
SafeTI™ Diagnostic Library Software Safety
Manual for the Hercules™ Processors

User's Guide

Literature Number: SPNU592
January 2015

Contents

1 Introduction... 4
2 TI Hercules™ MCU Safety Overview ... 5

2.1 TPS65381 Power Management IC Safety Overview ... 6
2.2 Targeted Applications.. 9
2.3 Product Safety Constraints ... 9

3 SafeTI™ Software Development Process .. 9
4 Safety Assessment and Certification .. 10
5 SafeTI™ Diagnostic Library Overview ... 11

5.1 API Mapping of SafeTI™ Diagnostic Library Recommended Safety Functions................................ 13
6 System Requirements ... 29

6.1 Software Requirements .. 29
6.2 Hardware Requirements ... 29

7 Failure Modes and Effects Analysis Report for SafeTI™ Diagnostic Library (TPS Driver FMEA
not available) ... 30

8 New in this Release .. 31
9 Fixed in this Release... 31
10 Known Issues and Limitations ... 31
11 Backward Compatibility .. 31
12 Compatibility with Other Systems .. 31
13 Software Manifest... 31
14 Change Control, Support, and Maintenance... 31
15 Design Safe State (If Applicable) .. 31
16 Interface Constraints .. 31
17 Competence .. 32
18 Justification of Claims .. 32
19 Software Quality Metrics ... 32
20 Appendix A: MISRA-C Guidelines... 34

20.1 MISRA-C Rules Adhered – Mandatory .. 34
20.2 MISRA-C Blanket Deviations.. 36
20.3 MISRA-C Partially Checked Rules ... 37
20.4 MISRA-C Acceptable Deviations ... 37

21 Appendix B: Development Interface Agreement ... 38
21.1 Appointment of Safety Managers... 38
21.2 Tailoring of Safety Life Cycle.. 38
21.3 Activities Performed by TI ... 38
21.4 Information to be Exchanged ... 39
21.5 Parties Responsible for Safety Activities .. 39
21.6 Supporting Processes and Tools ... 39
21.7 Hazard Analysis and Risk Assessment.. 40
21.8 Creation of Functional Safety Concept .. 40

2 Table of Contents SPNU592–January 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com

22 References .. 40
23 Revision History... 41

3SPNU592–January 2015 Contents
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

User's Guide
SPNU592–January 2015

SafeTI™ Diagnostic Library Software Safety Manual for
the Hercules™ Processors

1 Introduction
This document is a safety manual for the SafeTI™ Diagnostic Library for the Texas Instruments
Hercules™ safety microcontroller product family to use the safety diagnostics features of this device and
provide a configuration driver for functional safety use of the TPS65381 PMIC. This safety manual
provides information needed by system developers to assist in the creation of a safety-critical system
using a supported Hercules™ microcontroller, the TPS65381 power management IC and the SafeTI™
Diagnostic Library. This document contains:
• An overview of the superset product safety architecture for management of random failures
• An overview of the development process utilized to reduce systematic failures
• Software Quality Metrics
• SafeTI™ Diagnostic Library overview
• Failure modes and effects analysis report for the SafeTI™ Diagnostic Library

The user of this document should have a general familiarity with the Hercules™ product families. More
information can be found at http://www.ti.com/hercules. This document is intended to be used in
conjunction with the pertinent data sheets, technical reference manuals, and other documentation for the
products under development. This partition of technical content is intended to simplify development,
reduce duplication of content, and avoid confusion. The Hercules™ MCU product family utilizes a common
safety architecture that is implemented in multiple application focused products. Product implementations
covered by this safety manual include:
• RM4xx Safety Critical Microcontrollers

– RM42x
– RM46x
– RM48x

• TMS570LSxx Safety Critical Microcontrollers
– TMS570LS04x/03x
– TMS570LS12x/11x
– TMS570LS31x/21x

You, as a system and equipment manufacturer or designer, are responsible to ensure that your systems
(and any TI hardware or software components incorporated in your systems) meet all applicable safety,
regulatory, and system-level performance requirements. All application and safety related information in
this document (including application descriptions, suggested safety measures, suggested TI products, and
other materials) is provided for reference only. You understand and agree that your use of TI components
in safety critical applications is entirely at your risk, and that you (as buyer) agree to defend, indemnify,
and hold harmless TI from any and all damages, claims, suits, or expense resulting from such use.

4 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/hercules
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

3M
Flash
With
ECC

DMA

64K

64K

64K

64K

Dual Cortex-R4F
CPUs in Lockstep

Main Cross Bar: Arbitration and Prioritization Control

Peripheral Central Resource Bridge

System

ESM
IOMM

PMM

VIM

RTI

PBIST

LBIST

CCMR4

Fuse
Farm

DCC1

DCC2

CRC64 KB Flash
for EEPROM

Emulation
with ECC

HTU1 FTU HTU2 EMAC OHCI

Switched Central Resource Switched Central Resource Switched Central Resource

High Freq. Central Resource

MDIO

MII

Host

Device

EMIF

MibADC1 MibADC2 N2HET1 N2HET2 GIO I2CFlexRay

SCI

LIN

DCAN1

DCAN2

DCAN3

MibSPI1

SPI2

MibSPI3

SPI4

MibSPI5

RTP

POM DMM

ETM-R4

USBEMAC Slaves

256 K
RAM
With
ECC

www.ti.com TI Hercules™ MCU Safety Overview

2 TI Hercules™ MCU Safety Overview
The Hercules™ MCU family of processors share a common safety architecture concept called a Safe
Island philosophy. The basic concept involves a balance between application of hardware diagnostics and
software diagnostics to manage functional safety, while balancing cost concerns. In the safe-island
approach, a core set of elements are allocated continuously operating hardware safety mechanisms. This
core set of elements, including power and clock, reset, CPU, flash memory, SRAM and associated
interconnect, is needed to assure any functionally correct execution of software. Once correct operation of
these elements is confirmed, software execution can begin on these elements in order to provide
software-based diagnostics on other device elements, such as peripherals.

The Hercules™ architecture also provides various safety mechanisms and technical recommendations for
the use of safety mechanisms. The SafeTI™ Diagnostic Library provides interfaces to these safety
mechanisms. Based on the final system requirements the system integrator can use these APIs to
incorporate appropriate mechanisms in the final system to meet safety requirements.

Figure 1 illustrates the safe-island approach overlaid to superset configuration of the Hercules™ product
architecture.

Figure 1. Safe-Island Approach – Hercules™ MCUs
SafeTI, Hercules are trademarks of Texas Instruments.
Cortex is a trademark of ARM Ltd.

5SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

x� Driver layer provides necessary
APIs to initialize and use the TPS
device.

x� The send and receive API
(MibSPI) function pointers have to
be initialized by the application.
These APIs will be provided by an
interface wrapper which internally
uses the MibSPI or SPI APIs. The
interface wrapper provides the
necessary APIs as needed by the
TPS driver.

x� These send and receive APIs will
be used to send commands to the
TPS device and receive contents
of the TPS device registers.

End Application TMS50LS31x/RM48x/TMS570LS12x/
RM46x/TMS570LS04x/RM42x

Application

T
P

S
 D

riv
er

M
ib

S
P

I/S
P

I
dr

iv
er

TPS DeviceSPI interface to TPS deviceCalls to send and
receive APIs

In
te

rf
ac

e
w

ra
pp

er

TI Hercules™ MCU Safety Overview www.ti.com

Safe-Island Layer (RED): This is the region of logic that is needed for all processing operations. This logic
is protected heavily by on board hardware diagnostics and specific assumptions of use to assure a high
level of confidence in safe operation. Once this region is safe, it can be used to provide comprehensive
software diagnostics on other design elements.

Blended Layer (BLUE): This is the region of logic that includes most safety critical peripherals. This region
has less reliance on hardware diagnostics. Software diagnostics and application protocols are overlaid to
provide the remainder of needed diagnostic coverage.

Offline Layer (BLACK): This region of logic has minimal or no integrated hardware diagnostics. Many
features in this layer are used only for debug, test, and calibration functions; flash is not active during
safety critical operation. Logic in this region could be utilized for safety critical operation, assuming
appropriate software diagnostics or system-level measures are added by the system integrator.

2.1 TPS65381 Power Management IC Safety Overview
The TPS65381 or TPS65383 device is a multi-rail power supply designed to supply microcontrollers in
safety-critical applications, such as those found in automotive. The device supports Texas Instruments’
TMS570LS series 16- or 32-Bit RISC flash MCU and other microcontrollers with dual-core lockstep (LS) or
loosely-coupled (LC) architectures.

The TPS6538x device monitors undervoltage and overvoltage on all regulator outputs, battery voltage,
and internal supply rails. A second band-gap reference, independent from the main band-gap reference,
monitors for undervoltage and overvoltage, to avoid any drifts in the main band-gap reference being
undetected. In addition, the device implements regulator current limits and temperature protections.

The TPS6538x functional safety architecture features a question-answer watchdog, MCU error-signal
monitor, check-mode for MCU error-signal monitor, clock monitoring on internal oscillators, self-check on
clock monitor, CRC on non-volatile memory, and a reset circuit for the MCU. A built-in self-test (BIST)
allows for monitoring the device functionality at start-up.

2.1.1 TPS Driver Usage in End Application
The TPS library provides driver-level API to interface the Hercules™ device with TPS and make use of the
various TPS device features such as voltage monitoring, watchdog monitoring, error monitoring, and so
on. The TPS library serves as a special driver library, which helps the application to interface the
TPS56381 PMIC with the Hercules™ microcontroller. The library will be released as an additional package
along with the SafeTI™ Diagnostic Library package, which will be released as CSP and will help the end
customers in the ISO26262 certification of the product. Figure 2 shows the usage of the TPS driver
(library) in the end application.

Figure 2. TPS Driver (Library) Usage in End Application

6 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com TI Hercules™ MCU Safety Overview

2.1.2 TPS Device Features
The block diagram of the TPS device shown in Figure 3 provides fine details about the features of the
TPS device. The TPS library provides extensive API to use all the features mentioned in the diagram of
the TPS device.

Figure 3. TPS Device Block Diagram

7SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

TI Hercules™ MCU Safety Overview www.ti.com

2.1.3 Interfacing TPS Device with the Hercules™ Processors
Figure 4 shows an example of how the TPS device is interfaced with a Hercules™ processor. Figure 4
gives an overview of various connections that must be made to the TPS device from the Hercules™
processors. Shown are the various peripherals and ports that are used for communicating with the TPS
device.

Figure 4. TPS Device Interfaced with a Hercules™ Processor

8 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com TI Hercules™ MCU Safety Overview

2.2 Targeted Applications
The Hercules™ MCU family is targeted at general purpose safety applications. Multiple safety applications
were analyzed during the concept phase in order to support Safety Element out of Context (SEooC)
development, according to ISO 26262-10:2012. Example target applications include:
• Automotive braking systems, including anti-lock braking (ABS), anti-lock braking with traction control

(ABS+TC), and electronic stability control (ESC)
• Motor control systems, particularly electronic power steering (EPS) systems and electrical vehicle (EV)

power train
• General purpose safety computation, such as integrated sensor cluster processing and vehicle strategy

generation in an active safety system
• Industrial automation such as programmable logic controllers (PLCs) and programmable automation

controllers (PACs) for safety critical process control

In the case of overlapping requirements between target systems, TI has attempted to design the device
respecting the most stringent requirements. For example, the fault tolerant time intervals for timer logic in
an ESC application are typically on the order of 100 ms. In an EPS application, the fault tolerant time
interval is typically on the order of 10 ms. In such cases, TI has performed timer-subsystem analysis
respecting less than 10 ms fault tolerant time interval. While TI considered certain applications during the
development of these devices, this should not restrict a customer who wishes to implement other systems.
With all safety critical components, rationalization of the component safety concept to the system safety
concept must be executed by the system integrator.

2.3 Product Safety Constraints
For safety components developed according to many safety standards, it is expected that the component
safety manual will provide a list of product safety constraints. For a simple component, or more complex
components developed for a single application, this is a reasonable response. However, the Hercules™
product family is a complex design and is not developed targeting a single, specific application.

Therefore, a single set of product safety constraints cannot govern all viable uses of the product. The
Detailed Safety Analysis Report for the particular Hercules™ MCU (SPNU570) provides an example
implementation of the Hercules™ product in a common system with relevant product safety constraints.

3 SafeTI™ Software Development Process
The software development model adopted here is the V-Model depicted in Figure 5 with each life-cycle
phase ending with a cross-functional review called Checkpoint (CP) review. In some cases, the releases
may have to iterate through the checkpoints multiple times. Approval to proceed to the next checkpoint is
obtained at the end of the checkpoint review from identified stakeholders. Following are the six
checkpoints covering all the life-cycle phases of the software development project:
• SW CP1: Software Project Commissioning
• SW CP2: Safety Requirements and Planning
• SW CP3a: Software Architecture, Unit Design, and Development
• SW CP3b: Software Unit Testing and Integration Testing
• SW CP4: Safety Software Testing and Release
• SW CP5: Software Project Closure

To ensure functional safety throughout the software life-cycle development, supporting processes like
requirements management, configuration management, change management, tool qualification, safety
assessment, safety audits, document management, and personnel management are defined and followed.
Additional recommended techniques and measures in the targeted functional safety standard for the
targeted SIL/ASIL are applied throughout the development life cycle. The rationale for selected techniques
and measures are documented in the appropriate planning documents. A project software safety manager
is assigned to ensure project-functional safety activities are planned and coordinated.

9SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPNU570
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

Commissioning Safety
Requirements

Test Strategy Req Testing Closure

Integration Testing

Safety Test
Matrix

Architecture
Design

Module
Design

Integration
Test Matrix

Unit Test Plan

Unit Testing

Coding

CP1 CP2 CP2 CP4 CP5

CP3A

CP3A

CP3A

CP3B

CP3B

CP3B

CP3A

CP3B

SW VerificationSWFMEA

Safety Assessment and Certification www.ti.com

Figure 5. Software Development Process Based on the V-Model

4 Safety Assessment and Certification
For safety-critical development, it is necessary to manage both random and systematic faults. Texas
Instruments has created a unique development process for safety-critical software, which reduces the
probability of systematic failure. This process is built on top of the standard quality managed system
software development process to meet specific requirements of IEC 61508-SIL3 and ISO 26262-ASIL D.
The foundation quality managed software development process is compliant to TS 16949: 2009 standards
and CMMI 1.3 Level 3 Model. The process implemented in the SafeTI™ Diagnostic Library is based on
the software development process and is documented to meet safety standards.

Texas Instruments has been developing automotive microcontrollers and processors for safety critical and
non-safety critical automotive applications for over twenty years. Automotive markets have strong
requirements on quality management and high reliability of product. Though not explicitly developed for
compliance to a functional safety standard, the TI standard new product development process already
featured many elements necessary to manage systematic faults. This development process can be
considered to be QM (Quality Managed), but does not achieve an IEC 61058 SIL (Safety Integrity Level)
or ISO 26262 ASIL (Automotive Safety Integrity Level). The TI standard new product development process
is certified compliant to ISO TS 16949 Bureau Veritas certificate USA-13036/1-TS (IATF certificate No
142823) as part of the South Campus support function. It is also certified to ISO 9001:2008 under Bureau
Veritas Certificate US-005329-1 as part of the South Campus support function.

10 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com SafeTI™ Diagnostic Library Overview

5 SafeTI™ Diagnostic Library Overview
Figure 6 shows the software stack in the perspective of the SafeTI™ Diagnostic Library. Hardware
Abstraction Layer (HAL) is the lowest software layer. It contains software modules with direct access to
the MCU and is responsible for system initialization. Diagnostic Library is a collection of functions for
access to safety functions and response handlers for various safety mechanisms. Diagnostic Library runs
in the context of the caller's protection environment and all responses are handled in the context of
interrupt or exception.

Figure 6. SafeTI™ Diagnostic Library Software Stack

11SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

SafeTI™ Diagnostic Library Overview www.ti.com

Initialization
Startup block is responsible for configuring the safety mechanisms and detecting any failures at system
boot (through Safety Tests). This block has a few Initialization APIs and depends on the APIs of the other
blocks to execute various functions at self test (Self-Test, PBIST, LBIST, Configuration through HAL). The
application may follow an initialization sequence as described in Initialization of Hercules™ ARM Cortex-
R4F Microcontrollers (SPNA106).

Exception Handler
The R4/R4F/R5F CPU branches to an exception handler for handling failures at runtime. The following
exceptions are handled:
• Prefetch Aborts (Precise)
• Data Abort (Precise and Imprecise)
• Undefined Instructions

These handlers are typically defined by the RTOS/HAL layers and, hence, are not provided by the library.

ESM Handler
ESM handler block is responsible for handling various errors at run time. The errors are processed for
additional information and intimated to application through registered callbacks. Based on the safety
requirements of the system, the application can use the provided information to take necessary steps.

Self-Tests and Fault Injection API
Diagnostic Library API can be called in fault injection and self-test modes.
• Fault Injections allow the application to induce faults and verify the fault handling in their application.
• Self-Test is a mechanism for providing latent fault diagnostics. It verifies the safety mechanisms

available on the device.

12 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPNA106
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com SafeTI™ Diagnostic Library Overview

Figure 7 shows the Safety Diagnostic Library features on the Hercules™ MCU devices based on the ARM
Cortex™ R4 and ARM Cortex R4F devices. The same concept applies to the Hercules™ MCU based on
ARM Cortex R5F core.

Figure 7. Safety Diagnostic Library Features on the Hercules™ MCU Devices

Criteria for the usage of the SafeTI™ Hercules™ Diagnostic Library API
The API provided by the Diagnostic Library are recommended to be used in a system for periodic tests on
the fault diagnostics. It is expected that this is done in the diagnostic time interval (time interval set aside
for Self-Test and when nothing else is running in the system). These API configure the fault diagnostics in
special modes to check the function of the diagnostic. The return value of the Self-Test APIs indicate if the
diagnostic is functioning as expected or if there is a fault in the device. Interrupting the operation of the
Self-Test API can leave the system in an undefined state.

The Fault injection API is used to create faults at run time such that the application developer may be able
to simulate faults and their handling during development. Similar to the Self-Test API, the Fault Injection
API configures fault diagnostics in special modes to create the desired fault. It is possible to insert faults at
any time. The above requirements imply that Diagnostic Library API is run as the highest-priority task in
the application.

5.1 API Mapping of SafeTI™ Diagnostic Library Recommended Safety Functions
You, as a system and equipment manufacturer or designer, are responsible to ensure that your systems
(and any TI hardware or software components incorporated in your systems) meet all applicable safety,
regulatory, and system-level performance requirements. All application- and safety-related information in
this document (including application descriptions, suggested safety measures, suggested TI products, and
other materials) is provided for reference only. You understand and agree that your use of TI components
in safety-critical applications is entirely at your risk, and that you (as buyer) agree to defend, indemnify,
and hold TI harmless from any and all damages, claims, suits, or expense resulting from such use.

13SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

SafeTI™ Diagnostic Library Overview www.ti.com

In this section, the safety mechanisms for each major functional block of the Hercules™ architecture are
summarized and mapped to the APIs supported by the SafeTI™ Diagnostic Library. For more information
on the safety mechanisms and the general assumption of use, see the safety manual for the Hercules™
device. The details of each safety mechanism can be found in the device-specific technical reference
manual for the processor used.

Table 1. API Mapping

Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic
No software control,

PWR1 Voltage monitor (VMON) Not Applicable always enabled in
hardwarePower Supply

External voltage Handled by the safetyPWR2 Not Applicablesupervisor application
PMM1 Lockstep PSCON SL_SelfTest_PSCON

Privileged mode access
PMM2 and multi-bit keys for SL_SelfTest_PSCON

control registers
Power Management Periodic software Static configuration is
Module (PMM) PMM3 readback of static Not Applicable defined by the

configuration registers application.
Written configurationSoftware readback ofPMM4 Not Applicable is defined by thewritten configuration application.
Handled by the safetyCLK1 LPOCLKDET Not Applicable application

CLK2 PLL slip detector ESM_Application_Callback
Dual Clock ComparatorCLK3 ESM_Application_Callback(DCC)
External monitoring Handled by the safetyCLK4 Not Applicablethrough ECLK application
Internal watchdog - Handled by the safetyCLK5A Not ApplicableDWD application

Clock Internal watchdog - Handled by the safetyCLK5B Not ApplicableDWWD application
Handled by the safetyCLK5C External watchdog Not Applicable application

Periodic software Static configuration is
CLK6 readback of static clock Not Applicable defined by the

configuration registers application.
Written configurationSoftware readback ofCLK7 Not Applicable is defined by thewritten configuration application.

14 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com SafeTI™ Diagnostic Library Overview

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

External monitoring of Handled by the safetyRST1 Not Applicablewarm reset application
Software check of lastRST2 SL_Init_Reset Reasonreset
Software warm resetRST3 SL_SW_Resetgeneration

No software control,Glitch filtering on resetRST4 Not Applicable always enabled inpins hardware
Reset Use of status shadow SL_Init_ResetReason_XInfRST5 registers o

Handled by the safetyRST6 External watchdog Not Applicable application
Periodic software Static configuration is

RST7 readback of static Not Applicable defined by the
configuration registers application.

Written configurationSoftware readback ofRST8 Not Applicable is defined by thewritten configuration application.
Privileged mode access Not in scope for thisSYS1 and multi-bit enable Not Available releasekeys

Written configurationSoftware readback ofSystem Control SYS2 Not Applicable is defined by thewritten configuration application.
Periodic software Static configuration is

SYS3 readback of static Not Applicable defined by the
configuration registers application.
Periodic software Static configuration is

ESM1 readback of static Not Applicable defined by the
configuration registers application.
Boot time software test Fault Injection APIs may beESM2A of error path reporting used

Error Signaling Module Periodic software test of Fault Injection APIs may beESM2B(ESM) error path reporting used
Use of status shadow SL_Init_ResetReason_XInfESM3 registers o

Written configurationSoftware readback ofESM4 Not Applicable is defined by thewritten configuration application.

15SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

SafeTI™ Diagnostic Library Overview www.ti.com

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

CPU1 Lockstep compare SL_SelfTest_CCMR4F
Boot time execution ofCPU2A SL_SelfTest_STCLBIST STC
Periodic execution ofCPU2B SL_SelfTest_STCLBIST STC

Handled by operation
CPU3 MPU Not Applicable system/safety

application
Online profiling using Handled by the safetyCPU4 Not ApplicablePMU application

Cortex-R4FCentral
Internal watchdog - Handled by the safetyProcessing Unit (CPU) CPU5A Not ApplicableDWD application
Internal watchdog - Handled by the safetyCPU5B Not ApplicableDWWD application

Handled by the safetyCPU5C External watchdog Not Applicable application
Illegal operation and Not in scope for thisCPU6 Not Availableinstruction trapping release

Written configurationSoftware readback ofCPU7 Not Applicable is defined by thewritten configuration application.
FLA1 Flash Data ECC SL_SelfTest_Flash

Hard error cache and Not in scope for thisFLA2 Not Availablelivelock release
Flash wrapper addressFLA3 SL_SelfTest_FlashECC

FLA4 Address parity SL_SelfTest_Flash
Boot time hardware

FLA5A CRC check of Flash SL_CRC_Calculate
memory contents
Periodic hardware CRC

Primary Flash and Level FLA5B check of Flash memory SL_CRC_Calculate
1 (L1) Interconnect contents

Bit multiplexing in Flash CRC will indicateFLA6 Not Applicablearray faults in flash
External dependencyFLA7 Flash sector protection Not Applicable on flash writing APIs

Periodic software Static configuration is
FLA8 readback of static Not Applicable defined by the

configuration registers application.
Written configurationSoftware readback ofFLA9 Not Applicable is defined by thewritten configuration application.

16 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com SafeTI™ Diagnostic Library Overview

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

FEE1 FEE Data ECC SL_SelfTest_FEE
Boot time hardware

FEE2A CRC check of FEE SL_CRC_Calculate
memory contents
Periodic hardware CRC

FEE2B check of FEE memory SL_CRC_Calculate
contents
Bit multiplexing in FEE CRC will indicateFlash Emulated FEE3 Not Applicablearray faults in flashEEPROM (FEE)

External dependencyFEE4 FEE sector protection Not Applicable on flash writing APIs
Periodic software Static configuration is

FEE5 readback of static Not Applicable defined by the
configuration registers application.

Written configurationSoftware readback ofFEE6 Not Applicable is defined by thewritten configuration application.
RAM1 Data ECC SL_SelfTest_SRAM

Hard error cache and Not in scope for thisRAM2 Not Availablelivelock release
Correctable ECC Not in scope for thisRAM3 Not Availableprofiling release
Address and controlRAM4 SL_SelfTest_SRAMparity
Redundant addressRAM5 SL_SelfTest_SRAMdecode
Data and ECC storage

RAM6 in multiple physical Not Applicable Feature in Hardware
banks

SRAM and Level 1 (L1) Boot time PBIST checkRAM7A SL_SelfTest_PBISTInterconnect of SRAM
Periodic PBIST check ofRAM7B SL_SelfTest_PBISTSRAM
Bit multiplexing in SRAM CRC will indicateRAM8 Not Applicablearray faults in SRAM
Periodic hardware CRCRAM9 SL_CRC_Calculatecheck of SRAM contents
Periodic software Static configuration is

RAM10 readback of static Not Applicable defined by the
configuration registers application.

Written configurationSoftware readback ofRAM11 Not Applicable is defined by thewritten configuration application.

17SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

SafeTI™ Diagnostic Library Overview www.ti.com

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

Error trapping (including SL_SelfTestL2L3InterconnINC1 peripheral slave error ecttrapping)
PCR access Not in scope for thisINC2 Not Availablemanagement release
Internal watchdog - Handled by the safetyINC3A Not ApplicableDWD application
Internal watchdog - Handled by the safetyINC3B Not ApplicableDWWD application

Handled by the safetyINC3C External watchdog Not Applicable application
Not in scope for thisLevel 2 and Level 3 (L2 INC4 Information redundancy Not Available releaseand L3) Interconnect

Periodic software Static configuration is
INC5 readback of static Not Applicable defined by the

configuration registers application.
Boot time software test SL_SelfTestL2L3InterconnINC6A of basic functionality ectincluding error tests
Periodic software test of SL_SelfTestL2L3InterconnINC6B basic functionality ectincluding error tests

Written configurationSoftware readback ofINC7 Not Applicable is defined by thewritten configuration application.
Boot time autoload self-EFU1 SL_SelfTest_EFusetestEFuse Static

Configuration Not in scope for thisEFU2 E-fuse ECC Not Available release
Boot time autoload self- Not in scope for thisOne Time OTP1 Not Availabletest releaseProgrammable (OTP)

Flash Static Not in scope for thisOTP2 OTP ECC Not AvailableConfiguration release
Hardware feature with

IOM1 Locking control registers Not Applicable no error response for
faults

IOM2 Master ID filtering Not Applicable
Not in scope for thisIOM3 Error trapping Not Available release

Periodic software Static configuration is
IOM4 readback of static Not Applicable defined by the

configuration registers application.
Boot time software testInput/Output (I/O) of function using Not in scope for thisMultiplexing (IOMM) IOM5A peripherals with analog Not Available releaseI/O loopback including
error tests
Periodic software test of
function using Not in scope for thisIOM5B peripherals with analog Not Available releaseI/O loopback including
error tests

Written configurationSoftware readback ofIOM6 Not Applicable is defined by thewritten configuration application.

18 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com SafeTI™ Diagnostic Library Overview

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

Not in scope for thisVIM1 VIM SRAM Data Parity Not Available release
Boot time PBIST checkVIM2A SL_SelfTest_PBISTof VIM SRAM
Periodic PBIST check ofVIM2B SL_SelfTest_PBISTVIM SRAM
Bit multiplexing in VIM CRC will indicateVIM3 Not ApplicableSRAM array faults in VIM SRAM
Periodic hardware CRC

VIM4 check of VIM SRAM SL_CRC_Calculate
contents
Periodic software test of Not in scope for thisVectored Interrupt VIM5 Not AvailableVIM functionality releaseModule (VIM)
Periodic software Static configuration is

VIM6 readback of static Not Applicable defined by the
configuration registers application.

Written configurationSoftware readback ofVIM7 Not Applicable is defined by thewritten configuration application.
Internal watchdog - Handled by the safetyVIM8A Not ApplicableDWD application
Internal watchdog - Handled by the safetyVIM8B Not ApplicableDWWD application

Handled by the safetyVIM8C External watchdog Not Applicable application
1oo2 software voting Not in scope for thisRTI1 using secondary free Not Available releaserunning counter
Internal watchdog - Handled by safetyRTI2A Not ApplicableDWD application

Real Time Interrupt Internal watchdog - Handled by safety(RTI) Operating System RTI2B Not ApplicableDWWD applicationTimer
Handled by safetyRTI2C External watchdog Not Applicable application

Periodic software Static configuration is
RTI3 readback of static Not Applicable defined by the

configuration registers application.

19SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

SafeTI™ Diagnostic Library Overview www.ti.com

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

Memory protection unit Not in scope for thisDMA1 Not Availablefor bus master accesses release
Non-privileged bus Not in scope for thisDMA2 Not Availablemaster access release

Not in scope for thisDMA3 Information redundancy Not Available release
Not in scope for thisDMA4 DMA SRAM Data Parity Not Available release

Boot time PBIST checkDMA5A SL_SelfTest_PBISTof DMA SRAM
Periodic PBIST check ofDMA5B SL_SelfTest_PBISTDMA SRAM

Direct Memory Access Bit multiplexing in DMA Not in scope for thisDMA6 Not Available(DMA) SRAM array release
Periodic hardware CRC

DMA7 check of DMA SRAM SL_CRC_Calculate
contents
Periodic software Static configuration is

DMA8 readback of static Not Applicable defined by the
configuration registers application.
Boot time software test Not in scope for thisDMA9A of basic functionality Not Available releaseincluding error tests
Periodic software test of Not in scope for thisDMA9B basic functionality Not Available releaseincluding error tests
Memory protection unit Not in scope for thisHET1 Not Availablefor bus master accesses release

Not in scope for thisHET2 Information redundancy Not Available release
Use of DCC as program Not in scope for thisHET3 Not Availablesequence watchdog release
Monitoring by second Not in scope for thisHET4 Not AvailableN2HET release
Boot time software test Not in scope for thisHET5A of function using I/O Not Available releaseloopback
Periodic software test of Not in scope for thisHET5B function using I/O Not Available releaseloopbackHigh-End Timer

(N2HET) Including HET N2HET/HTU SRAM Not in scope for thisHET6 Not AvailableTransfer Unit (HTU) Data Parity release
Boot time PBIST check Not in scope for thisHET7A SL_SelfTest_PBISTof N2HET/HTU SRAM release
Periodic PBIST check of Not in scope for thisHET7B SL_SelfTest_PBISTN2HET/HTU SRAM release
Bit multiplexing in

HET8 N2HET/HTU SRAM Not Available Feature in Hardware
array
Periodic hardware CRC

HET9 check of N2HET/HTU SL_CRC_Calculate
SRAM contents
Periodic software Static configuration is

HET10 readback of static Not Applicable defined by the
configuration registers application.

20 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com SafeTI™ Diagnostic Library Overview

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

ADC1 Boot time input self test SL_SelfTest_ADC
Boot time converterADC2A SL_adcCalibrationcalibration
Periodic converterADC2B SL_adcCalibrationcalibration
Information redundancy Not in scope for thisADC3 Not Availabletechniques release
MibADC SRAM DataADC4 SL_SelfTest_ADCParity

Multi-Buffered Analog to Boot time PBIST checkADC5A SL_SelfTest_PBISTDigital Converter of MibADC SRAM
(MibADC)

Periodic PBIST check ofADC5B SL_SelfTest_PBISTMibADC SRAM
Bit multiplexing inADC6 Not Available Feature in HardwareMibADC SRAM array
Periodic hardware CRC

ADC7 check of MibADC SRAM SL_CRC_Calculate
contents
Periodic software Static configuration is

ADC8 readback of static Not Applicable defined by the
configuration registers application.
Boot time software test Not in scope for thisMSP1A of function using I/O Not Available releaseloopback
Periodic software test of Not in scope for thisMSP1B function using I/O Not Available releaseloopback

Not in scope for thisMSP2 Parity in message Not Available release
Information redundancy Not in scope for thisMSP3 Not Availabletechniques release
MibSPI SRAM Data Not in scope for thisMSP4 Not AvailableMulti-Buffered Serial Parity release

Peripheral Interface
Boot time PBIST check(MibSPI) MSP5A SL_SelfTest_PBISTof MibSPI SRAM
Periodic PBIST check ofMSP5B SL_SelfTest_PBISTMibSPI SRAM
Bit multiplexing inMSP6 Not Available Feature in HardwareMibSPI SRAM array
Periodic hardware CRC

MSP7 check of MibSPI SRAM SL_CRC_Calculate
contents
Periodic software Static configuration is

MSP8 readback of static Not Applicable defined by the
configuration registers application.

21SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

SafeTI™ Diagnostic Library Overview www.ti.com

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

Boot time software test Not in scope for thisSPI1A of function using I/O Not Available releaseloopback
Periodic software test of Not in scope for thisSPI1B function using I/O Not Available releaseloopback

Serial Peripheral Not in scope for thisInterface (SPI) SPI2 Parity in message Not Available release
Information redundancy Not in scope for thisSPI3 Not Availabletechniques release
Periodic software Static configuration is

SPI4 readback of static Not Applicable defined by the
configuration registers application.
Boot time software test Not in scope for thisIIC1A Not Availableof function release
Periodic software test of Not in scope for thisIIC1B Not Availablefunction release

Inter-Integrated Circuit
Information redundancy Not in scope for this(I2C) IIC2 Not Availabletechniques release
Periodic software Static configuration is

IIC3 readback of static Not Applicable defined by the
configuration registers application.
Boot time software test Not in scope for thisSCI1A of function using I/O Not Available releaseloopback
Periodic software test of Not in scope for thisSCI1B function using I/O Not Available releaseSerial Communications loopback

Interface (SCI)
Information redundancy Not in scope for thisSCI2 Not Availabletechniques release
Periodic software Static configuration is

SCI3 readback of static Not Applicable defined by the
configuration registers application.
Boot time software test Not in scope for thisLIN1A of function using I/O Not Available releaseloopback
Periodic software test of Not in scope for thisLIN1B function using I/O Not Available releaseloopbackLocal Interconnect

Network (LIN) Information redundancy Not in scope for thisLIN2 techniques including end Not Available releaseto end safing
Periodic software Static configuration is

LIN3 readback of static Not Applicable defined by the
configuration registers application.

22 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com SafeTI™ Diagnostic Library Overview

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

Boot time software test Not in scope for thisCAN1A of function using I/O Not Available releaseloopback
Periodic software test of Not in scope for thisCAN1B function using I/O Not Available releaseloopback
Information redundancy Not in scope for thisCAN2 techniques including end Not Available releaseto end safing
DCAN SRAM Data Not in scope for thisCAN3 Not AvailableParity release

Controller Area Network Boot time PBIST check(DCAN) CAN4A SL_SelfTest_PBISTof DCAN SRAM
Periodic PBIST check ofCAN4B SL_SelfTest_PBISTDCAN SRAM
Bit multiplexing in DCANCAN5 Not Available Feature in HardwareSRAM array
Periodic hardware CRC

CAN6 check of DCAN SRAM SL_CRC_Calculate
contents
Periodic software Static configuration is

CAN7 readback of static Not Applicable defined by the
configuration registers application.
Memory protection unit Not in scope for thisFRY1 Not Availablefor bus master accesses release
Non-privileged bus Not in scope for thisFRY2 Not Availablemaster access release
Boot time software test Not in scope for thisFRY3A of function using I/O Not Available releaseloopback in PHY
Periodic software test of Not in scope for thisFRY3B function using I/O Not Available releaseloopback in transceiver
Information redundancy Not in scope for thisFRY4 techniques including end Not Available releaseto end safing
1oo2 Voting using Both Not in scope for thisFRY5 Not AvailableFlexRay Channels releaseFlexRay Including

FlexRay Transfer Unit FlexRay and FTU SRAM Not in scope for thisFRY6 Not Available(FTU) Data Parity release
Boot time PBIST check

FRY7A of FlexRay and FTU SL_SelfTest_PBIST
SRAM
Periodic PBIST check ofFRY7B SL_SelfTest_PBISTFlexRay and FTU SRAM
Bit multiplexing in

FRY8 FlexRay and FTU SRAM Not Available Feature in Hardware
array
Periodic hardware CRC

FRY9 check of FlexRay and SL_CRC_Calculate
FTU SRAM contents
Periodic software Static configuration is

FRY10 readback of static Not Applicable defined by the
configuration registers application.

23SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

SafeTI™ Diagnostic Library Overview www.ti.com

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

Boot time software test Not in scope for thisGIO1A of function using I/O Not Available releasechecking
Periodic software test of Not in scope for thisGIO1B function using I/O Not Available releaseGeneral Purpose checking

Input/Output (GIO)
Information redundancy Not in scope for thisGIO2 Not Availabletechniques release
Periodic software Static configuration is

GIO3 readback of static Not Applicable defined by the
configuration registers application.
Non-privileged bus Not in scope for thisETH1 Not Availablemaster access release
Boot time software test Not in scope for thisETH2A of function using I/O Not Available releaseloopback in PHY
Periodic software test of Not in scope for thisETH2B function using I/O Not Available releaseloopback in PHY
Information redundancy Not in scope for thisETH3 techniques including end Not Available releaseto end safing

Ethernet Boot time PBIST checkETH4A SL_SelfTest_PBISTof Ethernet SRAM
Periodic PBIST check ofETH4B SL_SelfTest_PBISTEthernet SRAM
Bit multiplexing inETH5 Not Available Feature in HardwareEthernet SRAM array
Periodic hardware CRC

ETH6 check of Ethernet SRAM SL_CRC_Calculate
contents
Periodic software Static configuration is

ETH7 readback of static Not Applicable defined by the
configuration registers application.
Non-privileged bus Not in scope for thisUSB1 Not Availablemaster access release
Boot time software test Not in scope for thisUSB2A of function using I/O Not Available releaseloopback in PHY
Periodic software test of Not in scope for thisUSB2B function using I/O Not Available releaseloopback in PHY
Information redundancy Not in scope for thisUSB3 Not Availabletechniques release

Universal Serial Bus Boot time PBIST check Not in scope for thisUSB4A SL_SelfTest_PBIST(USB) of USB SRAM release
Periodic PBIST check of Not in scope for thisUSB4B SL_SelfTest_PBISTUSB SRAM release
Bit multiplexing in USBUSB5 Not Available Feature in HardwareSRAM array
Periodic hardware CRC

USB6 check of USB SRAM SL_CRC_Calculate
contents
Periodic software Static configuration is

USB7 readback of static Not Applicable defined by the
configuration registers application.

24 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com SafeTI™ Diagnostic Library Overview

Table 1. API Mapping (continued)
Safety Feature orDevice Partition Unique Identifier API Name RemarksDiagnostic

Information redundancy Not in scope for thisEMF1 Not Availabletechniques release
Boot time hardware

EMF2A CRC check of external SL_CRC_Calculate
memory

External Memory
Periodic hardware CRCInterface (EMIF)

EMF2B check of external SL_CRC_Calculate
memory
Periodic software Static configuration is

EMF3 readback of static Not Applicable defined by the
configuration registers application.
Hardware disable of HardwareJoint Technical Action JTG1 Not AvailableJTAG port ConfigurationGroup (JTAG)

Debug/Trace/Calibration Lockout of JTAG access Configured byJTG2 Not AvailableAccess using AJSM Application
Hardware disable of HardwareDBG1 Not AvailableJTAG port Configuration
Lockout of JTAG access Configured byDBG2 Not Availableusing AJSM ApplicationCortex-R4F Central

Processing Unit (CPU) Use MPUs to block Configured byDebug and Trace DBG3 access to memory- Not Available Applicationmapped debug
Use of CoreSight debug Configured byDBG4 Not Availablelogic key enable scheme Application
Hardware disable of HardwareDMM1 Not AvailableJTAG port Configuration
Lockout of JTAG access Configured byDMM2 Not Availableusing AJSM Application

Data Modification
Use MPUs to blockModule (DMM) Configured byDMM3 access to memory- Not Available Applicationmapped debug
Disable DMM pin HardwareDMM4 Not Availableinterface Configuration
Hardware disable of HardwareRTP1 Not AvailableJTAG port Configuration
Lockout of JTAG access Configured byRTP2 Not Availableusing AJSM Application

RAM Trace Port (RTP) Use MPUs to block Configured byRTP3 access to memory- Not Available Applicationmapped debug
Disable RTP pin HardwareRTP4 Not Availableinterface Configuration
Hardware disable of HardwarePOM1 Not AvailableJTAG port Configuration
Lockout of JTAG access Configured byPOM2 Not Availableusing AJSM Application

Parameter Overlay
Use MPUs to blockModule (POM) Configured byPOM3 access to memory- Not Available Applicationmapped debug
Use of CoreSight debug Configured byPOM4 Not Availablelogic key enable scheme Application

25SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

SafeTI™ Diagnostic Library Overview www.ti.com

Table 2 shows the mapping of the safety requirements derived for the TPS Driver development to the
corresponding APIs.

NOTE: These APIs are documented in the TPS Driver - User's Guide - vX.Y.Z.chm (X.Y.Z
corresponds to the version of the SafeTI™ Diagnostic Library) available in the docs folder of
the SafeTI™ Diagnostic Library installation.

Table 2. TPS Driver API Mapping to Safety Requirements
Unique Identifier Object Heading Object Text API Mapping

TPS_SR22 VMON Provide API for voltage monitoring TPS_GetVMONStatus

Get VMON trim error status. (CommandTPS_SR23 VMON_1 TPS_GetVMONStatusRD_SAFETY_STAT_4 can be used.)

Provide an API which aggreage the VMON status registersTPS_SR24 VMON_2 TPS_GetVMONStatusand return it to Application.

"Provide an API to return the status (whether overvoltage
Junction Temperature or undervoltage or current limit exceeded) of voltage TPS_GetJnTempandCurrentLimitStTPS_SR25 Monitoring and Current source VDD3/5, VDD5, and VSOUT.(command atusLimiting RD_SAFETY_STAT_1 can be used to implement this

API.)"

"TpsIf_GetRegister
TpsIf_GetRegisterBitField

TPS_SR27 TPS Interface Provide TPS Interfacing functions TpsIf_SetRegister
TpsIf_SetRegisterBitField
TpsIf_SetRegisterBitFieldVerify "

"TpsIf_GetRegister
"Provide Interfacing api's to TPS so as to effectively TpsIf_GetRegisterBitField

TPS_SR28 TPS interface_1 set,clear verify and recheck the variour registers inside the TpsIf_SetRegister
TPS module" TpsIf_SetRegisterBitField

TpsIf_SetRegisterBitFieldVerify "

The TPS uses SPI/MibSPI interface for communicating to
TPS_SR29 TPS interface_2 the MCU.The TPS init should take care of initializing TPS_TpsIf_Init

function pointers for the Send and the Receive API's

Provide an API which does a selftest of the commandTPS_SR319 TPS_Interface_3 TpsIf_TestCommandParityLogicparity logic

Provide an API which does a selftest of wrong commandTPS_SR320 TPS_Interface_4 TpsIf_TestWrongCommandLogiclogic

Provide an API which does the test of the SPI frameTPS_SR321 TPS_Interface_5 NAtransmission to the TPS device

TPS_SR322 TPS_Interface_6 Provide an API to test writes to the PWM Low register TpsIf_SpiIFTestPwmlow

TPS_SR323 TPS_Interface_7 Provide an APi to get the Token Value. TPS_UpdateActiveWDToken

TPS_SR31 ABIST Provide ABIST Support TPS_GetBISTRunningStatus

Provide an API to manually trigger the analog built in
TPS_SR32 ABIST_1 selftest(The api should check for the proper preconditions TPS_StartBIST

and trigger the ABIST)

Provide an API to get ABISt running status.(CommandTPS_SR33 ABIST_2 TPS_GetBISTRunningStatusRD_SAFETY_STAT_3 can be used.)

Provide API to give status of Analog Built in self test.The
API should return the PASS status and if it is a failure then "TPS_GetLBISTTestStatusTPS_SR35 ABIST_3 it should return the FAILURE type.(Command TPS_GoToSafeState "
RD_SAFETY_STAT_3 can be used)

TPS_SR36 MUX Diangnostics Provide API for MUX diagnostics TPS_EnableAMUXSignal

Provide and API for AMUX diagnostics.The API set the
mux_cfg value to 10 and set proper Channel Number in the

TPS_SR37 AMUX diagnostics DIAG_MUX_SEL register and bring out required analog TPS_DisableMUXDiagnostic
internal signal on the diag_out pin.The user will input the
signal_name(enumeration) required as input to the API

Provide and API for DMUX diagnostics.The API set the
mux_cfg value to 01 and set proper Channel group and
Channel Number in the DIAG_MUX_SEL register and bringTPS_SR38 DMUX Diagnostics TPS_EnableDMUXSignalout required digital internal signal on the diag_out pin.The
user will input the signal_name(enumeration) required as
input to the API

"
ADC Threshhold Provide ADC support so as to sample AMUX diagnostic TPS_CheckEnabledAMUXSignalLiTPS_SR314 comparision values and compare them against the threshhold values. mits TPS_DisableMUXDiagnostic

TPS_EnableAMUXSignal"

26 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com SafeTI™ Diagnostic Library Overview

Table 2. TPS Driver API Mapping to Safety Requirements (continued)
Unique Identifier Object Heading Object Text API Mapping

provide an API to enable and disable automatic BIST atTPS_SR39 BIST at startup TPS_ConfigureBISTatStartupstartuup

TPS_SR40 LBIST Provide LBIST support TPS_StartBIST

Provide API to give status of LBIST.The API should return
the PASS status and if it is a failure then it should return "TPS_GetLBISTTestStatusTPS_SR41 LBIST_1 the FAILURE type.(Command RD_SAFETY_STAT_3 can TPS_GoToSafeState"
be used)

"TPS_GetBISTRunningStatusProvide an API to get LBIST running status.(CommandTPS_SR42 LBIST_2 TPS_GetEECRCCheckRunningStatRD_SAFETY_STAT_3 can be used.) us"

API to trigger the LBIST run.The API should trigger the
TPS_SR43 LBIST_3 LBIST if the the preconditions or entry conditions are TPS_StartBIST

satisfied else API should return FALSE

TPS_SR44 Watchdog_General General Watchdog support TPS_GetWatchdogFailureStatus

Watchdog Configuration API for Configuring the Watchdog
TPS_SR45 Watchdog General_1 settings and initializing the watchdog.(command TPS_SetWatchdogMode

WR_SAFETY_FUNC_CTRL can be used.)

API for enabling and disabling of the watchdog
TPS_SR46 Watchdog General_2 reset.(command WR_SAFETY_FUNC_CTRL can be TPS_ConfigureWatchdogReset

used.)

Provide and API to return the WDT fail count.(TheTPS_SR47 Watchdog General_3 TPS_GetWatchdogFailCountcommand RD_SAFETY_STAT_2 can be used)

Provide and API to return theWD error status.(The
TPS_SR48 Watchdog General_4 command RD_SAFETY_STAT_4 can be used.A boolean TPS_GetWatchdogFailureStatus

return value based on the return status)

Provide an API to clear WD_FAIL status.(Command TPS_ClearWatchdogFailureStatusFlTPS_SR49 Watchdog General_5 WR_SAFETY_ERR_STAT can be used.) ag

Get Watchdog Fail Status API.(commandTPS_SR50 Watchdog General_6 TPS_GetWatchdogFailureStatusD_SAFETY_ERR_STAT can be used.)

"Provide Watchdog status API.The API updates the
structure watchdog_status with relavant information.(suchTPS_SR51 Watchdog General_7 TPS_GetWatchdogErrorTypeas seq_err,timeout,token_err etb.)(Command
RD_WDT_STATUS can be used.)"

Provide Watchdog Synchronization API or make theTPS_SR52 Watchdog General_8 TPS_ConfigureWatchdogWindowssyncronization part of the Configuration API

Watchdog(WDTITPS_SR53 WDTI watchdog support TPS_WatchdogInitConfiguration)

Watchdog(WDTI The WatchDog Configuration API should enableTPS_SR54 TPS_WatchdogInitConfiguration)_1 configuring of the watchdog in WDTI mode.

Watchdog(WDTI Provide an API to Enable the PWM mode for theTPS_SR55 TPS_ConfigureErrorMonitoringConfiguration)_2 WD/ERROR Pin

"TPS_ClearWatchdogFailureStatus
Flag TPS_ConfigureErrorMonitoring
TPS_ConfigureWatchdogResetWatchdog(Q&ATPS_SR56 Q&A watchdog support TPS_ConfigureWatchdogWindowsconfiguration) TPS_GetWatchdogFailureStatus
TPS_SendWdgResponse
TPS_SetWatchdogMode "

Watchdog(Q&A The WatchDog Configuration API should enableTPS_SR57 TPS_SetWatchdogModeconfiguration)_1 configuring of the watchdog in Q&A mode.

Watchdog(Q&A Provide an API to set Close window duration.(TheTPS_SR58 TPS_ConfigureWatchdogWindowsconfiguration)_2 command WR_WDT_WIN1_CFG can be used.)

Watchdog(Q&A Provide an API to set Open window duration.(TheTPS_SR59 TPS_ConfigureWatchdogWindowsconfiguration)_3 command WR_WDT_WIN2_CFG can be used.)

Watchdog(Q&A A send watchdog answer API which calculates the answerTPS_SR60 TPS_SendWdgResponseconfiguration)_4 for given token and returns it to application

Watchdog(Q&A "A get watchdog answer count API which retuns theTPS_SR324 TPS_GetWatchdogAnswerCountconfiguration)_5 current now of answers sent to TPS "

API for doing a self test on ERROR signal monitoring.The
TPS_SR61 MCU ERROR handling_1 API should force error pin on the MCU to high and check TPS_TestErrorPinMonitoring

whether the ERROR_PIN_FAIL flag is set.

Configration registerTPS_SR62 Provide support for configuration register protection TPS_ProtectConfigurationRegistersprotection

27SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

SafeTI™ Diagnostic Library Overview www.ti.com

Table 2. TPS Driver API Mapping to Safety Requirements (continued)
Unique Identifier Object Heading Object Text API Mapping

Provide API for locking of registers.((the commandDevice ConfigurationTPS_SR63 SW_LOCK can be used with data 0X55) or command TPS_ProtectConfigurationRegistersRegister Protection_1 WR_SAFETY_ERR_CFG can be used)

Provide API for unlocking of registers.(the commandDevice ConfigurationTPS_SR64 SW_UNLOCK can be used with data 0X55 or command TPS_ProtectConfigurationRegistersRegister Protection_2 WR_SAFETY_ERR_CFG can be used.)

TPS_SR65 Safety Check Control Provide support for setting Safety Check Control TPS_ConfigureSafetyCheckControl

"TPS_CalculateCRC8
TPS_GetCRCErrorStatusTPS_SR72 CRC Provide CRC support for TPS driver TPS_InitializeDatastringforCRCCacl
cuation"

API to enable and disable CFG register CRC
TPS_SR73 CRC_1 check.(command WR_SAFETY_CHECK_CTRL can be TPS_ConfigureSafetyCheckControl

used)

API to trigger EE CRC check (commandTPS_SR74 CRC_2 TPS_StartEECRCCheckWR_SAFETY_BIST_CTRL can be used)

Provide API for Calculation of the CRC on Safety CriticalTPS_SR75 CRC_3 TPS_CalculateCRC8Registers

Provide and Api to return the CRC error status.The API
can have a parameter which selcts whether the error statusTPS_SR76 CRC_4 TPS_GetCRCErrorStatusof EEPROM or Configuration register needs to be
returned.(command RD_SAFETY_STAT_2 can be used)

Provide an API to enable and disable the NRES pinTPS_SR325 NRES_MONITORING TPS_ConfigureNRESMonitoringmonitoring

Provide Support for reading and clearing device errorTPS_SR83 ERROR_STATUS TPS_ClearDeviceErrorCountstatus and count

Provide API that provides status of ERR_PIN_FAIL
TPS_SR84 ERROR_STATUS_1 flag.(The command RD_SAFETY_ERR_STAT can be TPS_GetErrorPinFailureStatusFlag

used.)

Provide an API to clear ERROR_PIN_FAIL.(Command TPS_ClearErrorPinFailureStatusFlaTPS_SR85 ERROR_STATUS_2 WR_SAFETY_ERR_STAT can be used.) g

Provide an API to clear device error count.(CommandTPS_SR86 ERROR_STATUS_3 TPS_ClearDeviceErrorCountWR_SAFETY_ERR_STAT can be used.)

Provide an API to get the device error count.(CommandTPS_SR87 ERROR_STATUS_4 TPS_GetDeviceErrorCountWR_SAFETY_ERR_STAT can be used.)

Provide support for fault injection API's which can inject "TPS_FaultInjectCRCTPS_SR91 Fault_Injection faults and help in observing the device or system behavior TPS_FaultInjectWD"

Fault Injection Watchdog.Try to inject fault in watchdog byTPS_SR92 Fault_Injection_1 TPS_FaultInjectWDnot forwarding the watchdog answer

Fault iInjection CRC.Inject fault in crc for the deviceTPS_SR93 Fault_Injection_2 TPS_FaultInjectCRCconfiguration registers.

Fault Injection EN_DRV.Inject fault in so that the status flagTPS_SR313 Fault_Injection_3 NAEN_DRV_ERR gets set in the TPS register Safety_Stat_4

Provide an API which pushes the TPS to the Safe
State.There are various implementations possible whichTPS_SR315 Safe State TPS_GoToSafeStatemay put the TPS to safe state.Select feasible solution and
implement the go to safe state API.

Readback_Static_Config Provide API to Read Back the Static Configuration.(SafetyTPS_SR328 TPS_RegReadBackandCompareuration Config + Dev Config)

28 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com System Requirements

6 System Requirements
Section 6.1 and Section 6.2 outlines the hardware and software requirements to use the SafeTI™
Diagnostic Library and TPS Driver

6.1 Software Requirements
Following are the software requirements for using the SafeTI™ Diagnostic Library:
1. CCS 5.4 or newer version using Codegen tools version 5.0.4
2. HALCoGen 3.04.00 or newer version
3. nowECC v2.17 or newer version

Following are the software requirements for using the TPS Driver:
1. CCS 5.5 or newer version using Codegen tools version 5.1.6
2. HALCoGen 4.00.00 or newer version

6.2 Hardware Requirements
Following are the hardware requirements for using the SafeTI™ Diagnostic Library:
1. Device specific TI Hercules™ MCU Development Kit

Following are the hardware requirements for using the TPS Driver:
1. TMS570LS3137 Hitex Safety Kit, RM48L952 Hitex Safety Kit, TMS570LS1227 Control Card, RM46

Control card
2. Library can be used across the Hercules™ family of processors but has not been tested on platforms

other than those mentioned above

29SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

Failure Modes and Effects Analysis Report for SafeTI™ Diagnostic Library (TPS Driver FMEA not available) www.ti.com

7 Failure Modes and Effects Analysis Report for SafeTI™ Diagnostic Library (TPS
Driver FMEA not available)

Table 3. Failure Modes and Effects
Potential Effect of Potential Causes ofSr. No. Module / Function Potential Failure mode Prevention DetectionFailure Mode Failure Mode

End user application The ESM handler ESM handler includesidentifies incorrectIn case of a real fault in the system, does not decode the group and channelfault. The applicationthe ESM handler reports an ESM event correctly. information. Verified Code Review. Testing1 ESM Handling fault handler mayincorrect ESM event number to the An ESM Event (real through code using fault injection.invoke fault handlinguser. fault in the hardware) review/test casedifferent from the will occur review and testing.required action.

Flag indicates faultIncorrectly identifying real faults as Implementation of the caused due to Safetysimulated Faults due to Safety End user application ESM handler/SDL. An Library Selftest ordiagnostic library™ logic. (Library does not get2 ESM Handling ESM Event (real fault fault injection. Verified Code reviewcode assumes diagnostic mode in notification of real in the hardware) will through test caseplace of real failure/fault injection fault in the system. occur updating, test casemode) review, and testing.

SDL Sets a flag to
End user application indicate the fault was
identifies incorrect an injectedIncorrectly identifying simulated Implementation of the3 ESM Handling fault resulting in (Simulated) Fault. Code review and testingfaults as real Faults due to SL logic. ESM handler/SDL.wrong actions being Several other checks
taken. for fault creation

condition are in place.

SL API adds checks
for privilege level, and
if not met, does notApplication taskApplication Privilege execute the test, Unit test cases to test4 SL API is invoked in user mode. invoking SL API is inLevel returns a failure. This SL API in user mode.non-privilege mode. is a documented
requirement for SL
API usage.

Updated
Application in SRAM documentation toRunning PBIST on SRAM with code Prefetch abort or Testing at application5 PBIST invoking PBIST include a note againstin the SRAM invalid operation levelalgorithm on SRAM use of PBIST for

SRAM.

UpdatedCorruption of data documentation toRunning PBIST on RAMs at runtime resulting in invalid Application invoking Testing at application6 PBIST include a note againstcan return invalid data. operation of PBIST on SRAM leveluse of PBIST forapplication. SRAM.

Application design
issue, not allocating Documentation added

System instability enough time for to require applicationViolation of time slots for safety Testing at application7 Safety loop resulting in system Safety loop cycle, or to keep the profilingloop. levelcrash interrupting safety data in mind when
loop cycle by a higher designing safety loop.
priority event/task

Due to misconfiguration/masking at Diagnostic mode may Application level Safety Library Designapplication config level (ESM) the remain set. ESM8 Safety loop masking of the ESM handles diagnostic Design/Code reviewDiagnostic mode/ESM status is not status will not be event. mode configuration.reset. reset.

Check in design/code
to verify if API is forApplication will not be Due to self test or for faultSafety library fails to report ESM able to test fault misconfiguration/mask9 ESM Handling injection, and masking Code reviewerror for fault injection mode handling feature for ing inside Selftest/fault of events accordinglythe ESM event. injection API. (only for self test
mode).

30 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com New in this Release

8 New in this Release
The following outlines the defects and enhancements resolved in this release:
1. Maintenance update (see bug fixes section in release notes).
2. Revised Safety Software Manual for SafeTI™ Diagnostic Library.
3. Updated User Guides for SafeTI™ Diagnostic Library and TPS Driver.
4. Additional Testing to cover bugs fixed.

9 Fixed in this Release
Refer to release notes for list of defects fixed in this release.

10 Known Issues and Limitations
Refer to release notes for list of defects fixed in this release.

11 Backward Compatibility
This software release is backward compatible with previously released versions of the SafeTI™
Hercules™ Diagnostic library.

12 Compatibility with Other Systems
This software is a software API library for using the hardware-diagnostic features available in the
Hercules™ Safety MCUs. It does not restrict usage of other software systems such as an RTOS or device
drivers (for example, HALCoGen generated device drivers).

13 Software Manifest
You can find the Software Manifest for SafeTI™ diagnostic library in the <Installation Directory>\docs
folder of your installation.

14 Change Control, Support, and Maintenance
The change request could be either a feature request, support for existing software or defect fix. All
change requests initiated by the integrator either through the TI E2E system or other means shall be
routed through the concerned Field Application Engineer. The change request shall be submitted in the
change management system documenting the reason for change request. The change control board shall
evaluate the results of impact analysis considering the impact on safety and will approve or reject the
change request. If the change is approved, a change notice (ECN) is prepared and communicated to all
concerned. If the change is rejected, the same is communicated to the originator and all concerned. The
changes shall be implemented by the development team as per plan and after the planned verification, the
software shall be released. The release notification shall be communicated to all concerned or affected
parties.

15 Design Safe State (If Applicable)
This software library is used to test or run the diagnostics available on the Hercules™ Safety MCU.
Running these tests can result in flagging of safety critical errors indicating a hardware fault. The system
designer must handle the fault flagged by the diagnostic library to achieve a safe state as required.

16 Interface Constraints
Refer to the API user guide included above for any constraints in the use of the API.

31SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

Competence www.ti.com

17 Competence
The person responsible for integration of this unit into the end-application software must have a good
understanding of the safety features and mechanisms available in hardware in the Hercules™ Safety
MCU.

18 Justification of Claims
The Software Diagnostics Library provides a software implementation of the diagnostic features
recommended for the TI Hercules™ Safety MCU family of devices. The features of the diagnostic library
are implemented as described in the device Technical Reference Manual and the device Safety Manual.

19 Software Quality Metrics
Software metrics are a quantitative guide to the performance of the software. Software metrics are the
basis for efficient project and quality management. The quality of the software product can be determined
with the software metrics. The set of metrics shown in Table 4 is used for the evaluation of software
quality. These metrics are a subset of HIS metrics.

32 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com Software Quality Metrics

Table 4. Software Quality Metrics

Sl. No Metric Description Range

Number of executable lines in the function.1 Number of instructions per function 1-50
Indicates complexity of the code

Relationship of the number of comments to the number of statements.2 Comment Density >0.2
Provides information about clarity in the code.

Number of Goto statements found in the code.
3 Number of Goto statements 0Goto statements increase the number of paths in the code. Use of

gotos can lead to unreadable and unmaintainable code.

Measurement of the number of linearly independent paths through the
4 Cyclomatic Complexity source code. 1-10

Indicates the complexity of the code
5 Number of calling functions Measurement of the number of functions which call this function. 0-5

Measurement of the number of different functions called by this6 Number of called functions 0-7function

Determine the complexity of the function interface.7 Number of function parameters 0-5
Complexity of the function, need for computation of stack allocation

Number of return points within a function.
8 Number of return points 0-1Provides information about complexity and maintainability of the

function.

The language scope is an indicator of the cost of maintaining/changing
functions.
"VOCF"
VOCF = (N1+N2)/(n1+n2) where:

9 Language Scope N1 = Sum of all operators, 1-4
N2 = Sum of all operands,
n1 = Number of different operators,
n2 = Number of different operands
Higher value indicates similar or duplicate code portions.

Count the number of recursions.
10 Number of recursions 0Recursion should generally be avoided because it makes the code less

readable and harder to maintain and debug.
11 Number of Global variables Measure of the number of Global variables used 0
12 Number of paths Number of non cyclic remark paths 1-80

33SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

Appendix A: MISRA-C Guidelines www.ti.com

20 Appendix A: MISRA-C Guidelines

20.1 MISRA-C Rules Adhered – Mandatory
Table 5 shows the rules of MISRA-C 2004, which are mandatory and must be followed for all
implementations.

Table 5. MISRA-C Rules Adhered

Rule No. Type Category
2.1 Required Language Extensions
2.2 Required Language Extensions
2.3 Required Language Extensions
2.4 Advisory Language Extensions
4.1 Required Character sets
4.2 Required Character sets
5.2 Required Identifiers
5.3 Required Identifiers
5.4 Required Identifiers
6.1 Required Types
6.3 Advisory Types
6.4 Required Types
6.5 Required Types
7.1 Required Constants
8.1 Required Declarations and definitions
8.2 Required Declarations and definitions
8.3 Required Declarations and definitions
8.4 Required Declarations and definitions
8.5 Required Declarations and definitions
8.6 Required Declarations and definitions
8.7 Required Declarations and definitions
8.8 Required Declarations and definitions
8.9 Required Declarations and definitions
8.11 Required Declarations and definitions
8.12 Required Declarations and definitions
9.1 Required Initialization
9.2 Required Initialization
9.3 Required Initialization
10.1 Required Type conversion
10.3 Required Type Conversion
10.4 Required Type Conversion
10.6 Required Type Conversion
11.1 Required Pointer type Conversion
11.2 Required Pointer type Conversion
12.1 Advisory Expressions
12.2 Required Expressions
12.3 Required Expressions
12.4 Required Expressions
12.5 Required Expressions
12.7 Required Expressions
12.8 Required Expressions
12.9 Required Expressions

34 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com Appendix A: MISRA-C Guidelines

Table 5. MISRA-C Rules Adhered (continued)
Rule No. Type Category

12.10 Required Expressions
12.13 Advisory Expressions
13.1 Required Control Statement Expression
13.2 Advisory Control Statement Expression
13.3 Required Control Statement Expression
13.4 Required Control Statement Expression
13.5 Required Control Statement Expression
13.6 Required Control Statement Expression
14.1 Required Control Flow
14.2 Required Control Flow
14.5 Required Control Flow
14.8 Required Control Flow
14.9 Required Control Flow
14.10 Required Control Flow
15.1 Required Switch statement
15.2 Required Switch statement
15.3 Required Switch statement
15.4 Required Switch statement
15.5 Required Switch statement
16.1 Required Functions
16.2 Required Functions
16.3 Required Functions
16.4 Required Functions
16.5 Required Functions
16.8 Required Functions
16.9 Required Functions
16.10 Required Functions
17.2 Required Pointers and Arrays
17.3 Required Pointers and Arrays
17.5 Advisory Pointers and Arrays
17.6 Advisory Pointers and Arrays
18.1 Required Structures and Unions
18.2 Required Structures and Unions
18.4 Required Structures and Unions
19.1 Advisory Preprocessor directives
19.2 Advisory Preprocessor directives
19.3 Required Preprocessor directives
19.5 Required Preprocessor directives
19.6 Required Preprocessor directives
19.8 Advisory Preprocessor directives
19.9 Required Preprocessor directives
19.10 Required Preprocessor directives
19.12 Required Preprocessor directives
19.13 Advisory Preprocessor directives
19.14 Advisory Preprocessor directives
19.15 Required Standard Libraries
19.16 Required Preprocessor directives

35SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

Appendix A: MISRA-C Guidelines www.ti.com

Table 5. MISRA-C Rules Adhered (continued)
Rule No. Type Category

19.17 Required Preprocessor directives
20.1 Required Standard Libraries
20.4 Required Standard Libraries
20.5 Required Standard Libraries
20.6 Required Standard Libraries
20.7 Required Standard Libraries
20.8 Required Standard Libraries
20.9 Required Standard Libraries
20.10 Required Standard Libraries
20.12 Required Standard Libraries

20.2 MISRA-C Blanket Deviations
Table 6 shows the rules of MISRA-C 2004, which are "Blanket deviations." The source code is not
checked for compliance to these rules.

Table 6. MISRA-C Blanket Deviations

Rule No. Type Category
1.3 Required Environment
1.5 Advisory Environment
3.1 Required Documentation
3.2 Required Documentation
3.6 Required Documentation
5.1 Required Identifiers
5.6 Advisory Identifiers
5.7 Advisory Identifiers
12.11 Advisory Expressions
18.3 Required Structures and Unions
19.4 Required Preprocessor directives
19.11 Required Preprocessor directives
20.3 Required Standard Libraries

36 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com Appendix A: MISRA-C Guidelines

20.3 MISRA-C Partially Checked Rules
Table 7 shows the rules of MISRA-C 2004, which are partially checked by the tool used for Static Analysis
and, hence, the code is not completely checked for compliance to these rules.

Table 7. MISRA-C Partially Checked Rules

Rule No. Type Category
1.1 Required Environment
1.2 Required Environment
1.4 Required Environment
3.3 Advisory Documentation
3.4 Required Documentation
3.5 Required Documentation
12.12 Required Expressions
13.7 Required Control Statement Expression
16.6 Required Functions
20.2 Required Standard Libraries
21.1 Required Run time failures

20.4 MISRA-C Acceptable Deviations
Table 8 shows the rules of MISRA-C 2004, which are optional (acceptable deviations) and are followed as
far as is reasonably practical for all implementations. Each instance of the violation from these rules is
reviewed and signed off. Violations reported for these rules are reviewed and decided to fix or not on case
by case basis. For these situations, if the violation is not fixed, a comment is placed on top of the source
code line having the violation.

Table 8. MISRA-C Acceptable Deviations

Rule No. Type Category
5.5 Advisory Identifiers
6.2 Required Types
8.10 Required Declarations and definitions
10.2 Required Type conversion
10.5 Required Type conversion
11.3 Advisory Pointer type Conversion
11.4 Advisory Pointer type Conversion
11.5 Required Pointer type Conversion
12.6 Advisory Expressions
14.3 Required Control Flow
14.4 Required Control Flow
14.6 Required Control Flow
14.7 Required Control Flow
16.7 Advisory Pointers and Arrays
17.1 Required Pointer and Arrays
17.4 Required Pointer and Arrays
19.7 Advisory Standard Libraries
20.11 Required Standard Libraries

37SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

Appendix B: Development Interface Agreement www.ti.com

21 Appendix B: Development Interface Agreement
A Development Interface Agreement (DIA) is intended to capture an agreement between a customer and
supplier towards the management of shared responsibilities in developing a functional safety system. In
custom developments, the DIA is a key document executed between customer and supplier early in the
development process. As the Hercules™ family is a commercial, off the shelf (COTS) product, TI has
prepared a standard DIA within this section that describes the support that TI can provide for customer
developments. Refer to your local TI sales office for disposition requests for custom DIAs.

21.1 Appointment of Safety Managers
Texas Instruments has developed the Hercules™ processors with one or more development specialist
safety managers in place throughout the software development, release to market, and release to
production. Safety management after release to production is maintained by separate safety managers
who specialize in development and operation issues. Safety management responsibilities are continued
through product end-of-life.

21.2 Tailoring of Safety Life Cycle
TI has tailored the safety life cycles of IEC 61508:2010 and ISO 26262:2011 to best match the needs of a
safety element out of context (SEooC). The tailoring activity has been executed to meet the requirements
in the context of software unit development.

Key elements of the tailored safety life cycle in the context of unit software development are:
• Assumptions on system level design, safety concept, and requirements
• Software Integration Plan is not developed, because the deliverable is only software unit which is the

lowest atomic level software component.
• Hardware Software Interface Specification is not developed because the deliverable is only a software

unit, which is the lowest atomic level software component and level of interfaces with other units or
components is not visible enough.

• Analysis of dependent failures is not conducted because, at the software unit level, it is not feasible to
analyze dependent failures. However, SW FMEA shall be conducted as safety analysis to ensure
potential failure modes are identified and evaluated.

• Integration testing is not performed because the deliverable is only a software unit, which is the lowest
atomic level software component. Because integration test is not performed, software integration test
matrix is not delivered.

• Software unit test plan and safety test matrix can be combined into a single document. Similarly, unit
test report and safety test report will be combined to a single test report.

• Structural coverage metrics at software architecture level are not collected and analyzed because the
deliverable is only a software unit, which is the lowest atomic level software component.

21.3 Activities Performed by TI
The software products covered by this DIA are software units and software components developed as
Safety Element out of Context (SEooC). As such, TI's safety activities focus on those related to
management of functional safety and software components and software unit developments. System level
architecture, design, and safety analysis are not in the scope of TI activities and are the responsibility of
the TI customer.

Table 9. Activities Performed by TI versus Performed by SEooC Customer

Safety Life Cycle Activity TI Execution SEooC Customer Execution
Management of functional safety YES YES
Hazard and risk analysis of end equipments and items NO YES
Definition of end equipment and item NO YES
Development of end equipment safety concept Assumptions made YES
Allocation of end equipment requirements to sub-systems and Assumptions made YESsafety software components/units

38 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com Appendix B: Development Interface Agreement

Table 9. Activities Performed by TI versus Performed by SEooC Customer (continued)
Safety Life Cycle Activity TI Execution SEooC Customer Execution

Definition of Safety requirements YES YES
Software design and development YES YES
Software safety analysis YES YES
Software verification and testing YES YES
Integration of software into end application Support provided YES
End equipment level safety analysis NO YES
End equipment level verification and validation NO YES
End equipment level safety assessment NO YES
End equipment release to production NO YES
Management of safety issues in production Support provided YES

21.4 Information to be Exchanged
In a custom development, there is an expectation under IEC 61508 and ISO 26262 that all development
documents related to work products are made available to the customer. In a COTS product, this
approach is not sustainable. TI has summarized the most critical development items into a series of
documents that can be made available to customers either publicly or under a non-disclosure agreement
(NDA). NDAs are required in order to protect proprietary and sensitive information disclosed in certain
safety documents. Table 10 summarizes the product safety documentation that TI can provide to
customers to assist in development of safety systems.

Table 10. Product Safety Documentation

Deliverable Name Contents Confidentiality Availability
User guide for the safety
features of the product,Software Safety Manual Public, no NDA required Availableincluding application level
assumptions of use

Software Safety Requirements Detailed safety requirements NDA required AvailableSpecification for the software units
Status of the test cyclesTest results report NDA required Availableexecuted on the software units
Static code analysis andCode quality reports NDA required Availablestructural coverage metrics

Software architecture Architecture of the software NDA required Availablespecification units
Summary of the conformance
of the product to the ISOSafety case report NDA required Available26262 and/or IEC 61508
standards
Statement coverage, branchDynamic analysis report NDA required Availablecoverage and MC/DC analysis

21.5 Parties Responsible for Safety Activities
TI applies a cross functional approach to safety related development. Safety related activities are carried
out by a variety of program managers, safety managers, applications engineers, design engineers, and
other development engineers

21.6 Supporting Processes and Tools
TI uses a variety of tools during the software development. The tools that are relevant to the safety
software development are noted in Table 11. The exact version of the tools used is available in the tool
qualification report.

39SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

Appendix B: Development Interface Agreement www.ti.com

21.6.1 Tools Used for Software Development

Table 11. Software Development Tools

Tool Name Purpose of the Tool
Rational IBM Clearquest To maintain the defect database and change requests
ProjectLibre For project planning and monitoring
Rational IBM DOORS and requirements Capturing requirements database and maintain requirements traceabilitybaseline
GIT Version control of source code and artifacts
Code Collaborator Code/docs review tracking portal
CDDS Software release repository and tracking the downloads
Jenkins Software build and release
Code Composer Studio IDE for code development
Compiler Compiling the code and generate the executables

Static analysis verification, dynamic analysis verification, Test automation andLDRA report generation
Metrics Portal To collect and review project specific metrics for management reviews

21.7 Hazard Analysis and Risk Assessment
Hazard and risk assessments under IEC 61508 and ISO 26262 are targeted at the system level of
abstraction. When developing a software unit out of context, the system implementation is not known.
Therefore TI has not executed a system hazard and risk analysis. Instead, TI has made assumptions on
the results of hazard and risk analysis that are fed into the application development. The ultimate
responsibility to determine if the TI software unit/component is suitable for use in the application rests on
the software integrator.

21.8 Creation of Functional Safety Concept
The functional safety concept under IEC 61508 and ISO 26262 is targeted at the system level of
abstraction. When developing a software unit out of context, the system implementation is not known.
Therefore TI cannot generate a system functional safety concept. Instead, TI has made assumptions on
the output of a system functional safety concept and this data has been fed into the software unit design.
The ultimate responsibility to determine if the TI software unit or component is suitable for use in the
application rests on the software integrator.

22 References
• Data Sheet – RM48L952 16- and 32-Bit RISC Flash Microcontroller (SPNS177)
• TRM for RM48L952 – RM48x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual

(SPNU503)
• Safety Manual for RM48L952 – RM48x 16/32-Bit RISC Flash Microcontroller Technical Reference

Manual (SPNU577)
• Data Sheet – TMS570LS3137 16- and 32-Bit RISC Flash Microcontroller (SPNS162)
• TRM for TMS570LS3137 – TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller Technical

Reference Manual (SPNU499)
• Safety Manual for TMS570LS3137 Safety Manual for TMS570LS31x/21x Hercules™ ARM Safety

Critical Microcontrollers (SPNU511)
• HAL Code Generator tool – http://www.ti.com/tool/halcogen
• Uniflash Standalone Flash Tool for TI Microcontrollers – http://www.ti.com/tool/uniflash
• Initialization of Hercules™ ARM Cortex-R4F Microcontrollers (SPNA106)
• TPS65381-Q1 Multi-Rail Power Supply for Microcontrollers in Safety-Critical Applications (SLVSBC4)
• Interfacing TPS65381 With Hercules™ Microcontrollers – http://www.ti.com/lit/an/spna176/spna176.pdf

40 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™ SPNU592–January 2015
Processors Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPNS177
http://www.ti.com/lit/pdf/SPNU503
http://www.ti.com/lit/pdf/SPNU577
http://www.ti.com/lit/pdf/SPNS162
http://www.ti.com/lit/pdf/SPNU499
http://www.ti.com/lit/pdf/SPNU511
http://www.ti.com/tool/halcogen
http://www.ti.com/tool/uniflash
http://www.ti.com/lit/pdf/SPNA106
http://www.ti.com/lit/an/spna176/spna176.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

www.ti.com Revision History

23 Revision History

Table 12. Revision History

Date Literature Number Comments
January 2015 SPNU592 Initial release

41SPNU592–January 2015 SafeTI™ Diagnostic Library Software Safety Manual for the Hercules™
ProcessorsSubmit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU592

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	SafeTI Diagnostic Library Software Safety Manual for the Hercules Processors
	Table of Contents
	1 Introduction
	2 TI Hercules MCU Safety Overview
	2.1 TPS65381 Power Management IC Safety Overview
	2.1.1 TPS Driver Usage in End Application
	2.1.2 TPS Device Features
	2.1.3 Interfacing TPS Device with the Hercules Processors

	2.2 Targeted Applications
	2.3 Product Safety Constraints

	3 SafeTI Software Development Process
	4 Safety Assessment and Certification
	5 SafeTI Diagnostic Library Overview
	5.1 API Mapping of SafeTI Diagnostic Library Recommended Safety Functions

	6 System Requirements
	6.1 Software Requirements
	6.2 Hardware Requirements

	7 Failure Modes and Effects Analysis Report for SafeTI Diagnostic Library (TPS Driver FMEA not available)
	8 New in this Release
	9 Fixed in this Release
	10 Known Issues and Limitations
	11 Backward Compatibility
	12 Compatibility with Other Systems
	13 Software Manifest
	14 Change Control, Support, and Maintenance
	15 Design Safe State (If Applicable)
	16 Interface Constraints
	17 Competence
	18 Justification of Claims
	19 Software Quality Metrics
	20 Appendix A: MISRA-C Guidelines
	20.1 MISRA-C Rules Adhered – Mandatory
	20.2 MISRA-C Blanket Deviations
	20.3 MISRA-C Partially Checked Rules
	20.4 MISRA-C Acceptable Deviations

	21 Appendix B: Development Interface Agreement
	21.1 Appointment of Safety Managers
	21.2 Tailoring of Safety Life Cycle
	21.3 Activities Performed by TI
	21.4 Information to be Exchanged
	21.5 Parties Responsible for Safety Activities
	21.6 Supporting Processes and Tools
	21.6.1 Tools Used for Software Development

	21.7 Hazard Analysis and Risk Assessment
	21.8 Creation of Functional Safety Concept

	22 References
	23 Revision History

	Important Notice

