS’ disk

label, the following command can be used:

CAUTION When formatting disk
partitions, make sure the disk parti-
tions are NOT mounted.

$ mke2fs -b 1024 -t ext4 -L ROOTFS /dev/sdb2

If the formatting is successful, the following output with be written to the

console (writing superblocks and filesystem accounting information can take

some time depending on the size and speed of the SD card):

S N I C K E R D O O D L E M I C R O S D C A R D C R E AT I O N

http://www.tldp.org/HOWTO/Partition/formatting.html
http://www.tldp.org/HOWTO/Partition/formatting.html


9

mke2fs 1.42.9 (4-Feb-2014)

Filesystem label=ROOTFS

OS type: Linux

Block size=4096 (log=0)

Fragment size=4096 (log=0)

Stride=0 blocks, Stripe width=0 blocks

478208 inodes, 7650300 blocks

382515 blocks (5.00%) reserved for the super user

First data block=1

Maximum filesystem blocks=74973184

934 block groups

8192 blocks per group, 8192 fragments per group

512 inodes per group

Superblock backups stored on blocks:

8193, 24577, 40961, 57345, 73729, 204801, 221185, 401409,

663553,

1024001, 1990657, 2809857, 5120001, 5971969

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

After the partitions have been properly formatted, the SD card must be

ejected and re-connected before moving the Linux boot components and root

filesystem contents to the disk.

$ eject /dev/sdb

BOOT Partition Components

The latest BOOT partition Linux components for Snickerdoodle and Snicker-

doodle Black can be downloaded using git.

$ git clone https://github.com/krtkl/snickerdoodle-linux-prebuilt.git

Alternatively, the sources can be downloaded directly from a web browser

from the krtkl GitHub page9 as a .ZIP file. 9 https://github.com/krtkl/

snickerdoodle-linux-prebuilt

Copy Files to SD Card

After downloading the SD card components

The BOOT components can be installed onto the SD card using the cp

command, starting with BOOT.bin. In this example, the files are copied to

S N I C K E R D O O D L E M I C R O S D C A R D C R E AT I O N

https://github.com/krtkl/snickerdoodle-linux-prebuilt
https://github.com/krtkl/snickerdoodle-linux-prebuilt
https://github.com/krtkl/snickerdoodle-linux-prebuilt


10

the BOOT partition that has been mounted at /media/user/BOOT. As stated

above, the mount command can be used to locate the mount point of the SD

card partitions.

$ cp BOOT.bin /media/user/BOOT

$ cp uEnv.txt /media/user/BOOT

$ cp devicetree.dtb /media/user/BOOT

$ cp uImage /media/user/BOOT

After copying the BOOT components, the sync command should be used

to make sure the system buffers have been flushed and the process of writing

the files to the SD card is complete.

$ sync

ROOTFS Sources

The root filesystem can be extracted directly into the ROOTFS partition us-

ing the ’-C’ argument when extracting the archive contents. An Ubuntu 14.04

filesystem can be downloaded from http://krtkl.com/downloads/. In this

example, the ROOTFS partition is mounted at /media/user/ROOTFS, which

should be checked before attempting to extract the root filesystem. The root

filesystem contains a lot of large packages (ROS, python, etc.) and may take

several minutes to complete the process of writing to the SD card.

$ tar -C /media/user/ROOTFS -xvzf snickerdoodle-ubuntu-14.04.tar.gz

After extracting the root filesystem to the SD card, use the sync command

to flush the system buffers and ensure the write process is complete. Addition-

ally, making sure to unmount the SD card partitions before ejecting will make

certain that any lingering write processes have completed before the SD card

is removed.

$ sync

$ umount /dev/sdb1

$ umount /dev/sdb2

$ eject /dev/sdb

S N I C K E R D O O D L E M I C R O S D C A R D C R E AT I O N

http://krtkl.com/downloads/

	How to Read this Document
	Load microSD Card Using Windows
	Load microSD Card Using OS X
	Create microSD Card Using Linux

