

LEVEL III
BASIC

Produced by Microsoft
Written by Bill Gates

Documented by Andrea Lewis
Instruction Booklet by David Bunnell

Microsoft Consumer Products

10800 NE Eighth, Suite 819, Bellevue, WA 98004

COPYRIGHT NOTICE

Microsoft LEVEL HI BASIC is copyrighted under United States
Copyright Laws by Microsoft.

It is against the law to copy LEVEL III BASIC on cassette tape, disk, or
any other medium for any purpose other than personal convenience.

It is against the law to give away or resell copies of Microsoft LEVEL III
BASIC. Any unauthorized distribution of this product deprives the
authors of their deserved royalties. Microsoft will take full legal
recourse against violators.

If you have questions on this copyright, please contact:

Microsoft Consumer Products

10800 NE Eighth, Suite 819

Bellevue, WA 98004

Copyright© Microsoft, 1979
All Rights Reserved
Printed in U.S.A.

2

Table of Contents

Chapter ONE:
Get t ing Started with LEVEL III

LEVEL III BASIC Explained 8
A Word About Microsoft 9
The Right Hardware 10
LEVEL III Cassette 11
How to Load LEVEL III 12
What to Do About Loading Problems 16
LEVEL III Notation Format Rules 18
If You Have a TRS-80 Screen Printer 19

Chapter TWO:
LEVEL III Programming Convenience

How to Use Abbreviated Entries 22
Create Your Own Abbreviated Entries 24
How to Renumber Program Lines 25
Saving and Loading LEVEL III Programs.. 27
No More Coded Error Messages 29

3

Chapter THREE:

LEVEL III Computer Graphics

Two Modes of Presentation 32
How to Draw Lines and Rectangles 38
GETting and PUTting Graphic Arrays 42
Some Examples of Graphics Programs.... 47
Advanced Graphics Programs 52

Chapter FOUR:

LEVEL III Features From DiskBASIC

INPUTting String Literals with
LINE INPUT 58

Adding a Time Limit with #LEN 59
Replacing a Portion of One String with

Another String 60
You Can Search a String for a Substring .. 61
How to Define Functions 62
Up to 10 Machine Language

User Routines 64
4

How to Convert Hex and Octal
to Decimal 66

SYSTEM Command Caution 67

Chapter FIVE:

LEVEL III Expansion Interface
Features

LEVEL Ill's Clock and Calendar 70
How to Turn Off the System Clock 71
How to Output to an RS-232 Port 72
Lockout Recovery 73

General Index 75

5

Chapter ONE:

Getting Started with LEVEL III

^ LEVEL III BASIC Explained

iS A Word About Microsoft

^ The Right Hardware

^ LEVEL III Casse t te

ts How t o Load LEVEL III

is What t o Do About Loading Problems

ts LEVEL III Notat ion Format Rules

i/ If You Have a TRS-80 Screen Printer

i

LEVEL III BASIC Explained

LEVEL III BASIC is a software package, supplied on cassette tape, that
enhances Radio Shack's TRS-80 Level II BASIC.

If you have a TRS-80 Computer with Level II BASIC and 16K or more
RAM memory, LEVEL III BASIC gives you a new dimension of com­
puter programming. In only 5.5K RAM memory, it provides your
TRS-80 with all the non-disk features that are currently only available
with TRS-80 Disk BASIC. These include a new string function
(INSTR), enhancements to the MID$ and USR functions, user-defined
functions and the DEFUSR statement, hexadecimal and octal con­
stants, LINE input, and long error messages. And this is only the begin­
ning.

LEVEL III BASIC includes dynamic features never before available to
TRS-80 users. These include advanced computer graphics commands,
automatic program re-numbering, abbreviated entries, a timed INPUT
statement called INPUT #LEN, and more.

With LEVEL III BASIC, you'll also find that keyboard bounce has
been corrected, tape operations are more reliable, and output to an
RS-232 device has been simplified.

LEVEL III BASIC was written by Microsoft to give you the tools for
writing better programs. Not only does it increase the programming
power of your TRS-80, it gives you features that make programming
easier and faster.

The people at Microsoft hope you will be pleased with this addition to
your TRS-80.

8

A Word About Microsoft

Microsoft produces high-quality, concise software for today's
microprocessors.

Microsoft's BASIC Interpreter, in its several versions, has become the
standard high-level programming language used in microcomputers. In
addition to Radio Shack TRS-80 Level II BASIC and TRS-80 Disk
BASIC, Microsoft has supplied BASIC Interpreters for the Com­
modore PET, the Apple II Computer, NCR 7200, Compucolor II, OSI,
Pertec Altair, and many others.

Microsoft's careful approach to the development of microprocessor
software has allowed the production of large amounts of bug-free, well-
designed code in a minimum amount of time. Currently available:
BASIC interpreters for the 8080, 6800, and 6502 microprocessors, a
FORTRAN compiler, assembler, loader and runtime library package
for the 8080 and Z-80 microprocessors and an ANS-74 COBOL com­
piler for the 8080 and Z-80, and a complete offering of systems software
for the new 16-bit microprocessors.

Microsoft Consumer Products was founded as a division of Microsoft
in the summer of 1979 to provide microcomputer users with high quality
system and utility software as well as application software.

LEVEL III BASIC is just the first of many Microsoft products being
planned for the end-user or consumer market. All of these software
packages will be marketed by Microsoft Consumer Products.

Microsoft Consumer Products is dedicated to providing only the best,
most reliable microcomputer software.

For more information on Microsoft or Microsoft products, please write
to: Microsoft Consumer Products

10800 NE Eighth, Suite 819
Bellevue, WA 98004

9

The Right Hardware

LEVEL III BASIC can be used with the Radio Shack TRS-80
Microcomputer with Level II BASIC and 16K RAM minimum memory.

While LEVEL III is supplied on cassette tape and is primarily intended
for use with cassette storage, it can be used on a Disk-based TRS-80
system. LEVEL III itself can be stored and retrieved from disk,
however, LEVEL HI generated programs subsequently have to be
stored and retrieved from cassette tape. You do not have access to disk
storage commands while in LEVEL III BASIC.

LEVEL III BASIC has three features that are exclusively for TRS-80
Computers with the Expansion Interface add-on. These include a built-
in digital clock-calendar, output to RS-232 port, and a command for
turning on and off the System Clock. If you have a TRS-80 with Expan­
sion Interface, you can read more about these features in the last
chapter.

10

LEVEL III Cassette

The LEVEL III Cassette that comes in your LEVEL III package is a
high-quality recording from Microsoft.

You will notice that all the recordings are on "SIDE ONE" of the
cassette. There are two consecutive recordings of LEVEL HI BASIC
(Cassette File), followed by two consecutive recordings of LEVEL III
BASIC (Disk File).

The "Cassette File" recordings are for TRS-80 Computers with cassette
tape storage.

The "Disk File" recordings are provided for the convenience of TRS-80
users with Disk storage who want to store LEVEL III BASIC as a file on
diskette.

If you listen to the tapes, you will note that there are five seconds be­
tween the two cassette files; five seconds between the two disk files; and
ten seconds between the cassette and the disk recordings.

How t o Load LEVEL III*

Cassette File. The first two recordings on SIDE ONE of your LEVEL
III cassette are "Cassette File" recordings. These are identical record­
ings of LEVEL III BASIC to be used with TRS-80 Computers with
cassette mass storage. (The Second recording is a backup recording.)

The "Disk File" recordings that follow are for storing and loading
LEVEL III from disk. Unless your TRS-80 is equipped with Expansion
Interface and disk drive, you needn't concern yourself with "Disk
File." For those who are interested, the instructions for using these
recordings are on the following page.

To load LEVEL III BASIC from cassette, use the following instruc­
tions:

1. Put the LEVEL III cassette into the TRS-80 recorder so that
SIDE ONE is up.

2. Rewind the tape to its beginning.

3. Enter the command, SYSTEM, and press the lENTERl key.

4. In response to the ^J ? prompt, enter: LEV 3 |ENTER|

5. Press the PLAY button on the TRS-80 recorder. There should
soon be two asterisks in the upper-right corner of the TRS-80
screen (the one on the right "blinks"). These two asterisks
signify that LEVEL III is loading.

6. A successful load will result in another ?fc ? prompt. In
response to this prompt, enter: [7] |ENTER|

7. Assuming that all goes well, the screen will display a
MICROSOFT COPYRIGHT notice, followed by the same
prompt you get with Level II BASIC:

READY
>

•See WARNING, end of this section.

12

\ Disk File. The Disk File is for TRS-80 Computers equipped with an Ex-
\ pansion Interface, Disk Drive, and any one of the following Disk

Operating Systems (DOS): Radio Shack 2.1, Radio Shack 2.2, NEW
DOS, and 3.0. Also required is the Radio Shack TAPEDISK utility soft­
ware, which is included with most DOS's. If you do not have
TAPEDISK, ask your Radio Shack dealer about it.

Disk File lets you store LEVEL III on diskette so that it can subsequent­
ly be loaded from disk instead of tape.

Use the following instructions to save LEVEL III on diskette:

1. Put the LEVEL III cassette into the TRS-80 recorder so that
SIDE ONE is up.

2. Turn on the TRS-80. In response to the DOS READY prompt,
enter:

TAPEDISK ENTER
This should result in a ? prompt. In reponse to ?, enter:

c DLEV3 ENTER

4. Press the PLAY button on the TRS-80 recorder. A single
blinking i}» should soon be displayed in the upper-right cor­
ner of the TRS-80 screen.

5. A successful load will result in another ? prompt. In response
to this second ?, enter:

F DLEV3/CMD:n 5500 6A00 5500 ENTER

/ , Drive number
NOTE: LEVEL HI can be stored on any Drive, but the cor­
responding Drive number has to be entered at "n" above.
Don't forget that the diskette at Drive "n" must be formatted.

13

6. As LEVEL III is saved, you will hear the familiar sound of the
disk. A successful save will result in another ? prompt. In
response to this third ? prompt, enter:

fEllENTERl

This should result in an exit from the TAPEDISK utility and
return you to DOS READY.

How to Load LEVEL III from diskette. Once LEVEL III has been suc­
cessfully saved on a diskette, follow these instructions to load it into the
TRS-80:

1. Correctly put the diskette containing the LEVEL III BASIC
file into the appropriate disk drive.

2. Turn on the TRS-80.

3. In response to DOS READY, enter:

BASIC lENTERl

4. Respond to the prompt, FILES?, by pressing the |ENTER|
key. Respond likewise to the next prompt, SIZE OF
MEMORY?

5. Now that BASIC is up, go back to DOS by entering:

CMD"S" lENTERl

6. Load the LEVEL III file by entering:

DLEV3 lENTERl

These steps should result in a successful load. You are now ready to pro­
gram in LEVEL III BASIC.

14

WARNING:

Before loading LEVEL III or any other recordings into the TRS-80
microcomputer, we strongly urge you to disconnect the smallest grey
plug that is normally inserted into the "MIC" jack of the tape recorder.

If for any reason during the actual reading of a tape the TRS-80 turns
off the recorder (via the smallest grey plug), a "spike" may be recorded
on the tape. Should this happen, the recording you are entering will be
permanently damaged.

Our experience shows that this is most likely to occur when using the
Radio Shack CTR-80 recorder, but we recommend that you still discon­
nect the smallest grey plug no matter what recorder you are using.

15

What t o Do About Loading
Problems

The TRS-80 is known to be "volume sensitive" when it comes to
loading programs from cassette.

Once LEVEL III is in your TRS-80, you can use its LOAD and SAVE
commands for storing programs. These commands correct the volume
sensitivity problem. However, you still have to load LEVEL III itself
under LEVEL H's SYSTEM command.

The most common loading problem is finding the correct settings for
the TONE and VOLUME controls on the TRS-80 recorder. We suggest
that you start with a low VOLUME setting and adjust it up one half
level each time you attempt a load. The TONE control is not as impor­
tant, but change it also.

Since the sensitivity of individual cassette recorders varies significantly,
there is no way to determine specific settings. Once a tape loads, it is a
good idea to write down the settings on the cassette label for future
reference.

If you still cannot load a tape, you might try cleaning and demagnetiz­
ing the head of your TRS-80 recorder. Use a high-quality head cleaner
and an inexpensive head demagnetizer for these tasks. Both can be pur­
chased at Radio Shack or many other electronics outlets for under $10
(at the time of this writing). We don't recommend so-called "cleaner-
tapes" as they are often abrasive and will damage the head of your
recorder.

Other suggestions to try before taking the matter up with your Radio
Shack dealer include the following:

• Try loading the second recording on your LEVEL III cassette.

• Try loading the tape with a different cassette recorder.

16

• Dust and other praticles can sometimes prevent a load. To
remove particles, run the tape through REWIND and FAST
FORWARD a few times.

• Don't try loading the TRS-80 when you first turn it on. Let it
warm up a few minutes instead.

• Remove the earphone jack and run the tape to listen for the
leader tones and digital signals of the files. If you don't hear
these sounds, try a different recorder. If you still don't hear
them, chances are you have blank tape.

• Ask your Radio Shack dealer about Radio Shack's "cassette
modification" fix. This hardware correction should make
your Level II BASIC less dependent upon exact VOLUME set­
tings.

17

LEVEL III Notation Format Rules

The LEVEL III Notation Format was devised to help you understand
how to correctly structure LEVEL HI instructions. An example of this
notation follows:

MID$(string1, n[,m]) = string2

The following rules apply to notation:

1. Items in capital letters must be input exactly as shown.
"MID$" in the above example has to be entered as: MID$

2. Items in lower case letters are to be supplied by the user.
"string 1" and "string2" above are examples.

3. Items in square brackets [] are optional. The ",m" inside the
square brackets above may be included in some MID$
statements, but not in others.

4. All blank spaces are optional, unless otherwise noted. As you
probably know, BASIC doesn't mind if you run words and
numbers together in program statements. Often this is done to
conserve memory space.

18

If You Have a TRS-80 Screen
Printer

The following applies only to systems with Radio Shack's TRS-80
Screen Printer. It does not apply to systems with TRS-80 Line Printers I
and III, or with Line Printer II (the Radio Shack thermal printer), or
with any other printers.

If your TRS-80 system has a TRS-80 Screen Printer and you want to
print out LEVEL III generated screen-contents, you must do the follow­
ing:

1. Before entering the print instructions as you normally would
with Level II BASIC, enter:

POKE 5657, E3

POKE 5658, 03

2. Execute an INPUT statement, such as INPUT X$.

3. Once you've finished printing out the material you want,
enter:

POKE 5657, 92
POKE 5658, 51

4. Again, execute an INPUT statement. In response to the prompt
(?), press the |ENTER| key.

19

20

Chapter TWO:

LEVEL III Programming
Convenience

is How t o Qse Abbreviated Entries

tS Create Your Own Abbreviated Entries

1/ How t o Renumber Program Lines

\S Saving and Loading LEVEL III

Programs

(̂ No More Coded Error M e s s a g e s

21

How t o Use Abbreviated Entries

Abbreviated Entries are very handy for entering frequently used BASIC in­
structions and string expressions, such as a common response to an INPUT
statement.

To enter an Abbreviated Entry, all you have to do is press SHIFT and
one of the tetter keys ({Aj through \z\). For example, to RUN a program,
you could enter |SHIFT| [R] instead of: [R] Qj] [N] |ENTER| .

LSET LIST. LEVEL III maintains a Ust of 26 Abbreviated Entries. You
can display this list on your TRS-80 screen by entering:

LSET LIST IENTERI

If you change any of the Abbreviated Entries (see next section), the list is
automatically updated.

Turning Abbreviated Entries "OfF' and "On". You can "turn off the
whole list of Abbreviated Entries with the command:

LSET RESET |ENTER|

And back on again with:

LSET SET IENTERI

22

LEVEL III BASIC

Abbreviated Entries

SHIFT Key

A
B
C
D
E
F
G
H
1
J
K
L
M
N
0
P
Q
R
S
T
U
V

w
X
Y

z

Enter

AUTO
GET@(
ELSE
EDIT, t
EDIT
GOTO
GOSUB
INKEY$
INPUT
LINE INPUT
LINE(
LIST
LSET
NEXT
PRINT USING
PUT@(
RETURN
RUNt
SAVE"
THEN
TIMES
LOAD"
LEFT$(
MID$(
RIGHT$(
STRING$(

NOTE: The downward arrow (f) is the symbol in this chart for ENTER

23

Create Your Own Abbreviated
Entries

The following command lets you create your own Abbreviated Entries:
LSET letter = string expression

where "letter" is any letter A-Z, and "string expression" is any string up to
15 characters.

LSET may be used as a command or a program statement. Abbreviated
Entries work during program execution as well as program editing. For ex­
ample, if you're writing a program with several graphics statements, you
may want to execute the command:

LSET A = "(X1,Y1) - (X2,Y2)"

Then, instead of typing (X1,Y1)-(X2,Y2) every time it comes up (which
can be frequent), all you do is enter:

SHIFT A

You can also use Abbreviated Entries to anticipate common INPUT
responses. For example,

510 LSET R = "REPEAT"
520 LSET C = "CONTINUE"

Suppose a program asks you to enter "REPEAT" or "CONTINUE" at
the end of each of several routines. By tacking the above LSET statements
on the end of the program, you can respond to this INPUT with a SHIFT

R or a SHIFT C , instead of spelling out the complete answer.

Adding ENTER . To make ENTER a part of an Abbreviated Entry,
use the CHRSltring with the ASCII value for ENTER (13)

10 LSET L = "LIST" + CHR$(13)

This will change LSET L so that when you enter SHIFT| |L|the result will
be LIST ENTER , instead of just LIST.

24

How t o Renumber Program Lines

LEVEL III BASIC'S NAME command is an editing tool that helps you
organize your programs better and write them faster.

You use the NAME command to renumber program lines as you actually
write a program or you use NAME to "clean-up" a finished program by
giving it sequenced line numbers (such as 10, 20, 30, 40, etc.)

NAME Format. The format of NAME is:

NAME [[new number][,[old number][,increment]]]

With NAME, you can renumber the entire program from the first line
number or you can renumber a sequence of a program from a designated
line number ("old number" in above format) to the end of the program.

The "new number" can be any legitimate line number. It becomes the first
line number of the new sequence.

For example, you would use "new number" if you were renumbering a se­
quence from line 50, and you wanted line 50 to become line 100. The "new
number" would be 100.

"New number," as well as "old number" and "increment" are optional.
When they are not included in a NAME command, each has a "default
number" which LEVEL III refers to.

The default of the "new number" is 10. Whenever a "new number" is
not included in a NAME command, the first line number of the new se­
quence becomes Line 10.

Note: If "new number" is omitted, you cannot renumber a program se­
quence with a prior Line number of 10 or greater. Line numbers always
have to be in numerical sequence, beginning with the smallest number
and moving to the greatest. You cannot use the NAME command to
renumber programs in a way that puts its statements out of sequence.
The result will be an ILLEGAL FUNCTION error.

25

"(Md Number" is the line number from which the Renumbering sequence is
to begin. It is optional, and the default is the first line of the program.

"Increment" is the increment to be used in the new sequence. It is optional,
and the default is 10.

NAME also changes all line number references following GOTO, GOSUB,
THEN, ELSE, RESUME, INPUTttLEN, ON . . . GOTO and
ON . . . GOSUB statements to reflect the new line numbers. If a nonexis­
tent line number appears after one of these statements, the error message,
the error message UNDEFINED LINE xxxxx IN yyyyy is printed. The in­
correct line number reference (xxxxx) is changed to all spaces. Line number
yyyyy may be changed.

NAME cannot be used to change the order of program lines (for example,
NAME 15,30 when the program has three lines numbered 10, 20 and 30) or
to create line numbers greater than 65529. An ILLEGAL FUNCTION
CALL error will result.

The first time you use the NAME command, BASIC adds spaces to the end
of each line number that has fewer than five characters. These spaces will
not accumulate, however, when subsequent NAME commands are ex­
ecuted.

A NAME command with no arguments will renumber the entire program,
using 10 as the first line number and incrementing by 10 for each successive
line.

Other examples:

NAME 1000,900,20 Renumbers the lines from 900 up so they start
with line number 1000 and increment by 20.

NAM E 100„50. Renumbers the entire program. The first new line
number will be 100. Lines will increment by 50.

NAME„100 Renumbers the entire program. The first new line
number will be 10. Lines will increment by 100.

26

Saving and Loading LEVEL III
Programs

LEVEL III BASIC replaces the Level II CSAVE and CLOAD com­
mands with SAVE and LOAD. When using SAVE and LOAD, exact
volume settings on your recorder are less critical than with CSAVE and
CLOAD.

To save a LEVEL III program you enter the SAVE command exactly as
you would enter CSAVE. The format is:

SAVE "fi le name"

The file name can be any single alpha-numeric character other than
double-quotes (")• The program stored on tape will then be labled by
the specified file name, so that it can be loaded with a LOAD command
that asks for that particular file.

Once you save a program under LEVEL III you can load it back into the
machine with the LOAD command. The format for this command is
similar to CLOAD:

LOAD ["file name"]

LOAD and CLOAD are interchangeable in that a program that has
been stored with CSAVE can be loaded with LOAD as well as CLOAD;
while a program that has been stored with SAVE can likewise be loaded
with either LOAD or CLOAD. However, when you mix LEVEL III
cassette tape commands with Level II commands, you don't get the im­
provement in cassette VOLUME sensitivity that you get by using both
SAVE and LOAD.

27

As with CLOAD?, there is a LOAD? command which you can use after
saving a program to test whether the program in memory matches the
one on cassette, and thus has been saved correctly.

BREAK key. Just You can abort a LOAD or SAVE by pressing the
remember that doing this leaves you with an incomplete program on
cassette or a partial program in memory. Type N EW |ENTER| to clear
your computer's RAM memory whenever this occurs.

28

No More Coded Error Messages

When Level III BASIC encounters an error, it prints the complete error
message, not just an abbreviation.

All the error messages, along with their error codes and Level II ab­
breviations, are listed below.

Code Abbreviation Error Message

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

NF
SN
RG
OD
FC
OV
OM
UL
BS
DD
10
ID

TM
OS
LS
ST
CN
NR
RW
UE
MO
FD
L3

NEXT without FOR
Syntax error
Return without GOSUB
Out of data
Illegal function call
Overflow
Out of memory
Undefined line
Subscript out of range
Redimensioned array
Division by zero
Illegal direct
Type mismatch
Out of string space
String too long
String formula too complex
Can't continue
No RESUME
RESUME without error
Unprintable error
Missing operand
Bad file data
Disk BASIC feature
Undefined USER function

29

30

Chapter THREE:

LEVEL III Computer Graphics

S Two N o d e s of Presentat ion

is How t o Draw Lines and Rectangles

is GETting and PUTting Graphic Arrays

^ S o m e Examples of Graphics Programs

if Advanced Graphics Programs

31

Two Modes of Presentation

With LEVEL III Graphics, you can refer to locations on the screen in
one of two ways, Character Mode and Graphics Mode.

In Character Mode, the screen is divided into a grid that is 64 columns
wide and 16 lines deep:

32

In Graphics Mode, the screen is also divided into a similar grid, only it is
much finer, measuring 128 columns wide by 48 lines deep.

LEVEL III generates lines and graphics shapes in Graphics Mode by
lighting or not lighting specified coordinate locations on the grid. For
example, to draw a line on the screen from coordinates 32, 12 to 32, 89;
LEVEL III lights these locations and all the locations between.

In Character Mode, graphics are generated somewhat differently. In­
stead of lighting or not lighting a location, you can enter an alpha­
numeric symbol or a "graphics symbol."

33

The grid locations in Character Mode actually consist of six Graphics
Mode locations, like this:

Graphic symbols are generated by filling in different combinations of
these six grid locations. Since there are 64 different possibilities, there
are 64 graphics symbols.

Each graphics symbol is further identified by an ASCII value from 128
to 191.

This ASCII value is determined by first assigning the following values to
each of the grid locations:

34

The ASCII value of each graphic symbol is equal to 128 plus the total
value of the locations that are lighted. For example, the following
graphic symbol has an ASCII value of 131:

(128 + l + 2 = m)

Some more examples:

(m + l + 8 = 137) (128 + 2 + 4 + 32 = 166)

Alpha-numeric sjmbols also have ASCII values, numbering 32 through
127. A listing of these alpha-numeric symbols and their corresponding
ASCII values can be found in Radio Shack's LEVEL II BASIC
Reference Manual, page C/2.

35

You can display the graphics symbols along with their corresponding
ASCII values on your TRS-80 screen with the following program:

5 FOR S = 129 TO 191

10 PRINT CHR$(S);:PRINT S

15 NEXT

Or to display the alpha-numeric symbols with their ASCII values:

5 FOR S = 32 TO 128

10 PRINT CHR$(S);:PRINT S

15 NEXT

CHR$. This string expression is used to return alpha-numeric symbols
and graphic characters. It is formatted as follows:

CHR$(number)

where number is an ASCII value or value reference.

For example, the command PRINT CHR$(68) would return a "D",
while PRINT CHR$(185) returns a graphics symbol.

36

Screen Coordinates. In both Graphics Mode and Character Mode, loca­
tions on the screen are referenced by their column coordinate (X),
followed by their line coordinate (Y).

This differs from the way the PRINT® Statement in Level III BASIC
references the screen. PRINT® references the screen in Character
Mode where each location is assigned a unique number starting from the
upper-left corner, at location 0, and moving across the lines until the
final location is reached in the lower-right corner, location 1023.

The way PRINT® references the screen is shown on a graph on page
E/l of the Radio Shack Level II BASIC reference manual.

To convert a PRINT® location to Character Mode "X,Y" coor­
dinates, use the following formula:

X-= number- (64:£ Y)

Y = INT(number/64)

To convert from coordinates to location number:

number = (Y*64 + X)

37

How t o Draw Lines and
Rectangles

With LEVEL IIIBASIC, you can draw a line between any two locations
on the screen in both Character Mode and Graphics Mode. You can also
draw a rectangle between any two locations (assuming that the locations
are opposite corners).

The statement for drawing lines and rectangles is not too surprisingly
called the "LINE statement."

Graphics Mode. Remember, in Graphics Mode the screen is divided into
an X, Y grid where X is 0 to 127 and Y is 0 to 47.

The following statement will draw a line between coordinates 34,15, and
110, 38:

10LINE(34,15)-(110,38),SET

To erase the line, change SET to RESET:

20 LINE(34,15)-(110,38), RESET

Now, to draw a box (rectangle) between these two points, simply add a
",B" to the first LINE statement above:

10 LINE(34,15)-(110,38),SET,B

To erase the rectangle:

10 LINE(34,15)-(110,38), RESET,B

Finally, there is an option that will draw a "filled-in" or solidly-lighted
box:

10 LINE(34,15)-(110,38),SET,BF

adding an " F " fills in the
box

I
38

Graphics Mode Format. The format for the LINE statement in
Graphics Mode is as follows:

LINE(x1,y1)-(x2,y2),SET[,B[F]]

/
t-or RESET

The LINE statement in Graphics Mode generates a line or rectangle be­
tween coordinates (xl.yl) and (xl,y2), by lighting or "SETting" the ap­
propriate screen locations.

RESET can be substituted for SET to erase or "unlight"a line or rec­
tangle.

The optional "B" tells the LINE statement to generate a rectangle in­
stead of a line.

The optional "F" tells the LINE statement to "fill-in" the rectangle by
lighting all the screen locations within the rectangle. Obviously, you
cannot have an "F" in a LINE statement if you don't have a "B".

39

Character Mode. In Character Mode the screen is divided into a more
open grid, where X is 0 to 63 and Y is 0 to 15:

When you generate graphics in Character Mode, remember, you use
alpha-numeric or graphic symbols.

The following LINE statement will draw a line of "X's" between
Character Mode coordinates (12,8) and (55,8):

10 LINE (12,8)-(55,8),"X"

LINE statements in Character Mode do not use SET and RESET. To
erase the above line of X's, replace the "X" string with a string contain­
ing a blank character, " ", as below:

20 LINE (12,8)-(55,8)," "

To generate a graphics symbol, such as the one with ASCII code 132, the
CHR$ string is used:

10 LINE(12,8) -(55,8),CHR$(132)

LINE statements in Character Mode can also use string variables such as
D$ in the following:

10D$ = "X"
15LINE(12,8)-(55,8),D$

Should the string expression in a LINE statement in Character Mode
consist of more than one alpha-numeric symbol, such as "XEQ", the
resulting line or rectangle will be generated with the first symbol only
("X"). The LINE statement:

10 LINE(12,8)-(55,8),"XEQ"

results in a line of "X's".

As with Graphics Mode, you can instruct the LINE statement in
Character Mode to generate a rectangle by adding ",B" to the end of the
statement or a "filled-in" rectangle by adding ",BF".

40

The following LINE statement results in a filled-in rectangle of X's be­
tween Character Mode coordinates (15,4) and (35,12):

10 LINE (15,4)-(35,12),"X",BF

Character Mode Format. The Format of LINE statements in Character
Mode is the following:

LINE(x1,y1)-(x2,y2),"stringexpression"[,B[F]]

The LINE statement in Character Mode is used to generate a line or rec­
tangle of alpha-numeric symbols or graphics symbols between any two
Character Mode coordinates.

The "string expression" in the LINE statement can be any alpha­
numeric symbol (such as "X", "8" , " = ") or it can be a string variable
(such as D$); or it can be the CHR$ function, which is generally used to
return a graphics symbol.

Adding the optional " ,B" to a LINE statement in Character Mode
causes the LINE statement to generate a rectangle between the two coor­
dinates.

Adding the optional " F " tells the LINE statement to "fill-in" the rec­
tangle.

41

GETting and PUTting Graphic
Arrays
LEVEL III has two more Graphics statements in addition to the LINE
statements. These statements are GET and PUT.

The GET statement is used to "get" or store in an array the contents of
a specified section of the screen. This section of the screen may be defin­
ed by either Character Mode coordinates or Graphic Mode coordinates.
The array can be an integer array (such as A%), a single precision array
(such as A!), or a double precision array (such as A#).

GETting a graphics array does not cause the contents of the specified
section of the screen to be erased. The content is now both saved in the
array and on the screen.

To erase graphics, you can use one of the following methods:

1. If the graphics were created in Graphics Mode, RESET all
the lines and rectangles.

2. If the graphics were created in Character Mode, replace all
strings with strings containing the blank character, " ".

3. Use the PUT statement to PUT a blank array or the part of the
array that is blank on top of the part of the screen you wish to
erase. When doing animation, it is sometimes useful to GET
an array that is larger than the area of the screen containing
the graphics. This way, part of the array is blank and can be
PUT back on the screen to erase the existing graphic at the
same time the graphic part of the array is PUT back on the
screen.

Once a GET statement has been executed, the resulting array can be
returned to the screen at any specified section with the PUT statement.
In Character Mode, you can only PUT the array back on the screen as it
was saved. However, in Graphics Mode you can also specify an
"action" that will change the array.

42

GET Example. Assuming that the following program is used to draw a
rectangle on the screen,

10 CLS

15 LINE(22,9)-(29,20),SET,BF

You could GET this rectangle in Graphics Mode with:

20 DIM A%(20)

25 GET@(22,9) -(29,20),G,A%

Or you could GET it in Character Mode with:

20 DIM A%(20)
25 GET@(11,3)-(14,6),A%

GET Format. The format of a GET statement is as follows:

GET@(x1,y1)-(x2,y2)[,G],array name

The GET statement is used to GET a portion of the screen into an array
defined by either Character Mode coordinates or Graphics Mode coor­
dinates.

When the optional ",G" is included, the GET statement assumes
Graphics Mode. If ",G" is not included, GET assumes Character Mode.

The "array name" can be any legal integer (%), single precision (!), or
double precision (#) array. (If arrays are bigger than their default size
—11—, they must be dimensioned before they are used.)

The "@" sign in a GET statement is a mandatory part of the statement.

43

PUT example. Assuming that you used Character mode to GET the ar­
ray in the above example, you could put it back on the screen at a dif­
ferent location with a PUT statement:

30 PUT@(44,3)-(47,6),A%

The above PUT statement is in Character Mode. Whenever you GET
an array in Character Mode, you PUT it back on the screen in Character
Mode. Likewise, whenever you GET an array in Graphics Mode, you
PUT it back in Graphics Mode.

Assuming that you saved the above array in Graphics Mode, you could
PUT it back on the screen with the following:

30 PUT@(88,9)-(95,20),SET,A%

Notice that this PUT statement is different from the one above in that it
has the word "SET" included. In Graphics Mode, the PUT statement
requires an "action indicator" to tell it "how" to return the array. The
action indicator, "SET", tells the PUT statement to return the contents
of the array exactly as they were saved.

If you do not include an action indicator in a PUT statement, LEVEL
III assumes you are PUTting the array in Character Mode.

PUT Format. The format of the PUT statement is as follows:

PUT@(x1 ,y1)-(x2,y2)[,action],array name

44

The PUT statement in Graphics Mode can have one of five action in­
dicators, including:

SET Puts the array on the screen exactly as it was saved, i.e., all
the "on" positions are turned on and all the " o f f posi­
tions are turned off.

RESET Puts the complement of the array on the screen, i.e., all the
"on" positions are turned off and all the "o f f positions
are turned on.

AND Each position in the array is ANDed with the current status
of that position on the screen, i.e., a position will be turned
on only if it is "on" in the array and "on" on the screen.

OR Each position in the array is ORed with the current status
of that position on the screen, i.e., a position is turned on if
it is "on" in the array or if it is "on" on the screen or both.

XOR Each position in the array is XORed with the current status
of that position on the screen, i.e., a position is turned on
only if its status in the array is the opposite of its status on
the screen.

These options give the PUT statement a great deal of flexibility. For ex­
ample, a figure can appear to blink by PUTing it on the screen with two
PUT statements that alternate SET and RESET, or by XORing it with
the surrounding area. Or a figure can appear to move by PUTing it on
the screen with gradually changing coordinates.

45

Dimensioning Graphic Arrays. Unless you dimension arrays in GET
and PUT statements with enough array "elements" the result will be an
ILLEGAL FUNCTION CALL. All arrays with more than (11) elements
must be dimensioned.

Usually, you dimension arrays by simply making sure they are plenty
big enough, however, if you want to make sure, you can use the follow­
ing formulas:

Array Elements

Integer (°7o) bytes/2
Single Precision (!) bytes/4
Double Precision (#) bytes/8

Bytes? Each location in Character Mode uses a single byte. The rec­
tangle defined by Character Mode coordinates (44,3)-(47,6) contains 16
character locations, and thus requires 16 bytes. An Integer array (%)
that GETs or PUTs this rectangle would require a minimum of 8 array
elements (16 bytes/2 = 8 elements). This an-ay wouldn't need to be
dimensioned in this program unless you want to save (3) elements of
memory.

Determining the number of bytes in Graphics mode is a bit more com­
plicated. The number of bytes equals the total number of screen loca­
tions divided by 8 plus 2. The rectangle defined by Graphics Mode coor­
dinates (22,9)-(29,20), contains 84 locations, aijd thus requires 84/8 + 2
or 13 bytes. An integer array (%) that GETs ô PUTs this rectangle re­
quires 13/2 or 7 array elements.

46

Some Examples of Graphics
Programs

Graphics Symbols. Fills screen with the graphic symbols.

Program

10 CLS
20 FOR I =129 TO 191

30 LINE (0,0)-(63,15),CHR$(l),BF
40 FOR J=1TO100:NEXT J
50 NEXT I

Notes

clears screen
assigns values
fills screen
timing loop
loops back to 20

Jagged Lines.

Program
10 FOR N=1TO10
20 CLS
30Y1=0:X1=0

40 FOR I = 1 TO 30

50 X2 = RND(127):Y2 = RND(47)

60LINE(X1,Y1)-(X2,Y2),SET
70X1=X2:Y1=Y2

80 NEXT I.NEXT N

Notes

assigns values (10 patterns)
clears screen
defines point (upper-left

corner of screen)
assigns values (30 lines)
defines second point as any

random point on screen
draws line
redefines first point as second

point
loops back to 10

Variation: To change this program to create its pattern of lines on a
white background, add line 25 LINE (0,0)-(127,47),SET,BF and change
SET to RESET in line 60.

47

Program
10 'SPACE SHIP IN CHARACTER MODE
20CLS
30 LINE (3,1)-(3,2), SET
40 LINE(2,3)-(4,4), SET, BF
50 LINE (1,4)-(1,5), SET
60 LINE (5,4)-(5,5), SET

70 DIM A%(7)
80 GET@(0,0)-(3,3),A%
90CLS
100 FOR Y = 12 TO 1 STEP - 1
110 PUT@(0,Y)-(3,Y + 3),A%
120 NEXT Y

130 CLS
140 GOTO 100

50

Disco Ship. Image of ship flashes on and off. In Graphics Mode, this
program GETs the image in A%. After clearing the screen, it repeatedly
pUTs the image back on the screen. Take note of the use of "XOR" as
the action indicator; this technique is what causes the flashing.

Program

5CLS
10 DIM A%(50)
20 LINE (3.1H3.2), SET: LINE (2,3)-(4,4), SET, BF: LINE

(1,4)-(1,5), SET: LINE (5,4)-(5,5), SET
30 GET® (1,1)-(5,6), G, A%
40CLS
50 PUT® (20,20)-(24,25),XOR,A%
60 FOR T = 1 TO 50: NEXT
70 GOTO 50

51

Advanced Graphics Programs

Try running some of these programs to see if they don't give you some
insights into the possibilities of LEVEL III Computer Graphics.

Airplane.

10 CLS:DIMA%(50), B%(50)

20 LINE(91,11)-(124,14),SET,BF:LINE (117,8)-(121,8),SET:
LINE(116,9)-(122,9),SET

30 LINE(115,10)-(123,10),SET:LINE(97,11)-(104,11),RESET:
LINE(86,13)-(90,13),SET

40UNE(100,13)-(110,13),SET

50 LINE(85,11)-(85,15),SET:GET@(42,2)-(63,5),A%

60 LINE(85,11)-(85,15),RESET:GET@(42,2)-(63,5),B%
70X1=63:Y = 2:Y1=5:CLS
80 FOR X = 42 TO 0 STEP - 1
90 PUT® (X,Y)-(X1,Y1),A%
100 FORT = 0TO5:NEXTT

110 PUT@(X,Y)-(X1,Y1),B%
120 FORT = 0TO15:NEXTT
1 3 0 X 1 = X 1 - 1
140 NEXTX
150 GOTO 70

52

Flying Duck.

10 CLS:DIM A%(15),B% (15)
20 LINE (12,2)-(15,2),SET:LINE(6,3)-(9,3),SET:LINE(13,3)-

(17,3),SET:SET(5,4):SET(10,4)

30 LINE (12,4)-(13,4),SET:LINE(3,5)-(12,5),SET:LINE(4,6)-(5,6),
SET:LINE(10,6)-(11,6),SET

40 LINE(5,7)-(10,7),SET
50GET@(0,0)-(8,2),A%

60 LINE(5,3)-(10,4),RESET,BF:LINE(6,6H9,6),SET

70 GET® (0,0)-(8,2),B%
80CLS:X1=8:Y = 0:Y1=2
90 FOR X = 0 TO 55
100 PUT@(X,Y)-(X1,Y1),A%
110 FORT = 0TO2:NEXTT
120PUT@(X,Y)-(X1,Y1),B%
130X1=X1 +1
140 FORT = 0TO 10:NEXTT
150 NEXT X
160 GOTO 80

53

Boxes.

10 DIM A%(600), B%(600)
20 CLS: FOR T = 1 TO 4: LINE (RND(127),RND(47))-(127)

RND(47)),SET,B:NEXT
30 F$ = " * " : X = RND(63):IFX>32THEN M = 6 4 - X ELSE

M = X
40 FOR 1 = 1 TO M: GET@(1,0}-(X,15),A%:GET@(X,0)-(62,15),B%
50 LINE (X,0)-(X + 1,15),F$,B:F$ = " "
60 PUT@(0,0)-(X- 1,15),A%:PUT@(X + 1,0)-(63,15),B%:NEXT:

GOTO 20

Radar.

10 FOR R = 15T01 STEP - 1

20 CLS
30 FOR Y = 0 TO 47 STEP 47
40 FOR X = 0 TO 127 STEP R
50 LINE(64,24)-(X,Y),SET

60 NEXTX,Y
70 FOR X = 0 TO 127 STEP 127
80 FOR Y = 0 TO 47 STEP R
90 LINE (64,24)-(X,Y),SET
100 NEXT Y,X
110 NEXT R

54

More Ships.

10CLS
20 LINE (3>1)-(3,2),SET:LINE(2,3)-(4,4),SET,BF:

LINE (1,4)-(1,5),SET:LINE (5,4)-(5,5),SET

50 DIM A%(2):GET@(1,1)-(5,5),G,A%
60 CLS:DIMB%(2)

70 LINE (0,2)-(1,2), SET:LINE (2,1)-(4,3), SET, BF:
LINE (4,0)-(5,0), SET:LINE (4,4)-(5,4), SET

110 GET® (0,0)-(5,4),G,B%
120CLS:X = 120:Y = 41
130 IF Y = 0 OR X = 0 THEN 120
140 D = RND(2):IFD = 1 THEN 190
150 S = RND(15): IFX-S<0 THEN S = X
160 FORX = X T O X - S S T E P - 1
170 PUT@(X,Y)-(X + 5,Y + 4),SET,B%
180 NEXT X:X = X + 1:GOTO 130
190 S = RND(5):if Y - S < 0 THEN S = Y
200 FOR Y = YTO Y - S S T E P - 1
210 PUT@(X,Y)-(X + 4,Y + 4),SET,A%
220 NEXT Y:Y = Y + 1:GOTO 130

55

56

Chapter FOUR:

LEVEL III Features From
Disk BASIC

S INPUTting String Literals with
LINE INPUT

S Adding a Time Limit with *LEN

S Replacing a Port ion of One String
with Another String

is You Can Search a String for a Substrin

v* How t o Define Funct ions

if Up t o 10 Machine Language User
Rout ines

S How t o Convert Hex and Octal t o
Decimal

1/ SYSTEM Command Caution

57

INPQTting String Literals with
LINE INPUT

LEVEL III has a LINE INPUT statement that is frequently used for in­
putting string literals. The format of LINE INPUT is as follows:

LINE INPUT ["prompt string";] string variable name

L tsuch as A$, B$, etc.
Unlike Level H's INPUT statement, a LINE INPUT statement assigns a
string variable name to the entire line of input. Every character typed up
to IENTERI is part of the string, including punctuation and leading
spaces.

LINE INPUT is also different from INPUT in that it doesn't
automatically display a question mark (?) when it is executed. If you
want a question-mark prompt, you have to make it part of the prompt
string. An example of LINE INPUT where ? is part of the prompt
follows:

5 LINE INPUT "CITY?,STATE?" ;CS$

When this statement is executed, the screen will display the prompt:
CITY?,ST ATE? The answer (user input) is assigned as a string literal to
CSS.

Example program. You could use the above LINE INPUT statement in
a program like the following:

10 LINE INPUT "CITY?,STATE?";CS$
20 PRINT CS$
RUN

CITY?,STATE? NEW YORK, NEW YORK
NEW YORK, NEW YORK

This program prints out the entire user input NEW YORK, NEW
YORK, including the comma (,).

58

Adding a Time Limit with *LEN

INPUT and LINE INPUT statements have an optional feature called
#LEN. #LEN lets you impose a limit on the length of time allowed
before a response is given to the INPUT statement. It is particularly
useful for game programs and computer assisted instructions. The for­
mat of the statement is:

[LINE]INPUT#LEN n,m;["prompt string";]variable
name(s)

where n is the time limit in seconds and m is the line number to branch
to if the time limit is reached.

The remainder of the statement is the same as the INPUT statement.
The prompt string (if given) and a question mark are printed, and the
items typed in at the terminal are assigned to the variables in the list.

Example program:

5S = 4

10X = RND(100)

20 Y = RND(100)
30 PRINT X:" + ";Y;" = ";
40 INPUT#LEN S, 100;Q
50 IF Q = X + Y THEN PRINT "SMART" ELSE PRINT "DUMB"
60 GOTO 10
100 PRINT "SLOW!"
110 GOTO 10

59

Replacing a Portion of One String
with Another String

In Level II BASIC, the MID$ function is used tc> return a substring of a
given string. MID$ has an additional capability in LEVEL III BASIC. It
may be used on the left side of an equation to replace a portion of one
string with another string. The general format js:

MID$(string1,n[,m]) = string2

where n and m are integer expressions.

The characters in stringl, beginning at position n, are replaced by the
characters in string2. m is optional; it refers to tfie number of characters
from string2 that will be used in the replacement. If m is omitted, all of
string2 will be used. However, regardless of whether m is omitted or in­
cluded, the replacement of characters will never go beyond the original
length of stringl.

Example:

10 A$ = "KANSAS CITY, MO"

20MID$(A$,14) = "KS"
30 PRINT A$
RUN
KANSAS CITY, KS

60

You Can Search a String for a
Substring

The INSTR function in LEVEL III BASIC eliminates the need for an
"instring subroutine," as described in the Level II BASIC manual.
INSTR provides the same capability, and it's much easier to use. The
format of the INSTR function is:

INSTR([n,]string1,string2)

INSTR searches stringi for a substring that matches string2. When a
match is found, INSTR returns the starting position of the match, n is
an optional integer offset which designates the starting position for the
search. If n is omitted, the search starts with the first character in str­
ingi.

If no match is found, or if n is greater than the length of stringi, or if
stringi is null, INSTR returns zero. If string2 is null, INSTR returns n (if
specified) or one.

Example:

10A$ = "ABCDEABCDE"
20 B$ = "BC"
30 PRINT INSTR(A$,B$)
40 PRINT INSTR(3,A$,B$)
RUN

2
7

61

How to Define Functions

Often a program will contain a particular operation that is repeated
several times. When this happens, you can save time and memory by
defining your own function to perform that operation. Then, instead of
writing out the entire operation each time, it is only necessary to do a
function call.

The DEF FN statement is used to name and define user functions. The
formatof the statement is:

DEF FNvariable name (parameter list) = function
definition

The variable name is any legal variable name. This name, prefixed by
FN, becomes the name of the function. The parameter list is comprised
of those variable names in the function definition that are to be replaced
when the function is called. The parameter list is enclosed in parentheses
and the items in the list are separated by commas. The function defini­
tion is an expression that performs the necessary operation. Variable
names that appear in this expression serve only to define the function;
they do not affect program variables that have the same name. A
variable name used in a function definition may or may not appear in
the parameter list. If it does, the value of the parameter is supplied when
the function is called. Otherwise, the current value of the variable is
used.

Example. In the following example, a function is defined that adds the
second power of one number to the third power of another.

10 DEF FNA (L,M) = Lfr2 + Mt3
20C = 1:D = 2

30 PRINT FNA (C,D),FNA(5,2),FNA(4,3),FNA(2,3)
RUN
9 33 43 31

62

A function is defined called DEF FNA that adds the second power of
one number to the third power of another.

The DEF FN statement can also be used to define a string function, as in
the following program:

5 CLEAR 500

10 DEF FNST$(A$,B$) = A$ + "," + B$
20 INPUT "FIRST NAME";FN$
30 INPUT "LAST NAME";LN$
40 X$ = FNST$(FN$,LN$)
50 PRINT X$
RUN
FIRST NAME? ALEX
LAST NAME? HAMBONE
ALEX HAMBONE

NOTE: The variable name in the second example ends with a dollar sign
($). Function name variables, like other kinds of variables, must in­
dicate the type of value to be returned. Thus, a function name variable
may end with a $ (string), # (double precision), % (integer), or ! (single
precision). The default is single precision (!).

63

Up t o 10 Machine Language User
Routines

In LEVEL HI BASIC, the USR function has been expanded so that 10
different machine language user routines may exist in memory at the
same time. As with Level II BASIC, the routines may be assembled with
the TRS-80 Editor/Assembler and loaded with the SYSTEM command,
or they may be POKEd into memory. However, it is no longer necessary
to POKE the starting address of a user routine into memory. The
DEFUSR statement is provided for this purpose.

USR Function. The new format for the USR function is:

USR[n](argument)

where n is an integer from 0 to 9 and argument is the value to be passed
to the user routine. A USR function with no n is the same as USRO. The
USR function calls a specific user routine in memory, namely the one
beginning at the address specified in the corresponding DEFUSR state­
ment.

64

DEFUSR Statement. The DEFUSR statement tells BASIC the starting
address of a USR routine. The format of the statement is:

DEFUSR[n] = address

where n is an integer from 0 to 9, corresponding to the number of the
user routine located at "address." (If n is omitted, DEFUSRO is assum­
ed.)

For example: A user routine called USR3 has been POKEd into memory
beginning at address 28000. Before calling the user routine, the program
must execute the statement:

DEFUSR3 = 28000

A calling statement for this routine might look like:

A = USR3(B)

If a user routine is called before the corresponding DEFUSR statement
has been executed, an ILLEGAL FUNCTION CALL error results.

It is still possible to POKE the starting address of USR0 into memory, as
described in Chapter 8 of the Level II BASIC Manual.

65

How to Convert Hex and Octal t o
Decimal

To convert hexadecimal and octal numbers to decimal numbers, prefix
the hexidecimal number with:

&H

and the octal number with:

&
This will work most all LEVEL III instructions. The exceptions are
DATA statements and in response to INPUT statements. Also, hex con­
version does not work in FOR...NEXT loops, though octal conversion
does work.

When combined with the PRINT command, this feature can be used as
an octal/hexadecimal to decimal conversion calculator. For example,

PRINT &H4A5F ENTER

will return the correct decimal conversion: 19039

POKE Example. To POKE the hex value FF (255 decimal) into location
4A5F, use the statement:

POKE &H4A5F, &HFF

A subsequent PEEK at location 19039 will return: 255

66

SYSTEM Command Caution

If you enter a SYSTEM command while in LEVEL III BASIC, you wiM
find that upon returning to LEVEL III, the ERROR messages are
scrambled.

To avoid this problem, we recommend that you enter the SYSTEM
command from Level II BASIC.

67

68

Chapter FIVE:

LEVEL III Expansion Interface
Features

S LEVEL Ill 's Clock and Calendar

S How t o Turn Off the S y s t e m Clock

1/ How t o Output t o an RS-232 Port

]/ Lockout Recovery

69

LEVEL Ill's Clock and Calendar

TIMES is a string that keeps track of the date and time. The format of
the string is:

MM/DD/YY HH:MM:SS

When you load LEVEL III BASIC, TIMES contains all zeros but im­
mediately starts keeping track of the seconds, minutes, and hours elaps­
ed.

To set the date and the actual time, type the CMD"R" command with a
17-character argument that represents the month, date, year, hour,
minute, and second. For example, to set the date at November 21, 1979
and the time at one-thirty a.m. exactly, type:

CMD"R","11 21 79 01 30 00"

BASIC will supply the punctuation, you only need to type spaces bet­
ween the numbers. Note that you must include leading "0" .

After executing this command, the time and date will increment proper­
ly for as long as the TRS-80 is turned on.

TIMES may be used in any program that requires a timer or reference to
a specific day, hour, etc.

70

How t o Turn Off the Sys tem Clock

Note: If your TRS-80 includes an Expansion Interface, you need to be
aware of the following:

Tape operations other than SAVE and LOAD* on a TRS-80 with Ex­
pansion Interface are vulnerable to interruptions from the system clock.
Therefore, before doing a SYSTEM, INPUT#-1, or PRINT#-1 com­
mand, you must turn off the system clock. And once the command is
executed, the system clock should be turned back on.

The command that turns the clock off is CMD"T" and the command
that turns it back on is CMD"R." These commands may also be used as
program statements.

Example. Here we turn the clock off, read values from tape, and turn
the clock back on.

100 CMD'T"
120 INPUT#-1,X,Y,Z
130 CMD"R"

•SAVE and LOAD turn the clock off and back on again automatically.

71

How to Output to an RS-232 Port*

LEVEL Ill's PRINT#-3 statement is used just like the PRINT state­
ment, except data is output to the RS-232 port. The format of the state­
ment is:

PRINT#-3, list of items

Now it's easy to do output to a line printer (or other device) that is
hooked up to your RS-232 port. Input from an RS-232 port still requires
the use of machine language routines.

The first character sent by BASIC to the RS-232 causes the RS-232's
UART to initialize using the switches set on the RS-232. In order to
override this default initialization, send a dummy character to the
RS-232 port and then re-initialize using a machine language subroutine.

•Requires RS-232 port.

72

Lockout Recovery

Two common occurrences that cause system lock-out are:

1. An attempt to execute an LLIST or LPRINT while the line
printer is off line, or

2. An attempt to execute a LOAD while the recorder is off line.

With Level II BASIC, reset must be used to recover from the lock-out
and, if your system includes an expansion interface, this results in loss
of the current program.

LEVEL III BASIC monitors the break key during printer I/O and
LOAD lock-outs. So you can use the break key to recover from a system
lock-out without losing your program.

73

#LEN 59
LINE 38-41
LINE INPUT 58-59
LOAD 27-28
LOAD? 28
Loading LEVEL III 12-15
Loading Problems 16-17
Loading Programs 27-28
LSET 22-24

LSET LIST 22
LSET RESET 22
LSET SET 22

Machine Language Routines 64
Microsoft 9
Microsoft Consumer Products 9
MID$ 60

NAME 25-26
Notation Rules 18

PRINT® 37
PRINT#3 72
PUT 42, 44

Renumber 25-26
RS-232 72

SAVE 27-28
Saving Programs 27-28
Screen Coordinates 32-33, 37
Screen Printer 19
String Literals 58
Strings 58-61
SYSTEM Caution 67

76

System Clock 71

TAPEDISK 14
TIMES 70

USR Function 64-65

XOR 45, 51

77

Catalog No. 1011
Part No. 10F01

Printed in U.S.A.

