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Abstract

This dissertation investigates the optimal aerodynamic performance and design of

conventional and coaxial helicopters in hover and forward flight using conventional

and higher harmonic blade pitch control. First, we describe a method for determining

the blade geometry, azimuthal blade pitch inputs, optimal shaft angle (rotor angle

of attack), and division of propulsive and lifting forces among the components that

minimize the total power for a given forward flight condition. The optimal design

problem is cast as a variational statement that is discretized using a vortex lattice

wake to model inviscid forces, combined with two-dimensional drag polars to model

profile losses. The resulting nonlinear constrained optimization problem is solved

via Newton iteration. We investigate the optimal design of a compound vehicle in

forward flight comprised of a coaxial rotor system, a propeller, and optionally, a

fixed wing. We show that higher harmonic control substantially reduces required

power, and that both rotor and propeller efficiencies play an important role in de-

termining the optimal shaft angle, which in turn affects the optimal design of each

component. Second, we present a variational approach for determining the optimal

(minimum power) torque-balanced coaxial hovering rotor using Blade Element Mo-

mentum Theory including swirl. We show that the optimal hovering coaxial rotor

generates only a small percentage of its total thrust on the portion of the lower rotor

operating in the upper rotor’s contracted wake, resulting in an optimal design with

very different upper and lower rotor twist and chord distributions. We also show
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that the swirl component of induced velocity has a relatively small effect on rotor

performance at the disk loadings typical of helicopter rotors. Third, we describe

a more refined model of the wake of a hovering conventional or coaxial rotor. We

approximate the rotor or coaxial rotors as actuator disks (though not necessarily

uniformly loaded) and the wake as contracting cylindrical vortex sheets that we rep-

resent as discrete vortex rings. We assume the system is axisymmetric and steady in

time, and solve for the wake position that results in all vortex sheets being aligned

with the streamlines of the flow field via Newton iteration. We show that the sin-

gularity that occurs where the vortex sheet terminates at the edge of the actuator

disk is resolved through the formation of a 45◦ logarithmic spiral in hover, which

results in a non-uniform inflow, particularly near the edge of the disk where the flow

is entirely reversed, as originally hypothesized by previous authors. We also quantify

the mutual interference of coaxial actuator disks of various axial spacing. Finally,

we combine our forward flight optimization procedure and the Blade Element Mo-

mentum Theory hover optimization to form a variational approach to the multipoint

aerodynamic design optimization of conventional and coaxial helicopter rotors. The

resulting nonlinear constrained optimization problem may be used to map the Pareto

frontier, i.e., the set of rotor designs for which it is not possible to improve upon the

performance in one flight condition without degrading performance in the other. We

show that for both conventional and coaxial rotors analyzed in hover and high speed

flight, a substantial tradeoff in performance must be made between the two flight

conditions. Finally, computational results demonstrate that higher harmonic control

is able to improve the Pareto efficiency for both conventional and coaxial rotors.
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1

Introduction

Helicopters are versatile vehicles that can perform a large variety of missions outside

the capabilities of a fixed wing aircraft. The ability to take off and land vertically,

as well as to operate in hovering flight for extended periods of time, are crucial for

a variety of civilian and military applications. However, conventional helicopters are

inefficient in forward flight relative to fixed wing aircraft, in part because the asym-

metric wake structure of a conventional rotor leads to larger than ideal induced power

losses [1, 2]. Other factors, such as advancing blade compressibility and retreating

blade stall, also contribute to the inefficiency of conventional rotors in forward flight,

thus limiting their top speed [3, 4].

One method to improve the forward flight performance of a helicopter is by com-

pounding the thrust of the rotor with a second source of propulsion, often in the

form of a propeller. This arrangement, which is known as a compound helicopter,

combines the hover capabilities of a helicopter with substantially improved aerody-

namic performance in high speed flight, both in terms of reduced power requirements

and increased maximum speed [1, 5, 6, 7]. Compound configurations also frequently

include a wing to supplement the lift of the rotor in high speed flight. Compounding
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Figure 1.1: Eurocopter X3 compound helicopter, which uses a lifting wing with
two propellers for auxilliary propulsion [10].

both the thrust and lift of the vehicle allows the rotor to be slowed and offloaded

in high speed flight, reducing losses due to compressibility and stall [7]. Addition-

ally, eliminating the requirement that the rotor be indepently trimmed (as the rotor

rolling moment can be counteracted by an equal and opposite moment from the wing)

can also reduce the high induced power losses of the rotor at high advance ratios [1].

The Cheyenne helicopter of the late 1960’s used a rotor and wing in combination

with a pusher propeller to achieve a maximum speed of over 200 knots [8]. More

recently, the Eurocopter X3 compound helicopter, shown in Figure 1.1, achieved

speeds of 255 knots in level, stabilized flight [9] with a design using two propellers

and a conventional rotor.

A coaxial rotor is defined as a pair of counter-rotating rotors that rotate about

a common shaft axis. Coaxial rotors have an extensive history dating back to some

of the earliest vertical flight vehicles. In fact, Igor Sikorsky had built a non-piloted

coaxial prototype by 1909, and many other early attempts at sustained vertical flight

involved coaxial rotors [3]. In 1930, Corradine d’Asconio built a coaxial helicopter

capable of controlled flight [3]. The Russian helicopter manufacturer Kamov has built

a succesful line of coaxial rotor helicopters beginning in the late 1940’s, although the
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Kamov coaxial helicopters do not use an auxiliary source of propulsion and are not

designed for high speed.

In the 1970’s, the Sikorsky X-59 made use of a coaxial, rigid rotor in combination

with an external propulsor in a system referred to as the Advancing Blade Concept

(ABC) [11]. The ABC achieves improved forward flight efficiency by offloading the

retreating side of each rotor in high speed flight, achieving roll trim by balancing

the moments transmitted to the hub by the opposing advancing side blades. This

arrangement results in each rotor carrying a lateral lift offset (LOS), wherein the

majority of lift is generated on the advancing side of each rotor. The resulting wake

structure is symmetric and is naturally trimmed in roll, resulting in low induced

power requirements at high speeds [1]. Additionally, eliminating the need to operate

each rotor as independently trimmed results in a decrease in profile power losses, as

the retreating side can be offloaded, and allows for the rotor to be slowed in high

speed flight, reducing compressibility losses on the advancing side [12]. The X-59 was

designed for high speed flight and was originally designed to include turbine engines

for auxiliary propulsion, thus making the vehicle a true compound.

While the X-59 never went into production, Sikorsky’s X2 Technology Demon-

strator (X2 TD) recently revitalized the ABC with updated technologies. The X2

TD, as described by Bagai [12] and shown in Figure 1.2, used a rigid coaxial rotor

system with a pusher propeller to achieve speeds of 250 knots in level flight [13]

in 2010. The ABC concept successfully demonstrated on the X2 TD is being used

on Sikorsky’s next generation verticle lift vehicles, including the S-97 Raider and

SB-1 Defiant, the latter of which will be an entry to the US Army’s Joint Multirole

program [14].

Another benefit of coaxial helicopters, in addition to their high speed perfor-

mance, is that they are more efficient in hover compared to two isolated single ro-

tors of the same area [16]. Several authors have investigated the performance of
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Figure 1.2: Sikorsky X2 technology demonstrator, which uses a coaxial rotor and
a pusher propeller [15].

coaxial rotors in hover, often arriving at differing conclusions about optimal rotor

design [17, 18, 19, 20, 21]. Coaxial helicopters also have the added benefits of elim-

inating the need for an anti-torque device, thus saving additional power. Finally,

coaxial rotors allow for a larger lift capacity for a given rotor diameter, which can be

an advantage in applications where vehicle size is constrained by its total “footprint,”

for example in Naval applications.

A sizeable body of research seeks to model and improve the performance of com-

pound helicopters, including those using coaxial rotors. Much of the work uses the

comprehensive rotor code CAMRAD II to explore compound vehicle performance

and optimal design [7, 16, 22, 23, 24]. Other authors, including Orchard and New-

man [6], Ormiston [5], and Rand and Khromov [25], have used various analytical

and numerical approaches to understand the optimal design and performance of

compound helicopters.

Higher harmonic control (HHC) is defined as using harmonic pitch inputs to the

blade in addition to the traditional zero and one per revolution control typically

achieved with a swashplate. Historically, HHC has been studied for its applications

to vibration or noise reduction. However, many researchers have also investigated

its potential effectiveness at improving the aerodynamic performance of conventional
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rotors in forward flight, through both analytical and numerical methods [26, 27, 28,

29, 30, 31, 32, 33, 34, 35] and through experiments [36, 37, 38]. In general, these

analyses have found that HHC can reduce both the induced and profile components

of power for a conventional rotor in forward flight, with an increased potential for

aerodynamic performance improvement at higher advance ratios.

Hall and Hall [1], building upon their work on the minimum induced loss lift

distribution of helicopters in forward flight [31], used a variational approach to com-

pute the theoretically optimal aerodynamic performance of conventional and coaxial

rotors in trimmed high speed flight. They found that the power required for coaxial

and wing-rotor compounds can be substantially reduced by producing a more effi-

cient wake structure and by reducing the induced power associated with roll trim.

The resulting analysis – which is the viscous helicopter rotor analogue of Goldstein’s

inviscid propeller theory [39] – gives rigorous upper bounds on the performance of

conventional and coaxial helicopters, and may be used to predict the rotor loadings

that produce optimal performance. Their analysis does not consider the specific rotor

design required to achieve the optimal circulation distribution; rather, it assumes a

“rubber rotor” that can be articulated with unlimited degrees of freedom to achieve

the desired optimal circulation distribution.

Hall and Giovanetti [40] built upon this work to develop a method for computing

the optimal rotor design for conventional and coaxial rotors in forward flight using

conventional and higher harmonic control. Rather than determining the optimal

rubber rotor result, the method solves for the specific design variables – including

the blade geometry (radial blade twist and chord) and conventional and higher har-

monic control of the blade pitch – that minimize the sum of induced and profile

power losses while maintaining vehicle trim. Computed results show that for both

conventional and counter-rotating coaxial rotors, using optimized twist and chord

distributions substantially reduces total power compared to a zero-twist, constant-
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chord blade. Additionally, higher harmonic blade pitch control substantially reduces

required power, both with and without the use of optimized blade twist and chord

distributions, particularly at high advance ratios. This work was also documented

in more detail in the author’s Master’s thesis [41].

In the present work, we continue this line of research, focusing on four specific re-

search topics, all broadly related to the optimal aerodynamic design and performance

of conventional and coaxial helicopter rotors and compound vehicles. Specifically:

1. We investigate the optimal design of a compound vehicle in forward flight

comprised of a coaxial rotor system, a propeller, and optionally, a fixed wing,

and determine the optimal shaft angle, blade design, and division of propulsive

and lifting forces. Additionally, we assess the performance benefits of higher

harmonic control and the effects of a constrained lateral lift offset on optimal

compound vehicle design and performance.

2. We investigate the optimal design and performance of a torque balanced coaxial

rotor in hover or axial flight.

3. We develop a model of the axisymmetric trailing wake of single and coaxial

actuator disks in axial flight or hover, allowing us to compute the mutual

interference effects of coaxial actuator disks in hover. Additionally, we are able

to confirm previous assertions about the nature of the terminating vortex sheet

at the rim of an actuator disk, and visualize the flow field for single and coaxial

actuator disks of various loadings and axial flight conditions.

4. We combine our forward flight and hover analysis to perform a multipoint

optimization, capable of determining the conventional or coaxial rotor design

that best balances performance between hover and a forward flight design point

or two disparate forward flight design points.
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Specifically, in Chapter 2, we extend the work on the optimal design of rotors

in forward flight described by Hall and Giovanetti [40] to analyze the design and

performance of the compound vehicle as a whole. We include in our model a pro-

peller providing a propulsive force, and model a hypothetical fuselage drag using a

propulsive force constraint. We investigate the minimum power requirements, op-

timal shaft angle, and optimal aerodynamic design of the compound helicopter as

a system, including the rotor design, blade pitch inputs, shaft angle (rotor angle

of attack), and division of propulsive and lifting forces among the components that

minimize the total power for a given flight condition. We demonstrate the impor-

tance of both the propeller and rotor efficiencies in determining the optimal division

of propulsive force between rotor and propeller, and the importance of shaft angle

on high-speed performance and optimal rotor design. We show that higher harmonic

control significantly reduces total vehicle power at high advance ratios. We also show

that limiting the maximum lateral lift offset of the coaxial rotors to 30 percent of

the rotor radius or less results in a substantial increase in power, and that the effec-

tiveness of higher harmonic control to reduce these rotor power losses is dependent

on shaft angle. This work was originally documented in [42, 43].

In Chapter 3 we present an approach for determining the optimal (minimum

power) torque-balanced coaxial hovering rotor using Blade Element Momentum The-

ory including swirl. We quantify the effects of the swirl component of induced ve-

locity on performance, optimal induced wash distribution, and optimal blade twist

and chord. The optimization accounts for the presence of a finite number of blades

using the Prandtl tip loss factor, the effect of profile drag using experimentally or

computationally determined drag polars, and the mutual interference between the

two rotors using an empirically determined influence coefficient method. We show

that including the swirl component of induced wash decreases the optimal figure of

merit and has a larger impact at higher disk loadings, as expected. However, at the
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disk loadings typically found on helicopters, the effect of swirl is relatively small,

particularly compared to other physical effects such as mutual interference or tip

losses. This work was originally documented in [44].

In Chapter 4, we build a more refined model of the wake of a hovering conventional

or coaxial rotor, in part to assess the validity of the simple mutual interference model

used in the Chapter 3 hover optimization algorithm. We approximate the rotor or

coaxial rotors as actuator disks (though not necessarily uniformly loaded) and the

wake as contracting cylindrical vortex sheets that we represent as discrete vortex

rings. We assume the system is axisymmetric and steady in time, requiring us to

only analyze a single azimuthal slice of the flow field to determine the shape of

the wake and the induced velocity throughout the flowfield. Using multiple vortex

sheets allows us to analyze any piecewise constant bound circulation on the disk or

disks. We solve for the positions of the vortex rings that result in no flow through

the wake sheet via Newton iteration. Using this model, we confirm the findings of

Spalart [45], who hypothesized that there exists a spiral wake structure near the edge

of the actuator disk in which the vortex sheet itself passes through the disk multiple

times. Additionally, we confirm several findings by previous authors, namely that

the hovering or low axial velocity actuator disk has highly non-uniform induced

inflow [45, 46, 47, 48], and includes a region of reversed flow near its edge [45, 46].

For coaxial actuator disks, we compute the mutual interference effects predicted by

our vortex ring model and show that they are in reasonable agreement with the

simple influence coefficient model of McAlister et al. [49] used in Chapter 3. This

work is also documented in [50]

Finally, in Chapter 5, we present a variational approach to the multipoint aero-

dynamic design optimization of conventional and coaxial helicopter rotors. The com-

pound vehicle optimization of Chapter 2 and the hover optimization of Chapter 3

determine the rotor geometry and pitch inputs that optimize performance at a single
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design point. In Chapter 5, we minimize the weighted sum of induced and viscous

power losses between two flight conditions for prescribed vehicle trim constraints at

each flight condition. The resulting nonlinear constrained optimization problem may

be used to map the Pareto frontier, i.e., the set of rotor designs (radial twist and

chord distributions and harmonic blade pitch inputs) for which it is not possible to

improve upon the performance in one flight condition without degrading performance

in the other. The two flight conditions can represent different advance ratios (includ-

ing hover), disk loadings, altitude, or other conditions of interest. For forward flight

computations, the approach is the same as that described in Chapter 2. For hovering

flight, the rotor performance is analyzed using Blade Element Momentum Theory

without swirl, a slightly simplified version of the hover optimization described in

Chapter 3. The use of the simpler model neglecting swirl is justified by the results

of the Chapter 3 investigation. We map the Pareto frontier for both a cruise/cruise

and hover/cruise multipoint optimization, and show that significant tradeoffs must

be made in designing a rotor to balance performance between two flight conditions,

particularly hover and high speed forward flight. We also show that higher har-

monic control is capable of reducing rotor power and improving the Pareto frontier,

particularly for coaxial rotors. This work was originally documented in [51].
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2

Optimal Design of Compound Helicopters

In References [40, 41], Hall and Giovanetti developed a method for computing the

blade geometry (radial blade twist and chord) and conventional and higher harmonic

control of the blade pitch that minimize the sum of induced and profile power losses

while maintaining vehicle trim. This analysis was applied to conventional rotors and

coaxial rotors in forward flight, using conventional and higher harmonic control. The

analysis included only the rotor system of a given vehicle, which was analyzed at a

single representative shaft angle of αshaft = −5◦. The rotor system was subject to

trim constraints and a lift constraint; however, there was no requirement for the rotor

to generate a propulsive force, which would be necessary in the actual operation of

a helicopter to counteract fuselage drag and maintain steady, level flight.

For a helicopter without auxiliary propulsion, a propulsive force is generated by

operating the rotor tilted in the direction of flight, i.e., at a negative shaft angle,

thereby causing a component of the rotor’s thrust vector to act in the horizontal

direction. Within a compound vehicle using auxiliary propulsion, the propulsive

force can be generated by some combination of forces generated by the rotor and

10



propeller. Interestingly, the rotor does not have to generate a positive force, but can

be tilted aft and allowed to autorotate. This creates a force in the opposite direction

of flight, but also requires less shaft power. The fact that in a compound vehicle

there are redundant controls with which to achieve a given trimmed state allows for

the required propulsive and lift forces to be generated at a variety of shaft angles

and operating conditions.

In this chapter, we include a propeller in our helicopter model to provide a propul-

sive force, and include a propulsive force constraint to balance a hypothetical fuselage

drag. We apply an updated version of our optimization algorithm to the entire com-

pound helicopter, allowing us to investigate minimum power requirements, optimal

shaft angle, and optimal aerodynamic design of the compound helicopter as a system.

A number of investigators have studied the performance of compound helicopters

in high speed forward flight. Orchard and Newman [6] investigated fundamental

design features of compound helicopters using a wing, a single rotor, and a propul-

sor. They noted that the efficiency of the propulsor will have a large effect on

whether autorotating the rotor at high speeds is more efficient than powering the

rotor. Bagai [12] described the aerodynamic design of the Sikorsky X2 Technology

Demonstrator main rotor blades. Bagai noted that use of 2/rev harmonic control

may prove beneficial in improving the aerodynamic efficiency of the coaxial rotors.

Ormiston [5], building on his previous work on the induced power of helicopter

rotors [33, 34, 52], evaluated three configurations: a rotor using a wing, a rotor using

auxiliary propulsion, and a rotor using both auxiliary propulsion and a wing. He

determined that the case using both a wing and auxiliary propulsion had the best

performance (i.e., the lowest required power). He also concluded that induced power

losses significantly impact the aerodynamic efficiency of compound rotorcraft and

are an important discriminator between high and low performance configurations.

Johnson [16], Johnson, Moodie, and Yeo [23], Yeo and Johnson [22], and Russell
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and Johnson [24] all analyzed the performance, sizing, and design of compound

configurations to satisfy specific mission requirements using the comprehensive code

CAMRAD II. Johnson [16] concluded that a lift offset of 0.25 of the rotor radius is

effective in reducing rotor induced and profile power in high speed cruise.

Rand and Khromov [25] introduced a drag vs. power chart as a semi-analytic tool

for understanding the effect of the rotor, propeller, wing, and fuselage contributions

to propulsive force, drag, and the overall power required for compound configura-

tions. The authors concluded that the optimal configuration is dependent on each

component’s efficiency, and that the optimal propulsive force balance occurs when

the local rotor and propeller propulsive efficiencies, defined as the incremental change

in propulsive force per unit change in required power, are equal.

Jacobellis et al. [53] used the comprehensive code RCAS to investigate the effect of

varying controls such as rotor speed, auxiliary thrust, and differential lateral pitch on

both required power and vibratory loads for the XH-59 Advancing Blade Concept

demonstrator. The authors concluded that a reduction in power requirements of

17% was possible in the optimal trim state compared to the baseline trim state.

This reduction in power was achieved by both slowing the rotor and increasing the

lift offset to about 40%.

The results presented here demonstrate the importance of both the propeller

and rotor efficiencies in determining the optimal division of propulsive force between

rotor and propeller, and the importance of shaft angle on high-speed performance

and optimal rotor design. We show that higher harmonic control significantly reduces

total vehicle power at high advance ratios. We also show that limiting the maximum

lateral lift offset of the coaxial rotors to 30 percent of the rotor radius or less results in

a substantial increase in power, and that the effectiveness of higher harmonic control

to reduce these rotor power losses is dependent on shaft angle. Lastly, we investigate

the use of a lifting wing, as well as a propeller that provides some lift in addition
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to thrust, and determine that each of these design features provide only marginal

improvements in aerodynamic efficiency.

2.1 Technical Approach

The technical approach used in this paper follows References [40] closely and is

briefly summarized in this section. We wish to determine the rotor, propeller, and

wing design variables and control inputs that produce the minimum required power

in forward flight. We assume light loading and/or high advance ratios, so a prescribed

wake is appropriate. We assume high aspect ratio lifting surfaces, so the rotor blade,

propeller, and wing geometries and control inputs can be related to the circulation

in the wake using the rotorcraft equivalent of lifting line theory. Finally, we assume

that the reduced frequency based on chord is small. Thus, the sectional lift and

drag can be described using quasi-steady two-dimensional lift and drag curves found

from experiment or using a computational fluid dynamic analysis. Alternatively,

C-81 tables can be used to account accurately for the effect of Mach number on an

airfoil’s sectional lift and drag coefficients.

2.1.1 Forces, Moments, and Power

We calculate inviscid forces, moments, and induced power using a far-field approach.

The forces and moments acting on the rotor/wing/propeller system are a result of

apparent linear and angular momentum (i.e., Kelvin linear and angular impulses)

deposited in the wake of each lifting component. The Trefftz volume bounds one

period of the flow field in the far wake, bounded between two infinite parallel planes

roughly transverse to the flight direction as shown in Fig. 2.1.

The far field flow is assumed to be inviscid, incompressible, and irrotational,

except for the trailing and shed vorticity in the wake. Note that the assumption of

incompressible flow requires only that the induced velocities in the wake be small
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Figure 2.1: Schematic of prescribed wake showing one period of the far wake
bounded by the Trefftz volume, from Reference [1].

compared to the speed of sound, an assumption consistent with the light loading

model. (The flow will in general be compressible in the near field of the rotor.)

As discussed in References [1, 40], using these assumptions, the time-averaged

force on the rotor is equal to

F = − ξ

T
=
ρ

T

∫∫
W

Γn dA (2.1)

where the integral is taken over one side of the wake denoted byW , Γ is the jump in

potential (the circulation), n is the unit normal to the wake, and T is the temporal

period of the wake, usually equal to 2π/ΩB because only one B-th of a turn of the

wake is required to achieve periodicity.

Likewise, the time-averaged moment acting on the system is equal to

M =
ρ

T

∫∫
W

Γ r× n dA (2.2)

where r is the moment arm extending from the center of the rotor system to the

element of wake area at the time the wake is generated.
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The induced power losses due to lift and thrust of a conventional helicopter rotor,

or rotor/wing/propeller system for a compound helicopter, arise from the deposition

of kinetic energy into the wake. The time-averaged induced power Pi, equal to the

rate of kinetic energy production, is given by

Pi = − ρ

2T

∫∫
W

Γw · n dA (2.3)

where w is the induced velocity.

The profile power Pv may be expressed as the work per cycle divided by the

period, so that

Pv =
1

T

∫∫
W

1

2
ρu2ccd dA (2.4)

where u is the relative velocity of a given airfoil section normal to the span of the

rotor.

In discretized form, we represent the wake trace using a lattice of vortex rings,

which can model both trailing and shed vorticity in the wake (see Figure 2.2). One

period of the wake trace (the reference period) is divided into M quadrilateral el-

ements. The ith element is a quadrilateral vortex ring with filament strength Γi.

Thus, the potential jump across the ith element is just Γi, and the time-averaged

force and moment on the helicopter may be approximated by

F =
ρ

T

M∑
i=1

ni ∆AiΓi =
M∑
i=1

biΓi = B ΓΓΓ (2.5)

M =
ρ

T

M∑
i=1

ri × ni ∆AiΓi =
M∑
i=1

diΓi = D ΓΓΓ (2.6)

The induced power loss is approximated by

Pi =
1

2

M∑
i=1

M∑
j=1

KijΓiΓj =
1

2
ΓΓΓTK ΓΓΓ (2.7)
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Figure 2.2: Left: top view of the vortex lattice grid of a coaxial rotor with propeller.
Right: bottom view. Note that two periods of the wake are shown for clarity; only
a single period is required in the analysis.

with

Kij = − ρ
T

wij · ni ∆Ai (2.8)

and the profile power loss is approximated by

Pv =
ρ

T

M∑
i=1

u2
i

2
cicdi∆Ai (2.9)

2.2 Optimal Rotor Performance

In the design of a rotor, one may select a fixed blade twist distribution θ0(r) and

implement some limited set of harmonic blade pitch control inputs. For such a con-

figuration, the blade twist as a function of radius r and azimuth ψ can be described

as

θ(r, ψ) = θ0(r) + A0 +
N∑
n=1

An cos(nψ) +
N∑
n=1

Bn sin(nψ) (2.10)
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where An and Bn are the Fourier coefficients of the blade pitch and N is the number

of harmonics in the higher harmonic control system. A conventional helicopter, with

collective and cyclic control corresponds to N = 1.

We denote the total vector of design variables and control inputs by θ. For

a harmonic blade pitch control scheme as shown in Eq. (2.10), the vector θ will be

comprised of the Fourier coefficients of blade pitch A0, An, and Bn, θ0(r) at a discrete

set of radii, and the chord distribution c(r) at a discrete set of radii. Alternatively

θ0(r) and c(r) can be represented by a summation of shape functions in the radial

direction, in which case the coefficients of the shape functions would be members of

θ. In this study, we represent the radial twist and chord as summations of Legendre

polynomials.

To compute the forces, moments, and power resulting from a given rotor design,

we must find the far field circulation in terms of the design variables and control

inputs. Using our lightly loaded model, the induced wash is a linear function of the

circulation. However, the resulting induced angles of attack on the rotor blade can

be large, especially in and near the reverse flow region – large enough to require the

use of a nonlinear lift curve – rendering the circulation a nonlinear function of the

control inputs.

In this study, we relate the rotor design to the circulation using a nonlinear

interative lifting-line method. We use a lifting-line approximation of the blade to

compute the near field induced wash, which is then used, in combination with the

geometric angle of attack due to the motion of the blade and the pitch angle of the

blade at a given section, to calculate the effective angle of attack and the resulting

lift and drag coefficients in an iterative process. We model the near field wake using a

system of quadrilateral vortex elements consisting of both trailing and shed vorticity.

The trailing vorticity is represented by vortex filaments parallel to the free stream

flow u at the blade and is caused by changes in the bound circulation of the blade
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in the radial direction, i.e., γtrailing = dΓ/dr. The shed vorticity is represented by

vortex segments perpendicular to the free stream flow u and represents changes in the

bound circulation of the blade with time, or equivalently, with azimuthal position,

i.e., γshed = dΓ/dψ. For the work presented here, we use a uniform azimuthal spacing

for the shed vortex filaments with the collocation point located on the bound vortex.

As this azimuthal spacing is decreased and the grid is resolved, however, the nearest

shed vortex filament will approach the collocation point, located on the lifting line,

causing a weak logarithmic singularity in the computed near field induced wash.

Consistent with the work of Miller [54, 55], we updated the near field wake model

to place the first shed vortex one quarter chord behind the lifting line to avoid this

singularity. This resulted in very small differences in the rotor design and computed

performance, on the order of 1%, for several test cases.

2.2.1 Optimality Conditions for Rotor Design

In this section, we express the optimal design of a rotor/wing/propeller system with

a finite number of design variables and control inputs as a variational statement. We

seek to find the circulation distribution that minimizes the power loss subject to the

constraints that the rotor generate a prescribed force FR, is trimmed in pitch and

roll (MR = 0), and the circulation is realizable using our finite set of design variables

and control inputs. Thus, we adjoin to the power these constraints using Lagrange

multipliers to obtain the Lagrangian power

Π =
1

2
ΓTKΓ + Pv + λTF · (BΓ− FR) + λTM · (DΓ−MR) + λTR ·R(Γ,θ) (2.11)

where the nonlinear lifting line equations are given by the vector function

R(Γ,θ) = 0 (2.12)

In the present analysis, we use a nonlinear lifting line analysis, but R could also

describe some other numerical method for computing the circulation in terms of the
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design variables, e.g., a panel method.

Taking the variation of Eq. (2.11) and setting the result to zero for arbitrary

variations in the circulation, control inputs, and Lagrange multipliers gives a set of

linear equations for the circulation, controls, and Lagrange multipliers, together with

Eq. (2.12). The linear equations are given by


1
2
(K + KT ) BT DT RT

Γ

0 0 0 RT
θ

B 0 0 0
D 0 0 0




Γ
λF
λM
λR

 =


−PV Γ

−PV θ

FR

MR

 (2.13)

where RΓ and Rθ are the Jacobians of R with respect to Γ and θ respectively, and

PΓ and PV θ are the gradients of Pv with respect to Γ and θ respectively.

The nonlinear relationship between the circulation and the rotor design variables

and control inputs complicates the solution process a bit. Starting with some initial

guess at the design variables, we can calculate the circulation that satisfies Eq. (5.8).

We will refer to this initial circulation as Γk (with k = 0). We then estimate the

circulation due to a change in the control variables to first order as

Γk+1 = Γk + A∆θ (2.14)

where the matrix A is defined as

A =
∂Γ

∂θT
(2.15)

i.e., A is the first-order approximation of the change in circulation due to a change

in the design variables.

Similarly for the viscous power loss term, we have

Pv ≈ Pv0 + KT
v ∆θ (2.16)

where the vector Kv is defined as

Kv =
∂Pv
∂θT

(2.17)
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i.e., Kv relates a change in design variables to the first-order change in viscous power

loss. The entries of the A matrix and the Kv vector are determined by Taylor

expanding expressions for the circulation and viscous power loss in terms of the

design variables and retaining first-order terms, giving closed form approximations

for the circulation and viscous power loss derivatives. This derivation and the exact

expressions for A and Kv are given in Appendix A. Substituting these first-order

expansions into the Lagrangian power from Eq. (2.11) gives

Π =
1

2
(Γ + A∆θ)TK(Γ + A∆θ) + Pv0 + KT

v ∆θ

+ λF
T (B(Γ + A∆θ)− FR) + λM

T(D(Γ + A∆θ)−MR) (2.18)

Taking the variation of Eq. (2.18) and setting the result to zero for arbitrary varia-

tions in the change in control inputs ∆θ and Lagrange multipliers gives the linear

equations 1
2
AT (K + KT )A ATBT ATDT

BA 0 0
DA 0 0


∆θ
λF
λM

 =


−ATKΓ−Kv

FR −BΓ
MR −DΓ

 (2.19)

At each iteration, this system of equations is solved, satisfying the equality con-

straints and minimizing the total power to first order. The vector of design variables

is then updated,

θk+1 = θk + ∆θ (2.20)

and the linearized approximation of circulation is computed by Eq. (2.14). Of course,

since Γk+1 is a first-order approximation, the residual R(Γk+1,θk+1) will be non-zero.

It is necessary to calculate the accurate, nonlinear circulation at θk+1; in other words,

to determine the Γ that makes R(Γ,θk+1) = 0. This updated, corrected value of Γ

is then used in the following iteration. This process is repeated until convergence.

In addition to the equality constraints on forces and moments, we also implement

inequality constraints on the chord of each lifting component using Mathematical
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Programming via Augmented Lagrangians, in order to prevent the optimization from

taking advantage of negative or infinitesimal chords. We also implement an equality

constraint on the thrust-weighted solidity of the rotor. Because we are performing a

single point optimization at very high flight speeds, and because of the high dynamic

pressures present on the advancing side of each rotor and the natural roll trim of

the coaxial system, the resulting optimal chord is often quite small – too small for

the helicopter to hover. Constraining the thrust weighted solidity ensures that the

design is capable of hover and low speed flight. However, because the thrust weighted

solidity heavily weights solidity at the blade tip, and because the circulation goes

to zero at the tip regardless of the chord, we constrain instead a modified thrust

weighted solidity defined by

σTWM ≡
3

R3

∫ R

RCO

r2σ(r) · {1− exp[−(1− r/R)/ε]} dr (2.21)

where ε is a constant taken to be 0.10 and RCO is the root cutout of the rotor. The

effect of the term in braces in the integrand is to remove the influence of the solidity

of the tip. The shape of the tip is then more naturally selected to minimize power.

2.3 Results

We consider first a vehicle modeled roughly after the Sikorsky X2 Technology Demon-

strator (TD), with two coaxial counter-rotating four-bladed rotors and a six-bladed

pusher propeller to provide an auxiliary propulsive force. We analyze rotors sim-

ilar in design intent to the X2 rotor system in high speed cruise as described by

Bagai [12]. The parameters for the coaxial rotor system are listed in Table 2.1. The

blade geometries of the upper and lower rotors are constrained to be equal, although

each rotor has independent root pitch inputs. The propeller is roughly modeled after

the X2 TD as well, with an RPM that is six times that of the rotors’ and a radius

21



Table 2.1: Coaxial Rotor Full Vehicle Parameters.

Parameter Value

Advance Ratio, µ 0.85
Relative tip Mach number 0.90

Coefficient of lift, CL 0.02324
Thrust weighted solidity, σTW 0.1441

CL/σTW 0.1613
Root cutout 10 percent of rotor radius

Vertical rotor separation 20 percent of rotor radius

equal to 25 percent of the rotor radius. Unlike the X2 TD, however, both the rotors

and propeller use a NACA 0012 airfoil from root to tip.

To analyze a single advance ratio and shaft angle, we use a lattice of vortex

rings containing 18 ring elements in the spanwise direction and 15 elements in the

azimuthal direction for each rotor blade. Because of the 4/rev temporal periodicity of

the problem, only one-quarter of a revolution of the wake is needed to achieve spatial

periodicity of the wake. The spatially periodic lattice is replicated and extended 40

periods (10 complete turns of the rotor) downstream for the near field analysis, and

40 periods upstream and 40 periods downstream for the far wake induced power

analysis. The propeller is modeled using 8 elements in the spanwise direction and

18 elements in the azimuthal direction for each full turn of the propeller. Because of

its higher rotation rate, one and one-half turns of the propeller are modeled for each

quarter turn of the wake.

2.3.1 Effect of Propulsive Force on Power

First, we will vary the propulsive force required by the vehicle in straight and level

flight, which is equivalent to changing the value of the vehicle’s fuselage drag. This

allows us to study the effect that propulsive force requirements have on the optimal

shaft angle and on optimal rotor design. We examine two cases for comparison:
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a high propulsive force case, corresponding to a total propulsive force coefficient

of CFx = Fx/ρAΩ2R2 = 0.0058, and a low propulsive force case corresponding to

CFx = 0.0031. The cases analyzed here each use conventional N = 1 control.

For each case, we evaluate the performance and rotor design over a range of rotor

shaft angles. All rotor and propeller design variables are optimized at each individual

shaft angle. Thus, each data point represents a unique rotor design that provides the

best possible performance at that flight condition. Note that only the rotor system

is operating at the given shaft angle. Unless otherwise noted, the propeller axis is

aligned with the direction of flight.

2.3.2 Effect of Propulsive Force on Optimal Shaft Angle.

Figure 2.3 shows the vehicle total power loss (i.e., total power minus useful thrust

power) for the high and low propulsive force cases across a range of shaft angles,

normalized by the square of the coefficient of lift of the vehicle. Note that the

total power loss referenced here is the same total power loss defined by Ormiston

in Reference [56] and used in previous papers [1, 40], and represents the net power

loss of the system, that is, the sum of the induced and profile losses of the rotor and

propeller. The power loss is divided into two components: the propeller power loss

and the rotor power loss. The total power loss of the vehicle is the sum of these two

components. A negative shaft angle indicates that the rotor system is tipped forward

into the flow, providing a positive propulsive force in the flight direction. Though not

shown in the figure, the normalized useful power (thrust power coefficient divided

by the coefficient of lift squared) CPuseful/C
2
L is 9.13 for the high propulsive force

case and 4.88 for the low propulsive force case. Thus, the power loss is a significant

fraction of the total power.

As expected, the high propulsive force case has a higher overall power loss than

the low propulsive force case across all shaft angles. The two cases, however, have
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Figure 2.3: Power loss of a coaxial rotor with pusher propeller with varying levels
of propulsive force.

significantly different optimal shaft angles. The low propulsive force case has a

minimum total power at a shaft angle of αshaft = 1◦, compared to αshaft = −4◦ for

the high propulsive force case.

To investigate the reason for this difference in optimal shaft angle, we examine

a slightly simplified form of the variational statement. We seek to minimize the

total power subject to the constraint that the required propulsive force (thrust) and

the required lift are generated by the rotor/propeller system. Thus we form the

Lagrangian Π given by

Π = Protor + Pprop − λT (Trotor + Tprop − TR)− λL (Lrotor + Lprop − LR) (2.22)

where P is the power, T is the thrust and L is the lift of either the rotor or propeller

as denoted by subscripts. TR and LR are the required thrust and lift of the vehicle,

respectively. Taking the variation of Eq. (2.22), making the assumption that the

power and thrust of each component is independent of the other component, and
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setting the result to zero gives

δΠ = 0 =

(
∂Protor

∂Trotor

− λT
)
δTrotor −

(
∂Pprop

∂Tprop

− λT
)
δTprop

− (Trotor + Tprop − TR) δλT − (Lrotor + Lprop − LR) δλL

(2.23)

Equation 2.23 must be true for arbitrary variations in the rotor thrust, propeller

thrust, and the Lagrange multipliers. Therefore, each of the four terms in parentheses

must equal zero independently. For the first two terms in parentheses to satisfy this

condition, we must have

λT =
∂Protor

∂Trotor

=
∂Pprop

∂Tprop

(2.24)

Equation (2.24) states that the minimum total vehicle power occurs when the change

in power due to an incremental change in thrust is equal between the rotor and

the propeller. This optimality condition was also derived graphically by Rand and

Khromov [25].

Figure 2.4 shows the power loss as a function of the coefficient of propulsive force

for the rotor and propeller for both the high and low propulsive force cases. The

optimality condition, Eq. (2.24), is satisfied at the shaft angle where the rotor and

propeller power curves have the same slope. Note that the rotor power curves for the

high and low propulsive force cases are very similar; the power depends primarily on

shaft angle and is only very weakly dependent on the propulsive force. The propeller

power curves for the two cases are virtually identical; the propeller power is almost

entirely dependent on the thrust it produces. For a given combined coefficient of

thrust, the system will be optimal when the slope of the the power curves are equal.

We see that for the low total propulsive force case, it is more efficient to tilt the

rotor aft so that the rotor generates almost no thrust. For the higher total propulsive

force case, the optimum occurs when both the rotor and propeller generate significant

thrust. In any event, we see that in both cases, the largest share of thrust is generated
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Figure 2.4: Rotor and propeller power versus propulsive force.

by the propeller.

Figure 2.3 also reinforces an important conclusion reached by Rand and Khro-

mov [25]. At high speed, the minimum total vehicle power is not necessarily achieved

by operating at the minimum rotor power, which occurs in this case at αshaft = 3.5◦,

or by placing the rotor system in an autorotative state, which occurs at roughly

αshaft = 7.5◦. Rather, the minimum total power depends on the design and efficiency

of both the propeller and rotor.

2.3.3 Effect of Propulsive Force on Optimal Rotor Design.

Each of the above design points represents a rotor and propeller optimized for one

specific shaft angle. For each value of total propulsive force there is an optimal shaft

angle and corresponding rotor design. In Fig. 2.5, we illustrate how optimal rotor

design varies with total propulsive force. Figure 2.5 shows the optimal radial twist

distribution and optimal planform for the high and low propulsive force cases, corre-

sponding to an optimum shaft angle of αshaft = −4◦ and 1◦, respectively. Note that

the optimal planform and twist distributions for these two cases differ significantly,
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Figure 2.5: Optimal rotor blade planform and twist at αshaft = −4◦ and αshaft = 1◦.

showing that shaft angle and rotor geometry of an optimized vehicle are strongly

influenced by the flight conditions (at least for a single point design).

2.3.4 Higher Harmonic Control

As demonstrated by Hall and Giovanetti [40], higher harmonic control is effective

in reducing total power loss in an isolated coaxial rotor system, particularly at high

advance ratios. Here we consider the effect of higher harmonic control on power and

rotor design for a complete compound vehicle, including a propulsive force constraint.

Figure 2.6 shows the total vehicle power loss for the high propulsive force case us-

ing N = 1 control (conventional cyclic control), and N = 3 control (higher harmonic

control). Using N = 3 control reduces the rotor power loss significantly, particularly

at negative shaft angles, and results in an optimal shaft angle of αshaft = −9◦. This

decrease in optimal shaft angle allows the rotors to provide a much larger fraction of

the vehicle’s overall propulsive force - approximately 33 percent, compared to 15 per-
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Figure 2.6: Power loss of a coaxial ro-
tor with pusher propeller using N = 1
and N = 3 blade root control divided into
propeller and rotor components.

Figure 2.7: Power loss of a coaxial rotor
with pusher propeller using N = 1 and
N = 3 blade root control divided into in-
duced and viscous components .

cent for the N = 1 control case at its optimal shaft angle of αshaft = −4◦. Overall,

N = 3 control reduces total vehicle power loss by 15 percent over N = 1 control at

each case’s optimal shaft angle. While not shown in Fig. 2.6, N = 2 control results

in an optimal shaft angle of αshaft = −7◦ and reduces power loss by 7.5 percent com-

pared to N = 1 control. Harmonic control above N = 3 produces little additional

power reduction.

Figure 2.7 shows the induced and viscous contributions to the total power loss for

the N = 1 and N = 3 control cases. Higher harmonic control results in a lower total

power loss by reducing both the induced and viscous components of power. Note

that for shaft angles ranging from αshaft = 1◦ to αshaft = 5◦, higher harmonic control

provides almost no advantage over conventional control, although these shaft angles

are far from optimal in this configuration.

Figure 2.8 shows the optimal circulation distribution for the N = 1 and N =

3 cases. Also plotted is the circulation distribution for the optimal rubber rotor

solution, which represents the absolute minimum power solution without regard to

the rotor geometry or control inputs required to achieve this circulation. The N = 1
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case generates a large positive circulation on the advancing side of each rotor, in

addition to a moderate positive circulation on the retreating side of each rotor. The

N = 3 case has multiple regions of concentrated circulation on the advancing side

– one at ψ = 90◦, similar to the N = 1 case, but also smaller areas of concentrated

circulation at ψ = 0◦ and ψ = 180◦. Additionally, the N = 3 case does not have the

moderate positive circulation on the retreating side seen in the N = 1 case, instead

having a region of low circulation that closely resembles the rubber rotor result.

Both cases have regions of high circulation, and therefore high lift, in a region just

past the blade midspan on the advancing side. Thus, each rotor carries a large rolling

moment and a lateral lift offset. The moment carried by each rotor is transmitted

through the hub, resulting in a net vehicle rolling moment of zero.

Figure 2.9 shows the blade pitch inputs as a function of azimuth for the two

cases. The N = 1 azimuthal pitch input varies between 6◦ and 10◦, while the N = 3

pitch input has a dramatic decrease in pitch around ψ = 270◦, corresponding to the

region of near-zero circulation on the retreating side of each rotor. This decrease in

pitch reduces circulation on the retreating side of the rotor, making the circulation

distribution closer to the rubber rotor optimum, thereby reducing power.

Figure 2.10 shows the optimal radial twist and planform distribution for the

N = 1 and N = 3 cases. Figure 2.11 shows an overhead view of the coaxial rotor

system using the N = 3 optimal blade planform. The N = 3 blade has a wider chord

near midspan, while the N = 1 blade has a wider chord in the outboard region. The

radial twist distributions are fairly similar between the two cases, with the exception

of the inner 20 percent of the blade, where the N = 1 blade has a large positive twist

gradient.
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Figure 2.8: Optimal normalized circulation distribution for N = 1 control, N = 3
control, and the rubber rotor solution. The upper rotor is spinning counter-clockwise,
and the lower rotor is spinning clockwise.

2.3.5 Effect of Lift Offset

Lift offset is defined as the lateral distance from the centerline of the aircraft to the

center of lift on a rotor. In nondimensional form, the lift offset is defined as ∆Mx/LR,

where ∆Mx is the difference in rolling moment between the two rotors, R is rotor

radius, and L is total lift. The N = 1 and N = 3 minimum power solutions from

the previous section have nondimensional lift offsets of 0.54 and 0.49, respectively,

indicating that the optimal solution offloads lift on the retreating side and generates

the majority of the lift on the advancing side. In the design of an actual rotor, it may

be necessary to constrain the rotor’s lift offset to limit blade root and shaft bending

moments for structural considerations. For example, according to Bagai [12], in

the design of the X2 technology demonstrator the lift offset was limited to 0.3 for

structural and hub weight considerations. In this section, we constrain the lift offset

to a maximum value of 0.3 to determine the effect that reduced lift offset has on

rotor performance and design.
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Figure 2.9: Azimuthal pitch inputs using N = 1 and N = 3 blade root control.

Figure 2.12 shows the normalized total power loss for N = 1 and N = 3 blade

root harmonic control with the rotor system’s lift offset constrained to a maximum

value of 0.3. Also shown is is the N = 1 total power loss for the case unconstrained

in lift offset from Figure 2.6. We observe that for both levels of harmonic control,

the lift offset constrained solution has significantly higher total power loss than the

unconstrained result. At the optimal shaft angle for each case, the N = 1 lift offset

constrained case has a 40 percent higher total power loss than the unconstrained

result, while the N = 3 lift offset constrained case has a 49 percent higher total power

loss than the unconstrained result. This increase in power is due almost entirely to an

increase in the rotor system’s power. The propeller power, as expected, is essentially

unaffected by the changes in rotor design.

The decreased efficiency of the rotor system with the lift offset constraint shifts

the optimal shaft angle to be more positive, i.e., to tilt the rotor system aft. The

optimal shaft angle for the N = 1 case has shifted from αshaft = −4◦ with lift offset

unconstrained to αshaft = 6◦ with the lift offset constrained. For the N = 3 case, the

optimal shaft angle has shifted from αshaft = −9◦ unconstrained to αshaft = −4◦ with
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Figure 2.10: Optimal rotor blade planform and twist for N = 1 and N = 3 blade
root control.

the lift offset constrained.

The amount of power reduction achieved with higher harmonic control and the

lift offset constrained to 0.3 is highly dependent on the shaft angle. At negative

shaft angles, the N = 1 rotor has very high power losses, and use of N = 3 control

reduces these power losses significantly. For example, at αshaft = −4◦, the N = 3

case reduces rotor system power loss by 43 percent, leading to a 34 percent reduction

in total vehicle power loss compared to the N = 1 case. However, as the shaft angle

increases, the rotor system is tilted aft and enters an increasingly auto-rotative state

in which the benefits of higher harmonic control decrease. In fact, at αshaft = 8◦,

N = 3 control reduces total vehicle power loss by less than 1 percent.

At the optimal shaft angle for each lift offset constrained case, N = 3 control

reduces total power loss by 11 percent compared to N = 1 control. Because the two

cases have minimum powers at such disparate shaft angles, the optimal blade designs

for the two cases, shown in Fig. 2.13, differ significantly. The N = 1 planform locates
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Figure 2.11: Overhead view of the optimal blade planform for the N = 3 design.

much of the blade area on the inboard 50 percent of the blade, while for the N = 3

case, the chord distribution is nearly centered about the midspan point.

Finally, we investigate how higher harmonic control achieves such large power

reductions at negative shaft angles. Figure 2.14 shows the optimal normalized lift

distribution for N = 1 and N = 3 control for the cases with the lift offset constrained

to 0.3. Also shown are the rubber rotor results with and without the offset constraint,

along with the unconstrained N = 1 case, all at a shaft angle of αshaft = −4◦. We

see that the constrained higher harmonic control (N = 3) case comes much closer to

reproducing the ideal constrained rubber rotor solution than does the conventional

control (N = 1) case.

Figure 2.15 shows the optimal azimuthal pitch inputs for the N = 1 and N = 3

constrained lift offset cases, as well as the N = 1 unconstrained case, again at a shaft

angle of αshaft = −4◦. Note that for the unconstrained case, the cyclic variation in

pitch is modest, about 4◦. For the constrained conventional control, however, the

33



-10 -8 -6 -4 -2 0 2 4 6 8 10
Shaft angle of attack, degrees

0

1

2

3

4

5

6

7

8

9

N
or

m
al

iz
ed

 p
ow

er
 lo

ss
, C

P
/C

L2

N=1 total power
N=1 rotor power
N=1 propeller power
N=3 total power
N=3 rotor power
N=3 propeller power
N=1 total power, 
LOS unconstrained

Figure 2.12: Normalized power loss from the baseline compound constrained to a
lateral lift offset of 0.3 using N = 1 and N = 3 control. Also included is the total
power loss from the N = 1 unconstrained LOS rotor.

cyclic control is quite large, varying more than 40◦ (of course the blade planform and

twist distributions are also different). For the higher harmonic control case, the pitch

control is similar to the conventional cyclic control case, except for the very large

negative pitch on the retreating side of the rotor. Together with the blade geometry,

this higher harmonic control drives the circulation – and hence the force distribution

– closer to the constrained rubber rotor optimum.

These results show that constraining the maximum lift offset greatly increases

the rotor and vehicle power losses and has a large influence on the optimal shaft

angle and rotor design. Higher harmonic control significantly reduces power loss,

and as we have seen, this drives the optimal shaft angle to be more negative, i.e., the

rotor generates a more significant share of the propulsive force. Because lift offset

constrained rotors using conventional rotor control have higher losses, the optimal
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Figure 2.13: Optimal rotor blade planform and twist for N = 1 and N = 3 blade
root control with lateral lift offset constrained to be 0.3.

shaft angles tend to be positive (towards autorotation) with the propeller producing

the majority of the propulsive force. As a result of the difference in optimal shaft

angles, the optimal conventional (N = 1) and higher harmonic (N = 3) rotor designs

differ quite substantially.

2.3.6 Use of a Wing to Supplement Lift

We now add a lifting wing to our vehicle model, to determine its effect on total

power requirements. The wing has a span equal to one rotor radius and is located

one half of a rotor radius below the lower rotor of the coaxial system. To ensure

the optimization does not make use of excessively small chord values, the chord is

constrained to be no smaller than 8 percent of the wing span. The optimization

finds the fixed radial twist and chord distributions of the wing. Note also that in

this analysis, the power loss associated with the wing must be added to the fuselage

drag to compute the total propulsive force required for the vehicle. The wing wake
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Figure 2.14: Optimal normalized lift distribution for N = 1 and N = 3 control
with lateral lift offset constrained to a value of 0.3.

is modeled using 20 vortex-lattice ring elements in the spanwise direction and 15

elements in the flight direction per quarter period of revolution of the rotors.

Figure 2.16 shows the total power for the winged coaxial configuration over a

range of shaft angles, along with the baseline configuration that does not include a

wing. The use of a wing reduces the total vehicle power loss by less than 1 percent,

and slightly increases the optimal shaft angle to αshaft = −3◦. While the presence of a

wing decreases the rotor system’s power by supplementing its lift, the additional wing

power is almost equal to the power saved, resulting in a very similar but very slightly

lower total vehicle power. This result is due to the high efficiency of the coaxial rotor,

and is in contrast to what a similar analysis shows for a single rotor with a wing (e.g.,

the Cheyenne helicopter), in which the use of a wing significantly reduces power at

high advance ratios [1]. Though not plotted, the optimal wing lift share varies nearly

linearly between 22 percent of the vehicle lift at a shaft angle of αshaft = −10◦ to a

value of approximately 43 percent at a shaft angle of αshaft = 10◦. As the rotor tilts

aft towards auto-rotation, the wing provides an increasing proportion of the vehicle’s

lift.

Figure 2.17 shows the wing twist distribution at the optimal shaft angle of αshaft =
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Figure 2.15: Azimuthal pitch inputs for the baseline compound constrained to a
lateral lift offset of 0.3 using N = 1 and N = 3 control and the baseline compound
unconstrained in lateral lift offset using N = 1 control.

−3◦. While not plotted, the optimum wing chord is equal to the minimum chord

constraint at all radial stations, resulting in a rectangular planform. Because the wing

is so lightly loaded in all cases, it is advantageous to minimize the wing’s surface area

and viscous drag. Also note that the twist distribution is approximately symmetric,

resulting in nearly zero rolling moment on the wing. For a similar analysis using a

single rotor in combination with a wing [41], the optimal wing is asymmetric, with

increased values of twist and chord on the retreating side of the rotor to generate

more lift in this region and balance the rolling moment of the rotor. Because the

coaxial rotor system is naturally in roll trim, the wing no longer has the primary

function of providing roll trim. Rather, the wing simply supplements the rotor’s

lift, and does not provide the dramatic power reductions present when used within

a single rotor Cheyenne-style compound.

For the case considered here, the coaxial rotors are unconstrained in lift offset. If

a wing were used in a case that also included a lift offset constraint, we might expect
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Figure 2.16: Power loss of a coaxial rotor with pusher propeller compared to a
coaxial rotor with pusher propeller and wing.
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Figure 2.17: Optimal wing twist distribution.

higher power savings, as the rotors are significantly less efficient, leading to potential

power reductions by using the wing to offload the rotors.

2.3.7 Using the Propeller to Supplement Lift

Another design feature available to compound helicopters is the ability to use the

propeller’s thrust to supplement the lift of the vehicle. A similar feature is sometimes

used on the tail rotors of conventional helicopters, which can be inclined slightly

downwards to provide additional lift. There are two ways to allow the propeller to

38



provide lift: inclining the propeller downwards by some angle, allowing a component

of its thrust to act in the vertical direction, or providing the propeller N = 1 cyclic

control, allowing it to preferentially generate more or less force on the upstroke or

downstroke producing a small vertical force.

Figure 2.18 shows the total power versus rotor shaft angle for three cases: a

coaxial configuration with the propeller tilted 5◦ downward from horizontal, a coaxial

configuration using N = 1 pitch control on the propeller, and the baseline coaxial

configuration using N = 0 pitch control on the propeller and the propeller aligned

with the free stream flow. A tilt angle of 5◦ is plotted because it provides the largest

power reduction of the various tilt angles considered. Although all three cases have

very similar overall power loss, the 5◦ tilted propeller reduces vehicle power loss by

1.5 percent compared to the baseline, while providing approximately 6 percent of the

total vehicle lift. The N = 1 propeller reduces vehicle power loss by approximately

1 percent and provides approximately 3 percent of the total vehicle lift. In both

cases, the propeller offloads the rotor system, decreasing rotor power while increasing

propeller power by a smaller amount.

2.4 Conclusions

In this chapter, we have presented results for the optimal aerodynamic design and

performance of the rotors and propeller (and optionally a lifting wing) of a compound

helicopter using counter-rotating coaxial rotors. We analyzed each configuration at

an advance ratio of µ = 0.85 over a range of rotor shaft angles. At each shaft angle,

all design variables were optimized to determine the minimum power design for a

given flight condition. We reached the following conclusions:

1. Varying the prescribed propulsive force of the vehicle has a large effect on the

optimal shaft angle. In turn, the shaft angle has an effect on the optimal
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Figure 2.18: Normalized power from the baseline compound, a compound using
N = 1 control on the propeller, and a compound with the propeller angled 5◦ down-
wards.

rotor design. Additionally, the optimal shaft angle is highly dependent on the

propeller design and efficiency.

2. For the cases considered, higher harmonic control reduces total vehicle power

loss by as much as 15 percent compared to conventional control at each con-

figuration’s optimal shaft angle. Higher harmonic control results in a more

efficient rotor system, leading to an increasingly negative optimal shaft angle.

This allows the rotors to provide a larger fraction of the vehicle’s propulsive

force. The use of higher harmonic control reduces both induced and viscous

components of power in part by decreasing the circulation generated on the

retreating side of each rotor.

3. Both the conventional and higher harmonic control cases achieve efficient for-

ward flight by operating with a high lateral lift offset equal to about one-half

the rotor radius.
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4. Constraining the maximum lateral lift offset of a coaxial rotor system to a

smaller value, as may be required in the design of an actual rotor, significantly

increases the rotor and vehicle power losses. For example, when the maximum

lateral lift offset is limited to 30 percent of the rotor radius, total vehicle power

loss increases by over 40 percent for both conventional and higher harmonic

control.

5. Higher harmonic control dramatically reduces rotor power losses at negative

shaft angles when the maximum lateral lift offset is constrained. At high posi-

tive shaft angles, the benefit of higher harmonic control is greatly diminished.

6. Higher harmonic control results in a dramatically different optimal shaft angle

from conventional control when the maximum lateral lift offset is constrained:

αshaft = −4◦ for higher harmonic control versus αshaft = 6◦ for conventional

control. For a constrained maximum lift offset of 0.3, higher harmonic control

reduces total vehicle power loss by 11 percent compared to conventional control

at each configuration’s optimal shaft angle.

7. The use of a lifting wing to supplement rotor lift has a very modest effect on

aircraft efficiency, decreasing overall vehicle power loss by less than 1 percent.

The optimal wing lift share varies between 22 percent and 43 percent depending

on shaft angle. A wing may be more effective at reducing power if the rotor

system is also constrained in lift offset, a case that was not analyzed in this

paper.

8. Tilting the propeller downwards by 5◦ to supplement the rotor system’s lift re-

duces total vehicle power loss by 1.5 percent. Using conventional cyclic control

on the propeller also allows the propeller to generate a small lift component,

reducing vehicle power loss by 1.0 percent.
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3

Optimal Coaxial Rotor in Hover

A number of researchers have studied coaxial rotor performance in hover experi-

mentally and using aerodynamic modeling. Coleman [17] provided a comprehensive

summary of coaxial rotor research. Nagashima and Nakanishi [18] used a generalized

momentum theory and free wake analysis to determine the optimal performance of

a coaxial rotor in hover. The authors concluded that hover performance is largely

dependent on axial spacing and blade pitch differences between the rotors, and that

certain mutual interference effects can be beneficial to performance.

More recently, Leishman and Ananthan [19] formulated the combined Blade El-

ement Momentum Theory (BEMT) for coaxial rotors in hover and axial flight, ac-

counting for axial induced velocities only. Results from that analysis were compared

to experimental data from Harrington [57] and showed good agreement. In addition,

the authors – building upon the single rotor work of Gessow [58] – asserted that the

optimal coaxial hovering rotor is that which produces a uniform disk loading and

linear thrust per unit span for each rotor. To achieve torque balance, the slope (in

the radial direction) of the thrust distributions will be different, with the upper ro-

tor generating a larger share of the overall system thrust than the less efficient lower
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rotor. Juhasz et al. [59] used BEMT to predict the performance of a model-scale

coaxial rotor with highly twisted blades, and compared results to a free vortex wake

model and a computational fluid dynamics analysis. The authors concluded that

BEMT could accurately predict the thrust and torque on the model coaxial rotor.

Additionally, although it may miss some fine details of the inflow distributions, its

averaged inflow predictions were accurate globally.

Rand and Khromov [20] used the calculus of variations and a BEMT analysis (also

neglecting swirl velocities in the wake) to determine the optimal hovering coaxial

rotor. Their results demonstrated that a linear thrust distribution on the lower rotor

is not optimal, a result that differs from Leishman and Ananthan [19] even when using

identical assumptions about mutual rotor interference. Rand and Khromov [20] also

explore several empirical approximations for determining the mutual interference

effects of the two rotors.

Syal and Leishman [21] used both BEMT and a Free Vortex Method (FVM) to

formulate a generic optimization technique for a coaxial rotor system in hover using

the method of feasible directions. The authors note, however, that the nonconvexity

of the problem may limit the usefulness of formal optimization methods, and that

extensive parametric studies may still be required.

In this chapter, we build upon the work of Leishman and Ananthan [19] – who for-

mally laid out the coaxial BEMT theory without swirl, and Rand and Khromov [20],

who formally optimized the inflow and rotor design of coaxial rotors – to develop a

variational approach for determining the optimal torque-balanced coaxial hovering

rotor including swirl. We are able to quantify the effects of the swirl component of in-

duced velocity on performance (figure of merit), optimal induced wash distributions,

and optimal blade twist and chord distributions.

We will divide the chapter into two sections:
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• A section describing the optimization approach neglecting the swirl component,

and presenting results for this analysis. This methodology is similar to the ap-

proach described by Rand and Khromov [20], and provides a good background

for the swirl case explored in the second section. Additionally, we will make

direct comparisons between the optimal rotor found using this approach and

that asserted by Leishman and Ananthan [19]. We show that far better invis-

cid performance can be achieved by using a negative or small positive loading

on the inner portion of the lower rotor, and by generating significantly higher

thrust on the outer portion of the lower rotor. In fact, at a thrust coefficient

of CT = 0.008, the optimal rotor has a figure of merit that is 12% higher than

the Leishman and Ananthan [19] linear thrust distribution rotor.

• A section describing the optimization approach including the swirl component

of induced wash, viscous losses, an improved approximation of the mutual

interference between the rotors, and tip losses. We present results for this

analysis that quantify the effect that the swirl component of induced velocity

has on coaxial rotor performance, optimal coaxial rotor design, and optimal

induced wash distributions.

3.1 Technical Approach to the Inviscid Optimization without Swirl

As a starting point, we will use the formulation of BEMT described by Leishman

and Ananthan [19]. This approach assumes that swirl losses in the flow are small

and can therefore be ignored. The flow geometry for the no-swirl configuration at

a given blade section is shown in Figure 3.1. V represents the total velocity at the

blade, w the induced wash, Uz the axial velocity of the rotor (or any component of

inflow not due to the induced velocity of the rotor itself - for example, an induced

inflow caused by the second rotor of a coaxial system), Ω is the rotational rate of
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the rotor, r the radial position, θ the blade pitch angle, φ the inflow angle, and αeff

the effective angle of attack. For simplicity, we define an additional variable λ, such

Figure 3.1: Geometry of the flow at a blade section of a rotor, including only the
axial component of velocity in both the inflow and induced wash.

that λ = w + Uz, which represents the total inflow velocity at the rotor. We define

the following normalized variables:

r̄ =
r

R
Ūz =

Uz
ΩR

w̄ =
w

ΩR
V̄ =

V

ΩR
λ̄ =

λ

ΩR
(3.1)

Additionally, the induced flow angle is assumed to be small, allowing us to make

the small angle assumption for the related geometry, i.e., cosφ ≈ 1, making V ≈ ΩR.

For a single rotor, we define the differential thrust coefficient, dCT , and differential

torque dCQ, as follows:

dCT = 4Fλ̄w̄r̄dr̄ (3.2)

dCQ = 4Fλ̄2w̄r̄dr̄ (3.3)

where F is the Prandtl correction factor, which can be set to values less than one to

account for the tip losses inherent in a real, finite bladed rotor. We also know, from

Blade Element Theory, that the differential thrust can be described as

dCT =
1

2
σclα

(
θr̄2 − λ̄r̄

)
dr̄ (3.4)

where σ = NB
πR

is the rotor solidity and clα the lift curve slope. Note also that we

have made use of the small angle assumption for φ in determining the effective angle

45



of attack, making tanφ ≈ φ = λ̄
r̄
. Equation (3.4) also assumes that the differential

drag is small relative to the differential lift. For a single rotor, or the upper rotor of

a coaxial system, we can equate the two expressions for differential thrust, Eqs. (3.2)

and (3.4), giving a quadratic expression for the total inflow, λ̄, which we can then

solve to get the inflow distribution resulting from any twist distribution θ, chord

distribution (locally varying σ), and axial advance ratio (or inflow due to a second

rotor), Ū :

λ̄(r̄, Ūz) =

√(
σclα
16F

− Ūz
2

)2

+
σclα
8F

θr̄ −
(
σclα
16F

− Ūz
2

)
(3.5)

Following the Reference [19] approach, in order to extend this analysis to the lower

rotor of a coaxial system, we must account for the presence of the contracted wake

of the upper rotor in the lower rotor’s inflow, λ̄. We divide the two rotors into three

separate components: the upper rotor, designated with the subscript u, the portion

of the lower rotor operating in the upper rotor’s wake, denoted by the subscript `1,

and the portion of the lower rotor operating outside of the upper rotor’s wake, `2,

as shown conceptually in Figure 3.2. The portion of the lower rotor operating in

Figure 3.2: Illustration of the upper rotor’s contracted wake acting on the inner
portion of the lower rotor within a coaxial configuration.

the upper rotor’s contracted wake has radius rc, giving it a total area of Ac. We

assume the inflow is contracted and then mapped onto this lower portion of the

rotor, giving it a final inflow velocity of
(
A
Ac

)
λ̄u. The influence of the lower rotor on
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the upper rotor is not considered in this analysis. Finally, the contraction ratio of

the upper rotor’s wake Ac

A
must be assumed a priori from either momentum theory

or experimental results.

Similar to the upper rotor, we can equate the different expressions for differential

thrust and solve for the lower rotor’s inflow distribution λl, giving

λ̄`(r) =

√√√√(σclα
16F

−
A
Ac
λ̄u

2

)2

+
σclα
8F

θlr̄ −

(
σclα
16F

−
A
Ac
λ̄u

2

)
(3.6)

for r ≤ rc. Equation 3.5 can be used for values of r > rc, i.e., areas on the lower

rotor outside of the upper rotor’s wake, denoted as l2.

Once the inflow distribution for each rotor is known, we can compute the overall

thrust coefficient of each rotor, CT , by integrating the differential thrust over the

span of the blade as follows

CT =

∫ r̄=1

r̄=0

dCT =

∫ r̄=1

r̄=0

4Fλ̄w̄r̄dr̄ (3.7)

Similarly, the power coefficient of each rotor can be computed using

CP =

∫ r̄=1

r̄=0

λ̄dCT +
1

2

∫ r̄=1

r̄=0

σCDr
3dr (3.8)

where the first integral represents the induced component of power and the second

integral represents the viscous component of power. For the analysis described in

this section, we will focus on minimizing the induced component of power only.

3.1.1 Optimization Approach

To determine the optimal rotor design, we solve a constrained optimization problem

using the calculus of variations. We seek to minimize the induced power subject to

the following two constraints:
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• The rotor system must generate a specified coefficient of thrust.

• The torque on the rotors must be equal and opposite, i.e., the coaxial system

is in torque balance.

To solve this constrained optimization problem, we adjoin to the power to be min-

imized the two equality constraints using Lagrange multipliers νT and νQ, forming

the Lagrangian power Π,

Π = CPu+CP`1 +CP`2−νT (CTu+CT`1 +CT`2−Treq)−νQ(CPu−CP`1−CP`2) (3.9)

Note that in Eq. (3.9) we segregate the contributions to the thrust and power from

each of the three distinct regions of the coaxial rotor system shown in Figure 3.2.

We perform the optimization using one of two sets of design variables we wish to

optimize. We can use momentum theory only to solve for the optimal induced wash

distribution, w, or we can use combined Blade Element Momentum Theory to solve

for the optimal blade twist distribution θ. When setting the Prandtl tip correction

factor to a value of 1, the optimal performance computed by the two methods is

identical, as the correct twist distribution can be chosen to generate any induced

wash distribution.

For simplicity, we will first consider optimizing only the induced wash on each

rotor, w. We can apply the Euler-Lagrange equations to find the stationary point of

the Lagrangian, Π, with respect to the induced wash distribution w and the Lagrange

multipliers, ν:

∂Π

∂q
− d

dr

(
∂Π

∂q′

)
= 0 (3.10)

where q = (w, νT , νQ) and the prime denotes a derivative with respect to the radial

coordinate r. Because the Lagrangian power does not contain derivatives of the
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independent variable r, the Euler-Lagrange equations are simply

∂Π

∂w
= 0 (3.11)

∂Π

∂νT
= 0 (3.12)

∂Π

∂νQ
= 0 (3.13)

In practice, solving the problem is complicated slightly by a couple of factors. First,

the inflow on the inner portion of the lower rotor is a function of the inflow on the

upper rotor. Second, finding a closed form expression that satisfies Eqs. (3.11), (3.12),

and (3.13) is difficult if not impossible. As a result, we make use of an iterative

technique to arrive at the solution.

To start, we assume an initial required thrust for the upper and lower rotor,

setting CT reqU = CT reqL = 1
2
CT req. We can then form a statement of Lagrangian

power for each individual rotor. For simplicity, we will write this equation using

variables for the upper rotor. Note, however, that these equations are equally valid

for the lower rotor. The Lagrangian power for a single rotor is

Πu = CPu − νTu(CTu − CT reqU) (3.14)

which, when substituting in the expressions for differential thrust and power given

in Eqs. (3.2) and (3.3), becomes

Πu =

∫ r̄=1

r̄=0

[
4λ̄2

uw̄ur̄ − νTu(4λ̄uw̄ur̄ − CT reqU)
]
dr̄ (3.15)

Equation (3.11) states that at the stationary point of the Lagrangian, the derivative

of the integrand with respect to the upper rotor’s wash will be equal to zero. Split-

ting the total inflow into its component parts (λ̄ = Ūz + w̄u) and performing this

differentiation gives:

∂Π

∂wu
= 0 = 3w̄2

u + 4w̄uŪz + Ū2
z − νTu(2w̄u + Ūz) (3.16)
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We can then find the following expression for the induced wash distribution wu that

satisfies Eq. (3.16)

w̄u =
1

3

(
−2Ūz + νTu −

√
Ū2
z − ŪzνTu + ν2

Tu

)
(3.17)

Equation 3.17 will yield the optimal induced wash distribution (when considering

axial induced wash only) for any rotor with axial inflow distribution Ūz. By changing

the value of the Lagrange multiplier νTu, we can vary the thrust generated by the

rotor. Note that the induced wash distribution w̄u and inflow Ūz are continous

functions that can vary with radial position r̄.

To apply Eq. (3.17) to the inner portion of the lower rotor, we set Ūzl1 = A
Ac
λ̄u. By

treating the rotors separately, we can ensure that they both generate a given thrust

with minimum induced power loss. In order to satisfy the overall system constraint

on torque balance, we perform the following iteration:

1. Assume an initial required thrust for the upper and lower rotor by setting

CT reqU = CT reqL = 1
2
CT req.

2. Compute the optimal induced wash distribution for the upper rotor that achieves

this thrust using Eq. (3.17) and iteratively updating the Lagrange multiplier

νTu.

3. Use the known upper rotor inflow distribution λ̄u to compute the optimal in-

duced wash distribution of the lower rotor that provides the required thrust,

again by using Eq. (3.17) and iteratively updating the value of νT l until the

lower rotor thrust constraint is satisfied.

4. Compute the torque of each rotor (which in this non-dimensionalized, inviscid

case is simply the induced power loss), and adjust the required thrust of each
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rotor by computing a torque correction factor using

Qk+1
correction = Ck

Qcorrection −
1

2

CPu − CP`
CP tot

(3.18)

assuming Q0
correction = 1

2
. Update the required thrust on the upper and lower

rotor using this factor as follows

Ck+1
T reqU = Ck

T reqUQcorrection (3.19)

Ck+1
T reqL = CT req − Ck+1

T reqU (3.20)

and return to step 2 until the rotor induced power losses are equal.

This algorithm solves for the induced wash distributions on the three rotor com-

ponents that yield minimum induced power while satisfying constraints on total

system thrust and maintaining torque balance between the two rotors. To determine

the optimal blade twist, we apply a very similar approach, making use of Eqs. (3.5)

and (3.33) to express the total inflow distributions λ̄u and λ̄l as functions of the

blade twists, θu and θl. We can also incorporate the tip loss F into the iteration with

minimal further complication.

3.1.2 Inviscid Results, Without Swirl

We applied the previously described optimization methodology to a coaxial rotor in

order to determine the minimum induced loss coaxial rotor in hover. Because we are

only optimizing for induced losses, for plots in which we display twist distributions,

we assume rectangular blades and do not vary the chord distribution, as the inflow

can be controlled through the blade twist alone, and chord distribution would be

a significant factor in a viscous optimization only. Additionally, because we are

performing an inviscid analysis, we consider only the induced power associated with

each rotor design, as this was the only component minimized in the optimization.

The torque balance is also achieved in terms of induced losses only, i.e., the induced

51



power loss from the two rotors is equal. We constrain the rotor system to generate a

total coefficient of thrust equal to CT = 0.008. For the purposes of the comparison,

we assume an ideal wake contraction ratio based on momentum theory of rc = 1√
2
,

and neglecte tip losses in the optimization and performance evaluation. We compare

the optimal rotor to a coaxial rotor using a linear thrust distribution on each rotor,

which is the deduced optimum from Reference [19].

Figures 3.3 shows the induced Figure of Merit (FOM) versus the thrust coeffi-

cient for the two rotors. Note that for the inviscid analysis performed in this section,

we have defined the figure of merit based on the weighted thrust definition of Refer-

ence [60], accounting for the thrust difference between the rotors required to maintain

torque balance:

FOM =
Pideal

Pactual

(3.21)

where

Pideal =
C

3/2
Tu√
2

+
C

3/2
T`√
2

(3.22)

We use the Eq. (3.22) definition of ideal power in this section, rather than the

conventional definition for a single rotor (P ideal =
C

3/2
Tot√
2

), because without viscous

losses and with the added effective area of a second rotor, we obtain Figure of Merits

based on the classical definition for the coaxial rotors greater than unity. Of course,

the choice of a reference value is arbitrary for the comparisons we perform here, as

all rotors being compared have the same total area and are over the same range of

thrust coefficients. For convenience, in the following section where we do include

viscous losses, we revert back to the conventional Figure of Merit definition.

The optimal coaxial rotor has a higher FOM at all thrust coefficients, and most

importantly, has a 12% higher FOM at the design point of CT = 0.008. Figure 3.4

is a plot of the thrust coefficient versus the induced power coefficient for the two
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rotors. Note that the optimal rotor produces a higher thrust coefficient for a given

induced power coefficient over the entire domain, including once again at the design

point. These results indicate that using a linear thrust distribution on the two rotors

of a coaxial system is not optimal, at least in terms of achieving minimum induced

power.
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Figure 3.3: Figure of merit versus the thrust coefficient for the optimal coaxial
rotor and the linear thrust distribution rotor, each designed for a thrust coefficient
of CT = 0.008.
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Figure 3.4: Thrust coefficient versus the induced power coefficient for the optimal
coaxial rotor and the linear thrust distribution rotor, each designed for a thrust
coefficient of CT = 0.008.

Figure 3.5 shows the optimal spanwise distribution of non-dimensional induced

wash on the upper and lower rotors for the optimal coaxial rotor compared to the lin-

ear thrust distribution rotor. Figure 3.6 shows the spanwise non-dimensional thrust

53



distribution, torque distribution, blade twist, and coefficient of lift for the optimal

rotor compared to the linear thrust distribution rotor. The inner portion of the

optimal lower rotor, operating in the contracted wake of the upper rotor, is nearly

entirely off-loaded, and in fact has a negative induced wash in this region, generating

a slightly negative total thrust and negative induced torque. In fact, this portion

of the rotor is actually being driven by the wash from the upper rotor. The outer

portion of the lower rotor, able to operate with a lower inflow because of the assump-

tion that it is not influenced by the upper rotor’s wash, then generates a much larger

thrust more efficiently, resulting in a lower overall induced power for the system. The

upper rotor in both cases has a uniform induced inflow as expected, resulting in the

minimum induced loss performance. The only difference between the upper rotor’s

design between the two cases is that to achieve torque balance, the upper rotor of

the linear thrust distribution case provides more of the total system thrust, causing

the upper rotor to have the same power loss as the lower rotor and ensure torque

balance. In the optimal case, the lower rotor provides a given thrust for less total

power, meaning that in the torque balanced condition, the lower rotor is providing

more of the total system thrust, although still significantly less than the upper rotor.

Figure 3.5: Radial distribution of induced wash for the optimal coaxial rotor com-
pared to the linear thrust distribution rotor.
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The lower rotor of the optimal coaxial rotor has a drastically different lift coeffi-

cient distribution than the linear thrust distribution rotor. The lower rotor’s blade

twist is also very different between the two cases; the optimal rotor uses a smaller

twist on the inner portion of the blade, to maintain a negative overall thrust, and

then a much larger positive twist on the outer portion.

The non-swirl optimal coaxial rotor shown here is in agreement with the opti-

mization methodology of Reference [20] if applied using the same assumptions about

mutual rotor interference, which was not done in Reference [20].

Figure 3.6: Radial distribution of thrust, torque, twist, and lift coefficient for the
optimal coaxial rotor compared to the linear thrust distribution rotor.

As a further check that the optimal rotor as determined by our optimization

analysis has in fact achieved the minimum induced power condition, we vary the

share of the lower rotor’s total thrust generated by the inner portion of the rotor

and evaluate the resulting induced power at the design point, shown in Figure 3.7.

For the ideal wake contraction ratio assumed here, a value of CT`1/CT` = 0.5 is

equivalent to a linear thrust distribution. A negative value of CT`1/CT` indicates

that the inner portion is generating a negative thrust, as is the case with the optimal
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rotor, which has a value of CT`1/CT` = −0.0407. As the plot shows, the optimization

methodology described here results in the thrust sharing between the inner and outer

portions of the lower rotor that yields the minimum induced power.
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Figure 3.7: Induced power coefficient versus the fraction of total lower rotor thrust
generated by the inner portion operating in the upper rotor’s contracted wake.

These results indicate that previously held beliefs about the design and limits

of performance for a coaxial hovering rotor, at least within the simple framework

of an inviscid BEMT analysis, may be incorrect. A linear thrust distribution and

uniform disk loading does not result in the minimum induced losses. Rather, by

using a variational approach to the problem, similar to that outlined by Rand and

Khromov in Reference [20], we find that the minimum induced loss coaxial rotor

generates a negative thrust on the inboard portion of the lower rotor, and a large,

positive thrust on the outer portion of the lower rotor, achieving a 12% improvement

in the inviscid Figure of Merit at CT = 0.008. While the approach to aerodynamic

modeling used in this analysis involves many simplifications, it may be important

to recognize and understand the fundamental limits of induced power performance

and the rotor design that achieves this performance. As we will see in the following

section, even when improving the realism of our model by including viscous losses, tip
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losses, the swirl component of induced velocity, and an improved mutual interference

model, the optimal rotor still retains many of the features of the inviscid optimum,

particularly using a lower rotor that is very lightly loaded on its inner portion and

very highly loaded towards the tip.

3.2 Technical Approach to the Viscous Optimization Including Swirl

3.2.1 Combined Blade Element Momentum Theory Including Swirl

To incorporate losses due to swirl, and the effect on blade design of these losses,

we make use of the momentum theory including swirl described by Modarres and

Peters [61].

Consider a single rotor with rotational speed Ω operating with some inflow U ,

which can include axial and swirl components Uz and Uθ. Figure 3.8 shows the

resultant relative velocity vector including the effects of induced wash w and blade

rotation Ωr. The sine and cosine of the relative flow angle φ at a radial station r are

Figure 3.8: Geometry of the flow at a blade section of a rotor, including the swirl
component of velocity in both the inflow and induced wash.

given by

sinφ =
Uz
√
U2
z + (Ωr + Uθ)2 − w2 + w(Ωr + Uθ)

U2
z + (Ωr + Uθ)2

(3.23)

cosφ =
(Ωr + Uθ)

√
U2
z + (Ωr + Uθ)2 − w2 − wUz
U2
z + (Ωr + Uθ)2

(3.24)
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where V is the total local airspeed relative to the airfoil given by

V =
√
U2
z + (Ωr + Uθ)2 − w2 (3.25)

Following [61], we can perform a momentum balance to obtain expressions for the

differential thrust and power that account for both axial and swirl components of

induced velocity. The differential lift, dL, acting perpendicular to the relative velocity

is given by

dL = 4πρF [Uz + w cosφ] (w)rdr (3.26)

where ρ is the density and F is the Prandtl tip loss factor. This force can then be

resolved into the axial and circumferential directions using Eqs. (3.23) and (3.24).

From this expression for the differential lift, we find the following equations for the

thrust, T , and induced power, Pi, i.e.,

T =

∫ R

RCO

4πρ [Uz + w cosφ] (w cosφ)rdr (3.27)

Pi =

∫ R

RCO

4πρ [Uz + w cosφ] (w sinφ)Ω(r + Uθ)rdr (3.28)

where R is the rotor radius and RCO is the radius of the root cutout. We can see

from Figure 3.8 that the profile drag of the blade also contributes to the thrust and

in-plane drag of the rotor. We express the total profile drag of the blade as

dDprof =
1

2
ρN(U2

z + (Ωr + Uθ)
2 − w2)ccddr (3.29)

where N is the number of blades and cd is the sectional coefficient of drag. We can

resolve the profile drag force into its axial and circumferential directions again using

Eqs. (3.23) and (3.24).

Including the profile drag’s contribution to the total thrust and power, and nondi-
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mensionalizing gives

CT =

∫ 1

r̄CO

[
4(Ūz + w̄ cosφ)w̄ cosφr̄

− sinφ
Nc̄cd
2π

(
Ū2
z + (r̄ + Ūθ)

2 − w̄2
)]
dr̄ (3.30)

CP =

∫ 1

r̄CO

[
4
(
Ūz + w̄ cosφ

)
w̄ sinφr̄(r̄ + Ūθ)

+ cosφ
Nc̄cd
2π

(
Ū2
z + (r̄ + Ūθ)

2 − w̄2
)

(r̄ + Ūθ)

]
dr̄ (3.31)

where we have normalized all velocities by ΩR and all lengths by R, and have ex-

pressed normalized quantities with an overbar, i.e., w/ΩR = w̄.

To extend this analysis to a coaxial rotor system, we must account for the mutual

interaction of the two rotors. We assume the upper rotor’s inflow is contracted and

mapped onto the inner portion of the lower rotor, as illustrated in Figure 3.2. The

contracted wake at the lower rotor has a total area of Ac, giving the inner portion of

the lower rotor an inflow velocity of

Ū`1z =

(
A

Ac

)
w̄uz (3.32)

Ū`1θ =

(
A

Ac

)3/2

w̄uθ (3.33)

where the subscripts u and `1 denote variables associated with the upper rotor and

inner portion of the lower rotor, respectively, and the subscript c denotes a wake

contracted quantity.

We account for the influence of the lower rotor on the upper rotor by including a

uniform axial downwash acting on the upper rotor that is induced by the lower rotor.

To determine the magnitude of this downwash, we use the influence coefficient model

developed by McAlister et al. [49] and used in the evalution of BEMT predictions
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by Juhasz et al. [59]. Using the Biot-Savart law and an empirical parameter k, the

induced velocity due to a helical vortex filament trailing from the tip of a rotor in

hover, measured at radial position r = 0 and axial position z̄ (normalized by rotor

radius) is given by

Ūz
Ūz|z̄=0

= 1 +

(
|z̄|√

1 + z̄2

)k
sign(z̄) (3.34)

The exponent k is set to a value of 0.3 − 0.5 when analyzing points above the

rotor and a value of 0.6 when analyzing points below the rotor. We set Uz|z̄=0

equal to the average induced axial velocity on the lower rotor. There are no swirl

velocities induced on the upper rotor due to the lower rotor. We also use Eq. (3.34)

to approximate the radial contraction rc of the upper rotor’s wake as a function of

vertical separation. However, for the influence of the upper rotor on the lower rotor,

we map the induced velocity as a function of radius from the upper rotor to the

contracted portion of the lower rotor.

3.2.2 Optimization Approach

To determine the optimal induced velocity distribution, w̄, on each rotor, we formu-

late and solve a constrained optimization problem using the calculus of variations.

We seek to minimize the total power subject to two constraints, i.e., (1) that the

rotor system generates a specified coefficient of lift, and (2) that the torque on the

rotors is equal and opposite (the rotors are in torque balance).

To solve this constrained optimization problem, we use a similar approach to

that described in Section 3.1.1, defining our Lagrangian power with Eq. (3.9) and

applying the Euler-Lagrange equations given in Eqs (3.11), (3.12), and (3.13). Once

again, application of the Euler-Lagrange equations results in a set of coupled integro-

algebraic equations for the unknown induced wash distribution (and the resulting

load and torque distributions). Similar to the no swirl case, solving the optimization
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problem is complicated by the fact that the inflow on the inner portion of the lower

rotor is a function of the the induced wash on the upper rotor, and the inflow on the

upper rotor is a function of the induced wash on the lower rotor. Thus, we solve for

the optimal solution numerically.

To start, we assume an initial required thrust for the upper and lower rotor,

setting CT reqU = CT reqL = 1
2
CT req. We then form a statement of Lagrangian power

for each individual rotor. For simplicity, we will write this equation using variables

for the upper rotor. (Note, however, that these equations are equally valid for the

lower rotor.) The Lagrangian power for a single rotor is

Πu = CPu − νTu(CTu − CTreqU) (3.35)

which, when substituting in the expressions for differential thrust and power given

in Eqs. (3.30) and (3.31), becomes

Π =

∫ 1

r̄CO

[
4
(
Ūz + w̄ cosφ

)
w̄ sinφr̄(r̄ + Ūθ)

+ cosφ
Nc̄cd
2π

(
Ū2
z + (r̄ + Ūθ)

2 − w̄2
)

(r̄ + Ūθ)

−νTu
(

4(Ūz + w̄ cosφ)w̄ cosφr̄

− sinφ
Nc̄cd
2π

(
Ū2
z + (r̄ + Ūθ)

2 − w̄2
)
− CTreq

)]
dr̄ (3.36)

To put the Lagrangian solely in terms of the induced wash distribution w̄, we make

use of Eqs. (3.23) and (3.24), which describe cosφ and sinφ in terms of the induced

wash, inflow, and radial position. Substituting these expressions into Eq. (3.36)

yields an expression for the Lagrangian power in terms of w̄. Note however, that

because of the profile power terms, the Lagrangian power is still a function of the

sectional drag coefficient cd and the chord c̄, which are not necessarily known a priori.
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As a result, we must perform the optimization about some initial values of c̄ and cd

and perform the process iteratively, updating c̄ and cd until convergence.

Equation (3.11) states that at the stationary point of the Lagrangian, the deriva-

tive of the Eq. (3.36) integrand with respect to the upper rotor’s wash will be equal

to zero. However, finding an analytical solution for the radial wash w̄ that satisfies

Eq. (3.11) is intractable. Instead, we discretize Eq. (3.11) and use Newton iteration

to arrive at the optimal induced wash distribution at each station i, that is, we find

w̄i such that ∂Π/∂w̄i = 0. Using Newton iteration gives

w̄k+1
i = w̄ki −

∂Π/∂w̄i
∂2Π/∂w̄2

i

(3.37)

Solving Eq. (3.11) using the iterative scheme given in Eq. (3.37) gives the optimal

induced wash distribution for both axial and swirl induced washes for any rotor with

axial inflow distribution Ūz, swirl inflow distribution Ūθ, chord distribution c̄ and

sectional coefficient of drag distribution cd. By changing the value of the Lagrange

multiplier νTu, we can vary the thrust generated by the rotor.

Once the optimal induced wash distribution is known, we determine the radial

blade twist and chord distribution that generates the minimum induced loss wash

distribution with minimum profile losses. The differential lift on a section of the

rotor is given by Blade Element Theory as

dL̄ =

(
Nρc̄cl

2

)(
r̄2 + Ū2

z − w̄2
)

(3.38)

We set the sectional lift coefficient cl equal to the value that corresponds with the

airfoil section’s maximum cl/cd. We assume a linear lift curve, cl = clα (θ − φ), which

allows us to solve for the optimal blade twist using

θopt = φ+
cl
clα

(3.39)
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We equate the BET statement of differential lift with the momentum balance state-

ment from Eq. (3.26), which yields the optimal chord value,

c̄opt =
8Fπ

(
Ūz + w̄ cosφ

)
w̄r̄

Ncl
(
(r̄ + Ūθ)2 + Ū2

z − w̄2
) (3.40)

In Eqs. (3.39) and (3.40), we have incorporated the Prandtl tip loss factor F into

the optimal twist and chord equations. F is only a function of the number of blades,

radial position, and induced wash, all of which are already known. The rotor geome-

try computed using this process will generate the optimal induced wash distributions

accouting for tip effects for rotors with a finite number of blades.

Note that this process does not necessarily produce a true total power minimum

solution. Rather, we are determining the twist and chord distribution that minimize

profile power losses while also generating the minimum induced loss wash distribution.

In other words, this method assumes that the minimum induced loss wash distribu-

tion will result in the minimum total power, an assumption that is not necessarily

true. However, this method does provide a very close approximation to the total

power optimum and has been used by several other authors, for example Modarres

and Peters [61] and Rand and Khromov [20].

The numerical approach for finding optimal rotors consists of four nested loops.

We first use an inner loop to determine the correct mutual interference of the two

rotors. A second loop is used to adjust the Lagrange multipliers on each rotor to

ensure each rotor is generating the required thrust coefficient. A third loop is used

to adjust the required thrusts of each rotor to satisfy the torque balance constraint.

Finally, an outer loop is used to recompute the optimal torque balanced rotor given

the new optimal chord distribution. This alorithm is demonstrated graphically in

Figure 3.9.
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Initialize	c,	cd,	νU,	νL,	CTReqU,	and	CTReqL

Update	CTReqU and	CTReqL to	satisfy	torque	balance

Update	thrust	Lagrange	multipliers		νU and	νL to	satisfy	thrust	constraint

Compute	optimal	induced	wash	on	upper	rotor	and	map	to	the	lower	rotor	

Compute	optimal	induced	wash	on	lower	rotor	and	influence	on	upper	rotor

Compute	optimal	c	and	cd distributions

Optimization	is	complete

M
I

C T
co
ns
tr
ai
nt

C Q
co
ns
tr
ai
nt

Figure 3.9: Algorithm used to determine the optimal torque balanced hovering
rotor with swirl and mutual interference.

3.3 Computational Results

3.3.1 Comparison of BEMT Method with and without Swirl to Experimental Results

We first compare results of the coaxial BEMT analysis method, both with and with-

out swirl, to the experimental results from Harrington [57], to both determine the

accuracy of the combined BEMT formulation and to illustrate the effect of including

swirl on the BEMT analysis of a given coaxial rotor. We compare results to Har-

rington’s rotor 2, which is comprised of coaxial two bladed rotors rigidly restrained

in flapping and in the plane of rotation. The rotors have a vertical separation of

z̄ = 0.16 and the blades are untwisted with a uniform chord distribution of c̄ = 0.12.

We assume a linear lift curve with slope clα = 5.7 and a quadratic drag polar

cd = cd0 + cd1cl + cd2c
2
l with coefficients cd0 = 0.011, cd1 = 0.0, and cd2 = 0.028.

In the influence coefficient model, Eq. (3.34), we use a value of k = 0.6 below the

rotor, resulting in a wake contraction of rc/R = 0.866. We model the influence of

the upper rotor on the lower rotor operating within the upper rotor’s contracted

wake, and approximate the influence of the lower rotor as a uniform downwash on
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the upper rotor, as described in the Approach section. We include the Prandtl tip

loss factor to approximate the induced downwash near the tip of each rotor as a

result of the finite number of rotor blades. We do not include a root cutout in this

analysis.

For the analysis conducted here, we measure coaxial rotor performance using the

conventional figure of merit (FM) given by

FM =
C

3/2
T√
2CP

(3.41)

which is consistent with the figure of merit definition used by Coleman [17]. Note

that this conventional figure of merit can be converted to the alternative coaxial

definition 1 given by Leishman and Syal [60] by multiplying it by a factor of 1/
√

2.

Figure 3.10 shows the figure of merit versus the coefficient of thrust for the Har-

rington rotor 2 experimental results and the present combined BEMT analysis both

with and without swirl. For each of the BEMT results, the total power loss from the

two rotors is equal, i.e., the coaxial system is in torque balance, consistent with the

Harrington experimental results. We see that, at least in terms of global performance

predictions, the BEMT analysis is in good agreement with experimental results, con-

sistent with the findings of Juhasz et al. [59], and Leishman and Ananthan [19]. We

also see that including swirl in the analysis results in a decrease in figure of merit (for

this particular rotor) of about half a percent at a thrust coefficient of CT = 0.01, a

relatively small effect, and that the difference between the computed figure of merit

with and without swirl increases with increasing thrust coefficient.

3.3.2 Optimized Rotor Results – Single Rotor

First, we apply an inviscid version of our optimization methodology to a single rotor

including swirl and compare our results to two other known results – the Betz inflow

distribution [62] and the optimal inflow distribution described by Glauert [63]. For
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Figure 3.10: Figure of merit versus coefficient of thrust for experimental results
of the Harrington Rotor 2 [57] compared to BEMT results, both with and without
swirl.

a single rotor, the optimization process is significantly simplified, as there is no need

for a mutual interference model or a constraint on torque balance. Additionally,

because this is an inviscid optimization, we don’t include profile losses and their

effect on thrust and torque. Finally, to compare our optimal solution to these results,

we neglect tip losses, setting F = 1.

The Betz propeller inflow distribution [62] has the parametric form

w(r) = w0 cosφ (3.42)

such that the induced flow remains along a helix as it leaves the rotor disk. However,

as described by Glauert [63], this induced wash distribution is close, but not equal to

the optimal solution. In fact, slightly better performance can be achieved through a

more complex induced wash distribution found by setting the ratio of the increments

of thrust and torque to be independent of the radial coordinate. When we apply

our optimization methodology to a single rotor including swirl, we recover the more

complex (and higher performing) optimal solution mentioned by Glauert [63].

Figure 3.11 shows the axial and swirl components of induced wash for the op-
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timum single rotor compared to the Betz induced wash distributions at a thrust

coefficient of CT = 0.004. Note that the two solutions differ mostly near the blade

root, with the largest differences seen in the swirl components of the induced wash.
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Figure 3.11: Axial and swirl components of the induced wash for the Betz inflow
distribution compared to the optimal inflow distribution.

Figure 3.12 shows the induced figure of merit versus the coefficient of thrust

for the optimal inflow distribution and the nearly optimal Betz inflow distribution.

Note that Glauert presents a similar figure (Figure 88 of [63]), and that we are able

to replicate these results with the optimization methodology presented here. The

optimal inflow distribution has a slightly higher induced figure of merit than the

Betz inflow with an improvement of only 0.6% in induced figure of merit at the very

large thrust coefficient of CT = 0.05.

In summary, when applied to a single rotor with swirl, the optimization method

presented here recovers the optimal single rotor induced wash distribution including

swirl described by Glauert [63]. This is a promising result, indicating that as we

extend this analysis to a coaxial rotor system, our underlying treatment of the swirl

velocities and resulting optimization for the two individual rotors are correct.
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Figure 3.12: Figure of merit versus the coefficient of thrust for the Betz inflow
distribution compared to the optimal inflow distribution.

3.3.3 Optimized Rotor Results – Coaxial Rotor

We now apply the optimization methodology to a coaxial rotor to determine the

minimum loss coaxial rotor in hover. To quantify the effect of swirl on performance

and on the optimal induced wash distribution and rotor design, we analyzed cases

both with and without the swirl component of induced wash. In each instance, the

total power loss from the two rotors is equal, i.e., the coaxial system is in torque

balance. We include the Prandtl tip loss factor for each case and use the same

mutual interference assumptions described in the previous section comparing BEMT

results to Harrington’s experimental results. For ease of comparison, we use the same

airfoil characteristics, number of blades (two for each rotor), and vertical separation

as the Harrington rotor 2.

Figure 3.13 shows the axial and swirl components of induced wash for the optimal

coaxial rotor at a thrust coefficient of CT = 0.008. For both the upper and lower

rotors, the swirl case is very similar to the non-swirl case, with the exception of

radial stations near the blade root, where the axial induced wash goes to zero at a

value of r/R = 0. As expected, for the upper rotor, the non-swirl case has a uniform

induced wash distribution, leading to the optimal performance, as originally stated
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by Gessow [58].

Figure 3.13: Top: Optimal radial distribution of axial induced wash on the upper
and lower rotor at a thrust coefficient of CT = 0.008, based on combined BEMT
both with and without swirl. Bottom: Optimal distribution of the swirl component
of induced wash for the swirl case.

Figure 3.14 shows the spanwise distributions of thrust, induced power loss, and

profile power loss for the optimal rotors with and without swirl. The non-swirl opti-

mal coaxial rotor generated using our approach is in agreement with the optimization

methodology of Rand and Khromov [20] if applied using the same assumptions about

mutual rotor interference and with tip losses neglected. Additionally, this rotor gives

better performance than the Leishman and Ananthan [19] optimal hovering coaxial

rotor, which uses a linear thrust distribution on each rotor.

For both the swirl and non-swirl cases, the inner portion of the lower rotor, which

is operating in the contracted wake of the upper rotor, is significantly off-loaded,

generating only a small fraction of the lower rotor’s total thrust. The outer portion
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of the lower rotor, which is not influenced by the upper rotor’s wash (based on the

mutual interference model used here), generates a much larger thrust and torque.

Figure 3.14: Top: Optimal radial thrust distribution for the swirl and non-swirl
cases at a thrust coefficient of CT = 0.008. Middle and bottom: Optimal induced
and profile power distributions for the swirl and non-swirl rotors.

Figure 3.15 shows the radial twist and chord distributions for both the swirl

and non-swirl optimal rotors. For the upper rotor, the non-swirl case shows the

characteristic hyperbolic twist and chord distributions required to generate a uniform

induced wash distribution, as modified by the presence of tip losses. The lower rotor
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has a similar hyperbolic twist distribution with a breakpoint at rc/R ≈ 0.87, the

radius outside of the contracted wake. The swirl case is nearly indistinguishable

from the non-swirl case outboard of a radial position of r/R = 0.3. However, for

values of r/R < 0.3, there are noticeable differences, as the chord of the swirl case

upper and lower rotors go to zero at r/R = 0 while the chord of the non-swirl case

upper and lower rotors continue to increase with decreasing r/R.

Figure 3.15: Top: Optimal twist distribution on the upper and lower rotor cases
at a thrust coefficient of CT = 0.008. Bottom: Optimal chord distribution for the
swirl and non-swirl rotors.

Figure 3.16 shows an overhead view of the upper and lower rotor planforms for

the optimal coaxial rotor including the swirl component of induced wash at CT =

0.008. Along with Figure 3.15, we notice that the optimal coaxial rotor uses very

different blade planforms and twist distributions on the upper and lower rotors, a
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fact that is perhaps not surprising when considering the significantly different inflow

distributions of the two rotors. The difference in inflows between the upper and

lower rotor also results in the upper rotor generating 56% of the total system thrust

to maintain a torque balanced condition.

Figure 3.16: Overhead view of the optimal blade planform for a hovering coaxial
rotor at CT = 0.008, based on combined BEMT including swirl. The upper rotor
planform is in solid black, the lower rotor is in white.

Figure 3.17 shows the figure of merit versus the thrust coefficient for the optimal

coaxial rotor system (optimized at each thrust coefficient), both with and without

the swirl component of induced wash. The swirl case has a lower figure of merit

across all thrust coefficients. As expected, the difference in the non-swirl and swirl

case figure of merit increases with increasing thrust coefficient, i.e., the presence of

swirl has a larger impact at higher loadings. At the very high thrust coeffient of

CT = 0.02, the case accounting for swirl has a total figure of merit that is ≈ 3.5%
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lower than the non-swirl case.
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Figure 3.17: Figure of merit versus the coefficient of thrust for the optimal coaxial
rotor using BEMT, both with and without swirl.

We now analyze the optimal rotors at off design points to determine how they

perform over a range of thrust coefficients that may be encountered in an actual

helicopter operation due to changes in vehicle weight, density, and altitude. We

perform this analysis for two cases: the minimum induced power case, with only

the twist optimized; and the minimum total power case, with the twist and chord

optimized.

Figure 3.18 shows the computed figure of merit versus thrust coefficient for a

coaxial rotor with the twist distribution optimized and a uniform chord at CT =

0.008 and CT = 0.012. Also shown for comparison is the performance with the

twist distribution optimized at every thrust coefficient and the performance of the

untwisted Harrington rotor 2. All optimized cases shown are optimized using BEMT

with swirl. We see that the CT = 0.008 and CT = 0.012 rotors have a figure of merit

very close to the rotors optimized anew at each thrust coefficient, even at off-design

points. Additionally, these optimized rotors far outpeform the untwisted Harrington

2 rotor, with a figure of merit 9% higher than the baseline Harrington rotor 2 at

CT = 0.008.

Figure 3.19 shows the figure of merit versus thrust coefficient for a coaxial rotor
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Figure 3.18: Figure of merit versus the coefficient of thrust for the optimal CT =
0.008 and CT = 0.012 hovering coaxial rotors including swirl. Only the twist has
been optimized in each case i.e., only induced powers are minimized.

with twist and chord distribution (minimum total power) optimized at CT = 0.008

and CT = 0.012. Also shown is the figure of merit with the twist and chord dis-

tribution minimized at every thrust coefficient, and the figure of merit of the un-

twisted Harrington rotor 2 baseline. Also plotted is the twist optimized case at

every thrust coefficient, to show the performance improvement available using a

non-uniform chord distribution. At off design points, the optimized twist and chord

rotors have significantly degraded performance, in contrast to the twist only opti-

mization. However, at their respective design points, the optimized twist and chord

rotors far outperform the twist only optimization and the baseline untwisted Har-

rington rotor, with a figure of merit 20% higher than the baseline Harrington rotor

2 at CT = 0.008.

As previously observed, the optimal hovering coaxial rotor system has signifi-

cantly different chord and twist distributions on the upper and lower rotors. Such a

design, while optimal in hover, may not perform as well in forward flight. To quan-

tify the benefit of using different blade designs on the upper and lower rotors, we
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Figure 3.19: Figure of merit versus the coefficient of thrust for optimal CT = 0.008
and CT = 0.012 hovering coaxial rotors including swirl. Both the chord and twist
have been optimized, i.e., the sum of induced and profile power losses are minimized.

compared the performance of the optimal twist and chord rotor to a rotor using the

optimal upper blade design on both rotors (i.e., a rotor designed without accounting

for the effect of the upper rotor’s wake on the lower rotor’s inflow). Figure 3.20

shows the figure of merit versus the thrust coefficient for these two cases. We see

that using different blade designs on the upper and lower rotors provides a larger

benefit in terms of figure of merit at higher thrust coefficients. While at CT = 0.002,

there is a very small difference in performance between the rotor with equal blades

and the rotor with different (optimal) upper and lower blades, at CT = 0.016 the

optimal rotor provides a figure of merit 1% higher than the rotor with equal blades,

a noticable but relatively small improvement. Therefore, while using different blade

twist and chord distributions on the upper and lower rotors is optimal, using the up-

per rotor twist and chord distributions on both rotors does not dramatically reduce

hovering performance.
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Figure 3.20: Figure of merit versus the coefficient of thrust for the optimal hovering
coaxial rotor including swirl at each thrust coefficient, compared to the performance
of a coaxial rotor using the optimal upper rotor blade and twist for both the upper
and lower rotor.

3.4 Conclusions

In this chapter, we have presented a method for computing the optimal coaxial rotor

design in hover using Blade Element Momentum Theory including the effect of the

swirl component of induced wash. The method determines the induced wash distri-

bution that will minimize induced power, and the twist and chord distributions that

minimize profile power losses. The method models the effect of the contracted axial

and swirl washes acting on the inner portion of the lower rotor, and approximates

the lower rotor’s effect on the upper rotor as a uniform axial downwash dependent on

the average induced wash of the lower rotor and the vertical separation of the rotors.

Tip effects accounting for a finite number of blades are included using the Prandtl

tip correction factor. Profile losses and their effects on power and thrust are included

using airfoil drag polars. We applied this optimization approach to a coaxial rotor

similar in design to the Harrington rotor 2. Based on the work presented in this

paper, we make the following conclusions.
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1. Contrary to prior assertions in the literature (References [19] and [21]) and in

agreement with a similar analysis performed in [20], the minimum induced loss

coaxial hovering rotor (as determined by BEMT) does not have a uniform disk

loading, i.e., linear thrust distribution, on both the upper and lower rotors.

Rather, the minimum induced loss coaxial rotor uses a significantly lower, and

in some cases negative, disk loading on the inner portion of the lower rotor.

The outer portion of the lower rotor, operating outside of the contracted wake

of the upper rotor, then generates a much larger thrust then the uniform disk

loading case.

2. The optimization methodology including swirl recovers the Glauert optimal

induced wash distribution for a single rotor, achieving a higher induced figure

of merit than the Betz inflow distribution.

3. The optimal coaxial rotors with and without swirl are nearly identical at radial

stations outboard of r/R = 0.3. At values of r/R < 0.3, the rotors opti-

mized accounting for swirl have signficantly different optimal twist and chord

distributions than the non-swirl case.

4. As expected, accounting for the effects of swirl has a larger effect on perfor-

mance at higher thrust coefficients. The swirl case has an optimal figure of

merit 3.5% lower than the no swirl case at the very high thrust coefficient of

CT = 0.02.

5. At the typical disk loadings seen on helicopters, the effect of swirl on rotor

design and performance predictions within the framework of combined Blade

Element Momentum Theory is relatively small. Other model refinements, such

as more detailed wake modeling and improved mutual interference models, may

have a larger impact on optimal rotor design and performance predictions than
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the inclusion of the swirl component of induced velocity.

6. Optimizing the twist alone to minimize the induced power of the coaxial ro-

tor studied here increases the figure of merit by 9% compared to a baseline

untwisted rotor at a thrust coefficient of CT = 0.008. Optimizing both the

twist and chord increases the figure of merit by 20% over the baseline rotor at

CT = 0.008.

7. The optimal coaxial hovering rotor has a significantly different twist and chord

distribution on the upper and lower rotors, resulting from the different inflow

distributions acting on each rotor. However, using the optimal upper rotor

blade design on both rotors leads to a relatively small decrease in performance,

indicating that near optimal hover performance can be achieved with upper

and lower rotors using the same blade design.
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4

Axisymmetric Potential Flow Model of the
Actuator Disk

In Chapter 3, we developed a method to determine the optimal coaxial rotor design

in hover. This optimization computed the induced wash distribution and radial twist

and chord distributions that yield the optimal induced inflow while minimizing profile

losses. To model the mutual interference of the two rotors within this optimization,

we used a simple influence coefficient model originally developed by McAlister et

al. [49]. To approximate the influence of the upper rotor on the lower rotor, we used

this model to determine the contraction of the upper rotor’s wake when it reaches

the lower rotor. We then scaled and mapped the induced axial and swirl velocities

of the upper rotor onto the portion of the lower rotor operating in this contracted

slipstream. In accordance with the same model, we approximated the effect of the

lower rotor on the upper rotor as a uniform downwash that is a function of the vertical

separation of the rotors and the average induced inflow of the lower rotor. For the

optimization, we assumed that the portion of the lower rotor operating outside of

the upper rotor’s contracted slipstream has no inflow.

While this simple model compares well to experimental data (cf. Juhasz et al. [59]
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and Figure 3.10), in this chapter we seek to build a more refined model of the wake

of a conventional or coaxial rotor in hover or axial flight. We approximate the rotor

(or rotors) as actuator disks and the wake as contracting cylindrical vortex sheets

modeled using discrete vortex rings. We assume the system is steady in time and

axisymmetric, requiring us to only look at a single azimuthal slice of the flow field

to determine the shape of the wake and the induced velocity throughout the entire

flowfield. We apply this axisymmetric potential flow model to the following cases:

• A uniformly loaded actuator disk in hover, climb, and descent, in order to gain

insight into the geometry of the wake and the resulting induced inflow at the

disk.

• An actuator disk with piecewise linear circulation distributions, to determine

the effect of changes in bound circulation on the disk on the wake geometry.

• Coaxial actuator disks in hover of varying vertical separation, to quantify the

mutual interference effects of the two disk system and to validate the predictions

used in the Chapter 3 optimization. We investigate both torque-balanced and

non torque-balanced cases.

4.1 Background on Actuator Disk Wake Modeling

Momentum theory provides a simple but powerful tool for predicting the performance

of propellers, windmills, or rotors. First developed by Rankine [64] and extended

by Froude [65], momentum theory models the rotor as a circular surface of zero

thickness, referred to as an actuator disk, through which a pressure difference exists.

By performing an axial momentum balance on the resulting system, Froude derived

a simple expression stating that the velocity at the actuator disk is the average of the

flow velocities far upstream and far downstream of the rotor. Figure 4.1 shows the

notional actuator disk in climb, with Vc denoting climb velocity and Vi denoting the
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induced velocity at the actuator disk. The thrust done by the actuator disk is simply

the product of the mass flow through the disk and this induced velocity (T = ṁVi).

Additionally, there is an induced power loss as a result of a kinetic energy increase

in the wake, which is equal to the product of the thrust of the disk and the induced

velocity at the disk (Pi = TVi) .

Figure 4.1: The flow through an actuator disk, as depicted in most discussions of
the topic.

Due to its simplicity and relative accuracy, momentum theory is an initial building

block in many complex models of rotary wing devices. However, momentum theory

itself gives no detailed description of the induced velocity field; rather, in its most

basic form it assumes the induced velocity only varies in the axial direction, i.e., the

induced velocity is constant at the disk and at any axial slice in the downstream

wake. Additionally, while momentum theory predicts the final wake contraction via

conservation of mass as

A

Ac
=

Vc + Vi
Vc + 2Vi

(4.1)
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it gives no information about the axial distance required to achieve this final con-

traction, or about the level of wake contraction reached at some given axial distance.

Knowledge of the axial rate of contraction is of particular interest when analyzing

closely spaced coaxial rotors, where it is possible that the upper rotor’s wake has

not contracted to its final far field value before impinging upon the lower rotor. As

a result, developing a model that can predict the rate of this contraction, as well

as a more detailed knowledge of the induced velocity distributions at the disk and

elsewhere in the wake, is of great interest.

Many researchers have investigated the flow field induced by an actuator disk.

Betz and Prandtl [62] used vortex theory to compute the optimal induced velocity

profile at the disk for a propeller with an infinite number of blades in axial flight.

They assumed the rotor was lightly loaded, and thus assumed that the trailing vor-

tices formed regular helices, an assumption that is equivalent to neglecting the con-

traction of the wake. Goldstein [39] extended this work to determine the optimal

induced velocity of a lightly loaded finite bladed propeller. Hough and Ordway [66]

used a vortex representation of the helical trailing wake of a lightly loaded propeller

similar to that of Goldstein, and computed the induced velocities at any point in the

field using the Biot-Savart law. The authors Fourier analyzed these velocity fields

in the circumferential direction, and then considered the zeroth harmonic, i.e., the

mean component. Using this approach, the authors derived integral expressions that

could be solved to determine the mean axial and radial velocities induced by a lightly

loaded propeller with an arbitrary circulation distribution and blade number. The

authors also proved that the steady component of the induced velocities for a finite

bladed propeller are equivalent to the actuator disk (infinite blade) result.

Similarly, Conway [67] used an analytical approach to solve for the induced ve-

locities of a propeller actuator disk of arbitrary radial loading. Conway was able

to compute the wake contraction as a function of the axial coordinate for a “lin-
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earized” actuator disk, meaning the induced flow field is linearized about the free

stream velocity. Conway noted that as a result of this linearization, the theory is

more accurate for lower thrust coefficients, i.e., flight conditions where the ratio of

climb velocity to induced wash at the disk Vc/Vi is large. Conway [68] extended this

approach to develop a semi-analytical model that accurately analyzes a nonlinear

actuator disk of arbitrary loading while taking the slipstream contraction fully into

account. Conway’s [68] results give wake contraction and velocity profiles for a vari-

ety of heavily loaded propellers as well as energy extracting windmills; Conway does

not, however, extend his model to the zero free stream (i.e., hover) case. Greenberg

and Powers [48] developed an iterative approach to determining the wake geometry

and vorticity distribution on an actuator disk, and applied the model to the hover-

ing actuator disk with both uniform and radially varying loading. Cox [69] used a

discrete vortex ring model of the wake sheet to model the wake of a propeller in axial

flight in order to investigate the effect of a nonuniform free stream and the influence

of a wind tunnel wall on the flow field.

One problem with the seemingly simple actuator disk model is the way in which

the vortex sheet is terminated at the edge of the disk. In the simplest vortex models,

the wake is represented as a contracting circular vortex sheet located at the boundary

of the slipstream, as described by Johnson [4]. However, the sudden termination of

this vortex sheet at the rim of disk can lead to problems or inconsistencies in the wake

and its resulting flow field. In a 1915 paper, Lanchester [70] observed that momentum

theory was inconsistent at the edges of the disk, as the infinitely thin actuator disk

cannot maintain a pressure jump at the edge without a singularity. Lanchester

predicted that as a result of the neglect of this singularity, the classical momentum

theory would underestimate the induced velocity at the disk. Van Kuik [71] attempts

to rectify this inconsistency by postulating that there exists a discrete vortex at the

edge of the actuator disk. This vortex is bound to the edge of the disk, acting as

83



the leading edge of the vortex sheet. Because of the presence of this vortex, the

streamlines near the edge of the disk are spirals centered around the edge of the

disk. Additionally, in Van Kuik’s formulation of the actuator disk, the bound edge

vortex creates an edge force that generates thrust that is not accounted for in the

axial momentum balance.

Pullin [72] considered the problem of the roll up of an initially flat vortex sheet,

which is somewhat analagous to the situation present at the edge of the actuator

disk. A singularity exists at the edge of this sheet, which is resolved through an

unsteady, spiral-like roll up. Pullin was able to numerically compute the large scale

structure of this unsteady roll up, which forms a time-varying spiral like structure.

In his work on determining the velocities induced by an actuator disk, Conway [68]

addresses this apparent inconsistency with a terminating vortex sheet and the result-

ing roll up and/or passing of streamlines through the disk. The author observes that

while a numerical scheme could be constructed to compute the details of the roll up,

doing so would undermine the simplicity of the actuator disk model. Additionally,

Conway notes that models that use multiple vortex tubes, such as that of Greenberg

and Powers [48], also encounter the same problem, as each of the individual tubes

would roll up at its intersection with the disk.

Schmidt and Sparenberg [46] compute a numerical solution for an actuator disk

of infinite radius (essentially an actuator strip) and zero axial velocity. The authors

found that the vortex sheet exhibits a spiraling behavior near the edge of the disk,

and were able to apply this spiral structure to a uniformly loaded actuator disk of

finite radius. They found that streamlines pass through the disk more than once at

the disk’s edge as a result of the spiraling vortex sheet.

In 2005, Spalart [45] revisited the actuator disk, making several interesting ob-

servations. As Conway, Lanchester, Van Kuik and others had previously observed,

in the classical model a vortex sheet ends abruptly at the disk, which would result
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in an infinite velocity; Spalart therefore rules out an abrupt termination of the sheet

as a viable solution. Instead, he postulates that in hover “it is most likely that the

exact shape [of the vortex sheet], for the infinitely thin sharp-edged disk, is a volute

wound around the disk’s edge. The two dimensional Euler equations admit an exact

solution with a vortex sheet of uniform density placed on a 45 degree spiral.” He

notes, however, that such a solution, either analytical or numerical, does not exist

in the literature (although such a solution was in fact found previously by Schmidt

and Sparenberg [46]). In axial flight, Spalart states that the spiral wake structure

would hold, although the extent of the spiral would shrink. The author supports this

hypothesis by showing the streamlines and vorticity contours of an actuator disk in

hover computed via a numerical solution to the incompressible Navier-Stokes equa-

tion. These plots demonstrate both the upflow through the disk near its edge and

a smeared spiral shape in the vorticity contours. Additionally, Splart observes that

the induced velocity at the actuator disk is far from uniform (and is completely re-

versed at the edge), an observation that he notes conflicts with both common beliefs

and one-dimensional arguments. As a result, the conventional momentum balance

schematic shown in Figure 4.1 is in fact inaccurate, particularly in hover, as flow

enters the actuator disk not just from above but also from all sides, and because the

uniform flow shown at the disk is far from uniform and is in some cases even reversed.

Despite the apparent contradiction and inconsistencies due to this non-uniform and

sometimes reversed flow at the disk, Spalart performs a more rigorous control volume

analysis that reinforces the classical result for induced power without making use of

the assumption of uniform induced velocity at the disk. As a result, the classical

momentum theory results are unchanged, despite the inaccurate assumptions (e.g.,

uniform flow at the disk) that some authors use in their derivation.

In this chapter, we construct a steady axisymmetric potential flow model of the

trailing wake of an actuator disk. To determine the geometry of the vortex sheet, we
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impose a boundary condition that the vortex sheet must be aligned with streamlines

of the flow field at all points, i.e., that there is no flow through the sheet. We

use Newton iteration to determine the shape of the vortex sheet that satisfies this

boundary condition. We represent the continuous cylindrical vortex sheet as a system

of discrete vortex rings. For a uniformly loaded actuator disk in hover, we find that

the wake at the edge of the actuator disk assumes the shape of a 45 degree logarithmic

spiral, as hypothesized by Spalart [45]. Also in accordance with the findings of

Spalart and the analyis of Schmidt and Sparenberg [46], we find that the induced

flow distribution is far from uniform over the disk, and is in fact reversed near the edge

of the disk. As other researchers including Spalart have noted, the notional actuator

disk model shown in Figure 4.1, is inaccurate, particularly at low velocities, where the

actuator disk draws in flow not just from above the disk but also from areas outside of

the streamtube and below the disk. We examine the shape of the wake, including its

spiral edge structure, at a range of axial velocities, including negative axial velocities

with the rotor acting as a windmill. We also investigate the effect on wake shape and

induced velocities of non-uniform circulation distributions by using multiple vortex

sheets to model piecewise constant circulation distributions. We use the same wake

modeling approach to investigate coaxial actuator disks, and examine the effect of

vertical separation on the resulting flow field and rotor performance. Finally, we

compare the mutual interference of the coaxial rotor predicted in our wake model to

that computed using the simple influence coefficient model described in McAlister

et al. [49] and used in the Chapter 3 optimization, and find that despite the large

discrepancy in complexity, the two models produce reasonably similar results.

4.2 Technical Approach to Wake Modeling

We seek to model the vortex system of an actuator disk, thereby allowing us to com-

pute the velocities induced by this vortex system at any point in the flow field. As
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described by Conway in Reference [67], for a uniformly loaded actuator disk, there

are four vortex distributions that induce perturbations to the mean flow. The first is

a contracting vortex tube consisting of discretized ring vortices, shown in Figure 4.2.

These ring vortices are trailed from the edge of the actuator disk and extend to

downstream infinity. This distribution is itself a vorticity conserving system and is

solely responsible for all axial and radial induced velocities and for the contraction

of the wake itself. In addition to the ring vortex system, there are three other vor-

tex systems that combine to form their own vorticity conserving system: a constant

strength hub vortex at the center of the disk extending to downstream infinity, a

distribution of vorticity on the actuator disk itself, extending radially, and a distri-

bution of vorticity on the streamtube’s surface that is normal to the ring vortices

and equal in strength to the hub vortex. The only non-zero component of velocity

they induce is in the circumferential direction, i.e., the swirl component of induced

velocity. As we demonstrated in Chapter 3, the swirl component of induced velocity

has a relatively small effect on rotor performance and design. As a result, we model

only the axial and radial induced velocity fields and wake contraction, which can be

accomplished by modeling exclusively the ring vortex system.

4.2.1 Modeling the Ring Vortices

We compute the velocity field induced at a point in space P by a vortex line of

differential length dl using the Biot-Savart law

V =
Γ

−4π

∫
l

r× dl

‖D‖3
(4.2)

where D is a vector extending from P to the line segment dl. Because of the axial

symmetry of the problem, the induced flow field will include only axial and radial

velocities. Following the approach of Cox in Reference [69], we can integrate Eq. (4.2)

around the circumference of a unit strength vortex ring to yield expressions for the
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Figure 4.2: The vortex ring system of a uniformly loaded actuator disk.

axial and radial velocities induced at some P , with coordinates denoted xP , zP . We

denote the x and y positions of the vortex ring’s intersection with the meridional

plane as xR, zR, and denote the circumferential coordinate of the ring as φR, giving

u(xP , zP ) =

∫ φ=2π

φ=0

(zP − zR) cos(φR)xRdφR
4π‖D‖3

(4.3)

w(xP , zP ) =

∫ φ=2π

φ=0

[xR − xP cos(φR)]xRdφR
4π‖D‖3

(4.4)

where u(xP , zP ) and w(xP , zP ) are the induced radial and axial velocities, respec-

tively, due to a unit strength vortex ring.

4.2.2 Determining the Contraction of the Wake

In our steady state wake model, we impose a boundary condition that the vortex

sheet, as represented by discrete vortex rings, is aligned with the streamlines at all

points. This no-through-flow boundary condition allows us to define the position of

the vortex sheet. Of course, the problem can be challenging to solve, as the flow

field is not known a priori, but is rather a function of the mean flow and the velocity

induced by the vortex sheet itself, which in turn is a function of its position.
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Figure 4.3: An azimuthal cut of the axisymmetric vortex ring model, with collo-
cation points shown as yellow circles.

Because the problem is axisymmetric, we need only to satisfy the no through flow

boundary condition at a single azimuthal slice of the disk. By defining the radial

and axial position of each vortex ring at this single azimuthal location, we can fully

define the wake. Within this azimuthal slice, we place collocation points equidistant

between each successive vortex ring. Figure 4.3 shows a azimuthal cut of the vortex

ring model with the collocation points shown in yellow.

We compute the induced velocity at a given point in space by summing the

influence of every vortex ring in the model on that point. To efficiently model

the semi-infinite wake, which extends indefinitely in the positive z direction, we

compute the sending influence of vortex rings until their influence on the contracting

portion of the wake is sufficiently small. At every spatial location, the total flow

velocity is then comprised of the sum of this induced velocity and the mean flow

due to axial motion of the disk. In hover, the mean flow is of course zero. In

axial flight, however, the flow can be in the positive z direction (ascending flight)

or the negative z direction (descending flight). To determine if the no-through-flow
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Figure 4.4: An azimuthal cut of the axisymmetric vortex ring model, with colloca-
tion points shown as yellow circles, velocity vectors acting at the collocation points
as green arrows, and the intersection of the vortex rings with the selected azimuthal
plane as blue circles.

boundary condition is satisfied, we compute the induced and total flow velocity at

each collocation point. We denote the x and z components of flow velocity at a given

collocation point i as ui and wi, respectively. Because the ring vortex system does not

induce any circumferential velocities, in a given azimuthal plane, the y component

of velocity is always zero.

We then need to define the slope of the sheet at each collocation point to assess

the flow tangency boundary condition. To illustrate this process, Figure 4.4 shows

a simplified schematic of a wake model consisting of only 3 vortex rings. Note that

the first ring is placed at the edge of the disk. The first collocation point is then

located midway between the first and second vortex rings. The straight line segment

connecting the two neighboring ring vortices then defines the slope of the vortex

sheet on which a given collocation point lies. As illustrated here, the first segment

of the vortex sheet has slope ∆z1/∆x1.
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We can express the boundary condition at the ith collocation point as

∆zi
∆xi

=
wi
ui

(4.5)

where wi is the sum of the axial induced and climb velocity, ui is the component of

induced velocity in the radial direction. ∆xi and ∆zi are defined by

∆xi = xi+1 − xi (4.6)

∆zi = zi+1 − zi (4.7)

4.2.3 Newton Iteration to Determine Wake Position

Satisfying the no through flow condition is complicated slightly by the fact that the

induced flow field changes with a change in any vortex ring’s position, making the

no-through-flow condition nonlinear. We use an iterative approach based on Newton

iteration to determine the correct vortex ring positioning.

We use the no-through-flow boundary condition in Eq. (4.5) to construct a vector

of residuals R that we wish to set to zero. The ith entry of R is defined by

Ri(xi, zi) = ∆xiwi −∆ziui (4.8)

We have reached a wake shape that satisfies the no through flow boundary condition

when all of the entries of R are equal to zero, i.e., when

R(x, z) = 0 (4.9)

In practice, we can parametrize the positions of the vortex rings in a variety of ways.

One way is to define the x and z positions of each vortex ring, with the first vortex

ring fixed at the rim of the actuator disk. A more efficient and robust approach is

to define an angle θi that represents the angle between the ith segment of the vortex

sheet and the positive x axis. We then define dsi as the distance between vortex ring

i and ring i + 1, as illustrated in Figure 4.5. Note that this value does not have to
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Figure 4.5: Schematic showing the definition of the angle θi and length dsi that
fully define the position of each vortex ring.

be uniform along the wake (i.e., the vortex rings can be non-uniformly spaced), but

it is fixed from iteration to iteration. Therefore, we can fully define the shape of the

wake using the angle θi at each vortex ring.

We use Newton iteration to determine the entries of the vector θ such that

R(θ) = 0 (4.10)

At each iteration k, we update the vector of angles θ using

θk+1 = θk −R(θk)−1
θ R(θk) (4.11)

where R(θk)θ is the Jacobian of the vector function R with respect to θ. It is

difficult to compute the Jacobian of R(θ) analytically. Instead, we use automatic

differentiated code generated by the compiler Tapenade [73] to compute the entries

of the Jacobian R(θk)θ.
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4.2.4 Scaling of the Circulation

To conserve the vorticity of the system, we must scale the circulation strength of

the discrete vortex rings as they change size (diameter) and position throughout

the iteration. First, it is often advantageous to use a non-uniform spacing of the

vortex rings, meaning that the value of ds between each successive vortex ring is

not constant. Typically, a more dense ring spacing near the disk is necessary to

capture the details of the wake structure, while in the far field, a larger spacing is

sufficient. Of course, the discrete vortex rings actually represent some section of the

continuous vortex sheet along its length; therefore having a larger spacing means a

given vortex ring is representing a larger portion of the tube and thus needs to have

a larger magnitude circulation. To account for this, we we scale the ring’s circulation

strengths by their spacing ds relative to some arbitrary reference length dsref with

a known circulation Γref, i.e.,

Γi = Γref
dsi
dsref

(4.12)

In addition to scaling by the length of the wake each ring represents, we must

consider the change in vortex density within this region. Each vortex ring represents

a continuous sheet of vorticity that is convecting along the streamtube at the wake

transport velocity. The vortex density of the sheet will change with the transport

velocity of the sheet itself - as the ring speeds up, a discrete section enclosing a

set amount of vorticity will grow in length, with a resulting decrease in its vortex

density. As a result, we must scale the strength of each vortex ring to account for

this varying vortex density such that the quantity γiVi is constant throughout the

sheet, where Vi is the component of total velocity parallel to a vortex segment dsi.

To account for this, we define the circulation for some reference ring with a known
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velocity Vref and scale the circulation of each vortex ring using

Γi = Γref
Vref
Vi

(4.13)

An equivalent way to perform the convective velocity scaling is to define some ar-

bitrary time step and stretch or compress the vortex filaments as they traverse the

sheet in order to conserve vorticity. Said another way, we can set our vortex ring

spacing ds to enclose some given amount of vorticity, and then increase or decrease

the spacing as needed to ensure our length ds is always capturing this same amount

of vorticity. This method was also used and was shown to be equivalent to a fixed

wake spacing that instead scales by velocity. However, it is numerically advantageous

to define a fixed ring spacing that does not change throughout the iteration, so we

instead scale by both this initial spacing (Eq. (4.12) and the convective velocity of

each segment (Eq. (4.13).

In total, we scale the circulation strength of each vortex ring by these two ratios,

all relative to some reference ring. In practice, we often fix the circulation strength

of a ring in the far wake and use this value as Γref. The total scaling for each ring

is then

Γi = Γref
dsi
dsref

Vref
Vi

(4.14)

4.2.5 Total Iteration Algorithm

We update the circulation strength of each vortex ring using Eq. (4.14) after each

Newton iteration step. The Jacobian R(θ)θ does not account for the change in cir-

culation that will occur with a change in wake shape and convection velocity. While

we could formulate a computation of the Jacobian that accounts for these secondary

effects, it is sufficient to simply update the circulation after each Newton step. Al-

though this leads to a decrease in the accuracy of the Jacobian and the resulting
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Newton step, the changes in circulation from one iteration to the next are generally

small and become progressively smaller as the iteration reaches convergence, i.e., as

R(θ)→ 0. Therefore, neglecting the change in circulation in the computation of the

Jacobian has a negligible impact on the ability of the Newton iteration to locate a

solution.

4.2.6 Multiple Vortex Sheets

Analyzing a system with multiple vortex sheets, such as in the case of coaxial actuator

disks or a single actuator disk that does not have a uniform bound circulation and

trails additional vortex sheets at locations inboard of the edge of the disk, uses

fundamentally the same algorithm and wake definition described previously. Multiple

vortex sheets are discretized into rings, and the positions of each of these rings that

satisfy the no-through-flow boundary condition are still determined using Newton

iteration. The induced velocity at a given collocation point is dependent on all vortex

sheets. Additional care must be taken to ensure that the separate vortex sheets do

not cross, which results in large induced velocities, poorly conditioned Jacobians,

and chaotic behavior leading to divergence. In cases such as these (e.g., a very close

radial spacing), a significant under-relaxation factor is used to prevent crossing of the

vortex sheets. Additionally, certain changes can be made to the iterative process to

help ensure convergence, such as allowing one of the disk’s vortex sheets to achieve

convergence without considering the influence of the second sheet, thereby placing

it in a more stable state before introducing the influence of the second sheet and

determining the total stable position of both sheets.

Figure 4.6 shows the same vortex ring model for coaxial disks. Points associated

with the upper disk’s vortex sheet are labeled as (1, x), while those associated with

the lower are labeled as (2, x). Note that in the coaxial case, the upper disk’s vortex

sheet passes through the lower actuator disk. We have the option of maintaining the
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same circulation strength for rings that have passed through the lower disk (subject

to the correct circulation scaling of Eq. 4.14) or of changing the strength of these

ring vortices to reflect a change in the bound circulation of the lower disk. This

allows us to model a non-uniform circulation distribution on the lower disk without

introducing a third vortex sheet. We use this method to more easily approximate

the minimum power thrust distributions shown in Chapter 3, where the lower rotor

generates a much larger thrust at points outside of the upper rotor’s contracted wake.

Figure 4.6: Schematic of the vortex ring structure of coaxial actuator disks. Yellow
circles represent collocation points. Blue circles represent the location of the vortex
rings within this azimuthal plane.

4.3 Results

4.3.1 Single Actuator Disk in Hover or Axial Ascent

We first apply our vortex ring model of the wake to a single actuator disk at varying

rates of axial ascent, i.e., climb. In axial ascent, the free stream flow has a positive
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value and acts in the same direction as the induced flow (like a propeller). In this

section, we investigate the structure of the wake, particularly near the edge of the

disk, and see how this structure evolves with different rates of axial ascent. We

express the rate of climb as the ratio of the climb velocity Vc to the induced velocity

at the center of the actuator disk, Vi(0, 0). A value of Vc/Vi = 0 corresponds to the

hover case. For the cases shown here, we use a logarithmic spacing of the ring vortices

to allow for small spacing near the edge of the disk where finer detail is needed, and

larger spacing downstream where the wake has a slower rate of contraction and a

larger spacing is sufficient. We set the entries of the vector of ring spacings ds using

dsi = ln(1.0 +
i

m
) (4.15)

where the index i starts at a value of 1 at the rim of the actuator disk and the

variable m is a constant that can be varied to increase or decrease the spacing for a

given case. For the single actuator disk hover case shown here, we set m = 10, 000

and use 250 rings in the model, while for the axial flight cases, we set m = 2, 000

and use 115 rings.

Figure 4.7 shows the computed shape of the wake in the vicinity of the rim of the

disk for several different climb velocities, including hover. Figure 4.8 shows the same

result for a larger domain, allowing us to observe the final contraction of each case.

Note that because our model is axisymmetric, we need only look at a given azimuthal

slice to visualize the wake. Our results appear to directly support the hypothesis of

Spalart [45] that the exact shape of the vortex sheet near the edge of the actuator

disk in hover is a 45◦ logarithmic spiral. Figure 4.9 shows a close up of the hovering

case near the edge of the disk. The pitch of a logarithmic spiral is the angle that any

tangent to the spiral makes with a tangent to a circle centered on the spiral at the

same radius. Drawn on the graph are lines tangent to the wake sheet at the radial

coordinate x = 1, the x location of the center of the spiral. These tangent lines have
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Figure 4.7: The shape of the wake near the edge of the actuator disk with de-
creasing climb velocity. The blue dashed line indicates the location of the actuator
disk.

a slope of −1, demonstrating graphically that the wake structure of the hovering

rotor very closely approximates a 45◦ logarithmic spiral. Interestingly, despite the

spiral structure at the edge of the disk and the resultant non-uniform induced inflow,

the final wake contraction for the hover case shown in Figure 4.8 still approaches the

value predicted by a one-dimensional momentum balance of Rc/R = 1/
√

2 ≈ 0.7071.

Additionally, our findings are in agreement with another of Spalart’s assertions,

i.e., the extent of the spiral wake shrinks in axial flight but is still present. Figure 4.7

shows that at a climb ratio of Vc/Vi = 2.11, the extent of the spiral has shrunk such

that it is no longer visible with our vortex ring discretization. However, at climb

velocities lower than this, there is still a very clear spiral structure in which the
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Figure 4.8: The shape of the wake with decreasing climb velocity. The blue dashed
line indicates the location of the actuator disk.

vortex sheet goes above the actuator disk before passing back through it.

Figure 4.10 shows streamlines for the hovering case. Note that the actuator disk

is drawing in flow from all points outside of the streamtube, including areas below

and outside the disk. This is in contrast to the notional actuator disk often depicted

as shown in Figure 4.1. Rather, fluid directly outside of the sheeet is convected

upward and eventually accelerated around the edge of the spiral before being drawn

into the actuator disk.

Figure 4.11 shows the axial and radial induced velocities at the actuator disk.

In these plots, a downwash on the disk is taken as positive. Note that we have

extended the radial coordinate to a value of 1.1, beyond the edge of the actuator
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Figure 4.9: The shape of the wake near the edge of the actuator disk for the
hovering case. Note that the tangent lines are drawn at 45◦, indicating that the
wake has formed a logarithmic spiral of 45◦ pitch.

disk, to characterize the flow in this region. For the high climb velocity case of

Vc/Vi = 17.60, we see that the axial induced velocity distribution is nearly uniform,

with a sharp dropoff at the edge of the disk to a value of approximately zero beyond

the edge of the disk. This nearly uniform inflow is in line with the classical actuator

disk assumptions. As the climb velocity decreases, however, the inflow becomes less

uniform. The most striking example is hover. There is a sharp drop in induced

inflow at r/R = 0.87, which is where the vortex sheet passes through the disk. At

points outboard of this, the induced velocity is slightly negative, which is the result

of the reversed flow at the disk’s edge. The highly non-uniform inflow distribution

over the actuator disk has been observed in numerical and analytical solutions by

Conway [68], Greenberg and Power [48], and Schmidt and Sparenberg [46], and was
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Figure 4.10: Streamlines for the hovering actuator disk.

a central topic of Spalart’s analysis of the actuator disk in [45].

The radial velocities, shown in the bottom plot of Figure 4.11, go to zero at the

center of the actuator disk and have a large negative value at the edge of the disk,

indicating radial inflow. At values of Vc/Vi at or below 0.09, we observe a significant

change in the radial velocity distribution. This is due to the formation of a larger

spiral at the edge of the disk, resulting in a radial outflow as fluid passes through

the disk before circling around the tip of the spiral and being ingested by the disk.

Finally, Figure 4.12 shows the thrust distributions for various climb velocities.

We can approximate the sectional thrust using

dT = 4πρ (VC + Vi)Virdr (4.16)
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Figure 4.11: Top: Radial distribution of induced axial velocity for varying climb
velocities. Bottom: Radial distribution of induced radial velocity for varying climb
velocities.

where Vi is the radially varying induced velocity over the disk. For clarity, we have

normalized the thrust distributions to a value of 1 at r/R = 0.75, allowing us to

easily compare the thrust distributions at different climb velocities to one another.

First, we observe that even at the high climb rates, the thrust rolls off at the tip. We

would expect within the conventional uniform inflow actuator disk model that the

thrust would be linear, with no tip roll off. However, even the high climb velocity

case experiences a small degree of non-uniformity to its induced inflow and thus

thrust at the very edge of the disk. As climb velocity decreases, the amount of this
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Figure 4.12: Radial distribution of thrust for the actuator disk with varying climb
velocities. For ease of comparison, each thrust distribution is normalized by its value
at r/R = 0.75.

rolloff increases, all the way to the hovering case, which has zero or slightly negative

thrust outboard of r/R = 0.87. This result is explained once again by the spiral

structure of the sheet creating a highly non-uniform induced inflow distribution.

4.3.2 Single Actuator Disk in Descent

Figure 4.13 shows the shape of the vortex sheet for a range of negative axial velocities,

i.e., for cases where the disk is descending and the induced wash is in the opposite

direction of the free stream. Figure 4.14 shows a zoomed out view of the same cases.

We see that for larger magnitude negative axial velocities (decreasing Vc/Vi) the

spiral at the edge of the actuator disk continues to expand. However, at values of

Vc/Vi between −0.2 and −1.9, the iterative method is unable to arrive at a converged

solution. This flow condition is commonly referred to as the vortex ring state [74].

Due to the similarity in magnitudes between the induced velocity at the disk and the

free stream velocity, and the fact that the two velocities are in opposite directions, this

flow state is characterized by significant recirculatory flow and sometimes turbulent

flow conditions. At Vc/Vi < −1.9, the descent velocity is large enough to fully reverse
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Figure 4.13: The shape of the wake near the edge of the actuator disk with various
negative climb velocities, i.e., in descending flight. The dashed lines indicate descent
velocities at which the rotor has fully transitioned into the windmill state.

the shape of the streamtube, and the iterative approach is once again able to reach

a converged shape for the wake. At these large negative values of Vc/Vi, the rotor

is still generating an upward thrust, however, it is functioning in a windmill state,

slowing the flow and removing energy from the free stream resulting in an expansion

of the streamtube. In this condition, we see that the spiral at the edge, although

small, has the same orientation as in the hover and climbing axial flight cases.

4.3.3 Single Actuator Disk with Multiple Trailed Vortex Sheets

In this section, we model an actuator disk trailing multiple vortex sheets, allowing us

to model piecewise constant circulation distributions. We have defined the sense of

vorticity on the outermost sheet as positive; therefore an increase in bound circulation

on the disk with increasing r results in a trailing vortex sheet of negative value and
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Figure 4.14: The shape of the wake with negative climb velocity, i.e., in descending
flight. The dashed lines indicate descent velocities at which the rotor has fully
transitioned into the windmill state.

vice versa.

We compare two simple cases with multiple filaments: a case with a positive

trailing vortex sheet at r/R = 0.5, corresponding to a decrease in bound circulation

outboard of this point; and a case with a negative trailing vortex sheet at r/R = 0.5,

corresponding to an increase in bound circulation outboard of this point. Both

cases are analyzed in hover. Figure 4.15 shows the shape of the wake for the two

cases, and Figure 4.16 shows the streamlines for the negative vorticity case. We

see that the negative vortex sheet results in a widening of the streamtubes, i.e.,

a slowing of the flow at the disk for radial positions inboard of the first vortex

sheet. This finding is in agreement with the work of Greenberg and Powers [48],
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who used a similar approach to model the axisymmetric flow of an actuator disk

with a piecewise uniform circulation distribution. We also observe that the case with

positive inboard trailing vorticity has a smaller final contracted radius than both the

case with negative vorticity and the case with uniform circulation (Figure 4.8). This

result is also in agreement with the conclusion of Greenberg and Powers [48], i. e.,

that additional positive vorticity on inboard sheets contributes to the contraction of

the outer sheet. The case with negative trailing vorticity reduces the extent of the

contraction relative to the uniformly loaded case. Also, having an inboard sheet of

vorticity that is positive leads to an increase in the size of the spiral at the edge of

the actuator disk and a larger region of reversed flow near the edge. The negative

vorticity case, in contrast, has a smaller spiral structure that passes back through

the disk at a location farther outboard.

Figure 4.17 compares the radial distributions of axial induced wash and thrust

for the two cases. As we expect, a positive trailing vortex sheet leads to a decrease

in both induced wash and thrust at points outboard of the sheet, while a negative

trailing vortex sheet leads to an increase in both quantities. Despite having equal

bound circulation from r/R = 0.5 to r/R = 1.0, the two cases have similar but

not identical induced wash and thrust distributions in this region. This is because

the wake shape around the edge of the disk is changed by the induced flow field of

the inboard sheet, changing the induced velocity (and therefore thrust) of the entire

actuator disk. As demonstrated by the similarity in thrust and induced velocity in

this region, however, this effect is relatively small.

4.3.4 Coaxial Actuator Disks

In this section, we investigate the wake shape and induced flow field of coaxial ac-

tuator disks in hover. We first compare cases with equal bound circulation on the

two disks, which results in unequal thrusts and torques between the two rotors due
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Figure 4.15: The shape of the wake of a non-uniformly loaded actuator disk. Each
actuator disk has a vortex sheet at the tip and at r/R = 0.5, representing either an
increase or decrease in circulation on the actuator disk, depending on the sign.

to the difference in mutually induced inflows. We then investigate cases where the

lower disk sheds a sheet of negative vorticity at its intersection with the upper disk’s

vortex sheet leading to an increase in thrust on the outer portion of the lower disk.

The net thrust distribution for this case very closely resembles the optimal rotor from

Chapter 3. We then compare the mutual interference of the two rotors predicted by

our vortex ring model to that predicted by the simple influence coefficient model

developed by McAlister et al. [49] and used in the Chapter 3 rotor optimization.

To analyze coaxial disks, we use a logarithmic spacing parameterm = 800, defined

in Eq. (4.15), for each vortex sheet. We also include a breakpoint in the wake, below
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Figure 4.16: Streamlines of the non-uniformly loaded actuator disk with a vortex
sheet at r/R = 0.5 of negative vorticity, resulting in a higher disk loading outboard
of this point.

which the ring spacing transitions from logarithmic to linear, a technique that was

found to speed up convergence of the Newton iteration. The number of rings used

varies with the vertical separation of the disks, but was between 65 and 100 per

vortex sheet for every case.

Equal circulation cases

Figure 4.18 shows the induced wash distributions and thrust distributions for coaxial

actuator disks with an axial separation of z/R = 0.3 and equal circulation on the

disks. We see from the top plot of the figure that the upper rotor has a relatively

constant induced wash distribution, with a gradual reduction in induced wash to-

wards the tip. This is in contrast to the single actuator disk in hover, shown in
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Figure 4.17: Top: Radial distribution of induced axial velocity for a non-uniformly
loaded actuator disk with a sheet of either positive or negative vorticity at r/R = 0.5.
Bottom: Radial distribution of thrust for the two cases.

Figure 4.11, where the induced wash is negative outboard of r/R = 0.87. The cause

of this is well illustrated by the streamlines shown in Figure 4.19. The outer portion

of the upper disk is subjected to a sizable wash caused by the lower disk drawing in

flow. As a result, the edge spiral is significantly less pronounced, just as the edge

spiral of a disk in axial flight is less pronounced (cf. Figure 4.7). The result is a

more uniform induced wash distribution. The lower actuator disk sees the opposite

effect: it is subjected to a small upward velocity induced by the upper rotor drawing

in flow from its sides. This is equivalent to the lower disk operating in a descending
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flight condition. The result is a more pronounced edge spiral and small or negative

induced wash outboard of where this spiral passes through the actuator disk. In the

far field, we observe that the velocity is not uniform, as the portion of the wake that

passes through both actuator disks, which extends from the hub to r/R ≈ 0.6, has

a higher velocity than the outer portion that only passes through the lower disk.

The middle plot of Figure 4.18 divides each disk’s induced wash into components

resulting from the upper disk’s vortex sheet and the lower disk’s vortex sheet. In

other words, this plot quantifies which elements of the inflow are self induced and

which are a result of the interference of the other disk. We see that the lower disk

induces a sommoth wash distribution on the upper disk that decreases somewhat

towards the tip. The upper disk induces a large positive wash over the lower disk

within its contracted wake, and a small negative induced wash over the outer portion

of the lower disk.

The third plot of Figure 4.18 shows the thrust distributions for each disk. Per

Eq. (4.16), the thrust is a product of the total mass flow through a disk and the

velocity induced by that disk. As we can see from the middle plot of the figure, the

lower disk both induces a larger wash on itself, because of the more pronounced shape

of its edge spiral, and has a larger total inflow due to the upper disk’s contracted

wake. These effects compound in the form of a much higher thrust on the lower

rotor. In total, the lower rotor generates over twice the thrust of the upper rotor.

Of course, even for constant bound circulations, the lower rotor has a step change in

thrust, as the area outside of the upper rotor’s wake sees a drop off in inflow and a

decrease in thrust.

For comparison, Figure 4.20 shows streamlines for coaxial actuator disks of equal

circulation with a (larger) vertical separation of z/R = 0.5. Because of the larger

vertical separation, the upper disk’s wake has contracted to a smaller radius before

impinging upon the lower disk.
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Figure 4.18: Top: Radial distribution of induced axial velocity for non torque-
balanced coaxial actuator disks with vertical separation of z/R = 0.3. Middle:
Radial distribution of induced axial velocity split into contributions from each of the
two disks’ vortex sheets. Bottom: Radial distribution of thrust.
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Figure 4.19: Streamlines of non-torque balanced coaxial actuator disks with a
vertical separation of z/R = 0.3.

Torque balanced cases

The coaxial actuator disks investigated in the previous section had equal circulation

distributions, which, due to differences in wake structure and mutual interference

between the two disks, results in highly unequal thrusts on the two disks. Addition-

ally, though not shown, the two disks also had very different induced powers (which,

for equal rotation rate, is equivalent to torque). In this section we investigate coax-

ial actuators disks that have equal torque, thereby more closely approximating the

actual operating state of a hovering coaxial rotor with no anti-torque device. Ad-

ditionally, we introduce a change in vorticity to the upper disk’s vortex sheet as it

passes through the lower disk to model a change in the bound circulation of the lower

disk. We set this change in vorticity to be negative, thereby causing an increase in
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Figure 4.20: Streamlines of non-torque balanced coaxial actuator disks with a
vertical separation of z/R = 0.5.

the thrust generated by the lower rotor outboard of this trailed vortex. Using this

technique, we are able to approximate the thrust distributions of the optimal coaxial

rotor found in Chapter 3 and make direct comparisons of our vortex ring model’s

mutual interference to the influence coefficient model used for the optimization. We

compute the differential induced power of a given actuator disk using

dPi = VidT (4.17)

in combination with Eq. (4.16)

Figure 4.21 shows the axial induced wash and differential thrust distribution for

torque balanced actuator disks with a vertical separation of z/R = 0.16, the same

vertical separation used on the optimized coaxial rotor of Chapter 3. Note that the

far field induced wash is now uniform within the slipstream, in contrast to the non-
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torque balanced case shown in Figure 4.18 where there was a non-uniform far field

flow. In the middle plot of Figure 4.21, we see a large increase in the self-induced

velocity of the lower rotor at r/R = 0.85. This is caused by the change in vorticity of

teh upper disk’s vortex sheet as it passes through the lower disk. Finally, the thrust

distributions shown in the bottom plot also reflect this large increase in circulation

due to the additional trailed vorticity. To achieve equal induced power losses, the

upper disk generates 56% of the total system thrust, which is a similar thrust sharing

ratio to that found in Chapter 3.

Figures 4.22 and 4.23 show the streamlines for torque balanced cases with vertical

separations of z/R = 0.16 and z/R = 0.3, respectively. Although not plotted here,

the z/R = 0.3 case has a qualitatively similar thrust distribution to the z/R = 0.16

case, with a large increase in thrust over the outer portion of the lower disk. Not

surprisingly, we observe a very slight expansion in the upper disk’s vortex sheet as it

passes through the lower disk and changes vorticity. This is slightly more pronounced

in the z/R = 0.3 case.

Finally, Figure 4.24 compares the mutual interference predicted by our vortex

ring model to that predicted by the influence coefficient model developed by McAl-

ister et al. [49]. The McAlister coefficient model was used in the Chapter 3 BEMT

coaxial optimization to predict the influence of the lower rotor on the upper rotor.

Additionally, it was used to determine the contraction of the upper rotor’s wake

at the lower rotor. The upper rotor’s outflow was then mapped to this contracted

radius on the lower rotor and scaled to conserve mass. Compared to the present

actuator disk model, the influence coefficient model underpredicts the wash on the

upper rotor induced by the lower rotor, and does not capture the increased induced

flow near the edge of the disk. The influence of the upper rotor on the lower rotor is

qualitatively similar between the two models. Inside of the contracted streamtube,

the predicted induced velocities are in reasonably good agreement. Outside of the
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Figure 4.21: Top: Radial distribution of induced axial velocity for torque-balanced
actuator disks with vertical separation of z/R = 0.16. Middle: Radial distribution
of induced axial velocity split into contributions from each of the two disks’ vortex
sheets. Bottom: Radial distribution of thrust.
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Figure 4.22: Streamlines of torque balanced coaxial actuator disks with a vertical
separation of z/R = 0.16.

contracted streamtube, the influence coefficient model assumes zero influence on the

lower rotor, while the actuator disk model predicts a small negative induced veloc-

ity drawn up through the lower rotor by the upper rotor. As a final observation,

the predicted wake contraction as a function of vertical separation by the influence

coefficient model is in good agreement with our actuator disk model.

4.4 Conclusions

We have developed a vortex ring model of the axisymmetric flow through an actuator

disk. We represent the continuous vortex sheet of the wake using discrete vortex rings

with non-uniform spacing. We impose a no through flow boundary condition on the

vortex sheet and determine its position via Newton iteration. The model can be
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Figure 4.23: Streamlines of torque balanced coaxial actuator disks with a vertical
separation of z/R = 0.3.

used for multiple vortex sheets, allowing us to analyze non-uniformly loaded single

and dual coaxial actuator disks. We investigated a variety of cases and arrived at

the following conclusions:

1. The singularity that occurs where the vortex sheet terminates at the edge of

the actuator disk is resolved through the formation of a 45◦ logarithmic spiral

in hover, as originally hypothesized by Spalart [45]. The spiral structure of

the wake results in a non-uniform inflow, particuarly near the edge of the disk,

that includes reversed flow through the actuator disk.

2. In axial flight, the size of this spiral decreases, although it is always theoretically

present, vanishing in the limit where Vc/Vi approaches infinity.
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Figure 4.24: Top: Comparison of the mutual interference predicted by the ax-
isymmetric potential flow vortex ring model with those predicted by the influence
coefficient model of McAlister [49] for a vertical separation z/R = 0.16. Bottom:
Same comparison for a vertical separation of z/R = 0.3.

3. In the case of descending flight, the size of the spiral structure increases with

descent rate until the wake enters the vortex ring state. In the vortex ring

state, no converged solution can be found using the methods described here.

Once the descent velocity is sufficiently high, the disk enters a windmill state,

which also produces a spiral vortex sheet structure at the actuator disk tip of

the same orientation as the climb and hover cases. In the windmill state, the

vortex sheet convects in the direction of the free stream flow, compared to the
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low descent velocity cases where the vortex sheet convection and free stream

are in opposite directions.

4. Actuator disks with multiple vortex sheets still contain the spiral structure

at the terminus of the sheet, although the spiral is significantly smaller (or

undetectable) on the inboard filaments. The case with multiple trailed vortex

sheets of positive vorticity increases the total contraction of the wake, while

the case with an inboard sheet of negative vorticity decreases the final wake

contraction.

5. Coaxial actuator disks have a pronounced spiral structure on the lower disk,

where the upwash induced by the upper disk acts as a descent velocity for the

edge of the lower disk. The upper disk sees the opposite effect, with a net

flow through the disk in the traditional direction induced by the lower disk,

suppressing the spiral structure and more closely resembling an actuator disk

in climbing axial flight.

6. For the non-torque-balanced coaxial actuator disks, the far field flow is not

uniform, but rather has a change in velocity from the fluid that passes through

both actuator disks and the fluid that enters the slipstream through the lower

disk only. For both torque-balanced coaxial cases analyzed here, the far field

velocities are nearly uniform.

7. The mutual interference effects predicted by our vortex ring model agree rea-

sonably well with the predictions made using the influence coefficient model

of McAlister et al. [49] and used in Chapter 3, with two notable differences.

First, the influence of the lower rotor on the upper rotor is underpredicted by

the McAlister model compared to the vortex ring model. Second, the influence

of the upper rotor on the outer portion of the lower rotor is approximated
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as zero in the McAlister model, while the vortex ring model predicts a small

upwash through the lower disk in this region.
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5

Multipoint Optimization of Conventional and
Coaxial Helicopters

In Chapter 2 we described a technique for determining the optimal blade twist, chord

distribution, and periodic blade pitch inputs for a conventional or coaxial rotor in

high speed forward flight, using either conventional collective and cyclic or higher

harmonic control. We applied this method to a compound vehicle in forward flight

operating at a single high speed advance ratio. In the design of a practical rotor,

it may be advantageous to optimize rotor design to balance performance between

two or more flight conditions, for example, between two different advance ratios or

between a forward flight advance ratio and hover. As evidenced by the optimal

forward flight coaxial rotors shown in Chapter 2 (cf. Figure 2.5) and the optimal

hovering rotor design of Chapter 3 (cf. Figure 3.15), the hovering and high speed

flight regimes have considerably different optimal designs. It is interesting to explore

what rotor design best balances performance between these two conditions, and what

performance tradeoffs must be made at each flight condition to achieve a balanced

solution.
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There have been a number of previous investigations on the effect of rotor blade

shape and geometry on helicopter rotor performance at multiple flight conditions.

Johnson [16], Yeo and Johnson [22, 75], Johnson, Moodie, and Yeo [23], and Moodie

and Johnson [7] have all sought to optimize various rotor parameters – including

blade twist and chord distributions – of a compound helicopter configuration to bal-

ance hover and forward flight performance. In each of these studies, a rotor design

that optimizes the performance between two conditions was typically determined

using parametric variation informed by the sensitivities of a very limited number of

design variables describing blade chord and twist. The performance of each com-

bination of twist variables was computed using the comprehensive code CAMRAD

and then examined graphically in a plot of forward flight performance versus hover

performance.

Rand and Khromov [25] describe a method for performing a multipoint optimiza-

tion of compound helicopters. The authors were able to determine the hover-forward

flight Pareto frontiers, defined as the set of rotor designs for which it is impossible to

improve upon the performance in one of the two flight conditions without degrading

the performance in the other [76], by first randomly varying important design param-

eters and plotting the hover versus cruise performance. Figure 5.1 shows the results

of this first step, with each point indicating a given rotor design and red solid lines

indicating the apparent Pareto frontiers. Designs that are “non-dominated,” i.e.,

near the apparent Pareto frontier, were then further optimized via gradient based

optimization techniques.

In this chapter, we describe a method for performing a multipoint optimization

that is capable of mapping the entire Pareto frontier directly for any arbitrary number

of design variables, eliminating the need to evaluate the performance of a rotor for

hundreds or thousands of random parametric variations. The problem is posed as

a constrained optimization problem and solved directly using Newton iteration. We
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Figure 5.1: Pareto frontiers for various forward flight velocities and hover, deter-
mined by randomly varying design variables, from Rand and Khromov [25].

apply the method to both conventional and coaxial rotors, for both hovering and

forward flight conditions, and for both conventional (collective and cyclic) blade

pitch control and higher harmonic control.

5.1 Approach: Cruise/Cruise Multipoint Optimization

For a single point forward flight optimization, we use the approach described in

Chapter 2 to determine the design variables that minimize total power while produc-

ing a certain lift and/or thrust, and keep the helicopter in pitch and roll trim. For

ease of reference, we provide here a very brief summary of the single point forward

flight optimization. The aerodynamic model we use is a lifting-line/vortex-lattice

model, that is, the blades are modeled with a single line of vortex filaments and the

prescribed wake is modeled with a lattice of quadrilateral vortex rings. Sectional

drag polars modeled using C81 tables are used to account for profile losses, including
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both viscous and compressible losses.

Using this lift-line/vortex-lattice model, the unknown circulation strengths are

related to the blade geometry and control inputs through a set of nonlinear equations

of the form

R(Γ,θ) (5.1)

where Γ is the vector of circulation values at a number of discrete spanwise and

azimuthal locations, and θ is the vector of rotor design variables and control inputs.

The vector of design variables θ can include fixed blade twist and blade chord dis-

tributions along the blade span, and conventional or higher harmonic blade pitch

control inputs.

The aerodynamic forces and moments acting on the rotor and given in integral

form in Eqs. (2.1) and (2.2) can be expressed in terms of the circulation, i.e.,

F = BΓ (5.2)

M = DΓ (5.3)

where B and D are matrices relating the circulation distribution to the forces and

moments generated, respectively.

Additionally, the total power loss for the rotor (the wasted power) is given by

P =
1

2
ΓTKΓ + Pv (5.4)

The matrix K relates the circulation distribution Γ to the induced power Pi. Pv is

the profile power loss, and accounts for both viscous and compressible contributions

to the drag of the airfoil (cf. Eqs. (2.7) and (2.9) from Chapter 2).

To cast the problem as a variational problem, we adjoin to the power (the cost

function to be minimized) the force and moment constraints using Lagrange multi-

pliers, that is,

Π =
1

2
ΓTKΓ + Pv + λTF · (BΓ− FR) + λTM · (DΓ−MR) + λTR ·R(Γ,θ) (5.5)
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where MR and FR are the prescribed forces and moments. To find the constrained

optimum, one takes the variation of Eq. (5.5) and sets the result to zero for arbitrary

variations in the unknown circulation, control inputs, and Lagrange multipliers. The

result is a large set of nonlinear algebraic equations that are solved numerically for

the optimum.

To perform a multipoint optimization, the process is similar except that now we

consider two flight conditions denoted by the subscripts 1 and 2. These two flight

conditions could represent different advance ratios, tip Mach numbers, disk loadings,

elevation, or other conditions of interest. Of course, the blade geometries (chord and

twist distributions) will be the same for the two flight conditions. The azimuthal

variation of blade pitch, on the other hand, will necessarily be different for the two

flight conditions to maintain flight trim. Thus, the total set of design variables

describing the rotor geometry and control inputs for the two flight conditions are

θ =


θtwist
θchord
θroot1
θroot2

 (5.6)

where θtwist and θchord are the design variables that describe the common fixed

blade twist and chord distributions, respectively. θroot1 and θroot2 describe the

root pitch inputs (conventional or higher harmonic control) at flight condition 1 and

2, respectively, which are independent and have no effect on rotor performance at

the other flight condition.

Because the two flight conditions in general occur at different advance ratios, the

wake geometries for the two conditions will be different, and separate vortex lattice

grids must be used for each. Therefore, the matrices A, B, D, and K, as well as the

circulation vector Γ, will differ for the two conditions, and are distinguished by the

subscripts 1 or 2.
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In the multipoint optimization, we minimize a weighted sum of the power loss

for the two flight conditions, with a weight of α applied to flight condition 1 and β

to flight condition 2, where β = 1 − α. When α = 1, for example, the optimization

minimizes only the power at the first flight condition, while satisfying the trim con-

straints and evaluating performance at both flight conditions. By varying α between

0 and 1, we are able to find the Pareto frontier.

As before, we seek to minimize the (weighted) power loss, while satisfying the

trim constraints at the two flight conditions. Thus we adjoin separate (unweighted)

moment and force constraints for each flight condition to the power loss. The result-

ing Lagrangian power is given by

Π = α

(
1

2
ΓT

1 K1Γ1 + Pv1

)
+ β

(
1

2
ΓT

2 K2Γ2 + Pv2

)
+ λF1

T · (B1Γ1 − FR1) + λF2
T · (B2Γ2 − FR2)

+ λM1
T · (D1Γ1 −MR1) + λM2

T · (D2Γ2 −MR2)

+ λR1 ·R1(Γ1,θ) + λR2 ·R2(Γ2,θ) (5.7)

where

R1(Γ1,θ) = R2(Γ2,θ) = 0 (5.8)

We can approximate the change in the circulation due to a change in design variables

at each flight condition by

Γ1 ≈ Γ01 + A1∆θ

Γ2 ≈ Γ02 + A2∆θ
(5.9)

where Γ01 and Γ02 are the circulation distributions at flight conditions 1 and 2 at the

current estimate of the design variables θ. The matrices A1 and A2 are obtained by

linearizing Eq. (5.8) and are derived in Appendix A.

Substituting Eq. (5.9) into Eq. (5.7) and setting the variation of Π to zero for
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arbitrary changes in the design variables and Lagrange multipliers gives the desired

system of linearized equations for the multipoint optimization, i.e.,


1
2αAT

1 (K1 + KT
1 )A1 + 1

2βAT
2 (K2 + KT

2 )A2 AT
1 BT

1 AT
1 DT

1 AT
2 BT

2 AT
2 DT

2

B1A1 0 0 0 0
D1A1 0 0 0 0
B2A2 0 0 0 0
D2A2 0 0 0 0




∆θ
λF1

λM1

λF2

λM2

 ≈

−α(AT

1 K1Γ01 − kv1)− β(AT
2 K2Γ02 − kv2)

FR1 −B1Γ01

MR1 −D1Γ01

FR2 −B2Γ02

MR2 −D2Γ02

 (5.10)

The terms Kv1 and Kv1 are the gradients of the profile power terms Pv1 and Pv2 with

respect to the change in design variables and are also derived in Appendix A.

Equation (5.10) describes (approximately) a single Newton step in the direction of

the constrained minimum. Because we use piecewise linear C81 tables to describe the

profile drag, we omit the Hessian matrix terms associated with the profile power that

appears on the left-hand side. Equation (5.10) is solved for the change in the design

variables, ∆θ, and the design variables θ are then updated. We then update the

circulation at each flight condition such that R1(Γ1,θ) = 0 and R2(Γ2,θ) = 0, i.e.,

we solve for Γ1 and Γ2 using the vortex lattice solver. Next, we update the matrices

A1 and A2 at the new set of design variables, and continue iterating until the design

variables have converged to a set that satisfies the trim constraints and minimizes

the weighted sum of total power. Finally, we repeat this optimization procedure for

a range of values of α between 0 and 1 to map out the Pareto frontier. Note that

we also include an inequality constraint on the minimum allowable chord value (not

shown in Eq. 5.10) to prevent unrealistically small or negative chord distributions.

When activated, this constraint is implemented using Mathematical Programming

via Augmented Lagrangians.
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5.2 Computational Results: Cruise/Cruise Multipoint Optimization

In this section, we apply the multipoint optimization technique to two different rotor

systems – a conventional four-bladed rotor and a coaxial rotor system comprised of an

upper and lower four-bladed rotor. For each rotor system, we perform a multipoint

optimization for two different forward advance ratios. In a later section, we perform a

multipoint optimization of these same rotors for a combination of hover and forward

flight conditions.

5.2.1 Conventional Rotor

We first perform an optimization analysis for a conventional rotor in forward flight,

which is intended to roughly approximate the AH-64 Apache rotor. The coefficient

of lift of the vehicle is prescribed to be CL = 0.00926. The rotor has a 10% root

cutout and operates at a shaft angle of −5◦ (tilted forward in the flight direction).

We use a NACA0012 airfoil from root to tip and use C81 data tables to model the

sectional coefficients of lift and drag based on the local angle of attack and local

normal Mach number. Note that this analysis does not account for blade dynamics

such as flapping or lead/lag motion (we assume a rigid rotor). Table 5.1 lists the

parameters for the two design points analyzed: a low speed advance ratio of µ = 0.2,

and a high speed advance ratio of µ = 0.5.

Table 5.1: Conventional Rotor Parameters.

Hover Flight Condition 1 Flight Condition 2
Advance ratio, µ 0.0 0.20 0.50

Relative tip Mach number 0.0 0.65 0.90
Coefficient of lift 0.00926 0.00926 0.00926

Shaft angle 0.0◦ -5.0◦ -5.0◦

Using the techniques described in the previous section, we computed the optimal

rotors along the Pareto frontier. For these calculations, we used a vortex-lattice mesh
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Figure 5.2: Pareto frontiers for a conventional rotor using N = 1, N = 2, and
N = 3 harmonic control.

with 18 quadrilateral vortex ring elements in the spanwise direction and 15 elements

in the azimuthal direction per quarter turn for each of the four blades for a total of

1080 vortex ring elements of unknown strength at each flight condition. Images of

these vortex rings are repeated for multiple quarter turn revolutions of the rotor to

form a complete wake extending 40 quarter revolutions from the primary lattice.

The computed power loss Pareto frontiers are shown in Figure 5.2 for varying

levels of higher harmonic control. The notation N = 1 means harmonic blade pitch

controls up to 1/rev are used (collective and cyclic); N = 2 means harmonics up to

2/rev control are used, and so on. Plotted is the total power loss at µ = 0.5 versus

the total power loss at µ = 0.2 along the Pareto frontier. The value of the weighting

parameter α decreases as these lines are traversed from left to right, shifting the

weighting of the power loss from the µ = 0.2 to the µ = 0.5 flight condition.

We see in Figure 5.2 that there are significant performance tradeoffs to be made

when designing a conventional rotor operating at these two disparate flight condi-

tions. Consider first the case of conventional swashplate control (N = 1). The most

efficient rotor at µ = 0.2 (α = 1) is highly inefficient at the high speed (µ = 0.5)
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flight condition, with power losses nearly four times the losses for a rotor design to

operate only at µ = 0.5 (α = 0). Selecting an intermediate value of α that more

evenly weights the performance of the rotor at both flight conditions dramatically

reduces the total power loss for the high speed condition, with an attendant modest

increase in total power loss at the low speed condition. For example, using the rotor

found for α = 0.8 produces a rotor with near minimum power loss at the high speed

flight condition (µ = 0.5), with a power loss at the low speed condition (µ = 0.2)

only 11% greater than a single point design at µ = 0.2

Higher harmonic control further reduces the total power loss, pushing the Pareto

frontier down and to the left. Note that adding additional degrees of freedom to the

design space, in this case higher harmonics of blade pitch control, will always improve

the Pareto frontier – or at worst leave it unchanged. Higher harmonic control is seen

here to be particularly effective at moving the Pareto frontier for values of α in the

range of 0.8 to 0.98. In particular, the α = 0.8 solution is seen to move the “knee” or

“corner” of the frontier well to the left, producing a rotor with nearly minimum total

power loss at the high speed flight condition, with only a small increase in power

over the single point minimum at the low speed condition.

Figures 5.3 and 5.4 show the optimal rotor designs using N = 1 and N = 3

harmonic blade pitch control, respectively, for various values of α. For both levels of

harmonic control, the α = 1.0 blade (designed to minimize power at µ = 0.2) has a

monotonically decreasing twist distribution from root to tip. The rotors optimized

using values of α below 1.0, thus including some weighting for the µ = 0.5 flight

condition total power loss, instead use a positive twist gradient on the inner 10% of

the rotor. Additionally, the α = 1.0 (low speed limit) planforms (for both N = 1 and

N = 3) have a large chord on the inboard portion of the blade that tapers towards

the tip. The α = 0.0 (high speed limit) planforms have narrow chords at the root,

with chords increasing to a maximum near a radius of 80% the tip radius. Especially
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Figure 5.3: Optimal rotor designs for N = 1 control with varying values of α for a
conventional rotor.

for the N = 3 case, the chord at the root is unrealistically small. (In an earlier

paper, the authors have applied root chord constraints to prevent this problem [40].)

For multipoint designs, e.g., N = 3 and α = 0.8, the blade planform appears quite

reasonable, with a nearly constant chord, with a slight bulge in the chord at a radius

of 80% and a slight taper outboard.

5.2.2 Coaxial Rotor

Next, we perform a multipoint optimization analysis for a slowed rotor coaxial system

of the type found on the Sikorsky X2 Technology Demonstrator (X2 TD), with two

coaxial counterrotating four bladed rotors. We optimize the performance between

two design points: a low speed flight condition (µ = 0.30), and the high speed design

intent advance ratio (µ = 0.85) as described by Bagai [12]. Each rotor has a root

cutout of 10% and a vertical separation of 10% of the rotor diameter. Again, we

neglect blade dynamics, a reasonable assumption for the rigid rotors used on the
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Figure 5.4: Optimal rotor designs for N = 3 control with varying values of α for a
conventional rotor.

Table 5.2: Coaxial Rotor Parameters.

Hover Flight Condition 1 Flight Condition 2
Advance ratio, µ 0.0 0.30 0.85

Relative tip Mach number 0.0 0.75 0.90
Coefficient of lift, CL 0.0166 0.0166 0.0232

Shaft angle 0.0◦ -5.0◦ -5.0◦

X2 TD and other coaxial lift offset rotors. Note that we allow the geometries of the

upper and lower rotors to differ from one another.

Because of the difference in rotor speed for the two advance ratios, the nondi-

mensional disk loading will vary between the two advance ratios. Additionally, the

tip Mach number will vary based on rotor rotation rate and vehicle speed. Relevant

parameters for the two design conditions were estimated using Figures 9 and 10 in a

paper by Bagai [12] and are shown in Table 5.2.

The power loss Pareto frontier is shown in Figure 5.5 for varying levels of harmonic
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Figure 5.5: Pareto frontiers for a coaxial rotor using N = 1, N = 2, and N = 3
harmonic control.

control. Higher harmonic control of the azimuthal blade pitch (N = 2 and N =

3) dramatically reduces the power loss of optimal rotors at the high-speed flight

condition (µ = 0.85). While higher harmonic control does not significantly affect the

shape of the Pareto frontier, it significantly reduces power at the high-speed flight

condition, improving performance across all values of α. The reductions in power

at the low-speed condition (µ = 0.3) are more modest, and only for rotor designs

heavily weighted for good performance at the low-speed condition (α ≈ 1).

Also, each of the Pareto frontiers has a fairly sharp “corner” or “knee,” which

corresponds to a value of α ≈ 0.8. For this weighting, the performance of the

multipoint optimized coaxial rotor at the two different advance ratios is nearly as

good as the performance of rotors optimized separately at these two flight conditions.

In other words, there is only a small penalty in performance for designing for the

two flight conditions.

Figures 5.6 and 5.7 show the optimal rotor design for N = 1 and N = 3 harmonic

control at varying values of α. Note that while there are some small changes in

planform and twist distribution with varying α, in general each of the rotors looks
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Figure 5.6: Optimal rotor designs for N = 1 control with varying values of α for a
coaxial rotor.

very similar. The similarity of each of these rotors is expected based on Figure 5.5,

as the multipoint design would likely be unable to achieve near-optimal performance

at both flight conditions if the single point optimal rotors were significantly different.

This is again in contrast to the conventional rotor analyzed in the previous section,

in which the α = 0 and α = 1 rotors had significantly different twist and chord

distributions that could not be succesfully combined to achieve close to optimal

performance at both flight conditions.

5.3 Approach: Hover/Cruise Multipoint Optimization

In this section, we describe a multipoint optimization algorithm for the design of a

rotor operating at two flight conditions, one in hover and the other in cruise. The

hover flight condition represents an additional challenge, because the hover perfor-

mance cannot be modeled using the prescribed rigid vortex-lattice wake analysis used

for forward flight conditions.
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Figure 5.7: Optimal rotor designs for N = 3 control with varying values of α for a
coaxial rotor.

In selecting a method of hover analysis, we seek an approach that is computa-

tionally inexpensive, extendable to coaxial rotors, and reasonably accurate. Based

on the results of the Chapter 3 coaxial hover optimization and the findings of other

researchers [19, 59], we choose to use BEMT to analyze the hovering flight conditions

for both conventional and coaxial rotors because of its accuracy, simplicity, and com-

putational efficiency. We choose to neglect the swirl component of induced velocity

based on the similarity in performance and optimal rotor design between the swirl

and no swirl cases (cf. Chapter 3) and the added complexity of including swirl.

For this analysis, we use the Prandtl tip loss factor to account for the presence of

a finite number of blades. We account for the induced velocities of the upper rotor

on the inner portion of the lower rotor and assume the upper rotor and outer portion

of the lower rotor are unaffected by the mutual interference of the rotors. However,

a more refined accounting of the mutual interferences of the rotors can be included

in this analysis, for example by using the influence coefficient method described by
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Rand and Khromov [20].

The fundamental equations and assumptions for BEMT as applied to coaxial

rotors are outlined in Chapter 3.

For a single point optimization of a given hovering or axial flight condition, it

is relatively straightforward to determine the spanwise induced wash distribution

that results in minimum induced power using the calculus of variations and BEMT

as described by Rand and Khromov [20] and as was performed in Chapter 3 for

both the swirl and no swirl cases. The profile power can then be minimized at

this minimum induced power wash distribution by setting the chord and twist to

maximize the value of c`/cd at every radial station while maintaining the minimum

power induced wash distribution. Note that sequentially minimizing the induced

and profile powers is not guaranteed to minimize total power. Nevertheless, we have

found this approach provides a solution very close to the minimum total power blade

design.

This optimization method, although efficient, cannot be combined with our exist-

ing forward flight analysis to perform a hover/cruise multipoint optimization. This is

because the set of design variables that minimizes our multipoint objective function,

Eq. (5.19), is found using Newton iteration, as required by our single point forward

flight optimization. In order to mesh the hover optimization with our forward flight

model to simultaneously solve our multipoint objective function, the hover optimiza-

tion must also be solved using Newton iteration. As a result, we cast the hover

optimization as a Newton iteration, allowing us to efficiently incorporate hover into

the multipoint optimization.

We first consider solving for the optimal single point design of a rotor system in

hover using Newton iteration. For a coaxial rotor in hover, we seek to minimize the

total power subject to constraints that the upper and lower rotors produce equal

and opposite torques, and that the total thrust be equal to a specified value. Thus,
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we adjoin to the power the thrust and power constraints using Lagrange multipliers,

with the result

Π = Ptot + λT (T − TR) + λQ(Pu − P`) (5.11)

The power and thrust are a function of the design variables, which include the twist

and chord distributions the blades of the upper and lower rotors.

To solve the optimization problem with Newton iteration, we start with some

initial guess of the design variables θ. We then find the second-order Taylor expansion

of the power in terms of the design variables, i.e.,

Ptot (θ + ∆θ) ≈ Ptot (θ) +

∆θT
∂Ptot (θ)

∂θ
+

1

2
∆θT

∂2Ptot (θ)

∂θ2
∆θ (5.12)

Similarly, the total thrust and the power of the upper and lower rotors can be ap-

proximated with the first-order Taylor expansions

T (θ + ∆θ) ≈ T (θ) + ∆θT
∂T (θ)

∂θ
(5.13)

Pu (θ + ∆θ) ≈ Pu (θ) + ∆θT
∂Pu (θ)

∂θ
(5.14)

P` (θ + ∆θ) ≈ P` (θ) + ∆θT
∂P` (θ)

∂θ
(5.15)

Substituting these expansions into Eq. (5.11), and simplifying notation by noting

that all values of P and T are those found at the current set of design variables θ,

e.g., P = P (θ), gives

Π = Ptot + ∆θT
∂Ptot

∂θ
+

1

2
∆θT

∂2Ptot

∂θ2
∆θ

+ λT

(
T (θ) + ∆θT

∂T

∂θ R

)

+ λQ

(
Pu + ∆θT

∂Pu

∂θ
− P` −∆θT

∂P`
∂θ

)
(5.16)
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Next, to find an estimate of the constrained optimum design, we take the variation

of this expression with respect to the change in design variables ∆θ and the Lagrange

multipliers with the result

δΠ = 0

=

(
∂Ptot

∂θ
+
∂2Ptot

∂θ2
∆θ + λT

∂T

∂θ
− λQ

[
∂Pu

∂θ
− ∂P`

∂θ

])
δ∆θ

+

(
T + ∆θT

∂T

∂θ
− TR

)
δλT

+

(
Pu + ∆θT

∂Pu

∂θ
− P` −∆θT

∂P`
∂θ

)
δλQ (5.17)

Equation (5.17) must be zero for arbitrary variations δ∆θ, δλT , and δλQ. Therefore,

the terms in parentheses must be identically zero. The result is a system of linear

equations describing the change in the design variables, i.e.,
∂2Ptot
∂θ2

∂T
∂θ

T ∂(Pu−P`)
∂θ

T

∂T
∂θ

0 0

∂(Pu−P`)
∂θ

0 0




∆θ
λT
λQ

 =


−∂Ptot

∂θ

TR − T

P` − Pu

 (5.18)

Equation (5.18) is solved for the unknown change in design variables and Lagrange

multipliers, and the design variables are updated. The entire process is then repeated

until a converged design is found, and is effectively a Newton iteration.

While in reality the power of each rotor is not independent of the other rotor’s

design variables (for instance, the lower rotor’s power is directly affected by the upper

rotor’s design and resulting wake), in using only first order gradient terms to satisfy

the torque constraint, we make the simplifying but incorrect assumption that they

are independent, i.e., that the upper rotor design variables only affect the upper

rotor’s power and that the lower rotor design variables only affect the lower rotor’s

power. This assumption is acceptable to satisfy the torque constraint, and is not

made in the second order expression for total power that we are seeking to minimize.

The algorithm described above is implemented in Fortran 95. The derivative

terms in Eq. (5.18) are difficult to express analytically. Instead, we use the Tapenade

138



automatic differentiation compiler [73] in reverse (adjoint) mode to generate the

Fortran code needed to compute the gradient terms, and the forward differentiation

mode of Tapenade to generate the code to compute the Hessian matrix.

Having described the single point hover optimization problem, we next consider

the multipoint optimization of a rotor operating at two flight conditions, one in hover

and one in cruise. We seek to minimize the weighted sum of the total power loss at

the two flight conditions, again subject to trim constraints. Thus, our Lagrangian

power is given by

Π = α

(
1

2
ΓT

1 K1Γ1 + Pv1

)
+ βPtot + λR1 ·R1(Γ1,θ)

+ λF1
T · (B1Γ1 − FR1) + λM1

T · (D1Γ1 −MR1)

+ λT (T − TR) + λQ(Pu − P`) (5.19)

where the forward flight power is weighted by α and the hover power is weighted by

β. By combining the powers from the two disparate flight conditions (and, there-

fore, very different computational analysis techniques) in this way, we express the

multipoint objective function as a simple sum of powers and constraints dependent

on common design variables, making the formulation of the multipoint optimization

relatively straightforward.

Next, taking the variation of Π and setting the result to zero gives


1
2
αAT

1 (K1 + KT
1 )A1 + β ∂

2Ptot
∂θ2 AT

1 BT
1 AT

1 DT
1

∂T
∂θ

T ∂(Pu−P`)
∂θ

T

B1A1 0 0 0 0
D1A1 0 0 0 0
∂T
∂θ

0 0 0 0
∂(Pu−P`)

∂θ
0 0 0 0




∆θ
λF1

λM1

λT
λQ

 =


−α(AT

1 K1Γ01 − kv1)− β ∂Ptot
∂θ

FR1 −B1Γ01

MR1 −D1Γ01

TR − T
P` − Pu

 (5.20)
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Once we have solved the Eq. (5.20) system of linear equations, we update the

total vector of design variables and recompute the thrust and power at the new set

of design variables. We then recompute the gradients and Hessian and iterate until

the design variables have converged.

5.4 Computational Results: Hover/Cruise Multipoint Optimization

In this section, we apply the multipoint optimization technique to the same two rotor

systems previously considered a conventional four-bladed rotor and a coaxial rotor

system with four-bladed rotors – but now designed to operate in both hover and

high-speed forward flight conditions.

5.4.1 Conventional Rotor

The conventional rotor parameters are given in Table 5.1. For the case considered

here, the forward flight power loss (condition 2 in Table 5.1) is weighted by α; the

hover total power is weighted by β. For these calculations, we again used a vortex-

lattice mesh with 18 quadrilateral vortex ring elements in the spanwise direction and

15 elements in the azimuthal direction per quarter turn for each of the four blades

for a total of 1080 vortex ring elements of unknown strength for the forward flight

condition, with images of these vortex rings extending 40 quarter revolutions from

the primary lattice. For the hover power computations, we discretized the rotor using

18 spanwise stations to match the spanwise discretization for the forward flight mesh.

Figure 5.8 shows the Pareto frontiers for varying levels of harmonic control. Plot-

ted is the inverse of the figure of merit (FOM) versus the high-speed cruise power.

We see there is is a large tradeoff in performance between hover performance and

cruise performance. No single design can achieve performances close to the single

point optimum at both flight conditions, even when using N = 3 harmonic control.

Higher harmonic control provides a benefit in the multipoint optimization by

reducing power in forward flight, improving the Pareto frontier across all values of

α. Note that for all levels of harmonic control, there is a fairly sharp knee around

α = 0.2. These rotor designs have minimum cruise power loss, with some moderate
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Figure 5.8: Hover/cruise Pareto frontiers for a conventional rotor using N = 1,
N = 2, and N = 3 harmonic control.

penalty in hover performance.

The single point optimal hovering rotor, which corresponds to a value of α = 0

and is shown in Figure 5.9, is not capable of achieving trimmed flight at µ = 0.5,

even with N = 3 harmonic control. In Figure 5.8, we show results for the low forward

flight weighting of α = 0.01, which leads to some slight variation in hover performance

between the different levels of harmonic control. Note that the single point hovering

flight limit (α = 0) is the same regardless of the level of harmonic control. Because

of the azimuthal symmetry of the hover problem, 1/rev and higher harmonic control

cannot reduce power. For reference, the single point optimal hovering rotor has an

inverse figure of merit of 1.18.

Figures 5.9 and 5.10 show the optimal conventional rotor designs using N = 1

and N = 3 harmonic control at varying values of α. Note that the planform and

twist distributions of the optimal hovering rotor (α = 0.0) and the optimal µ = 0.5

forward flight rotor (α = 1.0) are dramatically different. The optimal hovering

rotor has the expected hyperbolic twist and chord distribution (modified slightly

to maintain optimality with the inclusion of the Prandtl tip loss factor), while the

optimal forward flight rotor has a positive twist on the inner 10% of the blade, as
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Figure 5.9: Optimal hover/cruise multipoint rotor designs for N = 1 control with
varying values of α for a conventional rotor.

well as a very small inboard chord that increases to a peak chord at a radial position

of about 80% span. Varying α tends to blend these two disparate blade designs,

although certain features in the optimized hovering rotor, such as the very large

twist and chord distributions on the inner portion of the blade, disappear almost

immediately with increasing nonzero α.

5.4.2 Coaxial Rotor

We now analyze the coaxial rotor based on the Sikorsky X2 TD as previously de-

scribed. The rotor parameters are given in Table 5.2. For the case considered here,

the forward flight power loss (condition 2 in Table 5.2) is weighted by α; the hover

total power is weighted by β. In the hover analysis, we assume a wake contrac-

tion ratio of rc/R = 0.82. The figure of merit for the hover condition is defined as

FOM = C
3/2
T /
√

2CP . (Note for co-axial rotors, there is not a single standard for

measuring figure of merit. Leishman et al. [60] present alternative definitions of the

figure of merit.)
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Figure 5.10: Optimal hover/cruise multipoint rotor designs for N = 3 control with
varying values of α for a conventional rotor.

Figure 5.11 shows the computed Pareto frontiers for the coaxial hover/cruise

multipoint optimization for varying levels of harmonic control. There is no longer

the sharp corner present in the cruise/cruise coaxial multipoint optimization; rather,

there is no single rotor design that can achieve close to optimal performance between

the two flight conditions. Again, as we expect, higher harmonic control does not

provide a benefit to rotors optimized only for hover (α = 0). However, N = 2

and N = 3 control is effective at reducing the optimal hovering rotor’s power loss

in forward flight. In general, higher harmonic control provides large benefits to

performance across the entire Pareto frontier.

It is also interesting to note that a rotor designed only for forward flight (α = 1)

results in an increase in hovering power of only about 5 to 7 percent above the

hover only optimum (α = 0), depending on the level of harmonic control. This is in

contrast to the high sensitivity of forward flight performance to rotor design, where

the α = 0.0 hovering rotor results in a three times increase in total power loss at

µ = 0.85. Also, we see that there is a knee in the Pareto frontier curves at values of
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Figure 5.11: Hover/cruise Pareto frontiers for a coaxial rotor using N = 1, N = 2,
and N = 3 harmonic control.

α of about 0.2, producing rotors with good hover performance with nearly optimal

cruise performance.

Figures 5.12 and 5.13 show the N = 1 and N = 3 optimal rotors at varying values

of α. Note that in each of these cases, the twist and chord distribution on the upper

and lower rotors are defined by independent sets of design variables; in other words,

there is no constraint or requirement that they be equal. The hovering rotor uses

significantly different twist and chord distributions on the upper and lower rotor.

These differences arise because of the different inflows on the upper and lower rotors

in hover. While beneficial in hover, the differences in upper and lower blade design

quickly disappear with increased weighting towards the forward flight condition. The

α = 0.2 rotor shows some slight differences in upper and lower twist, but above this

value, the twist of the upper and lower rotor are effectively equal. Furthermore, the

planforms of the optimal rotors rapidly approach the α = 1.0 design for values of α

greater than about 0.2. This rapid convergence to the optimal forward flight rotor

is due in part to the high sensitivity of forward flight performance to blade design.

Figure 5.14 shows the circulation distribution for the coaxial rotor using con-

ventional control (N = 1) at µ = 0.85 for three levels of α: the hovering optimal
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Figure 5.12: Optimal hover/cruise multipoint rotor designs for N = 1 control with
varying values of α for a coaxial rotor.

rotor (α = 0.0), the µ = 0.85 optimal rotor (α = 1.0), and a rotor determined by

multipoint optimization (α = 0.5). We see that the optimal hovering rotor, with

no consideration of the forward flight power loss in its design, generates regions of

very high circulation on the inner portion of the blade on both the advancing and

retreating sides, leading to high induced and profile power losses. The α = 0.5 rotor,

with equal weighting on both flight conditions, generates a circulation distribution

that is very similar to – and nearly as efficient efficient as – the α = 1.0 rotor while

also providing a modest benefit in hover efficiency.

Figure 5.15 shows the same combination of circulation distributions, this time
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Figure 5.13: Optimal hover/cruise multipoint coaxial rotor designs for N = 3
control with varying values of α for a coaxial rotor.

Figure 5.14: Normalized circulation distributions for the optimal N = 1 coaxial
rotor with varying values of α at µ = 0.85.

using N = 3 higher harmonic control. The increased degrees of freedom of azimuthal

pitch control allow the α = 1 rotor to decrease the regions of high circulation in

forward flight, particularly on the retreating side, resulting in a lower total power.

As in the N = 1 case, the α = 0.5 rotor nearly replicates the α = 1.0 rotor forward

flight optimal circulation distribution.
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Figure 5.15: Normalized circulation distributions for the optimal N = 3 coaxial
rotor with varying values of α at µ = 0.85.

Finally, Figure 5.16 shows the radial distribution of thrust and total power loss

for the α = 0.0, α = 0.5, and α = 1.0 rotors in hover. Without the use of hyperbolic

twist and chord distributions and the signficantly different upper and lower twist and

chord distributions, the α = 0.5 and α = 1.0 rotors are unable to match the optimal

hovering rotor. In fact, the thrust and power of the α = 0.5 rotor much more closely

resemble the α = 1.0 rotor, as the twist and chord required to match the hovering

optimal’s thrust and power distributions impose a large penalty on forward flight

performance and are therefore eliminated even at small values of α.

5.5 Conclusions

In this chapter, we have described a method of multipoint aerodynamic rotor opti-

mization. The method can be applied to conventional or coaxial rotors, and can be

used to optimize performance between any two advance ratios, or a single advance

ratio and hover, by minimizing the weighted sum of the aerodynamic losses at two

different flight conditions. We used the method to perform cruise/cruise optimization

and hover/cruise optimizations on representational conventional and coaxial rotors.

Based on the results presented in this paper, we reached the following conclusions:

1. For the conventional rotor optimized for the µ = 0.2 and µ = 0.5 flight condi-

tions, it is not possible to achieve optimal or near optimal performance at both
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Figure 5.16: Radial thrust and total power distributions for the optimal N = 1
coaxial rotor in hover with varying values of α.

flight conditions using a single rotor design. As a result, performance tradeoffs

must be made in selecting a rotor design. Weighting the µ = 0.5 power loss

more heavily results in a moderate penalty in performance at µ = 0.2; how-

ever, heavily weighting the µ = 0.2 power loss results in a very large penalty in

performance at µ = 0.5, with a total power loss that is three times the single

point optimum. As a result, the optimal rotor design quickly approaches the

µ = 0.5 optimum with increased values of α (i.e., increased weighting towards

the µ = 0.5 flight conditions). Higher harmonic control provides a relatively

small benefit at both advance ratios, and is marginally effective at improving

the shape and location of the Pareto frontier.

2. For the conventional rotor optimized for hover and forward flight at µ = 0.5,

there is a large tradeoff in performance between the two flight conditions. The

(single point optimal) hover and forward flight optimal rotor designs are dra-
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matically different, and a single rotor design cannot achieve optimal or near

optimal performance at both flight conditions. As α is varied, the multipoint

optimal rotor blends characteristics from the two single point designs, result-

ing in balancing of performance between the two flight conditions. In such a

case, the desired rotor shape should be carefully selected from designs along

the Pareto efficiency curve based on mission requirements. Higher harmonic

control once again marginally improves the location of the Pareto efficiency

curve across all values of α.

3. For the coaxial rotor optimized for the µ = 0.3 and µ = 0.85 flight conditions,

the Pareto efficiency curve has a very sharp corner or “knee,” indicating that

near optimal performance can be achieved at both flight conditions with a

single rotor design. Higher harmonic control significantly reduces power at

the µ = 0.85 flight condition, improving the Pareto efficiency curve while not

significantly altering its general shape.

4. For the coaxial rotor optimized for hover and µ = 0.85 flight, a substantial

tradeoff in performance must again be made between the two flight conditions,

as there is no sharp knee in the Pareto curve. However, the forward flight

performance of the rotor is more sensitive to changes in rotor design away

from the µ = 0.85 optimal rotor, resulting in the multipoint optimum rotor

design being dominated by the µ = 0.85 optimal twist and chord distributions,

even at small weighting towards this flight condition. For example, certain

design characteristics that are beneficial in hover, such as using different blade

designs on the upper and lower rotor, impose a large penalty on forward flight

performance and are quickly eliminated as the forward flight condition is more

heavily weighted. Higher harmonic control substantially improves the location

and shape of the Pareto frontier.
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6

Conclusions

In this dissertation, we have developed computational models to assess the optimal

design and performance of conventional and coaxial helicopters in both hover and

forward flight using conventional and higher harmonic control. Conventional heli-

copters are inefficient in forward flight and have a low maximum flight speed and

high power requirements compared to fixed wing aircraft. Compounding the propul-

sive force of the rotor with an auxiliary source of propulsion such as a propeller can

allow for increased top speeds and more efficient flight. Additionally, using a rigid

coaxial rotor system within a compound configuration can further improve both for-

ward flight and hover efficiency. The use of higher harmonic control within these

compound configurations offers the potential for further aerodynamic performance

improvement. Although the implementation of higher harmonic control involves sub-

stantial technological challenges, a logical first step is to assess its potential to reduce

power loss from a strictly aerodynamic perspective.
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6.1 Conclusions

We have investigated two distinct areas of compound and coaxial helicopter design

– hover and forward flight performance analysis and optimization – and then joined

these two analyses into a single multipoint optimization. We provide here conclu-

sions for each investigation, followed by a summary of more general conclusions and

proposed future work.

Optimal design of compound vehicles in forward flight that use higher

harmonic control: We investigated the performance and optimal design of a com-

pound vehicle using counter-rotating coaxial rigid rotors, a propeller, and, optionally,

a fixed wing. We determined the blade geometry, azimuthal blade pitch inputs, op-

timal shaft angle (rotor angle of attack), and division of propulsive and lifting forces

among the components that minimize the total power for a given forward flight

condition. The optimal design problem was cast as a variational statement that is

discretized using a vortex lattice wake to model inviscid forces, combined with two-

dimensional drag polars to model profile losses. The resulting nonlinear constrained

optimization problem was solved via Newton iteration. We found that varying the

required propulsive force of the vehicle has a large effect on the optimal shaft angle,

which in turn has an effect on the optimal rotor design. Additionally, the optimal

shaft angle is strongly dependent on the propeller design and efficiency. As a result,

it is important in compound vehicle design to consider the entire propeller/rotor

system rather than treating the components separately. The resulting optimal shaft

angle will not necessarily result in either the rotor or the propeller operating in a

minimum power state.

We also found that for the coaxial case considered, higher harmonic control re-

duces total vehicle power loss by as much as 15 percent compared to conventional

control. Higher harmonic control results in a more efficient rotor system, leading
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to an increasingly negative (forward tilted) optimal shaft angle. This allows the ro-

tor system to provide a larger fraction of the vehicle’s propulsive force. The use of

higher harmonic control reduces both induced and viscous components of power in

part by reducing circulation on the retreating side of each rotor and concentrating

circulation on the advancing side, resulting in a circulation and lift distribution that

more closely resembles the rubber rotor optimum.

Both the conventional and higher harmonic control cases achieve efficient forward

flight by operating with a high lateral lift offset equal to about one-half the rotor

radius. Such high values of lift offset may not be structurally feasible. Constraining

the maximum lateral lift offset of a coaxial rotor system to a smaller value signifi-

cantly increases the rotor and vehicle power losses. For example, when the maximum

lateral lift offset is limited to 30 percent of the rotor radius, total vehicle power loss

increases by over 40 percent for both conventional and higher harmonic control.

Higher harmonic control dramatically reduces rotor power losses at negative shaft

angles when the maximum lateral lift offset is constrained. At high positive shaft

angles, the benefit of higher harmonic control is greatly diminished.

The use of a lifting wing to supplement coaxial rotor lift has a very modest effect

on aircraft efficiency, decreasing overall vehicle power loss by less than 1 percent. A

wing may be more effective at reducing power if the rotor system is also constrained

in lift offset or if a conventional single rotor is used rather than the rigid coaxial

design, cases that were not analyzed in this study.

Optimal design of a coaxial rotor in hover: We developed a model to an-

alyze and optimize coaxial rotors in hover. Building on prior work in the field by

Leishman and Ananthan [19] and Rand and Khromov [20], we developed a blade ele-

ment momentum theory model including the swirl component of induced velocity to

quantify the effects of swirl on performance, optimal induced wash distribution, and

optimal blade twist and chord. The optimization accounts for the presence of a finite

152



number of blades using the Prandtl tip loss factor, the effect of profile drag using

experimentally or computationally determined drag polars, and the mutual inter-

ference between the two rotors using an empirically determined influence coefficient

method.

We find that the optimal hovering coaxial rotor uses a significantly lower, and

in some cases negative, thrust distribution on the inner portion of the lower rotor.

The outer portion of the lower rotor, operating outside of the contracted wake of the

upper rotor, then generates a majority of the lower rotor’s thrust. We determined

that the optimal coaxial rotors with and without swirl are nearly identical at radial

stations outboard of r/R = 0.3. At values of r/R < 0.3, the rotors optimized

accounting for swirl have signficantly different optimal twist and chord distributions

than the non-swirl case. As expected, swirl has a larger effect on performance at

higher thrust coefficients. Computations accounting for swirl have an optimal figure

of merit 3.5% lower than the equivalent no swirl model at the very high thrust

coefficient of CT = 0.02. At the typical disk loadings seen on helicopters, the effect

of swirl on rotor design and performance predictions within the framework of blade

element momentum theory is relatively small. Other model refinements, such as more

detailed wake modeling and improved mutual interference models, may have a larger

impact on optimal rotor design and performance predictions than the inclusion of

the swirl component of induced velocity. Finally, we found that the optimal coaxial

hovering rotor has significantly different twist and chord distributions on the upper

and lower rotors, resulting from the different inflow distributions acting on each rotor

as a result of their mutual interference. However, using the optimal upper rotor blade

design on both rotors leads to a relatively small decrease in performance, indicating

that near optimal hover performance can be achieved using the same blade design

on the upper and lower rotors.

Axisymmetric potential flow model of single or coaxial actuator disks
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in hover: To better understand the mutual interference of coaxial rotors in hover,

we modeled the rotor or coaxial rotors as actuator disks (though not necessarily

uniformly loaded) and the wake as contracting cylindrical vortex sheets, which we in

turn represented as discrete vortex rings. We assumed the system is steady in time

and axisymmetric, requiring us to model only a single azimuthal slice of the disk and

its wake to determine the shape of the wake and the induced velocity throughout

the flowfield. We use multiple vortex sheets, allowing us to analyze any piecewise

constant distribution of bound circulation on the disk or disks. We solve for the

wake position that results in all vortex sheets being aligned with the streamlines of

the flow field via Newton iteration.

We find that the singularity that occurs where the vortex sheet terminates at the

edge of the actuator disk is resolved through the formation of a 45◦ logarithmic spiral

in hover, as hypothesized by Spalart [45]. The spiral structure of the wake results

in a highly non-uniform inflow that includes reversed flow through the actuator disk

near its edge. In axial flight, the size of this spiral decreases, vanishing in the limit

where Vc/Vi approaches infinity. In cases of descending flight, the size of the spiral

structure increases until the wake enters the vortex ring state, where solutions can

not be found using the methods described here. At high descent velocities, the vortex

sheet enters a windmill brake state, which also has a spiral-like structure of the same

orientation as the climb velocity and hover cases. In this case, flow recirculates not

through the actuator disk but around the outer edge of the disk. Actuator disks with

multiple vortex sheets still contain the spiral structure, although it is significantly

smaller or undetectable on the inboard filaments, and presumably would vanish for

smooth distributions of circulation (except at the tip).

Coaxial actuator disks have a pronounced spiral structure on the lower disk,

where the upwash induced by the upper disk acts as a descent velocity for the edge

of the lower disk. The upper disk sees the opposite effect, with a net downward flow

154



through the disk induced by the lower disk, reducing the size of the spiral structure

and more closely resembling an actuator disk in climbing axial flight. The mutual

interference effects predicted by our vortex ring model agree reasonably well with the

predictions made using the influence coefficient model of McAlister et al. [49] and

used in the coaxial hover optimization described in Chapter 3.

Multipoint Optimization of Conventional and Coaxial Helicopters: Fi-

nally, we combined versions of the hover and forward flight optimizations to develop

a formal multipoint optimization of conventional and coaxial rotors that can be used

to determine the rotor design that best balances performance between hover and

cruise, or alternatively, two disparate cruise flight conditions.

For a conventional rotor optimized for hover and forward flight at µ = 0.5, there

is a large tradeoff in performance between the two flight conditions. The (single

point optimal) hover and forward flight rotor designs are dramatically different, and

a single rotor design cannot achieve optimal or near optimal performance at both

flight conditions. The multipoint optimal rotor blends characteristics from the two

single point designs, resulting in balancing of performance between the two flight

conditions. The desired rotor shape should be carefully selected from designs along

the Pareto efficiency frontier based on mission requirements. Higher harmonic control

marginally improves performance along the Pareto efficiency frontier.

For a coaxial rotor optimized for hover and µ = 0.85 flight, a substantial tradeoff

in performance must again be made between the two flight conditions, as there

is no sharp knee in the Pareto curve. The performance of the rotor at the high

speed forward flight point is more sensitive to changes in rotor design than the

hovering flight condition Rotor designs that come the closest to optimal performance

at each of the the two flight conditions, therefore, more closely resemble the high

speed optimal design. Certain design characteristics that are beneficial in hover,

such as using different blade designs on the upper and lower rotor, impose a large
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penalty on forward flight performance and are quickly eliminated as the forward flight

condition is more heavily weighted. Higher harmonic control substantially improves

the location and shape of the Pareto frontier.

6.2 Future Work

There are numerous opportunities for improvement and refinement to the forward

flight analysis presented in this dissertation. In the near field analysis used to relate

the design variables to the far field circulation, we approximate each blade as a lift-

ing line and the airfoil aerodynamics as quasi-steady, meaning that at each discrete

azimuthal position (i.e., time step), the lift and drag coefficients of the blade can

be determined from steady airfoil characteristics. While this approach is correct in

the limit of low reduced frequency, it does not accurately account for the unsteady

effects at work on a rotor, where rapid changes in loading can lead to reduced fre-

quencies of certain harmonics of interest for airloads calculations of up to 0.4 [77].

Unsteady effects, including dynamic stall, can be better modeled either through em-

pirical approximations of nonlinear unsteady stall effects, as was done in the analysis

by Egolf et al. [78], through the use of a single panel lifting surface model, as was

done in the comprehensive code CAMRAD described by Johnson [79], or through

the use of a multiple panel lifting surface model similar to the model investigated by

Wachspress and Yu [80]. Including blade dynamics in the analysis is another area for

potential improvement, as blade flapping and other structural dynamic effects would

clearly change the effective pitch angle and thus the performance of the optimal ro-

tors shown here. It should be noted, however, that with each successive refinement

and added layer of complexity, the approach loses some of its utility as a first prin-

ciples aerodynamic model. The strength of this approach in its current form is its

ability to approximate aerodynamic improvements available with various design fea-

tures and quickly identify the rotor geometry, pitch inputs and lift distribution that
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yield optimal aerodynamic performance for any arbitrary compound and/or coaxial

configuration. There already exist several validated comprehensive codes capable of

analyzing the dynamics and aerodynamics of an existing rotor to great detail, and

it was not the goal of this work to develop a method that could in any way replace

the predictive capabilities of these existing models.

For the hover model, the next step would be a free wake model similar to the

free-vortex model described by Syal and Leishman [21], which uses a Weissinger-L

representation of the blade. Once again, however, while the higher fidelity model

is more accurate than the simpler BEMT approach, the ability to gain fundamen-

tal insights into optimal rotor design can sometime be impeded by the increased

complexity.

Finally, for the multipoint optimization, the approach could easily be extended

to three or more flight conditions and used to determine a rigorous optimum rotor

design for a given mission profile.
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Appendix A

Determining Closed Form Expressions for the
Gradients of Circulation and Viscous Power

A.1 Determining the Entries of the A Matrix

To determine the entries of the A matrix, we start with the following expression

for circulation at the ith panel, obtained from equating the lift calculated by the

Kutta-Joukowski theorem with the definition of the sectional coefficient of lift:

Li = ρuiΓi =
1

2
ρui

2ci (c`α)i αi (A.1)

where ρ is the denisty, u is the velocity normal to the span of the blade, c is the

chord value, c`α is the lift curve slope, and α is the angle of attack. Solving for the

circulation Γi gives,

Γi =
1

2
uici (c`α)i αi (A.2)

Taylor expanding this equation and retaining first-order terms to approximate ∆Γi

due to changes in the local angle of attack αi and local changes in chord ci gives

∆Γi =
1

2
uici (c`α)i ∆αi +

1

2
uicli∆ci (A.3)
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The ∆αi term can be replaced by the sum of two distinct changes in angle of attack:

a change in the induced angle of attack, ∆αindi, and a change in the angle of attack

due to a change in the design variables vector, which will be referred to as ∆θpitchi.

Thus,

∆Γi =
1

2
uici (c`α)i (∆θpitchi −∆αindi) +

1

2
uicli∆ci (A.4)

Next, we wish to put ∆αindi in terms of a change in the circulation distribution,

∆Γ. Starting with the following definition

αindi = tan−1

(
wi
ui

)
(A.5)

and Taylor expanding Equation (A.5) in terms of the induced wash, wi, and retaining

first order terms gives

∆αindi =

 1

1 +
(
wi

ui

)2

 ∆wi
ui

(A.6)

The wash at each panel is related to the circulation through the influence coefficient

matrix W :

w = WΓ (A.7)

and therefore, to first order

∆w = W∆Γ (A.8)

and for the ith panel,

∆wi = Wi∆Γ (A.9)

where Wi is the ith row of the matrix W. Substituting Equation (A.9) into Equa-

tion (A.6) and simplifying gives the following expression for ∆αindi, i.e.,

∆αindi =

(
ui

ui2 + wi2

)
Wi∆Γ (A.10)
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Substituting this expression into Equation (A.4) and reorganizing terms gives

∆Γi +
1

2
ci (c`α)i

(
ui

2

ui2 + wi2

)
Wi∆Γ =

1

2
uici (c`α)i ∆θpitchi +

1

2
uicli∆ci (A.11)

Writing this equation in matrix form gives

RΓ∆Γ = RθFull

(
∆θpitch

∆c

)
(A.12)

with the elements of matrix RΓ defined as follows:

RΓij = δij +
1

2
ci (c`α)i

(
ui

2

ui2 + wi2

)
Wij (A.13)

and with RθFull made up of two diagonal matrices, Rθ and Rc, with their elements

defined in Equations A.15 and A.16:

RθFull = {Rθ|Rc} (A.14)

Rθij = δij
1

2
uici (c`α)i (A.15)

Rcij = δij
1

2
uicli (A.16)

Note that in Equation (A.12) the vector ∆Γ is of length M , where M is equal to

the number of panels in the vortex lattice grid. The vectors ∆θ and ∆c are each of

length M , and the matrix RθFull has dimensions M × 2M .

Finally, to relate a small change in the vector of design variables θ to the change

in circulation, we use the Stotal matrix. This matrix relates the design variables θ

to the value of the chord and blade pitch at every panel in the wake, c and θpitch

respectively.

Stotalθ =

{
θpitch

c

}
(A.17)
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We then define Rθ as

Rθ = RθFullStotal (A.18)

allowing Equation (A.12) to be written as

∆Γ = RΓ
−1Rθ∆θpitch (A.19)

The matrices RΓ and Rθ are the Jacobians of R with respect to Γ and θ, respec-

tively. Lastly, defining

A = RΓ
−1Rθ (A.20)

we have formed a single matrix A of dimensions M × h, where M is the number of

panels in the vortex lattice grid and h is the number of design variables, that relates

the change in each design variable to the corresponding change in circulation to first

order accuracy, as stated in Equation (2.15).

A.2 Determining the Entries of the Vector Kv

We start with the following equation for the viscous power loss at the ith panel in

the wake

Pvi =
ρu2

i

2
cicdi∆Ai (A.21)

where ∆Ai is the area of the ith panel in the wake. Taylor expanding in terms of

changes in the chord distribution, c, and changes in the coefficient of drag due to

changes in the angle of attack θ, and retaining first order terms yields

∆Pvi =
ρu2

i

2
(∆cicdi + ci (cdα)i ∆αi) ∆Ai (A.22)

Expressing the change in angle of attack as two separate components, one due to a

change in induced angle of attack and one due to a change in design variables, and
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using the expression for ∆αindi from Equation (A.10) gives

∆Pvi =
ρu2

i

2

(
∆cicdi + ci (cdα)i ∆θpitchi − ci (cdα)i

(
ui

ui2 + wi2

)
Wi∆Γ

)
∆Ai

(A.23)

Using Equation (2.15) to replace ∆Γ, and including the matrices Sθ and Sc to put

changes in pitch angle ∆θ and chord ∆c at each panel in terms of the change in

design variables ∆θθ and ∆θc, gives the following equation

∆Pvi = PT
c Sc∆θc + PT

θ Sθ∆θθ −PT
θ WA∆θ (A.24)

This equation shows that the first-order change in viscous power has distinct con-

tributions from the change in chord design variables ∆θc and the change in pitch

angle design variables, ∆θθ. Additionally, there is a third term that results from the

change in circulation due to the change in the entire design variables vector ∆θ. The

elements of the vectors Pc, Pθ and Pθ are defined as follows

Pci =
ρu2

i

2
cdi∆Ai (A.25)

Pθi =
ρu2

i

2
ci (cdα)i ∆Ai (A.26)

Pθi =
ρu2

i

2
ci (cdα)i

(
ui

ui2 + wi2

)
∆Ai (A.27)

We want to combine the terms on the right hand side of Equation (A.24) into a single

vector, Kv, such that

∆Pv = KT
v ∆θ (A.28)

To form the Kv matrix, we make use of the fact that the vector ∆θ is simply a

concatenation of the ∆θθ and ∆θc vectors, as shown in Equation (5.6), allowing us

to sum components of Equation (A.24) as follows

Kv =

{
STθ Pθ

STc Pc

}
+

{
ATWTPθ

}
(A.29)
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Note that the vector ATWTPθ is of length h, meaning it has an entry for each design

variable. The vector STθ Pθ has an entry for each twist design variable, while the

vector STc Pc has an entry for each chord design variable, making the concatenation

of these two vectors of length h as well and allowing the two vectors to be summed.
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