
G E T T I N G S TA R T E D G U I D E

J U N E 1 0 , 2 0 1 6

How to Read this Document

This document makes extensive use of links, references and notices in the

page margins to detail additional information that can be useful while following

the guide.

!
WARNING A warning notice indicates a potential hazard. If care is

not taken to adhere to the safety precautions, damage may be done to

snickerdoodle.

Warnings and cautions will be clearly visible in either the body of the text or in

the margin and must be paid close attention while following the guided steps.

i
Warning, caution and informational

notices, such as this one, may also be
found in the margin.

CAUTION A caution indication denotes a process that requires spe-

cial attention. If the caution is not exercised and the process not adhered

to, failure may result and/or potential damage to snickerdoodle.

Keywords

Keywords and important terms are shown in italicized type. Additional impor-

tant information can be found in the margins of text with superscript notation1. 1 Margin notes, such as this one, reference
the body content and highlight technical de-
tails or references for further information.

Navigation of menus and directories are shown using bold italicized type. Any

hierarchical navigation is shown using an arrow to denote a Parent → child
relationship.

Teletype text is used to highlight inputs, variables and system files within the

host environment.



2

Introduction

This guide is intended to get you started running Linux (Ubuntu port provided

by Linaro and developed by krtkl) on snickerdoodle. This guide uses programs

and utilities on a Linux host computer (or virtual machine) to install a complete

Linux system that snickerdoodle will boot from a microSD card. A Linux (krtkl

recommends the latest LTS release from Ubuntu) system with the ability to

mount a microSD card (UHS Speed Class 3 recommended) is required to install

the Linux system.

Figure 1: SD Card UHS Speed Class Mark-
ing (adapted from https://www.sdcard.

org/consumers/speed/speed_class/)

Formatting SD Card

Locating SD Card on System

The mount command can be used to locate the SD card device, once it has

been connected to the host computer. In the example below, an SD card has

been connected on /dev/sdb1 and mounted at /media/user/UNTITLED.

user@ubuntu:~$ mount

/dev/sda1 on / type ext4 (rw,errors=remount-ro)

proc on /proc type proc (rw,noexec,nosuid,nodev)

sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)

none on /sys/fs/cgroup type tmpfs (rw)

none on /sys/fs/fuse/connections type fusectl (rw)

none on /sys/kernel/debug type debugfs (rw)

none on /sys/kernel/security type securityfs (rw)

udev on /dev type devtmpfs (rw,mode=0755)

devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)

tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)

none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880)

none on /run/shm type tmpfs (rw,nosuid,nodev)

none on /run/user type tmpfs

(rw,noexec,nosuid,nodev,size=104857600,mode=0755)

none on /sys/fs/pstore type pstore (rw)

binfmt_misc on /proc/sys/fs/binfmt_misc type binfmt_misc

(rw,noexec,nosuid,nodev)

systemd on /sys/fs/cgroup/systemd type cgroup

(rw,noexec,nosuid,nodev,none,name=systemd)

gvfsd-fuse on /run/user/1000/gvfs type fuse.gvfsd-fuse

(rw,nosuid,nodev,user=russellbush)

/dev/sdb1 on /media/user/UNTITLED type vfat

(rw,nosuid,nodev,uid=1000,gid=1000,shortname=mixed,dmask=0077,

utf8=1,showexec,flush,uhelper=udisks2)

S N I C K E R D O O D L E G E T T I N G S TA R T E D G U I D E

http://www.linaro.org
http://www.ubuntu.com/download/desktop/
https://www.sdcard.org/consumers/speed/speed_class/
https://www.sdcard.org/consumers/speed/speed_class/


3

Partitioning the SD Card (fdisk)

Before partitioning the SD card, any partitions that have been mounted on the

system must be unmounted. This can be done using the umount command.

$ umount /dev/sdb1

Once the SD card has been located, we can partition it for the Linux system

(BOOT partition) and root filesystem (ROOTFS partition) using fdisk2. fdisk 2 Additional information on fdisk can
be found at: http://tldp.org/HOWTO/

Partition/fdisk_partitioning.html
must be run with root permissions (sudo) using the disk parent as the argument

(do not use the parition number in the argument).

CAUTION Do NOT include any
partition number (in the example case
’1’) when running fdisk on the SD
card. ’/dev/sdb’ NOT ’/dev/sdb1’

$ fdisk /dev/sdb

From within the fdisk interface, we can view the parition table at any time us-

ing the ’p’ command. In this example, an 8GB SD card with a single FAT32

partition is being used and will be re-partitioned for snickerdoodle.

Command (m for help): p

Disk /dev/sdb: 7969 MB, 7969177600 bytes

255 heads, 63 sectors/track, 968 cylinders, total 15564800 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

Device Boot Start End Blocks Id System

/dev/sdb1 8192 15564799 7778304 b W95 FAT32

BOOT Partition

First, a partition must be allocated for the Linux system binaries and files. This

includes BOOT.bin (FSBL, bitstream, U-Boot), uEnv.txt, devicetree.dtb,

and the Linux kernel uImage. The partition size for these files is recommended

to be 128MB in size which translates to an additional 262144, 512 byte sectors.

Command (m for help): d

Selected partition 1

Command (m for help): n

Partition type:

S N I C K E R D O O D L E G E T T I N G S TA R T E D G U I D E

http://tldp.org/HOWTO/Partition/fdisk_partitioning.html
http://tldp.org/HOWTO/Partition/fdisk_partitioning.html


4

p primary (0 primary, 0 extended, 4 free)

e extended

Select (default p): p

Partition number (1-4, default 1): 1

First sector (2048-15564799, default 2048): <RETURN>

Using default value 2048

Last sector, +sectors or +size{K,M,G} (2048-15564799, default

15564799): +262144

The default partition type for fdisk is Linux (type ID 83). The BOOT partition

needs to be formatted as FAT32 (type ID ’C’). Do do this, the ’t’ command is

used:

Command (m for help): t

Partition number (1-4): 1

Hex code (type L to list codes): c

Changed system type of partition 1 to c (W95 FAT32 (LBA))

ROOTFS Partition

Second, a partition for the root filesystem must be created. This partition will be

formatted as a Linux type using type ID 83. This is the default partition type.

Command (m for help): n

Partition type:

p primary (1 primary, 0 extended, 3 free)

e extended

Select (default p): p

Partition number (1-4, default 2): <RETURN>

Using default value 2

First sector (264193-15564799, default 264193): <RETURN>

Using default value 264193

Last sector, +sectors or +size{K,M,G} (264193-15564799, default

15564799): <RETURN>

Using default value 15564799

i
Always check the partition table be-

fore attempting to write it to the disk,
using the ’p’ command.

Before writing the parition table, you should verify the partition layout by printing

it with the ’p’ command. In this example, an 8GB SD card has been partitioned

with a 128MB FAT32 BOOT partition and the rest allocated for a Linux ROOTFS

partition.

Command (m for help): p

S N I C K E R D O O D L E G E T T I N G S TA R T E D G U I D E



5

Disk /dev/sdb: 7969 MB, 7969177600 bytes

255 heads, 63 sectors/track, 968 cylinders, total 15564800 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

Device Boot Start End Blocks Id System

/dev/sdb1 2048 264192 131072+ c W95 FAT32

(LBA)

/dev/sdb2 264193 15564799 7650303+ 83 Linux

Once the partition table has been verified, the ’w’ command can be used to

write the table to the disk:

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.

Formatting Partitions (mkfs/mke2fs)

With a partitioned SD card, the partitions need to be formatted with the nec-

essary filesystem type. For the BOOT partition, the filesystem type is VFAT.

Formatting the BOOT partition can be done using the mkfs.vfat3. To format 3 Additional information on mkfs/mke2fs

and it’s front end tools can be found
at: http://www.tldp.org/HOWTO/

Partition/formatting.html

a FAT32 filesystem on /dev/sdb1 with a ’BOOT’ disk label, the following com-

mand can be used:

$ mkfs.vfat -n BOOT /dev/sdb1

The format for the ROOTFS partition can be done with mke2fs which will format

a Linux partition with an ext2/ext3/ext4 filesystem. To format an ext4 filesystem

on /dev/sdb2 with a block size of 1k (1024) and a ’ROOTFS’ disk label, the

following command can be used:

CAUTION When formatting disk
partitions, make sure the disk parti-
tions are NOT mounted.

$ mke2fs -b 1024 -t ext4 -L ROOTFS /dev/sdb2

If the formatting is successful, the following output with be written to the console

(writing superblocks and filesystem accounting information can take some time

depending on the size and speed of the SD card):

S N I C K E R D O O D L E G E T T I N G S TA R T E D G U I D E

http://www.tldp.org/HOWTO/Partition/formatting.html
http://www.tldp.org/HOWTO/Partition/formatting.html


6

mke2fs 1.42.9 (4-Feb-2014)

Filesystem label=ROOTFS

OS type: Linux

Block size=4096 (log=0)

Fragment size=4096 (log=0)

Stride=0 blocks, Stripe width=0 blocks

478208 inodes, 7650300 blocks

382515 blocks (5.00%) reserved for the super user

First data block=1

Maximum filesystem blocks=74973184

934 block groups

8192 blocks per group, 8192 fragments per group

512 inodes per group

Superblock backups stored on blocks:

8193, 24577, 40961, 57345, 73729, 204801, 221185, 401409,

663553,

1024001, 1990657, 2809857, 5120001, 5971969

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

After the partitions have been properly formatted, the SD card must be ejected

and re-connected before moving the Linux boot components and root filesys-

tem contents to the disk.

$ eject /dev/sdb

Sources

BOOT Partition Components

The latest BOOT partition Linux components for Snickerdoodle and Snicker-

doodle Black can be downloaded using git.

$ git clone

https://github.com/krtkl/snickerdoodle-linux-prebuilt.git

Alternatively, the sources can be downloaded directly from a web browser from

the krtkl GitHub page as a .ZIP file.

S N I C K E R D O O D L E G E T T I N G S TA R T E D G U I D E

https://github.com/krtkl/snickerdoodle-linux-prebuilt


7

Figure 2: Download prebuilt Linux compo-
nents from GitHub

Copy Files to SD Card

After downloading the SD card components

The BOOT components can be installed onto the SD card using the cp com-

mand, starting with BOOT.bin. In this example, the files are copied to the BOOT

partition that has been mounted at /media/user/BOOT. As stated above, the

mount command can be used to locate the mount point of the SD card parti-

tions.

$ cp BOOT.bin /media/user/BOOT

$ cp uEnv.txt /media/user/BOOT

$ cp devicetree.dtb /media/user/BOOT

$ cp uImage /media/user/BOOT

After copying the BOOT components, the sync command should be used to

make sure the system buffers have been flushed and the process of writing the

files to the SD card is complete.

$ sync

ROOTFS Sources

The root filesystem can be extracted directly into the ROOTFS partition us-

ing the ’-C’ argument when extracting the archive contents. In this example,

the ROOTFS partition is mounted at /media/user/ROOTFS, which should be

checked before attempting to extract the root filesystem. The root filesystem

contains a lot of large packages (ROS, python, etc.) and may take several min-

S N I C K E R D O O D L E G E T T I N G S TA R T E D G U I D E



8

utes to complete the process of writing to the SD card.

$ tar -C /media/user/ROOTFS -xvzf snickerdoodle-ubuntu-14.04.tar.gz

After extracting the root filesystem to the SD card, use the sync command to

flush the system buffers and ensure the write process is complete. Additionally,

making sure to unmount the SD card partitions before ejecting will make cer-

tain that any lingering write processes have completed before the SD card is

removed.

$ sync

$ umount /dev/sdb1

$ umount /dev/sdb2

Now that the microSD card has been partitioned, formatted and populated with

the Linux files, it is ready to be installed onto snickerdoodle and booted. Install

the microSD card into the card cage (J3) and connect power on either the micro

USB connector (J1) or the power pins on J2. The familiar Ubuntu boot console

should start and you will have access to a terminal to begin configuration and

development of snickerdoodle.

Figure 3: snickerdoodle SD Card Connector
with Installed microSD Card

Welcome to Ubuntu 14.04 (GNU/Linux 3.14.0-xilinx-dirty armv7l)

* Documentation: http://www.ubuntu.com

root@snickerdoodle:~/workspace# python hello_world.py

Congratulations! You’ve run your first python script on snickerdoodle!

S N I C K E R D O O D L E G E T T I N G S TA R T E D G U I D E


	How to Read this Document
	Introduction
	Formatting SD Card
	Formatting Partitions (mkfs/mke2fs)
	Sources

