
Fusion-Core ISA Definition: Revision 0.2.1

Dylan Wadler

March 1, 2018

1

Contents

I Administrative 5

1 Change log 5

2 Introduction 5
2.1 About . 5
2.2 Goals . 6
2.3 Conventions . 6

II Programming Information 7

3 Register File Definitions 7
3.1 General Purpose Registers . 8
3.2 Special Purpose Registers . 9
3.3 Special Purpose Register Definitions . 10

3.3.1 System Registers . 10
3.3.2 Supervisor Registers . 14

4 Permission Levels 15
4.1 User Levels . 15

4.1.1 Low User Level . 15
4.1.2 High User Level . 15

4.2 Supervisor Levels . 15
4.2.1 Low Supervisor Level . 15
4.2.2 High Supervisor Level . 15

4.3 Hypervisor Levels . 16

5 Memory 17
5.1 Memory Locations for Vector Table . 17

5.1.1 Interrupt Vector Table . 17
5.1.2 Exception List . 17

6 Instruction Usage 18
6.1 Integer . 18
6.2 Immediate . 19
6.3 Load/Store . 20
6.4 Branch/Jump . 22
6.5 System . 23
6.6 Macros . 24

7 Co-Processor Instruction Usage 26
7.1 Math Unit . 26
7.2 Vector Operations Unit . 26
7.3 Memory Management Unit . 26
7.4 Inter-Processor Communications Unit . 26

2

III Instructions 27

8 Instruction Definitions 27
8.1 Instruction Format Types . 27

8.1.1 Integer . 28
8.1.2 Immediate . 29
8.1.3 Load/Store . 30
8.1.4 Branch/Jump . 32
8.1.5 System Instructions . 33
8.1.6 Co-Processor . 34

8.2 Opcodes . 35
8.2.1 List of OPCodes . 35

8.3 List of Instructions . 37
8.3.1 Co-Processor . 38

9 Exceptions and Interrupts 39
9.1 Exceptions . 39

9.1.1 User Level . 39
9.1.2 Supervisor Level . 39

9.2 Interrupts . 39
9.2.1 User Level . 39
9.2.2 Supervisor Level . 39

IV Co-Processors 40

10 Co-Processor Overview 40
10.1 Co-Processor Interface . 40

10.1.1 Decode unit Connections . 41
10.1.2 Co-Processor Conventions . 41
10.1.3 Register Connections . 41

10.2 Interface Connection Definitions . 41
10.3 Adding custom Co-Processor . 41
10.4 List of Co-Processors . 41

10.4.1 Floating Point . 41
10.4.2 System Unit . 41
10.4.3 Memory Management Unit . 41
10.4.4 Multiprocessor Communication Unit 41

11 Global Register File 41

12 Recommended Co-Processors 41
12.1 Math Unit . 42

12.1.1 Registers . 42
12.1.2 Instructions . 42

12.2 System Unit . 42
12.2.1 Registers . 42
12.2.2 Instructions . 42

12.3 Memory Management Unit . 42

3

12.3.1 Registers . 42
12.3.2 Instructions . 42

12.4 Inter-Processor Communications Unit . 42
12.4.1 Registers . 42
12.4.2 Instructions . 42

4

Part I

Administrative

1 Change log

Version 0.2.1 Updated Load Immediate DSEL values to create simpler decode control sig-
nals. Fixed various issues in document to be consistent with other sections. The binary
representation table, Load Immediate, and System sections were modified.

Version 0.2 Added comprehensive list of Instruction usage for programmers. Changed opcode
definitions to create simpler decode, with availability to create new instructions from the
existing opcodes. Including more information about special purpose registers.

Version 0.1 Initial Definition of the Instruction Set Architecture

2 Introduction

2.1 About

Introduction The Fusion-Core ISA is dedicated to creating an easily expandable architecture
without having to recompile a program’s binary. By use of defining an easy interface with
a simple core instruction set, this allows for more freedom in implementation. High end
processors and microcontrollers would only require slight variations in configuration, as
their core would remain identical save for easy to maintain and scalable co-processors.

Main Ideas The architecture is Big endian, with a core instruction set that is RISC, but the
co-processors do not need to adhere to the RISC philosophy. This allows for more flexibility
in design, and possibly faster core clock speeds as the pipeline would depend on smaller
amounts of logic. Only the instructions provided in this document are to be implemented
in the main processor. The co-processors defined in this document are recommended, but not
required for normal function. Co-processor documentation is to be provided by the creator,
and should adhere to the standards of clarity and conciseness such that it can be easily
implemented from the documentation alone in a HDL.

64 Bit instructions: At this moment in time, the Fusion-Core ISA is only a 32 bit ISA. Due
to the focus on co-processors, older implementations could easily be modified to include 64
bit operations.

Co-Processors The Co-Processor interface is currently defined by setting the MSB within
the OP Code field of an instruction, to decrease complexity of the Decode unit. In doing
so, this allows for co-processor code to be written in the same memory space as the main
processor code. In the current iteration, up to 32 different co-processors can be used, with
the option for dynamic or static allocation of the OP Codes. The interface for co-processors
is explained further in the dedicated section.

5

2.2 Goals

The main goal is to provide an architecture with a simple decoding unit and the ability to
utilize a single binary for all implementations of the architecture. In order to do this, a
strict implementation of the main core is outlined in this document, along with registering
co-processors to provide consistency. Mechanisms to allow for co-processor instructions to
be executed in software are also available; more information is available in the respected
section.

2.3 Conventions

Document Conventions: Example code will be shown with monospace text. General purpose
registers will be denoted with $R# where # is the number of the register. Special purpose
registers will be written with bold text.

6

Part II

Programming Information

3 Register File Definitions

This section goes over the different registers available in the ISA. Each register file
name begins with ”REGF”, such as the first General Purpose Register File being REGFGP0. Any
additional register files require the number after the name of the register file. Register
files with additional numbers after them are bank switched to reduce space, hence why the
number is required to denote the register file space used.

7

3.1 General Purpose Registers

32 general purpose registers that are 32 bits wide are available, as shown in Figure 1,
in the previous section. There is a distinction between the System Register File and the
General Purpose Register File, as during certain syscall instructions, the register files
are bank switched. Only GP0 through GP7 are saved, for passing between the different banks.

While it is not defined by the architecture, larger general purpose registers can be used
instead of 32 bit wide registers. The System Register File allows 8 bit addressing for the
registers to be accessed, in order to utilize more of the memory space. If larger registers
are needed, consider using a co-processor to for instructions that require larger operands.
This provides code compatibility between different implementations.

Figure 1: General Purpose Registers
GPREGF

Register Register Name
$R0 ZERO
$R1 SP
$R2 FP
$R3 GP
$R4 RA
$R5 ARG0
$R6 ARG1
$R7 ARG2
$R8 ARG3
$R9 RVAL0
$R10 RVAL1
$R11 GR0
$R12 GR1
$R13 GR2
$R14 GR3
$R15 GR4
$R16 GR5
$R17 GR6
$R18 GR7
$R19 GR8
$R20 GR9
$R21 GR10
$R22 TMP0
$R23 TMP1
$R24 TMP2
$R25 TMP3
$R26 TMP4
$R27 TMP5
$R28 TMP6
$R29 TMP7
$R30 HI0
$R31 LOW0

SYSREGF
Register Register Name
$R0 ZERO
$R1 SP1
$R2 FP1
$R3 GP1
$R4 RA1
$R5 SYSARG0
$R6 SYSARG1
$R7 SYSARG2
$R8 SYSARG3
$R9 SYSARG4
$R10 SYSARG5
$R11 SYSRVAL0
$R12 SYSRVAL1
$R13 SYSRVAL2
$R14 SYSRVAL3
$R15 SYSRVAL4
$R16 GPR0
$R17 GPR1
$R18 GPR2
$R19 GPR3
$R20 GPR4
$R21 GPR5
$R22 GPR6
$R23 GPR7
$R24 SYSTMPR0
$R25 SYSTMPR1
$R26 SYSTMPR2
$R27 SYSTMPR3
$R28 SYSTMPR4
$R29 SYSTMPR5
$R30 SYSREGHI0
$R31 SYSREGLOW0

8

3.2 Special Purpose Registers

The special registers are sorted between the System Registers and the Supervisor Registers.
The system registers provide simple configuration values and some read-only registers to
give the programmer information about the implementation. The registers defined in this
manual are the bare minimum special purpose registers, and should be included for code
compatibility.
The supervisor registers are aimed at higher level functions required for operating system
environments. They are not essential for operation, and can either be partially implemented
or not at all. The optional parts will be noted in the register descriptions.

Figure 2: System Registers

System Registers
Register Name Description Width (bytes) Address (Hex)
CPUREV CPU Revision 1 0x00000000
CPNUM Co-Processor Number 1 0x00000001
STAT Status Register 1 0x00000002
n/a RESERVED 1 0x00000003
OPCARP Opcode Registration Table Pointer 4 0x00000004
CPIDTP Co-Processor ID Table Pointer 4 0x00000008
UINTEN User Interrupt Enable 4 0x0000000c
RPTINFO Running Process Thread Info 4 0x00000010
RPID Running Process ID 2 0x00000012

Figure 3: Supervisor Registers

Supervisor Registers
Register Name Description Address (Hex)
SMSTAT Supervisor mode status 0x00000000
RPCPR0 Running Process Pointer 0x00000004
RPITP Running Process Info Table Pointer 0x00000008
HTINFOP Hardware Thread Info Table Pointer 0x0000000c
HTCTLP Hardware Thread Control Table Pointer 0x00000010
ECODE Exception Code 0x00000014
SYSCTP System Call Table Pointer 0x00000015
n/a RESERVED 0x00000018

9

3.3 Special Purpose Register Definitions

3.3.1 System Registers

CPUREV: CPU Revision Register

7 4 3 0

Major CPU Revision Minor CPU Revision

The CPUREV register holds the revision number for the processor implementation. The upper
4 bits hold the major revision number, the lower 4 bits the minor revision number. This
number is hard coded by the implementation. The major revision number should refer to the
company implementation, with the minor revision number is for the implementation’s revision.

Any permission level can read this register. Since it should be hard coded, there is no
way to write to this register.

CPNUM: Co-Processor Number Register

7 0

Number of Co-processors

The CPNUM register simply holds the number of different types of co-processors in the
processor implementation. This register is used for finding out how many CPIDs to check,
for determining whether to use microcode or the co-processor hardware available for each
co-processor.

This register can be read by with any permission level. This register should be hard coded,
so no writes are possible.

10

STAT: Status Register

7 6 5 4 3 2 1 0

Z OV PEMA PML2 PML1 PML0 INTN SPCP

STAT Read only register for various processor state information. The flags are
explained in detail below.

Z Zero Flag; Indicates whether the processed instruction’s resulted in zero.
Read Only. The flag is set to 0 when the ALU calculation is 1, and 0 when
the output is non-zero.

OV Overflow Flag; Indicated whether the processed instruction’s result
overflowed the 32 bit space. Read only.
The overflow flag is set to the output of the carry out of the ALU.
With addition, this would set the bit to a 1 when true.
For subtraction, the inverse is true.

PML Permission Level; Inidcates the running process’ permission level. Read only.
PML Description

000 Low User Level
001 High User Level
010 Low Supervisor Level
011 High Supervisor Level
100 Low Hypervisor Level
101 High Hypervisor Level
110 Reserved
111 Top Hypervisor Level

The permission levels are explained in more detailed in their dedicated section.
PEMA Permission Accepted; Indictates whether a privaledged system call

request was accepted. Read only
GINE Global Interrupt Enable; Indicates whether interrupts are enabled. Read/Write
SPCP Support CoProcessors; Indicates whether co-processor code is recognized as

illegal instruction or is handled by an interrupt. (0 is illegal, 1 is
interrupt handled) Read/Write.

The STAT register provides the programmer with various information about the current state
of the processor.

In order to write to this register the bits that are defined as read only should be set to 0.

Optional In the event that the permission levels are not needed, they should be hard coded
to 0x7, the highest permission level to avoid porting code. PEMA should also be hardcoded
to a logic high for the same reasons stated.

11

OPCARP: Opcode Registration Table Pointer Register

31 0

Address

The OPCARP register is a pointer for the Opcode Registration Table. This table exists to
map co-processor opcodes to available opcodes in the processor. It is not necessary for the
table to be hard coded, and this option is left up to the implementation.

Only permission levels higher than or equal to the High Supervisor Level can read or write
to this register. If this register is not configured correctly before running an Operating
System or bare-metal program, unintentional CPMI interrupts may occur with no proper service
routine.

CPIDTP: Co-Processor ID Table Pointer Register

31 0

Address

The CPIDTP register is a pointer for the Co-Processor ID Table. This table holds all
co-processor IDs to allow the programmer to know how to handle software implementations of
various co-processors.

All permission levels can read from the CPIDTP register. Only permission levels higher
than the High Supervisor Level can write to this register, if it has not been hard coded.

UINTEN: Interrupt Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NA NA NA NA NA NA NA NA NA NA NA NA NA NA ROI CPMI

The UINTEN register holds the settings for enabling various interrupts. More information
about each interrupt is available in the interrupt section. The spots that are blank are
usable by the implementation, while spots marked ’NA’ are reserved for future use. Setting
a bit field to 1 enables the interrupt vector, after ensuring that the GINE bit in STAT is
set.

12

RPTINFO: Running Process Thread Info Register

31 16 15 8 7 0

PPID CHPID RESERVED

The RPTINFO register provides information about a process’s threads. This information
includes information for parent and child processes. The register fields are described in
detail below.

PPID Parent Process ID. Holds the parent’s process ID.
CHPID Child Process ID. The current thread number is stored here.

256 total threads are currently possible with using this scheme.
RESERVED Reserved for future use.

All permission levels can read this register. Only permission levels equal to or higher
than the High Supervisor Levels can write to this register.

RPID: Running Process ID Register

16 0

ID number

The RPID register holds the running process’ ID number. This register is to be set by the
kernel, and is not necessary otherwise. All permission levels can read from the register.
Only permission levels equal to or higher than the High Supervisor Levels can write to this
register.

13

3.3.2 Supervisor Registers

This section is still being developed. It will be updated in the future.

14

4 Permission Levels

The various permission levels are designed to allow for protected execution between user
space, a kernel, and virtual environments. Permission levels are changed through dedicated
instructions to increase or decrease the permission level counter. System calls can change
the permission level in order to execute specific functions, but can be revoked in order
to keep security. The individual function calls can be defined in the System Call Function
Pointer Table (SYSFPT).

On boot, the default permission level is initialized to the highest permission level in
order to properly configure the processor. There are no restrictions to access. However,
after configuration the permission level should be lowered as required to ensure secure
execution.

4.1 User Levels

4.1.1 Low User Level

User space processes are designed to run in this permission level. Write access to supervisor
registers is revoked, and all modifying system calls are checked for allowed execution. Low
priority, non time sensitive applications, high security risk applications should be run at
this level. Since the Low User Level is the most restrictive priority level, in the event
of a illegal operation by the application the processor should attempt to revert to a state
before the illegal action and either kill or halt the offending process in order to prevent
further illegal actions. Halting the process should be used to determine more information
about the illegal action, while killing the process is ideal for more critical situations.

4.1.2 High User Level

This user level is designed to keep some security between user space and supervisor space,
whiling loosening restrictions. Only reads are allowed to system and supervisor registers,
and a limited number of system calls will not need to be verified. The verified system calls
are specified in the 8 system call registers: SCPMHULX. Time critical user space processes,
trusted system call saturated processes, and processes that require reading system and
supervisor registers should use this permission level. registers.

4.2 Supervisor Levels

4.2.1 Low Supervisor Level

This permission level allows reads and writes to most system registers, with few restrictions.
Hardware drivers, real time processes, and kernel tasks that do not require low level
configuration should use this level.

4.2.2 High Supervisor Level

This permission level is for unrestricted access for operating system environments. Essential
Kernel processes and bare-metal embedded applications are examples for using this permission
level. All configuration registers are available, only hypervisor configuration and actions

15

are restricted. If the hypervisor system is not implemented, this level is the highest
permission level.

4.3 Hypervisor Levels

This section is still under development. At this time, the Hypervisor levels simply allow
access to all functions of a processor, including the virtualization features. Since the
virtualization functions are not defined yet, this is a placeholder for the time being.

16

5 Memory

At this point in time, the ISA only handles 32 bit addresses. With memory capacity
increasing in size as time goes on, this may change.

The Fusion-ISA uses a modified Harvard architecture, such that the programmer should have
the appearance of a Harvard architecture. Compliance to this is not strict, as any variation
in between is allowed, but the separation between data and instruction memory should be
made.

5.1 Memory Locations for Vector Table

5.1.1 Interrupt Vector Table

The table below is the definition for the Interrupt Vectors. The vectors are padded by two
addresses in order to give enough space for a call macro, which expands to two instructions.
Additional interrupt vectors can be created, though the ones specified are necessary.

Address (32 bit) Name Definition

0x0000 Reset Reset processor

0x0008 CPMI Co-Processor Microcode Interrupt

0x0010 ROI Register Overflow (Arithmetic)

0x0018 RESERVED

0x0020 RESERVED

0x0028 RESERVED

Figure 4: Interrupt Vector Table

5.1.2 Exception List

Exception Code Name Definition

0x0000 INSFPEM Insufficient Permissions

0x0001 MISADDR Misaligned Address

0x0002 HALT Halt Request

0x0003 PTERM Terminate Process

0x0004 PKILL Kill Process

0x0005 PEXIT Process Exit (End)

0x0006 TTERM Terminate Thread

0x0007 TKILL Kill Thread

0x0008 TEXIT Exit Thread (End)

0x0009 INVSYS Invalid System Call

0x000a INVPR Invalid Permission Request

Figure 5: Exception List

17

6 Instruction Usage

This section will go over programming use of the instructions including the affects on the
processor. Information on the instruction encodings and list of binary representations of
each instruction is available in the ’Instructions’ Section.

6.1 Integer

The following instructions operate on two registers, RSa and RSb, and store the result
into Rd. The Z and OV flags are affected by the output of the instructions listed below.
Overflows of register operations can be handled by the program, or the processor by checking
the OV flag in the STAT register, or enabling the ROI interrupt. The Z flag is available
as well to the programmer, but it does not have it’s own interrupt to use. Since branch
instructions exist to check if a register is equal to zero, the Z flag does not serve a
purpose at this time.

Since arithmetic functions are simple to explain, the following table will denote the
operands and function of the Integer instructions.

Integer Instructions

Instruction Name Definition Usage

add Adds RSa and RSb, result stored in Rd add $Rd, $RSa, $RSb
sub Subtracts RSb from RSa, result stored in Rd sub $Rd, $RSa, $RSb
addu Adds RSa and RSb, result stored in Rd addu $Rd, $RSa, $RSb

Does not affect OV flag

subu Subtracts RSb from RSa, result stored in Rd subu $Rd, $RSa, $RSb
Does not affect OV flag

not Logically inverts RSa, result stored in Rd not $Rd, $RSa
and Logic AND operation on RSa and RSb, result and $Rd, $RSa, $RSb

stored in Rd

or Logic OR operation on RSa and RSb, or $Rd, $RSa, $RSb
result stored in Rd

xor Logic XOR operation on RSa and RSb, xor $Rd, $RSa, $RSb
result stored in Rd

sal Arithmetic Shift RSa Left by the value of RSb, sal $Rd, $RSa, $RSb
result stored in Rd

sar Arithmetic Shift RSa Right by the value of RSb, sar $Rd, $RSa, $RSb
result stored in Rd

sll Logic Shift RSa Left by the value of RSb, sll $Rd, $RSa, $RSb
result stored in Rd

slr Logic Shift RSa Right by the value of RSb, slr $Rd, $RSa, $RSb
result stored in Rd

comp Compares the values of RSa and RSb. comp $Rd, $RSa, $RSb
Sets Rd to 0x0 if equal,
1 if RSa is greater than RSb,
and -1 if RSa is less than RSb

18

6.2 Immediate

Similar to the Integer instructions, the Immediate instructions perform arithmetic oper-
ations on the RSa register and a 12 bit immediate. The table shown below describes the
instructions available.

Immediate Instructions

Instruction Name Definition Usage

addi Adds RSa and Immediate, result stored in Rd addi $Rd, $RSa, 0xfff
subi Subtracts Immediate from RSa, result stored in Rd subi $Rd, $RSa, 0xfff
addui Adds RSa and Immediate, result stored in Rd addui $Rd, $RSa, 0xfff

Does not affect OV flag

subui Subtracts Immediate from RSa, result stored in Rd subui $Rd, $RSa, 0xfff
Does not affect OV flag

noti Logically inverts Immediate, result stored in Rd noti $Rd, 0xfff
andi Logic AND operation on RSa and Immediate, andi $Rd, $RSa, 0xfff

result stored in Rd

ori Logic OR operation on RSa and Immediate, ori $Rd, $RSa, 0xfff
result stored in Rd

xori Logic XOR operation on RSa and Immediate, xori $Rd, $RSa, 0xfff
result stored in Rd

sali Arithmetic Shift RSa Left by the Immediate value, sali $Rd, $RSa, 0xfff
result stored in Rd

sari Arithmetic Shift RSa Right by the Immediate value, sari $Rd, $RSa, 0xfff
result stored in Rd

slli Logic Shift RSa Left by the Immediate value, slli $Rd, $RSa, 0xfff
result stored in Rd

slri Logic Shift RSa Right by the Immediate value, slri $Rd, $RSa, 0xfff
result stored in Rd

compi Compares the RSa and the Immediate value. compi $Rd, $RSa, 0xfff
Sets Rd to 0x0 if equal, 1 if RSa is greater than the
Immediate value, and -1 if RSa is less
than the Immediate value

19

6.3 Load/Store

The Load Instructions feature a 14 bit immediate offset value, with a base address of the
value of RSa. Since the architecture is big endian, the byte aligned address refers to the
most significant byte. When reading values less than 32 bits wide, the upper bytes are set
to zeros. For example, when loading a two byte value into Rd, the address in RSa and the
next byte will be placed into the lower two bytes of Rd.

Load Instructions

Instruction Name Definition Usage

lw Reads a 4 byte value from Memory at address RSa lw $Rd, 0x3fff($RSa)
with a 14 bit Immediate offset, puts result in Rd

lh Reads a 2 byte value from Memory at address RSa lw $Rd, 0x3fff($RSa)
with a 14 bit Immediate offset, puts result in Rd

lb Reads a 1 byte value from Memory at address RSa lw $Rd, 0x3fff($RSa)
with a 14 bit Immediate offset, puts result in Rd

lth Reads a 3 byte value from Memory at address RSa lw $Rd, 0x3fff($RSa)
with a 14 bit Immediate offset, puts result in Rd

The Store Instructions are similar in nature to the Load instructions, with a 14 bit
immediate value offset to the base address of $RSa. The value of $RSb will be written to
the address calculated from the aforementioned sources. For writing values smaller than 32
bits wide, the lower bytes will be written in a big endian fashion to memory. For example,
writing a two byte value to memory, would take the lower two bytes of $RSb, and write the
higher byte to the address calculated and the lower byte to the address calculated plus 1.

Store Instructions

Instruction Name Definition Usage

sw Writes the value of RSb at address RSa lw $RSb, 0x3fff($RSa)
with a 14 bit Immediate offset.

sh Writes the lower two bytes of RSb lw $RSb, 0x3fff($RSa)
at address RSa with a 14 bit Immediate offset.

sb Writes the least significant byte of RSb lw $RSb, 0x3fff($RSa)
at address RSa with a 14 bit Immediate offset.

sth Writes the lower three bytes of RSb lw $RSb, 0x3fff($RSa)
at address RSa with a 14 bit Immediate offset.

20

The Load Immediate Instructions are for putting immediate values into registers. A 16 bit
immediate value is stored into Rd, with variations on register file and location within the
register. For unsigned upper immediate loads, only the upper 2 bytes are overwritten. This
is to allow function calls to only take 2 instructions, and 1 register. All other load
immediate instructions overwrite the entire register.

Load Immediate Instructions

Instruction Name Definition Usage

li Put Immediate value into the li $Rd, 0xffff
lower two bytes of Rd in the GPREGF

lui Put Immediate value into the lui $Rd, 0xffff
upper two bytes of Rd in the GPREGF

lni Put unsigned Immediate value into the lni $Rd, 0xffff
lower two bytes of Rd in the GPREGF

luni Put unsigned Immediate value into the luni $Rd, 0xffff
upper two bytes of Rd in the GPREGF

lgi Put Immediate value into the lgi $Rd, 0xffff
lower two bytes of Rd in the GLBREGF

lugi Put Immediate value into the lugi $Rd, 0xffff
upper two bytes of Rd in the GLBREGF

lngi Put unsigned Immediate value into the lngi $Rd, 0xffff
lower two bytes of Rd in the GLBREGF

lungi Put unsigned Immediate value into the lungi $Rd, 0xffff
upper two bytes of Rd in the GLBREGF

lsi Put Immediate value into the lsi $Rd, 0xffff
lower two bytes of Rd in the SYSREGF

lusi Put Immediate value into the lusi $Rd, 0xffff
upper two bytes of Rd in the SYSREGF

lnsi Put unsigned Immediate value into the lnsi $Rd, 0xffff
lower two bytes of Rd in the SYSREGF

lunsi Put unsigned Immediate value into the lunsi $Rd, 0xffff
upper two bytes of Rd in the SYSREGF

21

6.4 Branch/Jump

The Branch Instructions conditionally change the Program Counter based off of the operation
of RSa and RSb. The 14 bit immediate field is PC relative to the address of the branch
instruction.

Branch Instructions

Instruction Name Definition Usage

beq Branch to PC relative Immediate address beq $RSa, $RSb, 0x3fff
when RSa and RSb are equal

bne Branch to PC relative Immediate address bne $RSa, $RSb, 0x3fff
when RSa and RSb are not equal

bgt Branch to PC relative Immediate address bgt $RSa, $RSb, 0x3fff
when RSa is greater than RSb

blt Branch to PC relative Immediate address blt $RSa, $RSb, 0x3fff
when RSa is less than RSb

The Jump Instructions change the Program Counter with a 21 bit immediate relative offset.
The immediate is relative to the address of the jump instruction. Jump register instructions
are absolute, and do not have a relative immediate. The value of RSa is used as the base
address. Jump instructions that link save the return address into RA. The return address is
the next 4 byte aligned address after the jump instruction.

Jump Instructions

Instruction Name Definition Usage

j PC relative jump j 0x1fffff
jal PC relative jump, save return address jal 0x1fffff
jr Jump register instruction, address calculated by jr 0x1fffff($RSa)

immediate field plus RSa, save return address

jrl Jump register instruction, address calculated by jrl 0x1fffff($RSa)
immediate field plus RSa, save return address

22

6.5 System

The system instructions are more complex, but designed to utilize similar features to
the rest of the main core or simplistic implementations of quick control sequences. Each
instruction will get it’s own paragraph due to the nature of the instructions not having a
lot of similarities between them.

Name Usage

syscall syscall 0xff
sysret sysret

The system call and system return instructions are used for their named purpose. The
number used for the system calls are created in the System Call Table, which defines the
address for system call routines. The table pointer should be created before a system call
is made, otherwise a Invalid System Call exception will be raised. Permissions can be set
for various system calls within the System Call Table, and the programmer should ensure that
the permission level is adequate for using a system call. If permissions are adequate, the
permission level will be raised appropriately and start executing the system call routine.

The sysret instruction should be placed at the end of the system call routine in order to
switch back to the user space register file as well as lowering permissions.

Name Usage

stspr stspr $RSa, SPR
ldspr ldspr $Rd, SPR

These instructions are for writing and reading to special purpose registers, respectively.
The special purpose register address is put into the immediate field. Depending on the
permission level setting of the registers, an Invalid Permission Level exception may be
raised. Refer to the specific registers to determine if the permission level is adequate.

Name Usage

sync sync

The sync instruction is for ensuring memory synchronization. After the sync function is
executed, the preceding instructions finish executing and all pending memory accesses to
finish. The result allows a clean transition for context switches.

23

Name Usage

lock lock $Rd, $RSa
test test $Rd, $RSa

The test and lock instructions provide exclusivity in multi-processor configurations, and
between co-processors. The value in RSa is the address of the resource or memory location,
and the success of the action is placed in Rd. If successful, the result will be zero. If
unsuccessful, the resource that was attempted to be accessed will put an error code within
Rd. The error code depends on the resource, and should be consulted in the respect location
in the documentation of the co-processor or various other resource.

Name Usage

pmir pmir 0xff
pmd test 0xff

These instructions are for increasing or decreasing the current permission level. The
immediate field denotes the permission level that the processor should change to. In the
event that a permission level cannot be changed, an Invalid Permission Level exception will
be raised. Depending on the severity of the infraction, the running program may be terminated
or halted. More information will be available in the permission level section.

6.6 Macros

The macro instructions defined here explain the usage and their expansions.

Name Usage Number of Instructions

call call address_label 2

ret ret 1

la la $Rd, address_label 2

The call macro expands to a lui instruction and a jrl instruction with an immediate offset.
The lower two bytes are used as the offset for the jump register, while the lui instruction
loads the upper two bytes into register TMP0. TMP0 should be ensured to be cleared before
using a call instruction, or an undefined sequence of events may occur. This register choice
may change in the future to ensure better compatibility and resource usage, however register
TMP0 should be avoided in use around call instructions as it may cause unintentional side
effects.

24

The ret macro allows the program to return to the program from the subroutine. It expands
into a jr instruction with no immediate offset. The RA register stores the return address,
which the jr instruction uses.

The la macro loads the upper and lower bytes into the specified register, Rd. It expands
into two instructions, li and lui. Currently there is no way to merge the two values into one
register, however the macro will be updated soon to do so. It is advised against using this
macro until further notice. The same functionality can be achieved with an or instruction
and a li and lui instruction, however due to register usage this is not ideal to create as
a macro.

25

7 Co-Processor Instruction Usage

This section is similar to the last, but pertains to instructions specific to various
defined co-processors. At this time, no co-processors have been fully developed, nor
verified, so this is left here as a placeholder for future revisions of the documentation.

7.1 Math Unit

7.2 Vector Operations Unit

7.3 Memory Management Unit

7.4 Inter-Processor Communications Unit

26

Part III

Instructions

8 Instruction Definitions

8.1 Instruction Format Types

This section will talk about the different instructions available in the core processor,
their encodings, function, and hazards they cause or registers they affect in the processor.
The Co-Processor instructions are purely generic and allow the implementation of each Co-
Processor to determine how their respective instructions will be decoded. Only the Operation
Codes will be defined for each Co-Processor slot to allow for more customization.

27

8.1.1 Integer

The integer instructions are the heart of this processor’s arithmetic abilities and is vital
to ensure fast execution. A semi-strict adherence to RISC philosophy in this architecture
is required to exploit any benefits to this ISA in a real implementation.

The integer instruction coding with descriptions, is shown in the diagrams below.

Register/Integer Instruction Format

opcode rd rsa rsb shft aluop

31 26 25 21 20 16 15 11 10 4 3 0

Overview: The Register/Integer Instruction Format is for basic ALU operations, without
immediates. Registers RSa and RSb are the two operands,which are stored in register Rd.
The 4 bit ALUOP field denotes the settings for the ALU, to reduce complexity of selecting
what operation to choose. The shft bits are only for the shift amount with the shifting
instructions, but unused for other instructions.

The following instructions use this encoding:

Instruction Description ALU Operation (hex)

add Add 0x0

sub Subtract 0x1

addu Add Unsigned 0x2

subu Subtract Unsigned 0x3

not Not 0x4

and And 0x5

or Or 0x6

xor Exclusive Or 0x7

sal Arithmetic Shift Left 0x8

sar Arithmetic Shift Right 0x9

sll Logic Shift Left 0xa

slr Logic Shift Right 0xb

comp Compare 0xc

Reserved n/a 0xd

Reserved n/a 0xe

Reserved n/a 0xf

28

8.1.2 Immediate

Immediate Instruction Format

opcode rd rsa Immediate aluop

31 26 25 21 20 16 15 4 3 0

Overview: The Immediate Instruction Format is for ALU operations that require an immediate
value. The immediate field is only 12 bits wide, so in the event that a larger value is
required, the Load Immediate Format should be used. There is only a single source register,
RSa, with the other source being the immediate value. The result is stored into register
Rd.

The following instructions use this encoding:

Instruction Description ALU Operation (hex)

addi Add Immediate 0x0

subi Subtract Immediate 0x1

addui Add Unsigned Immediate 0x2

subui Subtract Immediate 0x3

noti Invert Immediate 0x4

andi And Immediate 0x5

ori Or Immediate 0x6

xori Exclusive Or Immediate 0x7

sali Arithmetic Shift Left 0x8

sari Arithmetic Shift Right 0x9

slli Logic Shift Left 0xa

slri Logic Shift Right 0xb

compi Compare Immediate 0xc

29

8.1.3 Load/Store

Load Instruction Format

opcode rd rsa funct Immediate

31 26 25 21 20 16 15 14 13 0

Overview: The Load Instruction Format is for reading values from memory into a register. A
14 bit immediate is used for a relative address calculation with RSa as the base address.
The value is then stored into register Rd. The funct field is used to determine the byte
size to read from memory. This encoding is described in the table below.
Funct Description

00 1 word (32 bits)
01 half word (16 bits, upper)
10 24 bits, upper
11 byte, upper

The following instructions use this encoding:

Instruction Description Funct

lw Load Word 0x0

lh Load Half Word 0x1

lb Load Byte 0x3

lth Load Three (Bytes, 24 bits) 0x2

Load Immediate Instruction Format

opcode rd DSEL Immediate

31 26 25 21 20 16 15 0

Overview: The Load Immediate Instruction Format is for loading immediate values into a
register. The DSEL value determines the destination and function of the instruction. This
is to allow the selection of various register files to be updated. For unsigned upper
immediate loads, only the upper 2 bytes are overwritten. This is to allow function calls to
only take 2 instructions, and 1 register. All other load immediate instructions overwrite
the entire register. The DSEL bit values and their function are shown below. The MSB of
DSEL determines if the value is unsigned (1) or signed (0).
DSEL (bin) Destination

0000 General purpose register file
0001 System Register File
0010 Global Co-Processor Register File
0100 General purpose register file (upper 16 bits)
0101 System Register File (upper 16 bits)
0110 Global Co-Processor Register File (upper 16 bits)
1000 General purpose register file (Unsigned)
1001 System Register File (Unsigned)
1010 Global Co-Processor Register File (Unsigned)
1100 General purpose register file (Unsigned, upper 16 bits)
1101 System Register File (Unsigned, upper 16 bits)
1110 Global Co-Processor Register File (Unsigned, upper 16 bits)

30

The following instructions use this encoding:

Instruction Description DSEL

li load immediate (gprf) 0x0

lsi load immediate system 0x1

lgi load immediate global 0x2

lui load immediate (gprf) (upper) 0x4

lusi load immediate system (upper) 0x5

lugi load immediate global (upper) 0x6

lni load immediate (gprf) (unsigned) 0x8

lnsi load immediate system (unsigned) 0x9

lngi load immediate global (unsigned) 0xa

luni load immediate (gprf) (unsigned,upper) 0xc

lunsi load immediate system (unsigned,upper 0xd

lungi load immediate global (unsigned,upper) 0xe

Store Instruction Format

opcode Funct Immediate[13:11] rsa rsb Immediate[10:0]

31 26 25 24 23 21 20 16 15 11 10 0

Overview: The Store Instruction Format is for writing register values to memory. A 14 bit
immediate is used for a relative address calculation with RSa as the base address. The value
in RSb is then written to memory. The funct field is used to determine the byte size to
write to memory. This encoding is described in the table below.
Funct Description

00 1 word (32 bits)
01 half word (16 bits, upper)
10 24 bits, upper
11 byte, upper

The following instructions use this encoding:

Instruction Description Funct

sw Store Word 0x0

sh Store Half Word 0x1

sb Store Byte 0x3

sth Store Three (Bytes, 24 bits) 0x2

31

8.1.4 Branch/Jump

Jump Instruction Format

opcode Immediate[20:16] rsa Immediate[15:0]

31 26 25 21 20 16 15 0

Overview: The Jump Instruction format is for changing the Program Counter. All Jumps are
relative, except Jump Register Instructions, due to the non byte aligned size (20 bits) of
the immediate field. Jumps use the value in register RSa to calculate the new PC. For pure
relative jumps, the Zero register is used as the base. For jump instructions that link the
program counter, the PC is stored in RA0, or R4 in the General Purpose Register file.

The following instructions use this encoding:

Instruction Description

j Jump

jal Jump and Link

jr Jump Register

jrl Jump Register and Link

Branch Instruction Format

opcode Immediate[13:9] rsa rsb Immediate[8:0] funct

31 26 25 21 20 16 15 11 10 2 1 0

Overview: The Branch Instruction Format is used for conditionally changing the Program
Counter. The PC is only updated with whichever operation is indicated as being true or
false.

The following instructions use this encoding:

Instruction Description Funct

beq Branch if Equal 00

bne Branch if not Equal 01

bgt Branch if Greater than 10

blt Branch if Less than 11

32

8.1.5 System Instructions

System Instruction Format

opcode rd rsa Funct Immediate[7:0]

31 26 25 21 20 16 15 8 7 0

Overview: The System Instruction Format is used for various system controls. Their functions
vary, and are described in more detail in their individual listings. These instructions are
not required, but recommended for implementation. While technically the System Instructions
are in the co-processor opcode space, they have a designated opcode of 110000 as shown in
the OPCodes section.

The following instructions use this encoding:

Instruction Description Funct Uses Immediate

syscall System Call 0x00 yes

sysret System Return 0x01 no

stspr Store Special Purpose Register 0x02 yes

ldspr Load Special Purpose Register 0x03 yes

sync Synchronize memory/Flush Pipeline 0x04 no

lock Lock Memory 0x05 yes

test Test Lock 0x06 yes

pmir Permission Increase Request 0x07 yes

pmd Permission Decrease 0x08 yes

33

8.1.6 Co-Processor

Since the co-processors can have any implementation, only the opcode is required. However,
adhering to similar formatting of the instruction formats provided in previous sections
is imperative and the Fusion-Core foundation will not provide an accepted co-processor ID
number. More information about co-processors can be accessed in the Co-Processor section.

34

8.2 Opcodes

The opcodes are designed to provide a simple decode unit for the processor. The figure
below shows the breakdown within the opcode.

CPEN Mem/PC[1:0] Reg Operands[2:0]

5 4 3 2 0

The most significant bit of the opcode field determines if the instruction is a Co-
processor instruction or not. This is to offload decoding of co-processor instructions for
the individual co-processors, and not cause any requirements for future developments of
co-processor instruction decoding.

Bits 3 and 4 of the opcode field are for determining memory access, changing the program
counter, and linking the return address to register RA. A possible way to generate signals
for decoding the opcode is provided below in verilog.

pc_change = ∼opcode[4]
pc_link = opcode[4] ∼| opcode[3]
mem_access = opcode[4] & opcode[3]

The lower 3 bits of the opcode field determine the operand usage of an instruction, in-
cluding Rd, RSa, RSb, and immediates. A possible way to generate signals for decoding the
opcode is provided below in verilog.

use_rd = (opcode[1] | opcode[0]) & (∼opcode[2] | opcode[1])
use_rsa = opcode[2] | opcode[1]
use_rsb = (opcode[2] & opcode[0]) | (opcode[1] & opcode[0])
use_immediate = opcode[2] | ∼opcode[1]

8.2.1 List of OPCodes

Op Code Description

010011 Register ALU instructions

010000 Load Immediate instructions

010110 Immediate ALU instructions

001101 Branch Instructions

001100 Jump Instructions

000100 Jump and Link Instructions

110000 System Instructions

011110 Load Instructions

011101 Store Instructions

1XXXXX Co-Processor Instructions

Each bit of the opcode directly affects the resources required for each instruction. This
choice was made in hopes of reducing decode complexity. The MSB of the opcode selects if
the instruction is for the co-processor, or main core. This makes it incredibly easy to

35

determine which core the instruction goes to, without sacrificing more opcode bits. The LSB
of the opcode selects ALU usage, the second to last bit selects the immediate field.

However, in some cases the more significant bit will modify the functions of the later
bits. The 3rd to last bit in the opcode selects a change in PC, but the following bits do
not correspond to the previous meanings mentioned. The 4th bit denotes a system instruction,
and the 5th bit denotes memory access.

36

8.3 List of Instructions

Instruction Instruction Summary Table

Integer Instructions

Instruction Function Binary

add Rd = RSa + RSb 010011dddddaaaaabbbbbxxxxxxx0000
sub Rd = RSa - RSb 010011dddddaaaaabbbbbxxxxxxx0001
addu Rd = RSa + RSb (Unsigned) 010011dddddaaaaabbbbbxxxxxxx0010
subu Rd = RSa - RSb (Unsigned) 010011dddddaaaaabbbbbxxxxxxx0011
not Rd = !RSa 010011dddddaaaaaxxxxxxxxxxxx0100
and Rd = RSa & RSb 010011dddddaaaaabbbbbxxxxxxx0101
or Rd = RSa | RSb 010011dddddaaaaabbbbbxxxxxxx0110
xor Rd = RSa ⊕ RSb 010011dddddaaaaabbbbbxxxxxxx0111
sal Rd = RSa ≪ RSb 010011dddddaaaaabbbbbsssssss1000
sar Rd = RSa ≫ RSb 010011dddddaaaaabbbbbsssssss1001
sll Rd = RSa ≪ RSb 010011dddddaaaaabbbbbsssssss1010
slr Rd = RSa ≫ RSb 010011dddddaaaaabbbbbsssssss1011
comp Rd = (RSa == RSb);(RSa > RSb);(RSa < RSb) 010011dddddaaaaaxxxxxsssssss1100

Immediate Instructions

addi Rd = RSa + Imm 010110dddddaaaaaiiiiiiiiiiii0000
subi Rd = RSa - Imm 010110dddddaaaaaiiiiiiiiiiii0001
addui Rd = RSa + Imm (Unsigned) 010110dddddaaaaaiiiiiiiiiiii0010
subui Rd = RSa - Imm (Unsigned) 010110dddddaaaaaiiiiiiiiiiii0011
noti Rd = ! Imm 010110ddddd00000iiiiiiiiiiii0100
andi Rd = RSa & Imm 010110dddddaaaaaiiiiiiiiiiii0101
ori Rd = RSa | Imm 010110dddddaaaaaiiiiiiiiiiii0110
xori Rd = RSa ⊕ Imm 010110dddddaaaaaiiiiiiiiiiii0111
sali Rd = RSa ≪ Imm 010110dddddaaaaaiiiiiiiiiiii1000
sari Rd = RSa ≫ Imm 010110dddddaaaaaiiiiiiiiiiii1001
slli Rd = RSa ≪ Imm 010110dddddaaaaaiiiiiiiiiiii1010
slri Rd = RSa ≫ Imm 010110dddddaaaaaiiiiiiiiiiii1011
compi Rd = (RSa == Imm);(RSa > Imm);(RSa < Imm) 010110dddddaaaaaiiiiiiiiiiii1100

Load Instructions

lw Rd <- Imm(RSa) 011110dddddaaaaa00iiiiiiiiiiiiii
lh Rd <- Imm(RSa) 011110dddddaaaaa01iiiiiiiiiiiiii
lb Rd <- Imm(RSa) 011110dddddaaaaa11iiiiiiiiiiiiii
lth Rd <- Imm(RSa) 011110dddddaaaaa10iiiiiiiiiiiiii

Load Immediate Instructions

li (GPREGF) Rd = Imm 010000ddddd0000iiiiiiiiiiiiiiiii
lsi (SYSREGF) Rd = Imm 010000ddddd0001iiiiiiiiiiiiiiiii
lgi (GLBREGF) Rd = Imm 010000ddddd0010iiiiiiiiiiiiiiiii

37

Load Immediate Instructions (cont.)

Instruction Function Binary

lui (GPREGF) Rd = Imm (upper 16 bits) 010000ddddd0011iiiiiiiiiiiiiiiii
lusi (SYSREGF) Rd = Imm (upper 16 bits) 010000ddddd0100iiiiiiiiiiiiiiiii
lugi (GLBREGF) Rd = Imm (upper 16 bits) 010000ddddd0101iiiiiiiiiiiiiiiii
lni (GPREGF) Rd = Imm (unsigned) 010000ddddd1000iiiiiiiiiiiiiiiii
lnsi (SYSREGF) Rd = Imm (unsigned) 010000ddddd1001iiiiiiiiiiiiiiiii
lngi (GLBREGF) Rd = Imm (unsigned) 010000ddddd1010iiiiiiiiiiiiiiiii
luni (GPREGF) Rd = Imm (upper 16, unsigned) 010000ddddd1011iiiiiiiiiiiiiiiii
lunsi (SYSREGF) Rd = Imm (upper 16, unsigned) 010000ddddd1100iiiiiiiiiiiiiiiii
lungi (GLBREGF) Rd = Imm (upper 16, unsigned) 010000ddddd1101iiiiiiiiiiiiiiiii

Store Instructions

sw RSb -> Imm(RSa) 01110100iiiaaaaabbbbbiiiiiiiiiii
sh RSb -> Imm(RSa) 011101001iiiaaaaabbbbbiiiiiiiiiii
sb RSb -> Imm(RSa) 01110111iiiaaaaabbbbbiiiiiiiiiii
sth RSb -> Imm(RSa) 01110110iiiaaaaabbbbbiiiiiiiiiii

Jump Instructions

j Next PC <- (R0 + Imm) 001100iiiii00000iiiiiiiiiiiiiiii
jal Next PC <- (R0 + Imm); RA0 <- PC 000100iiiii00000iiiiiiiiiiiiiiii
jr Next PC <- (RSa + Imm) 001100iiiiiaaaaaiiiiiiiiiiiiiiii
jrl Next PC <- (RSa + Imm); RA0 <- PC 000100iiiiiaaaaaiiiiiiiiiiiiiiii

Branch Instructions

beq Next PC <- (RSa == RSb) ? PC+Imm : PC+4 001101iiiiiaaaaabbbbbiiiiiiiii00
bne Next PC <- (RSa != RSb) ? PC+Imm : PC+4 001101iiiiiaaaaabbbbbiiiiiiiii01
bgt Next PC <- (RSa > RSb) ? PC+Imm : PC+4 001101iiiiiaaaaabbbbbiiiiiiiii10
blt Next PC <- (RSa < RSb) ? PC+Imm : PC+4 001101iiiiiaaaaabbbbbiiiiiiiii11

System Instructions

syscall System Call (Raise Privilege) 11000dddddaaaaaa00000000iiiiiiii
sysret System Return (Lower Privilege) 11000dddddaaaaaa00000001iiiiiiii
stspr (SYSREGF) Rd <- RSa 11000dddddaaaaaa00000010xxxxxxxx
ldspr (SYSREGF) RSa -> Rd 11000dddddaaaaaa00000011xxxxxxxx
sync Flush Pipeline 11000xxxxxxxxxxx00000100xxxxxxxx
pmir PML + Imm ? 11000xxxxxxxxxxx00000111iiiiiiii
pmd PML - Imm ? 11000xxxxxxxxxxx00001000iiiiiiii

8.3.1 Co-Processor

More information on co-processor instructions will be available in the future. This section
is still under development.

38

9 Exceptions and Interrupts

This ISA differentiates between Exceptions and Interrupts based on function. Interrupts
are vectored, to allow the running process to define what should be done. Exceptions are
more based in hardware, and require minimal setup in software.

9.1 Exceptions

This section is still under development.

9.1.1 User Level

9.1.2 Supervisor Level

9.2 Interrupts

This section is still under development.

9.2.1 User Level

9.2.2 Supervisor Level

39

Part IV

Co-Processors

10 Co-Processor Overview

Co-processors are the main point of the Fusion-Core architecture. As the ISA strictly
specifies the main core for code compatibility, the implementation is free to use whichever
co-processors that would be necessary for an application. As speeding up the common case
is the main goal in CPU design, these co-processors should enhance the common case for
the specific implementation. The ISA has no specific restrictions for a co-processor, but
for non-memory mapped co-processors, they should be created as dictated by the interface
specified below.

Examples of co-processors could be hardware acceleration for vector instructions, encryp-
tion, floating point, or communication. The co-processor can be as complex, or as simple as
one requires. There is no limitation for what kind of co-processor that could be used, only
the number of co-processors that can utilize the opcode space allocated for co-processors.
The co-processors can also share the same opcode, which can help create vectorized instruc-
tion units such as GPU like co-processors, coupled directly to the main core’s instruction
flow. The programmer would be able to exploit more locality in programming as switching to
different sections of memory is not required. It should be noted that this last sentence
is not a requirement, but just a possibility and the current implementation of the default
case for the GNU Binutils port. This can easily be modified with a custom linker script.

The reasoning behind co-processors use is to allow for code compatibility between nearly
all implementations of the Fusion-Core ISA, and allowing for an enhancement to the common
case of a processor’s use. Most architectures do not allow for radical implementations in
the architecture itself, only the micro-architecture. And by keeping complex instructions
away from the main core, a simple decode unit can be created to allow for potentially faster
pipelining.

10.1 Co-Processor Interface

Co-Processor Opcode space Co-processor instructions are enabled through use of the most
significant bit of the opcode field. The processor should be able to distinguish between
main core and co-processor instructions quickly, and a single bit is the simplest way of
doing so. The other 5 bits are completely usable for whichever purpose the implementation
could desire.

In order to let the programmer know what co-processors are available, the opcode registration
table should contain the co-processor ID (CPID). This ID is provided by the Fusion-Core
developers. Please send an email to cpid@fusion-core.org for making requests for a new
co-processor. This ID will be implemented to allow for proper disassembly and assembly of
the instructions in the GNU Binutils port. It is also possible to not use an official CPID,
however no support will be given to the developers of the co-processor.

40

10.1.1 Decode unit Connections

10.1.2 Co-Processor Conventions

10.1.3 Register Connections

10.2 Interface Connection Definitions

10.3 Adding custom Co-Processor

10.4 List of Co-Processors

10.4.1 Floating Point

10.4.2 System Unit

10.4.3 Memory Management Unit

10.4.4 Multiprocessor Communication Unit

11 Global Register File

The Global Register File is for simple message passing, and creating locks between co-
processors. As it may be necessary to wait for a value to be computed by a co-processor,
or lock specific parts of memory, the Global Register File creates an interface for ease of
use between processing units.

This section is under development and will be updated to explain the connections and
registers available.

12 Recommended Co-Processors

About This section will cover some basic co-processors that have been approved and assigned
co-processor IDs. The full list of approved co-processors will be included in a separate
document.

41

12.1 Math Unit

12.1.1 Registers

12.1.2 Instructions

12.2 System Unit

12.2.1 Registers

12.2.2 Instructions

12.3 Memory Management Unit

12.3.1 Registers

12.3.2 Instructions

12.4 Inter-Processor Communications Unit

12.4.1 Registers

12.4.2 Instructions

42

	I Administrative
	Change log
	Introduction
	About
	Goals
	Conventions

	II Programming Information
	Register File Definitions
	General Purpose Registers
	Special Purpose Registers
	Special Purpose Register Definitions
	System Registers
	Supervisor Registers

	Permission Levels
	User Levels
	Low User Level
	High User Level

	Supervisor Levels
	Low Supervisor Level
	High Supervisor Level

	Hypervisor Levels

	Memory
	Memory Locations for Vector Table
	Interrupt Vector Table
	Exception List

	Instruction Usage
	Integer
	Immediate
	Load/Store
	Branch/Jump
	System
	Macros

	Co-Processor Instruction Usage
	Math Unit
	Vector Operations Unit
	Memory Management Unit
	Inter-Processor Communications Unit

	III Instructions
	Instruction Definitions
	Instruction Format Types
	Integer
	Immediate
	Load/Store
	Branch/Jump
	System Instructions
	Co-Processor

	Opcodes
	List of OPCodes

	List of Instructions
	Co-Processor

	Exceptions and Interrupts
	Exceptions
	User Level
	Supervisor Level

	Interrupts
	User Level
	Supervisor Level

	IV Co-Processors
	Co-Processor Overview
	 Co-Processor Interface
	 Decode unit Connections
	 Co-Processor Conventions
	Register Connections

	Interface Connection Definitions
	Adding custom Co-Processor
	List of Co-Processors
	Floating Point
	System Unit
	Memory Management Unit
	Multiprocessor Communication Unit

	Global Register File
	Recommended Co-Processors
	Math Unit
	Registers
	Instructions

	System Unit
	Registers
	Instructions

	Memory Management Unit
	Registers
	Instructions

	Inter-Processor Communications Unit
	Registers
	Instructions

